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Abstract

The decline in immune function with aging, known as immunosenescence, has been implicated in evolutionarily diverse species,
but the underlying molecular mechanisms are not understood. During aging in Caenorhabditis elegans, intestinal tissue
deterioration and the increased intestinal proliferation of bacteria are observed, but how innate immunity changes during C.
elegans aging has not been defined. Here we show that C. elegans exhibits increased susceptibility to bacterial infection with age,
and we establish that aging is associated with a decline in the activity of the conserved PMK-1 p38 mitogen-activated protein
kinase pathway, which regulates innate immunity in C. elegans. Our data define the phenomenon of innate immunosenescence
in C. elegans in terms of the age-dependent dynamics of the PMK-1 innate immune signaling pathway, and they suggest that a
cycle of intestinal tissue aging, immunosenescence, and bacterial proliferation leads to death in aging C. elegans.
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Introduction

Aging is associated with increased mortality from infection in

evolutionarily diverse species [1]. These observations have been

attributed in part to an age-associated decline in immune function,

termed immunosenescence. In vertebrates, a marked decrease in

T cell receptor diversity associated with thymic involution during

aging is a major contributor to the immunosenescence of the

adaptive immune system [2]. Age-related changes of the innate

immune system and their influence on susceptibility to infectious

diseases are less well understood. Dysfunction of innate immune

function later in life is associated with ‘‘inflammo-aging,’’ a

phenomenon in which an aberrant increase in the production of

pro-inflammatory cytokines can contribute to tissue damage [3].

Such dysregulation may promote disease, as suggested in a recent

report indicating that increased inflammatory signaling through

Toll Like Receptor 3 contributes to increased pathology in West

Nile Virus infection in the elderly [4]. Changes in the amplitude of

immune signaling activity during aging have also been observed in

invertebrates. For example, in aging Drosophila basal immune

signaling is constitutively increased, yet immune responses induced

by bacteria appear to be attenuated [5], and older flies are more

susceptible to infection [6].

Studies of aging in Caenorhabditis elegans have revealed several

biomarkers associated with aging, including increased intestinal

proliferation of the relatively non-pathogenic Escherichia coli strains

that are used as food sources during assays of animal longevity. Intact

bacterial cells are rarely detected within the intestinal lumen of

younger animals, but ultrastructural analysis of aging C. elegans has

revealed discrete areas of bacterial packing and local catastrophic

plasma membrane disruption events, along with extensive deterio-

ration of intestinal tissues [7,8]. There is evidence to suggest that the

accumulation of E. coli within the intestinal lumen during aging is a

cause of death in older animals because C. elegans propagated on killed

or non-dividing E. coli live longer than animals propagated on live E.

coli [7,9]. These data suggest that bacterial pathogenesis is a major

contributor to aging and mortality in C. elegans and raise the possibility

of an age-dependent decline in immune function during aging.

Innate immunity in C. elegans is regulated by a conserved PMK-1

p38 mitogen-activated protein kinase (MAPK) pathway [10] that is

required for resistance to a diverse range of pathogenic bacteria and

fungi [10,11]. PMK-1 regulates the transcription factor ATF-7,

which activates intestinal expression of genes encoding proteins that

contribute to host defense such as C-type lectins, lysozymes, and

putative antimicrobial peptides [12–14]. While PMK-1 is critical for

immune protection during larval development and early adulthood,

its role in innate immunity during aging has not yet been investigated.

In this paper, we report the results of genetic, gene expression

profiling, and biochemical studies during aging in C. elegans which

together demonstrate a marked decline in PMK-1 later in life. We

suggest a model that involves a cycle of immunosenescence, increased

bacterial infection and proliferation, and progressive intestinal tissue

deterioration that accelerates mortality in aging C. elegans.

Results

C. elegans resistance to bacterial infection declines with
advancing age

We began our study of the dynamics of innate immunity during

aging by investigating the age-dependent variation in susceptibility
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of the C. elegans laboratory wild type strain N2 to Pseudomonas

aeruginosa PA14, a human opportunistic pathogen that also kills C.

elegans by an infection-like process in the intestine [15]. The

lifespan of C. elegans wild type strain N2 propagated on the

relatively non-pathogenic bacterial strain E. coli OP50 is

approximately 21 days (Figure 1A). To determine how aging

influences the susceptibility of C. elegans to infection, we challenged

C. elegans with P. aeruginosa at the L4 larval stage (1 day pre-

adulthood), and at Day 3, Day 6, and Day 9 of adulthood by

transferring them from standard plates seeded with E. coli OP50 to

plates seeded with P. aeruginosa PA14 (Figure 1B). Pathogen

susceptibility was not assayed beyond this period because mortality

begins to be observed after Day 12 of adulthood in C. elegans

propagated on E. coli OP50 (Figure 1A). We observed a decline in

the survival time of C. elegans adults transferred to P. aeruginosa with

advancing age (Figure 2A). Our data are consistent with prior

observations that aging C. elegans have diminished survival upon

challenge with pathogenic bacteria [15–17] and establish that C.

elegans exhibit a progressive age-dependent increase in susceptibil-

ity to infection.

