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ABSTRACT

This paper presents our solution for enabling
a quadrotor helicopter, equipped with a laser
rangefinder sensor, to autonomously explore and
map unstructured and unknown indoor environ-
ments. While these capabilities are already com-
modities on ground vehicles, air vehicles seeking
the same performance face unique challenges. In
this paper, we describe the difficulties in achiev-
ing fully autonomous helicopter flight, highlight-
ing the differences between ground and heli-
copter robots that make it difficult to use al-
gorithms that have been developed for ground
robots. We then provide an overview of our so-

lution to the key problems, including a multi- Figure 1: Our quadrotor helicopter. Sensing and computatio
level sensing and control hierarchy, a high-speed components include a Hokuyo Laser Rangefinder (1), laser-
laser scan-matching algorithm, an EKF for data deflecting mirrors for altitude (2), a monocular camera (3),
fusion, a high-level SLAM implementation, and an IMU (4), a Gumstix processor (5), and the helicopter’s
an exploration plannér. Finally, we show ex- internal processor (6)

perimental results demonstrating the helicopter’s
ability to navigate accurately and autonomously

in unknown environments. achieve the same results with MAVs have not been as suc-

cessful due to a combination of limited payloads for sensing
1 INTRODUCTION and computation, coupled with the fast, unstable dynanfics o

Micro Aerial Vehicles (MAVs) are increasingly being the air vehicles.

used in military and civilian domains, including surveiltz In this work, we present our quadrotor helicopter system,
operations, weather observation, and disaster relietiioms ~ SOWN in Figure 1, that is capable of autonomous flight in
tion. Enabled by GPS and MEMS inertial sensors, MAVs thatinStructured indoor environments, such as the one shown in
can fly in outdoor environments without human intervention"19ure 2. The system employs a multi-level sensor process-
have been developed [2, 3] 4, 5]. ing h|erarphy designed to meet t_he r_eqmrem_ents for c_ontrol
Unfortunately, most indoor environments and many partd"d @ helicopter. The key contribution of this paper is the
of the urban canyon remain without access to external posd@€velopment of a fully autonomous quadrotor that reliey onl
tioning systems such as GPS. Autonomous MAVs today ar@" onboard sensors for stable control without requiringrpri
thus limited in their ability to fly through these areas. Tra-MaPS of th_e enwronment. ) ) o
ditionally, unmanned vehicles operating in GPS-denied en- After discussing related work in Section 2, we begin in
vironments can rely on dead reckoning for localization, butSection 3 by analyzing the key challenges MAVs face when
these measurements drift over time. Alternatively, simul-attémpting to perform SLAM. We then give an overview of
taneous localization and mapping (SLAM) algorithms build the algorithms employed by our system. Finally, we demon-
a map of the environment around the vehicle while simul-Strate our helicopter navigating autonomously in 3 difere
taneously using it to estimate the vehicle’s position. Al-unstructured indoor environments.
though there have been significant advances in developing
accurate, drift-free SLAM algorithms for large-scale envi
ronments, these algorithms have focused almost exclysivel In recent years, autonomous flying robots has been an
on ground or underwater vehicles. In contrast, attempts tarea of increasing research interest. Many capabilities ha
~Email addressestabachrac, ruijie, nickroy@mit.edu been developed for autonomous operations in outdoor envi-

IThe system described in this paper was originally preseotetie 2009 ~ fonments, inCIUding high-speed flight through cluttered-en_
European Micro Air Vehicle Conference [1] ronments/[3], helicopter acrobatics [4], autonomous lagdi

2 RELATED WORK
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their helicopter with a precomputed map that was generated
by a ground-based robot. However, none of these papers
present experimental results demonstrating the abilistde
bilize all 6 dof of the helicopter autonomously using the on-
board sensors.

