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Abstract

Differential expression of maternally and paternally inherited alleles of a gene is referred to as gene imprinting, a form of
epigenetic gene regulation common to flowering plants and mammals. In plants, imprinting primarily occurs in the
endosperm, a seed tissue that supports the embryo during its growth and development. Previously, we demonstrated that
widespread DNA demethylation at remnants of transposable elements accompanies endosperm development and that a
subset of these methylation changes are associated with gene imprinting. Here we assay imprinted gene expression
genome-wide by performing high-throughput sequencing of RNA derived from seeds of reciprocal intraspecific crosses. We
identify more than 200 loci that exhibit parent-of-origin effects on gene expression in the endosperm, including a large
number of transcription factors, hormone biosynthesis and response genes, and genes that encode regulators of epigenetic
information, such as methylcytosine binding proteins, histone methyltransferases, and chromatin remodelers. The majority
of these genes are partially, rather than completely, imprinted, suggesting that gene dosage regulation is an important
aspect of imprinted gene expression.
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Introduction

The correct expression of imprinted genes, in which maternally

and paternally inherited alleles are differentially expressed, is

required for successful reproduction in both plants and animals

[1]. Imprinted genes were initially identified in plants based on

parent-of-origin effects on seed phenotypes [2] or through genetic

screens aimed at identifying regulators of seed development [3,4].

In plants imprinting occurs primarily in the endosperm, the seed

tissue that nourishes the embryo. The embryo and endosperm are

the twin products of double fertilization but differ in their ploidy;

the embryo inherits one maternal and one paternal genome,

whereas the endosperm inherits two maternal and one paternal

genomes. Despite their genetic similarity and concurrent devel-

opment, the embryo and endosperm are clearly epigenetically

distinct [5–8].

Differential DNA methylation is an important aspect of the

control of imprinted gene expression. For several imprinted genes

the maternal allele is less methylated than the paternal allele in the

endosperm [6,9,10]. Genome-wide DNA methylation mapping

efforts further demonstrated that Arabidopsis thaliana endosperm is

hypomethylated not just at imprinted genes but at thousands of

sites throughout the genome when compared to the embryo and to

vegetative tissues [6,7]. Hypomethylation is primarily found at

maternally-derived sequences. Similar results have been obtained

for rice endosperm [11] and analysis of 5-methylcytosine content

in maize indicates that endosperm is also hypomethylated in this

species [12]. The difference in methylation between embryo and

endosperm likely represents the outcome of multiple events,

including active DNA demethylation in the female gamete that is

the progenitor of the endosperm, decreased maintenance or de novo

methylation during endosperm development, and/or increased

methylation in the embryo [6,7,13]. Although methylation

differences are found throughout the genome, only a subset of

these likely impact gene expression.

Apart from the mechanistic basis of imprinted gene expression,

parental conflict between maternally and paternally inherited

genomes of offspring over maternal resource allocation is a

popular explanation for why imprinted gene expression is

evolutionarily advantageous (the parental conflict or kinship

theory of imprinting) [14,15]. Maternally expressed imprinted

genes (MEGs) are expected to restrict offspring growth and

paternally expressed imprinted genes (PEGs) are expected to

promote growth. The theory fits well with the function of some of

the known imprinted genes in plants; for example, MEA and FIS2

are maternally expressed imprinted Polycomb group genes that

restrict endosperm cell division. However, since the identity,

functions, and expression patterns of many imprinted genes are

likely still unknown it is presently unclear how many of the

imprinted genes will reasonably fit under the umbrella of the

kinship theory. Other theories suggests that in species where the

mother provisions or cares for the offspring, expression of

maternal alleles is favored due to an increase in the adaptive

integration of maternal and offspring genomes (the maternal-
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offspring coadaptation theory of imprinting) [16]. More broadly,

imprinted expression might be maintained at any locus that has

dosage-dependent effects on seed viability [17].

We previously used knowledge of differences in methylation

between Arabidopsis thaliana embryo and endosperm, as well as

information on endosperm and developmental expression patterns

[18,19], to predict what genes were imprinted, five of which were

validated by RT-PCR assays [6]. Our analysis of gene imprinting

was restricted to those genes associated with methylation

differences, but other epigenetic mechanisms, such as silencing

mediated by Polycomb group (PcG) complexes, are also important

for maintaining imprinted expression [9,20,21]. Relatively few

large-scale unbiased screens of allelic expression patterns have

been performed in plants. Allele-specific expression analysis in

endosperm of reciprocal hybrids of maize indicates that most

genes are expressed according to the contribution of the parental

genomes, although a small proportion of the genes studied

exhibited parent-of-origin specific expression patterns [22,23].

The advent of high throughput RNA sequencing technologies

makes it possible to more directly assess the relative quantities of

steady-state transcripts derived from maternally or paternally-

inherited alleles. Similar approaches have successfully identified

genes imprinted during different stages of mouse development

[24–26].

Here we assay imprinted gene expression by performing high

throughput sequencing on poly-A selected RNA (RNA-seq) from

embryo and endosperm derived from reciprocal crosses between

two Arabidopsis thaliana accessions, Ler and Col-0. This strategy

allowed us to distinguish transcripts derived from the maternally

inherited or paternally inherited allele for a portion of expressed

genes with Ler/Col-0 single nucleotide polymorphisms (SNPs). We

identified .200 genes with parentally biased expression patterns.