3 MAV-SPECIFIC CHALLENGES

In the ground robotics domain, combining wheel odom-
etry with sensors such as laser rangefinders, sonars, or cam-
eras in a probabilistic SLAM framework has proven very suc-
cessful([17]. Many algorithms exist that accurately laoali
ground robots in large-scale environments. Unfortunatiedy
Figure 2: Autonomous flight in unstructured indoor environ- Process of mounting equivalent sensors onto a helicopter an
ments using existing SLAM algorithms does not result in the same

success. The requirements and assumptions that can be made
with flying robots are sufficiently different from those that
and terrain mapping [5], coordinated tracking and planningcan be made with ground robots that they must be managed
of ground vehicles [2], etc. These systems typically take addifferently.
vantage of GPS measurements for state estimation, which aggq Payload

not avgllable indoors. ) MAVs have a maximum amount of vertical thrust that
While some authors [6

_ _ ; 6, 7] have demonstrated indoOkyqy can generate to remain airborne, which severely limits
flight using GPS smulated from motion capture syStems, Wey,q'a moynt of payload available for sensing and computation
seek to develop flying .robots that are able to operate alcompared to similar sized ground vehicles. This weight lim-
tonomously while carrying all sensors used for localizatio itation eliminates popular sensors such as SICK laser scan-
control and navigation onboard. Other authors [8_, 9] use Fers, large-aperture cameras and high-fidelity IMUs. e
small number of uItras_ound sensors to perform altitude CONndoor air robots rely on lightweight Hokuyo laser scanners
trol and obstacle avoidance. Their helicopters are able thicro cameras and/or lower-quality MEMS-based IMUs, all
take-off, land and hover autonomously; however, they do noj¢,hich have limited ranges and fields-of-view and are nois-
achieve goal-directed flight. ier compared to their ground equivalents.

There have been numerous efforts to fly helicopters au-  ynjike ground vehicles, air vehicles are unable to mea-
tonomously indoors using monocular camera sensors. [1Q,re odometry directly; most SLAM algorithms need these
performed visual servoing over known Moire patterns to ex-measurements to initialize the estimates of the vehicles m
tract the full 6 degree-of-freedom state of the vehicle firc  {jony petween time steps. Although one can obtain relative
trol, while [11] detects lines in a hallway, and [12] tracked position estimates by double-integrating acceleratiora-me
edges in office environments with known structure. Wh"esurements, lightweight MEMS-based IMUs are often sub-
these authors have demonstrated autonomous flight in dmiteject to errors that introduce a bias that drifts very quickly
indoor environments, their approaches have been consttain \ye must therefore obtain relative position estimates nreasu

to environments with specific features, and thus may not worknents by using either visual odometry [18] or laser scan-
as well for general navigation in GPS-denied environmentsyatching [19, 20] algorithms.

[13] extracted corner features that are fed into an EKFdbase Finally, despite the advances within the community,

Vision-SLAM framework, building a low-resolution 3D map g AM algorithms continue to be computationally demanding
sufficient for localization and planning. However, an ertér  ayen for powerful desktop computers, and are therefore not
moti(_)n capture system was used to simulate inertial SensGfmplementable on today’s small embedded computer systems
readings. that can be mounted onboard indoor MAVs. The computa-
This paper builds on our previous work in [14], where we tion can be offloaded to a powerful groundstation by trans-
presented a planning algorithm for a laser-equipped q@adro mitting the sensor data wirelessly; however, communieatio
helicopter that is able to navigate autonomously indoots wi bandwidth then becomes a bottleneck that constrains sensor
a given map. Here, we extend the work by developing a sysoptions. Camera data must be compressed with lossy algo-
tem that is able to navigate, localize, build maps and erplorrithms before it can be transmitted over WiFi links, which
autonomouslyvithouta prior map. adds noise and delay to the measurements. This noise partic-
Recently,/[15, 16] designed helicopter configurations thaularly affects feature detectors which look for high freqoye
were similar to the one presented in [14]. [15] scan-matchedhformation such as corners in an image. Additionally, hil
successive laser scans to hover their quadrotor helicoptethe delay can often be ignored for slow-moving, passively-
while [16] used patrticle filter methods to globally localize stable ground robots, helicopters have fast and unstable dy




namics, making control under large sensor delay conditionsontrol station, and a lightweight Hoklﬂ/daser rangefinder
impossible. for localization. The laser rangefinder provideg7a° field-
of-view at40H z, up to an effective range 80m. We deflect

3.2 Dynamics ! -
: , . . some of the laser beams downwards to estimate height above
The helicopter’'s fast dynamics result in a host of sens;

ing, estimation, control and planning implications for thee the ground plane.
hicle. Filtering techniques such as Kalman Filters arerpfte The AscTec Hummingbird helicopter is equipped with at-

used to obtain better estimates of the true vehicle stata fro titude stabilization, using an onboard IMU and processor to