Our experimental strategy is particularly robust for identifying

paternally expressed imprinted genes, as transcripts derived from

the paternal genome must come from one of the fertilization

products. Over 40 genes are predominantly paternally expressed,

including a large number of transcription factors and chromatin

related proteins. Most of the imprinted genes we identify exhibit

parentally biased expression rather than complete monoallelic

expression, suggesting that dosage regulation is an important

factor in gene imprinting.

Materials and Methods

Plant Material and RNA Isolation
Wild type Col-0 and Ler plants were grown in 16 hour days at

21u C. Stage 12c flowers [27] on four to five-week old plants were

emasculated and pollinated two days later. Seeds were dissected

into embryo, endosperm, and seed coat fractions as previously

described at the torpedo stage of development [6], which under

our growth conditions was at either 6 or 7 days after pollination

(DAP) depending on the direction of the cross. Embryo and

endosperm RNA was isolated using the RNAqueous Kit with

Plant RNA Isolation Aid (Ambion), concentrated by precipitation

with ammonium acetate, and treated with DNase I (Invitrogen).

For Ler6Col, RNA was pooled from dissected seeds from 21

siliques (,800–1000 seeds). For Col6Ler, RNA was pooled from

seeds dissected from 14 siliques (,560–700 seeds).

High Throughput Sequencing
RNA-seq libraries were created by using the Illumina mRNA-

seq kit and following the sample preparation guide protocol

(Illumina). Briefly, 1 mg of total RNA was poly-A selected twice,

fragmented, and converted into double-stranded cDNA. The

cDNA was end repaired, adenylated, and adapters ligated.

Adapter-ligated DNA approximately 200 bp in length was gel

purified and amplified using Illumina PCR primers PE1.0 and

PE2.0 with 15 amplification cycles. The library preparation

method does not retain strand-specific information. Libraries

were sequenced on two separate runs of Illumina GAII

machines, including one lane each of Col6Ler embryo and

Col6Ler endosperm and two lanes each of Ler6Col embryo and

Ler6Col endosperm at 50 bp, and one additional lane of each

library at 36 bp. Sequencing reads are deposited as fastq files in

GEO record GSE30511 (http://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc = GSE30511).

Sequence Alignment
Sequencing reads were aligned to the TAIR 9.0 version of the

Arabidopsis reference genome (Col-0) using TopHat [28]. Low

quality reads and reads that mapped to more than one position in

the genome with the same alignment score were discarded. Reads

that mapped to more than one gene due to overlapping exons

were not considered in further analyses. SAM files for each

alignment are deposited in GSE30511.

Assigning reads as Ler or Col
We used known SNPs from Perlegen and Ecker lab Ler

resequencing data downloaded from TAIR (ftp://ftp.arabidopsis.

org/home/tair/Polymorphisms/; Table S1). Ecker SNPs where

the Ler consensus base was reported as occurring on fewer than

95% of base calls in Ler were not used. For each read that

overlapped a known Col/Ler SNP we determined whether the

read matched Col or Ler at that position. If a read overlapped

multiple SNPs it was only classified as Col or Ler if all SNPs

agreed.

Detecting Imprinting
For each locus in the embryo or endosperm we determined a p-

value for the null hypothesis of no imprinting and corrected for

multiple testing using the Benjamini-Hochberg method. Specifi-

cally, we followed the method of Wang et al. (2008) [25] to test for

a significant difference between p1 and p2 using the Storer-Kim

method [29] as implemented in R (www.r-project.org) [30]. p1 is

defined as the Col portion for a given locus in Col6Ler crosses,

and p2 is the portion of Col in Ler6Col crosses. For the embryo we

tested if p1 = p2 = 0.5 and for the endosperm if p1 = 2p2 = 0.67,

because the ratio of maternal to paternal genomes in the

endosperm is 2:1. As read coverage increases smaller and smaller

degrees of imprinting can be detected. We therefore computed an

imprinting factor to determine the magnitude of imprinting. For

each locus we determined the 95% confidence interval around the

Col/Ler read ratio from each sample. The imprinting factor is the

low value of the high confidence interval divided by the high value

of the low confidence interval for the reciprocal crosses. In essence,

the imprinting factor is a variable where we have high confidence

that the ratio of Col to Ler reads is at least that many times greater

in one of the reciprocal hybrids than in the other reciprocal

hybrid.

Detecting cis effects
In addition to imprinting effects, biased expression patterns

can result from strain-specific effects on gene expression. For

example, a Col allele might be more highly expressed than a Ler

allele, independent of the direction of the cross. We computed

the p-value for the observed cis-effect given the null hypothesis of
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no Col vs. Ler effect and corrected for multiple testing using the

Benjamini-Hochberg method. The cis effect factor is computed

in a similar manner to the imprinting factor.

RPKM and Differential Expression
RPKM (reads per kb per million mapped reads) values were

determined using the method of Mortazavi et al (2008) [31]. For

transposable elements, only reads that mapped to transposable

elements but did not overlap genic exons were considered.

Differential expression between two experiments was determined

by applying Fisher’s exact test to the number of reads mapping

uniquely to each locus, using the upper-quartile normalization

method described in Bullard et al (2010) [32]. Specifically, the

read count ratio for a given locus across two experiments was

compared to the ratio of the 75th percentile read count across the

two experiments, where loci with zero read counts in both

experiments were excluded when computing the 75th percentile.

This method has been shown to outperform total read count

normalization [32]. The differential expression factor is deter-

mined in a similar manner to the imprinting and cis effect

factors.