) ; stabilize the helicopter’s pitch and roll [21]. This tamés t

noisy measurements. Smoothing the data generates a cleaner_.. . ) .
nastiest portions of the quadrotor’s extremely fast, mear,

YZnd unstable dynamics [7], allowing us to focus on stabiliz-

ggrr:ﬁg"i/hzag;égzg?g'gﬁtlﬁlzcgs ?Qevam\ilzsf;gg SAZ%?CS ing the remaining degrees of freedom in position and heading
’ P y y ‘The onboard controller takes 4 inputs,= [ug, wy, U, ug],

!n addition, as will be d|§cussedd in Section 4,'the quadro-which denote the desired pitch and roll angles, overallghru
tor is well-modeled as a simpl&*“-order dynamic system

with no damping. The underdamped nature of the dvnami and yaw velocities respectively. The onboard controller al
0 damping. The underdamped nature ot the dynamiCg, o helicopter’'s dynamics to be approximated with sim-

model implies that simple proportional control techniqaes nd : L

: - i~ : . . ple 2"“-order linear equations:

insufficient to stabilize the vehicle, since any delay ingiis-

tem will result in unstable oscillations. This effect haghe

observed experimentally. We must therefore add damping to b :

the system through the feedback controller, which empha- §" = kyuy + by 0 = koug + bo 1)

sizes the importance of obtaining accurate and timely state " b . )

estimates for both position and velocity. Traditionallyosh wherez® andy® are the resultant accelerations in body coor-

SLAM algorithms for ground robots completely ignore the dinates, whilék, andb, are model parameters that are func-
velocity states. tions of the underlying physical system. We learn these pa-

Unlike ground vehicles, a MAV cannot simply stop and rameters by fIying_the helicopter inside a ViEcmotio_n cap-
re-evaluate when its state estimates have large uncéetaint tUré system and fitting parameters to the data using a least-
Instead, the vehicle is likely to be unable to estimate its ve SAuares optimization method. We also experimented with a
locity accurately, and may instead pick up speed or osejllat dynamics model that includes damping terms,
degrading the sensor measurements further. Therefore, pla
ning algorithms for air vehicles must not only be biased to-
wards paths with smooth motions, but must also explicitly
reason about uncertainty in path planning, as demonstirated
[14]; motivating our exploration strategy in Section 5.4.

i = kyug + by 5 = kyug + by

However, when fitting this model to the data, we found that
ko = 0, confirming pilot experience that the system is un-
derdamped. Using the Matl&blinear quadratic regulator
3.3 3D effects (LQR) toolbox, we then find feedback controller gains for

Finally, MAVs operate in a truly 3D environment since the dynamics model in Equation 1.
they can hover at different heights. The visible 2D slice of =~ To compute the high-precision, low-delay state estimates
a 3D environment can change drastically with height and atheeded to stabilize the vehicle, we designed the 3-levat-sen
titude, as obstacles suddenly appear or disappear. Howevéig and control hierarchy, shown in Figure 3, distinguighin
if we treat map changes resulting from changes in height angrocesses based on the real-time requirements of thegaesp
attitude as sensor errors, allowing the map to be updated tdve outputs. This system was designed as a combination of
account for these changes, we will see that a 2D represent&synchronous modules, building upon the CARMEbot
tion of the environment is surprisingly useful for MAV flight navigation toolkit’s software architecture. We describe t

individual modules in the next section.
4 SYSTEM OVERVIEW

We addressed the problem of autonomous indoor flight as
primarily a software challenge, focusing on algorithméieat 5.1 Laser Scan-Matching Algorithm
than exotic hardware. To that end, we used off-the-shelf  As discussed in Section 3.1, we cannot directly measure
hardware throughout the system. Our quadrotor helicoptethe MAV's relative position. Instead, we align consecutive
shown in Figure 1, is the AscTec Hummingbird from Ascend-scans from the laser rangefinder to estimate the vehicle’s mo
ing Technologies GmBH and is able to carry rough850g tion using a standard technigue from robotics known as scan-
of payload. We outfitted it with a Gumsfbmicrocomputer,  matching [22]. The goal of scan-matching is to find the most
which provides a WiFi link between the vehicle and a ground

5 ENABLING TECHNOLOGIES

4Hokuyo UTM-30LX Laserht t p: / / www. hokuyo- aut . j p
2Ascending Technologies GmBHE t p: / / wwy. asct ec. de 5Vicon Motion Capture Systembt t p: / / www. vi con. com
3Gumstix Verdexht t p: / / www. gunmst i x. com 8CARMEN. ht t p: / / car men. sour cef or ge. net
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very complicated, even for fairly simple environments difa
P'a'@ ~0.3Hz ent descent is subject to local optima. We instead use a very
robust, if potentially computationally inefficient, exlsdive
search over a grid of possible poses. While this exhaustive
S 10-40Hz search might initially seem hopelessly inefficient, if irpl

Ground
Station

Scan
Matcher

EKF Data
Fusion

Obstacle
Avoidance

LQ
Controller mented carefully, it can be performed fast enough to run in

realtime. In our implementation, we use a grid spacing of
[ stiffn’er ] 7.5m_m in x,y, and.15° in 6. At this resolutio_n, it takes ap-
Onboard @ 1000Hz proximately 5ms to search over the approximately, 000
Helicopter Controler candidate poses in the search grid to find the best pose for an

incoming scan.

Figure 3: Schematic of our hierarchical sensing, contrdl an
planning system. At the base level, the onboard IMU and
controller (green) create a tight feedback loop to stabilie } # %wjao e 3
vehicle’s pitch and roll. The yellow modules make up the ¢ e
real-time sensing and control loop that stabilize the \elsic . .
pose at the local level and avoids obstacles. Finally, tHe re
modules provide the high-level mapping and planning func-
tionalities.
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likely alignment between pairs of laser scans, subjectéo th
assumption that the same laser points are generated from the
same physical object in the environment from time-step to
time-step. Any deviation in the estimated range along the @)
same bearing is assumed to be sensor noise. An additional
constraint is that the alignment operator is a rigid bodgdra
formation on one of the scans, which corresponds to a rigid )

body transformation on the center of body of the vehicle. As g
a result, searching for the most likely alignment of lasansc
corresponds to searching for the most likely motion of the ve
hicle between scans. . )

Scan-matching assumes that all range measurements are I

taken independently, which allows the likelihood of an aig B .
ment to be computed as the product of likelihoods for each
individual point in the scan. There are a number of possible
models of measurement likelihood. In our implementation,
we follow Olson et al’'s model [20] of measurement likeli-
hood of subsequent scans as a generative probabilisticilmode (®)

given by a Gaussian blur of a polygonal reduction of previ-F, 4 L ints f ; i N
ous scans. That is, a representation of the previous scan idgure 4 (a) Laser points from two consecutive scans. No-

constructed as a set of piece-wise linear contddr$, and t'?fhthat a!though ihe tWtO tgcanls cover mutch of tQ et;'?nr.;? area
the probability of a single lidar poirtz, y) is approximated ot the environment, a rotational error creatés subs

as proportional to the distancé, to the nearest contou?,;, alignment. (b) The resulting scans_after scan-_matchlng. Al
though some parts of the scans still do not align due to oc-
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such that ) e _
(—d/o) clusion, sensor error or 3D effects, the majority of the poin
Pla,y|Ci) oce overlap.
whereo is a variance parameter that accounts for the sensor’s _
noise characteristics. 5.2 EKF Data Fusion

Given the likelihood model from a previous scan, scan- The scan matcher outputs the estimated vehicle position
matching proceeds by searching for the rigid transform(z,y,#), so to compute the full state estimate, including the
(z,y,0) for a subsequent scan. Many scan-matching algovelocities, we use an EKF to fuse the scan matcher estimates
rithms use gradient descent techniques to optimize thdse vawith the acceleration readings from the IMU. This has sdvera
ues. However, since the 3D pose likelihood space is oftemdvantages over directly using the position estimates frem



scan matcher and their derivatives to control the vehicle. A that 1.5¢m. The average velocity difference wa$2m/s,

though the IMU readings drift significantly and are therefor with a standard deviation d8.025m/s. The vehicle was

not useful over extended time periods, they are useful ovenot given any prior information of its environment (i.e., no

short time periods, allowing us to improve our estimate ef th map). However, since all the walls in the room were con-

vehicle’s velocities. stantly within the laser’s field-of-view in this experimettie
Ouir filter is a standard EKF, implemented using the operSLAM module was not needed to eliminate drift.