Validation assays
Quantitative PCR (qPCR) was performed on the embryo and

endosperm cDNA samples and the Illumina libraries to confirm

enrichment for genes preferentially expressed in the embryo and

endosperm and to determine if the sequencing libraries faithfully

represented the original cDNA population. For qPCR, DNase I

(Invitrogen) treated RNA from Col6Ler embryo and endosperm

samples was reverse transcribed with oligo dT using the Retro-

script Kit (Ambion). qPCR was performed using a StepOne Plus

qPCR machine and Fast SYBR Green reagent (Applied

Biosystems). qPCR primers were designed using QuantPrime

[33] and are listed in Table S12. Results were analyzed using the

DD CT method [34]. Expression was normalized by actin 8

(AT1G49240). Three technical replicates were performed for each

sample.

To assay AT3G03750/SDG20 imprinting in embryos, oligo

dT primed cDNA was created from the embryo RNA samples

used to create the Illumina sequencing libraries and a set of

independently isolated reciprocal F1 embryo RNA. SDG20 was

amplified with primers MG581 (59-GCTGACCAGCTTAT-

CAAGCAAGG-39) and MG586 (59-CCTTCTCCAAATCAG-

TAGAGCCGCTA-39) for 40 PCR cycles. RT-PCR products

were gel purified, cloned into the pCR 2.1 TOPO vector

(Invitrogen), and individual clones subjected to dideoxy sequenc-

ing. Col/Ler SNPs at TAIR9 chromosome 3 positions 941,455

(A to C) and 941,585 (G to C) indicated whether clones were

derived from Col or Ler alleles.

Functional Analysis
Functional annotation of the 165 maternally expressed

imprinted genes and 43 paternally expressed imprinted genes

was performed separately to test for enrichments in GO_FAT

terms, KEGG pathways, or INTERPRO domains using DAVID

Bioinformatics Resources version 6.7 (http://david.abcc.ncifcrf.

gov/) [35,36]. The background set of genes for both analyses was

the 10,316 endosperm-expressed genes with a Col/Ler SNP and at

least 15 informative reads. Categories with EASE scores (a

modified Fisher’s exact test used by DAVID) less than 0.01 are

presented along with p-values obtained after correction for

multiple testing by the Benjamini-Hochberg method.

Results

RNA-seq identifies new imprinted genes
We performed a genomic analysis of imprinted gene expression

in Arabidopsis thaliana embryo and endosperm to further understand

the function, mechanisms, and evolution of gene imprinting. Wild

type Col-0 females were crossed to Ler males and Ler females to

Col-0 males. Seeds were dissected into their component parts at

the torpedo stage of seed development. Four high throughput

mRNA sequencing libraries were generated from reciprocal F1

hybrid Col/Ler embryo and endosperm. qPCR on four genes

known to be either preferentially expressed in the embryo

(AT1G22250 and AT5G22470) or endosperm (AT4G21680 and

AT1G49770/RGE1/ZOU) [37–39] indicated consistent enrich-

ment between cDNA and sequencing library samples (Figure 1).

We obtained between 34 and 41 million reads from each of the

four libraries, 79% of which mapped uniquely to the genome using

the TopHat read aligner [28]. 94% of those reads mapped to

known genes. The direction of the cross (Col6Ler vs. Ler6Col) had

only minor effects on gene expression, with high correlations

between embryo samples and between endosperm samples

(Pearson’s r for RPKM values = 0.975 and 0.998, respectively).

Embryo and endosperm expression profiles were clearly distinct

(Pearson’s r for Col6Ler RPKM values = 0.144).

Although all mapped reads can be used to determine overall

gene expression levels, only a fraction of the reads are informative

for determining maternal or paternal allele expression – those

reads that overlap a Col/Ler SNP. Data from reciprocal crosses

also allows parent-of-origin effects to be distinguished from strain

specific biases in gene expression. We used information on

previously identified SNPs (Table S1) to identify reads as Col or

Ler. We obtained between 1.56 and 1.96 million informative

reads for each library and calculated the number of Col or Ler

reads for each gene. Approximately 10,300 genes from each

tissue had at least 15 informative reads when data from reciprocal

crosses were combined. These genes exhibited a range of

maternal to paternal expression ratios, but the average percent

maternal transcripts for each gene in the embryo and endosperm

was near the expectation of 50% and 67%, respectively, based on

the genomic DNA content of each tissue (Figure 2). This is

consistent with studies of maize endosperm, which show that

expression is proportional to the genomic contribution of the

parents for most genes [22,23]. To identify imprinted genes we

used the Storer-Kim method [29] to test whether the proportion

of maternal and paternal reads for each gene was significantly

different from expectations [25], taking into account the allele-

specific read counts from both reciprocal crosses in order to

distinguish parent-of-origin effects from strain-specific effects. We

initially considered genes with a p-value less than 0.01, identifying

148 potential imprinted genes in the embryo (142 maternally

expressed imprinted genes or MEGs, 6 paternally expressed

imprinted genes or PEGs) and 1437 in the endosperm (1334

MEGs, 103 PEGs). Five of the 11 previously identified imprinted

genes passed this initial p-value cutoff, while the remaining

known imprinted genes either lacked Ler/Col SNPs, had very few

informative reads, or, in one case, fell just below the cutoff

(Table 1). Allele-specific expression data, RPKM values, and

embryo-endosperm differential expression analysis for all genes is

presented in Tables S2 and S3. There was very little evidence for

expression or imprinting of transposable elements in either tissue

(Tables S4 and S5). Upon closer examination of some of the most

highly parentally biased genes, it was clear that transcripts from

genes highly expressed in the seed coat (which is diploid maternal

tissue) were contaminating both the embryo and endosperm
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fractions. Some contamination from abundant seed coat

transcripts is likely unavoidable given our method of seed

dissection, which is performed in an aqueous solution on a glass

slide. We used expression information from another seed gene

expression set to further filter our data. Le et al. (2010) [40] used

laser capture microdissection (LCMD) to isolate tissue from

embryo, endosperm, and seed coat in the Ws background and

determined gene expression values using Affymetrix microarrays.