source KFilter Iibral@. We use the filter to estimate the posi- 53 SLAM

tions, velocities, and accelerations of the vehicle, aloith ' . ) , ,

the biases in the IMU. By flying the helicopter with the state We made use of the publicly available implementation

estimation process running in a motion capture system, w8f e GMapping [[23] algorithm that is available in the
OpenSlam repositofy which performs SLAM in 2D. De-

obtain ground-truth values with which to compare our state~'F, ) '
estimates. spite the fact that the helicopter operates in the full 3D en-
vironment, the algorithm works surprisingly well and sexve

as a proof of concept for implementing SLAM on a MAV.

GMapping is an efficient Rao-Blackwellized particle fil-
ter which learns grid maps from laser range data. We chose
it due to its outstanding accuracy, real-time performaane,
its ability to handle changes to the 2D map that occur due
to changing height and attitude, as discussed in Sectian 3.3
While the algorithm worked reasonably well out of the box,
we made modifications that improved its performance when
used in 3D environments on a MAV. The motion model for
the particles in the GMapping algorithm was based on a stan-
dard motion model for ground robots with wheel odometry.
However, since we use estimates computed by the laser scan
# mosttion (i) matching module, we modified GMapping’s motion model to

@ propagate the particles using the uncertainties computed b
the scan-matching module.

In addition to the motion model, we modified the map rep-
resentation so that the map gets updated rapidly in response
to changes in height. The algorithm computes the probgbilit
that each grid cell is occupied or free based on the number of
times a laser beam reflects off, or passes through, the tell. |
particular cell has been hit many times, the algorithm dace
very high confidence that the cell is occupied. However gf th
helicopter changes heights, and the cell becomes partef fre
space, this confidence is no longer warranted. Unfortupatel
the laser must pass through the cell at least as many times as

: : : : : it was hit before the algorithm will be convinced that the cel
1] 5 10 15 20 25 . . . .
time (¢) is actually now free, resulting in a very slow adaptationhaf t
() map. Hence, we modified the map representation to cap the
maximum confidence for each grid cell, allowing it to change
Figure 5: Comparison of the position (a) and velocity (b) esfrom occluded to free (and vice-versa) more rapidly.
timated by the onboard sensors (red) with ground truth mea-  With these modifications, we are able to create large scale
surements (blue). maps of the environment such as those shown in Section 6.
The algorithm usually take$ to 2 seconds to process in-

Figures 5(a) and 5(b) demonstrate the quality of our EKFCOMINg laser scans, allowing it to be run online, but is not
state estimates. We compared the EKF state estimates wigiitable to be directly incorporated into the real-timetcoin
ground-truth state estimates recorded by the motion captudoop. Instead, the GMapping algorithm periodically senals p
system, and found that the estimates originating from théition corrections to the data fusion EKF. Since the pasitio
laser range scans match the ground-truth values closely i#orrections are delayed significantly from when the measure
both position and velocity. Throughout thenin flight, the ~ Ment upon which they were based was published, we must
average distance between the two position estimates was ledccount for this delay when we incorporate the correction.
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This is done by retroactively modifying the appropriate po-
sition in the state history. All future state estimates &ent ( 5
recomputed from this corrected position, resulting in glgb o
consistent state estimates. By incorporating the SLAM cor- f
rections after the fact, we allow the state estimates to be pr

cessed and published with low enough delay to control the |
MAV, while still incorporating the information from SLAM f_g g
to ensure drift-free position estimates. / o

]

5.4 Planning and Exploration =

In addition to computing globally consistent state esti- : & f s
mates, the map generated by the SLAM algorithm is used ) 0 \L 24 B aa
to plan actions for the vehicle autonomously. Full autonomy T e
requires a high-level planner that enables the MAV to explor N
environments without any human intervention. While explo- 2
ration has been well-researched in ground robotics, differ
ences between air and ground vehicles, as discussed in Sect
tion|3, require different considerations when deciding ighe
to go next. In particular, the need to constantly provide-con
trol signals to the MAV means that while we seek to explore
the environment, we must also ensure that the MAV alw.
remains well-localized.