The rank order correlation coefficient between our embryo or

endosperm expression data and the LCMD gene expression data

of tissues at the same stage of development was good (r = 0.81 for

embryo and r = 0.77 for endosperm). To determine a reasonable

cutoff for removing genes likely to be affected by maternal seed

coat contamination, we examined the difference between LCMD

seed coat and endosperm expression for the 82 potential

endosperm PEGs with a p-value less than 0.01 and Affmetryix

expression data. Maternal seed coat contamination cannot result

in false positive PEGs, only false negatives. The average

difference in seed coat and endosperm expression was 21.1 for

potential endosperm PEGs and 1.2 for potential MEGs (Figure 3).

The maximum PEG difference was 1.93, but 95% of the genes

had a seed coat-endosperm value less than 1.04 (Figure 3). We

thus removed genes from the pool of potential MEGs that had

approximately two fold higher expression in the seed coat than

endosperm (a difference of 1.04 between GCRMA normalized

expression values), although we retained genes that lacked

Affymetrix data. The same filtering was performed on the

embryo dataset. This reduced the number of potential imprinted

genes to 905 in the endosperm (802 MEGs, 103 PEGs) and 87 in

the embryo (81 MEGs, 6 PEGs).

As read coverage increases it is possible to detect smaller and

smaller degrees of imprinting with statistical significance. Genes

with a large number of informative reads can have very low p-

values, even if the parental bias is intuitively not very strong. For

example, locus AT2G05990 has 15,636 informative reads, 37% of

which are paternally derived (the expectation for paternal reads is

33.3%). This gene is identified as paternally biased with a

p-value of 3.65610221. Thus, by p-value considerations alone,

AT2G05990 would be considered imprinted. Therefore, to

describe the strength of imprinting in a manner less dependent

on read depth, we also calculated an imprinting factor for each

locus (see Methods) and further restricted our analysis to genes

with an imprinting factor of at least 2, meaning that the ratio of

Col to Ler reads in one cross was at least 2 fold different from

the Col/Ler ratio in the reciprocal cross. By these criteria,

AT2G05990 is discarded because the imprinting factor is 1.25

(Table S2). We also removed a few genes with strong cis effects on

expression (an allele from one strain was dominant, independent of

the parent-of-origin). After these final filtering steps we identified

18 genes with biased expression in the embryo (17 MEGs, 1 PEG)

and 208 genes in the endosperm (165 MEGs, 43 PEGs) (Figure 2;

Tables S6 and S7). The endosperm list includes three previously

identified imprinted genes: HDG3, HDG9, and MYB3R2 (Table 1)

[6]. The list does not include the known imprinted gene FIS2,

which passed our p-value threshold but has a low imprinting factor

due to low read counts. We are likely missing other valid imprinted

genes on our list (false negatives). Increasing sequencing depth

could reduce false negatives.

Although all genes in our list pass the same statistical criteria,

we consider the identification of PEGs more robust than the

identification of MEGs. The MEG list is more likely to contain

false positives than the PEG list because any contamination from

maternally derived tissues will make genes appear more maternally

expressed than expected. The only source of the paternal genome

is from the products of fertilization, embryo and endosperm, and

thus contaminating RNA from maternally derived tissues cannot

create false positives, only false negatives.

Figure 1. Embryo and endosperm specific genes are enriched in cDNA samples and resultant sequencing libraries. A) qPCR analysis of
two genes known to be preferentially expressed in the embryo in Col6Ler embryo cDNA (light gray bars) and sequencing libraries (dark gray bars).
Values shown are fold enrichment in embryo relative to endosperm. B) qPCR analysis of two genes known to be preferentially expressed in the
endosperm in Col6Ler endosperm cDNA (light gray bars) and sequencing libraries (dark gray bars). Values shown are fold enrichment in endosperm
relative to embryo. AT1G49770 could not be amplified from the Col6Ler embryo sequencing library so enrichment could not be calculated. Data
were normalized by ACT8 expression. Error bars represent standard deviation. AT1G22250 and AT4G21680 were identified as embryo or endosperm
enriched genes in Col-0 microarray expression data (not shown). AT5G22470 has previously been shown by in situ analysis to be expressed in torpedo
stage embryos [37] and AT1G49770 by in situ and reporter gene analysis to be expressed in the embryo-surrounding region of the endosperm
[38,39].
doi:10.1371/journal.pone.0023687.g001
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The data indicate that imprinting is primarily endosperm-

specific at this stage of seed development. One embryo-imprinted

locus has been identified in maize [41] but whether this represents

a more widespread phenomenon is unknown. The 18 genes we

identify as imprinted in the Arabidopsis embryo (Table S7) may

represent the rate of false positives in our experiments. Fourteen of

the 17 MEGs are more highly expressed in endosperm than in

embryo and 7 are also identified as MEGs in the endosperm. This

could indicate cross contamination of embryo with endosperm

RNA. Further experimentation and validation using reporter

genes or in situ analysis will be required to conclusively determine if

these genes truly exhibit parent-of-origin specific expression in the

embryo. One embryo gene, SDG20, was identified as a PEG,

which could not be due to maternal contamination. We attempted

to independently validate paternally biased expression of this gene

by performing RT-PCR on the original RNA samples used to

create the embryo libraries and on a set of independently isolated

F1 RNA. After sequencing cloned RT-PCR products, we

identified 15 Col clones and 11 Ler clones from the original

Col6Ler F1 embryo sample and 17 Col clones and 7 Ler clones

from the original Ler6Col F1 embryo sample. Independently

isolated samples had 18 Col clones and 11 Ler clones in a Col6Ler

cross, and the reciprocal indicated 14 Col clones and 14 Ler clones.

Combining the data, in each F1 genotype 60% of the reads are

Figure 2. Hundreds of Arabidopsis genes exhibit parentally biased expression. A) Percent maternal transcripts from 10,340 genes
expressed in the embryo with at least 15 informative reads. B) Percent maternal transcripts from 10,316 genes expressed in the endosperm with at
least 15 informative reads. C) Percent maternal transcripts of 18 genes in the embryo that met imprinting criteria. D) Percent maternal transcripts of
208 genes in the endosperm that met imprinting criteria. MEG, maternally expressed imprinted gene; PEG, paternally expressed imprinted gene.
doi:10.1371/journal.pone.0023687.g002
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derived from the Col allele, indicating a bias towards the Col allele

independent of the parent of origin. The bias was also observed in

dCAPS analysis of RT-PCR products (data not shown). Therefore,

SDG20 is not imprinted in the embryo. We consider it likely that

all of the 18 embryo genes are false positives.

Partial imprinting is more common than complete
imprinting

Most endosperm-imprinted genes (140 of 208) are more highly

expressed in the endosperm than in the embryo (Table S6), which

is consistent with the idea that imprinted genes are involved in

endosperm specific functions. However, it is important to note that

most of the genes identified as imprinted in our quantitative assay

exhibit partial rather than complete imprinting (also referred to as

differential and binary imprinting [17]). Genes that exhibit partial

imprinting are differentially expressed in a parent-of-origin specific

manner, but do have transcripts derived from both alleles. Similar

results have recently been obtained from a study of imprinting in

mouse brains, where most imprinted genes do not exhibit strict

monoallelic expression [26]. Partial imprinting is typical for PEGs

but relatively rare for MEGs; only six of the PEGs exhibit .90%

paternal transcripts (Figure 2, Table S6). In contrast, 121 MEGs

have greater than .90% maternal transcripts (Figure 2, Table S6),

with the caveat that any contamination from maternal tissue will

tend to make PEGs look partial and MEGs complete. Whether or

not the mechanisms of imprinting and selection pressures acting at

partially and completely imprinted genes are the same is unknown.

Paternally expressed imprinted genes encode potential
regulators of the epigenome

We previously suggested that imprinted genes were enriched for

transcription factors and chromatin related proteins [6]. Gene

Figure 3. Designation of maternally expressed imprinted genes could be affected by maternal seed coat contamination. A) Box plots
of seed coat – endosperm expression differences (log2) calculated using data from Le et al. [40] for genes exhibiting parentally biased expression in
the endosperm at a p-value,0.01. B) Probability plots of the same data. Red, potential MEGs; blue, potential PEGs.
doi:10.1371/journal.pone.0023687.g003

Table 1. RNA-seq results for previously identified imprinted genes.

Col6Ler endosperm Ler6Col endosperm

Gene ID Name Reads RPKM Col Ler Reads RPKM Col Ler p-value Bias

AT1G02580 MEA 14 0.2 0 0 21 0.3 0 0 - No SNP

AT1G65330 PHE1 21 0.9 0 0 17 0.7 0 0 - No SNP

AT2G32370 HDG3 3735 50.5 79 190 4857 56.2 303 96 0 Paternal

AT2G35670 FIS2 212 3.2 13 0 355 4.6 6 16 3.59e-03 Maternal

AT3G03260 HDG8 53 0.9 2 6 69 0.9 12 8 1.68e-02 Few reads

AT3G19350 MPC 6 0.4 0 0 30 1.8 0 0 - No SNP

AT4G00540 MYB3R2 377 9.5 129 0 264 5.7 9 77 0 Maternal

AT4G25530 FWA 113 1.8 5 0 54 0.7 0 0 1 Few reads

AT5G17320 HDG9 869 15.6 29 1 1775 27.3 3 117 1.44e-20 Maternal

AT5G54650 FH5 538 6.1 54 12 495 4.8 14 43 5.08e-03 Maternal

AT5G62110 42 0.7 1 3 31 0.5 2 0 3.76e-01 Few reads

Genes in bold pass all of the imprinting criteria used in this study.
doi:10.1371/journal.pone.0023687.t001
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ontology analysis indicates that these genes are prominent, although

not the most highly enriched, among MEGs and PEGs. Maternally

expressed imprinted genes included transcription factors such as

HDG9, MYB115, MYB77, MYB3R2, NF-YC12, and several zinc

finger and leucine zipper genes. Additionally, MEGs were strongly

enriched for genes involved in cell wall modification, particularly

pectinesterases (Table 2). Paternally expressed imprinted genes also

included putative transcription factors and DNA binding proteins,

such as HDG3, another homeodomain like gene, and genes

containing ARID/BRIGHT DNA binding domains (Table S6). In

addition, we identified 8 PEGs with potential roles in epigenetic

regulation, including 3 members of a 5-methylcytosine binding gene

family, a putative SNF2-related chromatin remodeler, a histone

deacetylase interacting protein, two SRA domain-containing histone

lysine methyltransferases, and the PolIVa RNA polymerase (Table 3).