Figure 6: The blue pointers indicate frontiers that allow th
MAV to explore and self-localize simultaneously. The laser
field-of-view at those frontiers is drawn in brown. Noticath
W%t the edges of free space, the chosen frontiers positiorethe
hicle such that the expected laser scan spans both uneatplore

Our algorithm trades off the speed with which the heli- e 4ions for exploration and unique obstacles for locaizat
copter completes coverage of the environment with safaty, e

suring that there are known environmental features withén t
helicopter sensor’s field-of-view as it uncovers unexpore currently unexplored and dividing by the maximum number
environments. We use a modified definition of frontiers, firstof grid cells covered by a laser range scan, we get a normal-
proposed in/[24], to choose possible positions in free spac&ed weight.Zy () in the range of0, 1] for the amount of
where the MAV should fly to next such that it can make ob-unexplored information that the MAV is expected to observe.
servations of previously unexplored regions in the environ ~ Using this metric alone will result in frontier points that
ment. In [24], free cells that are adjacent to unknown cetis a are at the extreme borders of the map facing the unexplored
grouped into frontier regions as possible goals for the obo egion, since such a pose will maximize the number of grid
We use a similar method to [24] to identify frontier regions, cells in the laser’s field-of-view that are unexplored. Unfo
however, for each of these frontier regions, we seek to find &inately, this pose provides no guarantees that the MAV will
frontier pose that maximizes both the amount of unexplorede able to localize itself, since the unknown environment ma
space that is expected to be observed and the ability of th@ot contain enough structure for the relative positionnesti
MAV to localize itself, which we define below. tion algorithms to match against. In the extreme case, the
The first step in our exploration algorithm is to identify MAV could be facing an open space where the nearest walls

candidate frontier regions. Frontier regions are areakén t &€ Peyond the maximum range of the laser scanner, giving

map where there is a direct transition between free and urih® MAV no information with which to localize itself.
We therefore add an additional “Sensor Uncertainty” met-

explored cells. Since the walls in occupancy maps such as ' k . e ,
those generated by GMapping may have small gaps, the sHf» first 90'”6‘_‘! in [25]. Sensor uncertainty is used to gifant
of regions is then filtered to remove spurious frontiers. TheN® MAV's ability to localize itself at different positioria the
algorithm must then identify the pose within these frontier™ap- A sensor uncertainty field maps locationis the map
regions that provides the best tradeoff between locatimati [© €xPected information gain; — Zsy(x), by calculating
ability, and uncovered area. Searching over all poses in thi1e difference in entropy of the prior and posterior distrib
frontier regions is too slow to allow the algorithm to run on- 100

line, so frontier poses are sampled in each region. For each Zsu(z) = H(p(x)) — H(p(x|2)) 3)
sample, two metrics are used to calculate a weight assocwhere entropy is

ated with each sample. First, the amount of unexplored space

that the MAV will observe can be estimated by simulating H(p(z)) =— /p(:c) log p(z)dx 4

the laser sensor data that the MAV is expected to obtain at ‘

the sampled pose, given the latest map. By extracting th&hown in|[14], the measure of information gain for laser data
number of grid cells within the laser’s field-of-view thakar is typically insensitive to the choice of prior. We therefase



a constant priop(z) = X, such thatd (p(x)) = C, as well  best path to the goal. The vehicle was able to localize itself
as Bayes' rule to computgx|z) = p(z|z) - p(z), suchthat  and fly stably throughout the environment. Figure 7(a) shows
the final map generated by the SLAM algorithm at the end of

Tsu(r) = C — H(p(z|z))Xo (5)  the experiment. During thémin flight until the battery was

o exhausted, the vehicle flew a distanc08.6m.
We compute the entropy qf(z|z) by deterministically ex-