The most strongly imprinted paternally expressed gene is VIM5

(Table 3, Table S6), which is a member of a 6-gene family of SRA-

domain containing 5-methylcytosine binding proteins. The founding

member of the VIM family, VIM1, was identified as a loss of function

mutant that caused centromere hypomethylation [42]. VIM1, VIM2,

and VIM3 act redundantly to maintain CG methylation at genic and

heterochromatic sequences [43,44]. Efforts to find transcripts

associated with VIM5 were previously unsuccessful, and it was

hypothesized that VIM5 might be a pseudogene [43,44]. However,

our data show that VIM5 is expressed specifically in the endosperm

almost entirely from the paternal allele. VIM1, which is adjacent to

VIM5 on chromosome 1, and VIM6/ORTHL1, are also PEGs,

although imprinting is only partial, and both genes are more highly

expressed in the embryo than endosperm (Table 3, Table S6). The

function of any of the potential epigenetic regulators during seed

development is presently unknown.

Genes involved in hormone biosynthesis or perception have not

previously been implicated as imprinted genes but were featured in

both our list of MEGs and PEGs. We identified as MEGs OPR3, a

gene involved in jasmonate (JA) biosynthesis, a zinc finger

transcriptional repressor, STZ/ZAT10, that regulates JA biosyn-

thesis genes, BR6OX, whose product generates the active form of

brassinosteriods, and two genes involved in ethylene biosynthesis

and response, EIN2 and MKK9. In addition, two auxin

biosynthesis genes, YUC10 and TAA1, are paternally expressed

imprinted genes (Table S6) [45–47]. Another MEG, JLO, has

been shown to promote expression of auxin-efflux carriers [48,49].

Both JLO and YUC10 have important roles in embryo patterning

during seed development [47–49]. Although many of these genes

have been extensively studied in other contexts, our results suggest

that multiple hormone pathways may have as yet unappreciated

roles in endosperm development and function.

Imprinted genes that encode regulatory proteins are
associated with differential DNA methylation

Our comprehensive survey of gene imprinting allowed us to assess

the congruence of gene imprinting with other features of the genome.

We previously analyzed methylation differences between embryo and

endosperm and were able to identify new imprinted genes by

Table 2. Functional enrichments of imprinted genes.

MEGs

Type Term Fold Enrichment EASE p-value Benjamini p-value

Interpro domain pectin lyase fold 10.2 2.7e-4 6.1e-2

Interpro domain pectinesterase inhibitor 9.4 1.8e-3 0.19

Biological Process response to wounding 7.1 1.4e-3 0.46

Biological Process external encapsulating structure 5.4 4.4e-3 0.48

Molecular Function pectinesterase activity 9.4 3.8e-4 6.7e-2

Molecular Function transcription factor activity 2.3 2.6e-3 0.11

Molecular Function carboxylesterase activity 4.3 5.2e-3 0.17

Cellular Component endomembrane system 1.9 6.4e-4 4.2e-2

Cellular Component plant cell wall 4.5 1.8e-3 6.0e-2

Cellular Component anchored to membrane 3.9 8.2e-3 0.17

PEGs

Type Term Fold Enrichment EASE p-value Benjamini p-value

Interpro domain SRA-YDG 106.7 8.0e-8 6.3e-6

Biological Process cotyledon development 65.4 8.1e-4 0.14

Biological Process chromatin modification 13.3 2.6e-3 0.22

Biological Process regulation of transcription 3.5 3.4e-3 0.19

MEGs and PEGs associated with DMRs

Type Term Fold Enrichment EASE p-value Benjamini p-value

Biological Process regulation of transcription 3.9 1.0e-5 1.0e-3

Biological Process cotyledon development 41.4 2.1e-3 0.15

Biological Process chromatin organization 7.4 3.7e-3 0.20

Molecular Function DNA binding 2.4 9.5e-4 5.1e-2

Molecular Function transcription factor activity 3.1 3.2e-3 0.11

doi:10.1371/journal.pone.0023687.t002

Widespread Imprinting in Arabidopsis Seeds

PLoS ONE | www.plosone.org 7 August 2011 | Volume 6 | Issue 8 | e23687



identifying genes associated with lower methylation in the endosperm

than embryo, preferential expression in the endosperm, and low

expression in other tissues [6]. Loss of methylation primarily occurred

on repetitive sequences derived from transposable elements (TEs).

We designated ,50 genes as likely imprinted genes based on these

characteristics [6]. Our RNA-seq data indicates that several of these

genes are indeed imprinted. Twenty of the candidate genes have

sufficient read coverage and SNPs to assay imprinting, 11 of which

pass our initial p-value threshold for imprinting. Four genes pass all of

our criteria for imprinting (Table S8).

We examined the overlap between the 208 imprinted genes

identified by RNA-seq and the top positive embryo-endosperm

differentially methylated regions (DMRs) (previously identified

regions of endosperm hypomethylation in the top 0.5% of

differences) [6]. 63 of the endosperm imprinted genes harbor a

top Col-gl and/or Ler DMR within the gene or 2 kilobases 59 or 39

(Table S6). This is almost 3-fold higher than the association between

the same number of randomly selected informative genes and

DMRs (n = 24) and represents a significant enrichment (Fisher’s

exact test p,0.0001). Many of these genes are also more highly

methylated in demethylase deficient endosperm than in wild type

endosperm (Table S6). The association between DMRs and gene

imprinting is particularly strong for the PEGs, where half of the

genes are associated with DMRs (22/43). All of the PEG potential

epigenetic regulators (Table 3; Table S6) are associated with DMRs.

Many of the MEGs associated with DMRs encode transcription

factors, as well as some of the genes involved in ethylene, jasmonate,

and brassinosteriod biosynthesis and/or perception (Table S6).

Overall, the imprinted genes associated with DMRs are enriched

for the GO term ‘‘regulation of transcription’’ (Table 2).

In addition to DNA methylation, chromatin based silencing

mechanisms mediated by Polycomb group complexes (PcG) are

important for maintaining imprinted gene expression. These two

mechanisms can act independently or in concert at a locus. The

PcG group complex consisting of FIE/FIS2/MEA is required to

maintain imprinted gene expression at several loci, including

PHE1 and MEA [9,20,21], which are also associated with DMRs.

The Polycomb group complex methylates lysine 27 on histone H3,

a chromatin modification associated with stable states of gene

repression. We compared our set of imprinted genes to genes that

contain H3K27me3 during early endosperm development (1–4

DAP) as described by Weinhofer et al. [50]. Twenty-one imprinted

genes are associated with H3K27me3 in the endosperm. Among

these are five genes also associated with DMRs, including HDG3,

HDG9, and SUVH7 (Table S6). We also examined the congruence

between our dataset and gene expression in whole fis2 seeds at 3

and 6 DAP [50] and siliques from mea/fis1 mutant females crossed

to wild type males [51]. Imprinted genes where one allele is

repressed by the PcG complex might be overexpressed in PcG

mutants. Two genes were upregulated in both fis2 and mea/fis1

(Table S6), the PEGs SUVH7 and FXG1, an alpha-fucosidase

involved in cell wall metabolism [52]. SUVH7 is the only imprinted

gene identified as both associated with H3K27me3 and upregu-

lated in the PcG mutants – we thus consider SUH7, which itself

encodes a histone methyltransferase, an excellent candidate for an

imprinted locus directly regulated by the PcG complex.

Imprinted genes are not extensively clustered
In mammals imprinted genes often lie in clusters and expression is

controlled by an imprinting control region (ICR) [53]. We compared

the distance between imprinted genes, with the caveat that imprinting

can only be assessed for the subset of genes with a Ler/Col SNP and

sufficient read coverage. The average distance between imprinted

genes was not significantly different from the average distance between

randomly selected informative genes. However, we identified 10

regions in the genome where two or three imprinted genes were within

10 kb of one another, including 6 instances in which adjacent genes

were imprinted (Figure 4). These mini-clusters might represent genes

controlled by common cis epigenetic regulatory elements.

Comparison to other genome-wide imprinting data
Hsieh et al. [54] recently published results from a similar

experiment, combining data from manually dissected endosperm

and LCMD endosperm, to analyze imprinted gene expression in

Table 3. Paternally expressed imprinted genes that encode potential regulators of the epigenome.

Locus ID Gene name
Endosp
RPKM

Maternal
Reads

Paternal
Reads % paternal

Imprinting p
value

Imprinting
Factor Gene Description

AT1G57800 VIM5 58.2 142 1898 93.0 0 478.81 putative 5-methylcytosine
binding protein

AT1G57820 VIM1 17.6 181 302 62.5 2.57e-33 7.31 5-methylcytosine binding
protein; ubiquitin E3 ligase

AT4G08590 VIM6 15.4 99 147 59.8 2.15e-12 3.89 putative 5-methylcytosine
binding protein; ubiquitin
E3 ligase

AT1G17770 SUVH7 0.95 10 32 76.2 2.29e-05 5.08 histone lysine
methyltransferase

AT4G13460 SUVH9 12 86 130 60.2 6.41e-10 3.54 histone lysine
methyltransferase

AT2G21450 CHR34 7.3 13 43 76.8 1.41e-06 7.56 SNF2 family chromatin
remodeling helicase

AT1G63020 PolIVa 10.2 168 207 55.2 2.50e-15 3.45 Plant specific RNA
polymerase involved in
RNA-directed DNA
methylation

AT1G59890 SNL5 3.1 14 28 66.7 2.23e-03 2.77 SIN3-like5; transcriptional
regulator associated with
histone deacetylases

doi:10.1371/journal.pone.0023687.t003
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Col/Ler reciprocal crosses. Using different statistical analyses and

criteria, they identified 116 MEGs and 10 PEGs in the endosperm.

Fourteen of the MEGs are in common with the 165 MEGs we

identified, as are 6 PEGs (Figure 5 and Table S9). While the overlap

between datasets is low, much of this is due to statistical cutoffs and

read coverage. In our dataset, 42 of their 116 MEGs passed our

initial p-value cutoff of less than 0.01, but many genes were then

discarded because of failure to meet our other two criteria.

Additionally, 27 of their MEGs had too few reads in our dataset

to assess imprinting. All four of the Hsieh et al. PEGs that were not

found in our list have very low read numbers in our dataset (less than

10 total reads), although almost all of these reads are paternal. We

also analyzed their Col/Ler read counts for each gene using our

statistical pipeline. The highest overlap between our set of imprinted

genes was with their LCMD endosperm dataset. Applying our

pipeline to their read counts, we find 137 imprinted genes in their

dataset (100 MEGs, 37 PEGs), more than half of which (n = 74) are

in common with our set of 208 imprinted genes (56 MEGs, 18

PEGs) (Figure 5, Tables S10 and S11). A consideration of both

datasets, along with additional experimental validation, will likely be

most robust for identifying valid imprinted genes.