tracting a set of sigma points [26], or samples along the mai®-2 Autonomous navigation in cluttered environments
axes of the current covariance estimate, and observing how While unstructured, the lack of clutter along the walls in
they are transformed when they are passed through the megire lobby environment allowed the 2D map assumption to
surement function. For each sample, we simulate the sens@pld fairly well. We next tested our system by flying through
measurements and find the probability of observing the sera cluttered lab space (Figure 2, insert of Figure 7(b)), atper
sor measurement at each of the sigma points. The lower thiag close to the ground. At this height, chairs, desks, mbot
probability of observation at the neighboring sigma paints plants, and other objects in the area caused the 2D cross-
the smaller the entropy of the posterior distribution, dret¢-  sectional scan obtained by the laser rangefinder to vary dra-
fore the greater the information gain. Locations with high i matically with changes in height, pitch, and roll. The resul
formation gain correspond to locations that generate senseant SLAM map of the environment is shown in Figure 7(b).
measurements that we expect to maximize the localizatiorhe grey features littered within the otherwise free spase d
accuracy of the vehicle. After normalizing this with thegeri  note the objects that clutter the environment and are occa-
entropyZsy () is also a weight that lies in the range[0f1].  sionally sensed by the laser rangefinder. Despite the abatte
Using these two weights, we are able to find frontiers thaienvironment, our vehicle was able to localize itself andmai
maximize both the exploration and localization capalediti tain a stable flight fo6min over a distance of4.6m, a feat
of the MAV. In each frontier region, we sample a set of can-that would not have been possible with a static map assump-
didate poses, and accept as the goal point for that regien, thion.
sample that maximizes the weighted sum of the two informa- L i
tion metrics, such thaf () = Ty (x) + Zsy(z). Figure 6 6.3 Autonomous exploration in office hallways
shows the frontier points generated accordingly, wheretpoi Finally, to demonstrate fully autonomous operation of the
are chosen such that the expected laser scan will both uncoveehicle, we closed the loop with our exploration algorithm,
unexplored regions and observe known obstacles, enablirgs discussed in Section 5.4. The helicopter was tasked to ex-
the MAV to simultaneously explore and localize. plore the hallway environment shown in the insert of Figure
To achieve autonomous exploration of an unknown envi7(c). Once the helicopter took off and began exploring, we
ronment, the planner uses the nearest frontier as its gdal aftad no human control over the helicopter’s actions as it au-
computes a path using the dynamic programming-based patAnomously explored the unknown environment. The heli-
planner in the CARMEN robot navigation toolkit. The fron- copter continuously searched for and generated paths to ar-
tier extraction modules run fast enough that they are able téas of new information. Figure 7(c) shows the map built
re-generate plans as the vehicle moves through the enviroffom 7min of autonomous flight, after traveling a distance of
ment and as the map is updated. 75.8m.

6 EXPERIMENTSAND RESULTS 7 CONCLUSION

We integrated the suite of technologies described above |, this work, we have developed a quadrotor helicopter
to perform autonomous navigation and exploration in Unthat js capable of fully autonomous exploration in unstruc-
strugtured and unknown indoor environments.  In thistyred and unknown indoor environments without a prior map,
section, we present results demonstrating that the sy$alying solely on sensors onboard the vehicle. By reasoning
tem is capable of fully autonomous operation in a va-ahoutthe key differences between autonomous ground and air
riety of indoor environments. To get a full picture of yenicles, we have created a suite of algorithms that acsount
our system in action, we suggest that the reader alsSgyr the unique characteristics of air vehicles for estimati
view the videos taken of these experiments available atsgntrol and planning. Having developed a helicopter plat-
http://groups.csail.mt.edu/rrg/videos. htni. form that has many of the capabilities of autonomous ground
6.1 Autonomous navigation in open lobbies robots, we believe that there is great potential for futuee e

We flew the vehicle across the first floor of MIT's Stata t€nsions of such platforms to operate in fully 3-dimensiona
environments.

Center. The vehicle was not given a prior map of the environ-=
ment, and flew autonomously using only sensors onboard the
helicopter. In this experiment, the vehicle was guided by a

human operator clicking high-level goals in the map that was Abraham Bachrach was supported by the ARO MAST
being built in real-time, after which the planner planned th CTA, Ruijie He was supported by the Republic of Singapore
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(b) Map of MIT Stata Center, 3rd Floor. (c) Map of MIT Stata Center, basement.

Figure 7: (a) Map of the first floor of MIT’s Stata center consted by the vehicle during autonomous flight. (b) Map of a
cluttered lab space with significant 3D structure. (c) Mapafstrained office hallway generated under completelyrauntmus
exploration. Blue circles indicate goal waypoints clickedhuman operator. Red line indicates path traveled basdteon
vehicle’s estimates.
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