Discussion

We have used high-throughput mRNA sequencing to identify

genes imprinted in Arabidopsis thaliana endosperm. Our analysis

identified dozens of new imprinted genes involved in transcrip-

tional regulation, epigenetic processes, hormone biosynthesis and

reception, and cell wall function. The function of most of these

genes during seed development is unknown and the data represent

a rich source for further understanding endosperm development,

the mechanisms of gene imprinting, and the selection pressures

driving its evolution.

While we have performed a genomic analysis of gene

imprinting, it is important to emphasize that our list of imprinted

genes is not comprehensive. Some known imprinted genes, like

MEA, FWA, and PHERES1, did not arise in our analysis because

of lack of SNPs or low expression. Furthermore, our list is specific

to a particular stage of seed development, and we expect that

different sets of imprinted genes are active at earlier stages.

Moreover, it should be noted that our assay necessarily only

reports on steady-state transcript levels, which could be impacted

by a number of processes in addition to transcription itself,

including maternal deposition of RNAs (although our profiling

takes place several days after fertilization), transport of RNAs from

other tissues, and transcript degradation. The most stringent test of

imprinting is to show that transcription itself is differential between

alleles [55], which our method cannot address.

Our initial analysis of gene imprinting based on DNA

methylation profiling discovered a subset of imprinted genes

associated with TE-derived differentially methylated regions [6].

Our present survey shows that about a third of imprinted genes,

Figure 4. Some imprinted genes are found in mini-clusters.
Position of endosperm imprinted genes (horizontal black lines) on the
five Arabidopsis chromosomes. Imprinted genes within 10 kb of one
another are listed. Positions were mapped using the chromosome map
tool on TAIR (www.arabidopsis.org).
doi:10.1371/journal.pone.0023687.g004

Figure 5. Overlap among Arabidopsis imprinted genes identified in different studies increases when the same analysis methods
are applied. Venn diagrams compare overlap among maternally and paternally expressed endosperm imprinted genes identified in this study
(Table S6), in Hsieh et al. [54], and when Hsieh et al. read counts are analyzed using the analysis developed in this study.
doi:10.1371/journal.pone.0023687.g005
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often encoding regulatory proteins, are associated with differential

DNA methylation within 2 kb of the coding sequence. However,

a number of MEGs, many of which encode enzymes like

pectinmethylesterases, pectinesterase inhibitors and glycosyl hy-

drolases, all involved in cell wall modification, are not associated

with DMRs. The mechanism of parentally biased expression at

these loci likely does not directly involve DNA methylation.

Striking features of our data are that most genes exhibit partial

imprinting rather than strict monoallelic expression and that MEGs are

more numerous than PEGs. The kinship theory of imprinting predicts

that monoallelic expression (one allele expressed, one allele completely

silent) is the evolutionary stable strategy for genes in which the

maternally and paternally derived alleles favor different optimal levels

of expression [15]. If not due to conflict, why do so many Arabidopsis

thaliana genes exhibit parent-of-origin specific biased expression

patterns? One possibility is that partial imprinting is an evolutionary

echo of complete imprinting that existed at these genes when A. thaliana

possessed a different mating system. A. thaliana is primarily self-

fertilizing, with low but variable rates of outcrossing observed in the

wild [56,57]. Because maternal and paternal genomes are usually

identical, conflict is expected to be very low in A. thaliana seeds

(although in the crosses used in this experiment the maternal and

paternal genomes are genetically distinct). However, A. thaliana is

estimated to have been self-fertilizing for a short amount of

evolutionary time – perhaps only 400,000 years [58,59]. Furthermore,

despite the loss of genetic conflict, as a mating system shifts from

outcrossing to selfing, loss of imprinting is not predicted to be rapid

[15]. Genes that are partially imprinted could reflect an adjustment of

maternal and paternal allele expression to a new level of optimal total

gene expression that relies on the mechanisms of gene expression

regulation already in place from when the gene was expressed

monoallelically. Interestingly, the kinship theory does predict that the

expression of PEGs will be reduced as plants become self-fertilizing [15]

and we find that partial imprinting appears to be more common for

PEGs than MEGs (Table S6). The preponderance of MEGs over

PEGs, regardless of partial vs. complete imprinting, also fits predictions

of the maternal-offspring coadaptation theory of imprinting [16].

An alternative, non mutually exclusive, possibility is that the

partially imprinted genes do not reflect a record of past conflict but

are instead imprinted as a form of gene dosage regulation. Many

of the imprinted genes encode transcriptional regulators and

chromatin modifiers – proteins that function in macromolecular

complexes that can be dosage sensitive. But why would dosage

regulation be subject to parent-of-origin effects? It may be that

these genes are taking advantage of existing molecular differences

already tied to one parent – namely demethylation of the maternal

genome before fertilization. Because the presence or absence of

DNA methylation can influence gene expression levels, demeth-

ylation provides a built-in mechanism of dosage regulation that is

specific to the parent-of-origin. We expect that the parent-of-origin

specific effects on gene expression are due to some combination of

parental conflict, maternal-offspring coadaptation, and dosage

regulation, with different evolutionary pressures possibly acting at

different loci. Genomic analysis of imprinting in outcrossing

relatives of A. thaliana will help test these ideas.
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