The age-dependent increase in susceptibility of C. elegans to killing

by P. aeruginosa suggests older animals have diminished protective

responses to pathogenic bacteria, which may manifest as an

accelerated accumulation of bacteria during infection. To test this

possibility, L4 larval stage animals and Day 3, 6, and 9 adults were

challenged with a strain of P. aeruginosa which expresses GFP. After

exposure to GFP-expressing P. aeruginosa PA14, C. elegans were scored

for the degree of bacterial accumulation within the intestinal lumen.

We found that one day after an infection was initiated, over half of

Day 9 adult C. elegans accumulate P. aeruginosa within at least a portion

of their intestine, and that the intestine of some worms is completely

filled with bacteria (Figure 2B). After the same duration of exposure

to P. aeruginosa, 30% of Day 6 adults and less than 10% of Day 3

adults had accumulated detectable levels of GFP-expressing P.

aeruginosa in their intestines. The rate of accumulation of P. aeruginosa

within the intestine increases in an age-dependent manner and

parallels the increased susceptibility to infection (Figure 2A),

suggestive of a decline in immune function during aging.

A decline in PMK-1 activity with intestinal tissue aging
We sought to identify the genetic determinants underlying the

phenomenon of increasing susceptibility to infection with advanc-

ing age. Previously, microarray-based gene expression studies of

aging C. elegans revealed numerous changes in gene expression

during the aging process [18,19]. Upon comparing these data with

our previously reported microarray-based identification of PMK-1

p38 MAPK pathway transcriptional targets [13], we observed an

enrichment for genes regulated by the PMK-1 p38 MAPK

pathway among genes downregulated with aging. To explore this

observation further and to identify genes downregulated during

mid-to-late adulthood, we carried out a full-genome microarray

analysis of aging C. elegans, analyzing gene expression levels in

synchronized populations of N2 worms at Day 6 of adulthood and

Day 15 of adulthood (Figure 3A). We found that when compared

with expression levels at Day 6 of adulthood, approximately 12%

of genes in the C. elegans genome (2535 genes) are downregulated

by 2-fold or more by Day 15 (Figure 3A and Table 1). From this

set of genes, we identified 379 that were downregulated by 10-fold

or greater in Day 15 adults compared to expression levels in Day 6

adults (Table S1). To determine whether this subset of genes

included those which are important for conferring resistance to

infection, we asked if genes previously shown to be upregulated

during an infection in young adult C. elegans were in our list and

found a 7-fold enrichment (p = 1.2610221) for genes induced by P.

aeruginosa infection [13]. Moreover, several significant Gene

Ontology (GO) terms associated with genes induced by pathogen

exposure [14,20,21] were found among the genes that are most

Figure 1. Systematic analysis of the survival of aging C. elegans
upon challenge with pathogenic bacteria. (A) Survival of wild type
strain N2 maintained on E. coli OP50 plotted as fraction of worms alive
versus time. Arrows indicate ages of worms when P. aeruginosa
infection was initiated, when reporter gene expression was examined,
and/or when total RNA was harvested for microarray analysis.
(B) Schematic of P. aeruginosa infection assay. At the indicated ages,
subsets of worms from a synchronized population cultured on a lawn of
E. coli OP50 were transferred to plates containing a lawn of
P. aeruginosa PA14, and their survival was monitored twice daily
thereafter.
doi:10.1371/journal.pgen.1002082.g001

Author Summary

Aging is associated with a diminished capacity to resist
infection in evolutionarily diverse species including hu-
mans, mice, and fruit flies. Few studies have addressed the
underlying genetic and molecular basis of this phenom-
enon. Here we examined immune function during aging in
the nematode Caenorhabditis elegans, which we demon-
strate exhibits a progressive age-dependent increase in
susceptibility to the human pathogen Pseudomonas
aeruginosa. Our studies suggest that, during aging in C.
elegans, the activity of the PMK-1 p38 mitogen-activated
protein kinase pathway, a conserved pathway involved in
pathogen defense, sharply declines. We propose a model
in which age-related damage to intestinal tissue impairs
immune function and therefore promotes infection, which
in turn amplifies tissue damage, thus setting in motion a
self-perpetuating cycle that gradually erodes host defense.

Immunosenescence in C. elegans

PLoS Genetics | www.plosgenetics.org 2 May 2011 | Volume 7 | Issue 5 | e1002082



downregulated during mid-to-late adulthood, including ‘‘peptidase

activity,’’ ‘‘hydrolase activity,’’ and ‘‘lipid metabolic activity’’

(Table S2).

GO analysis of genes downregulated between Days 6 and 15 of

adulthood in C. elegans revealed an enrichment for some of the

same GO terms associated with the transcriptional targets of both

PMK-1 and DAF-16, a conserved FOXO transcription factor

that, in the absence of inhibition through the insulin signaling

pathway, upregulates the expression of genes involved in lifespan

determination, stress response, and innate immunity [13,22,23]

(Table S2). We examined the expression levels of downstream

targets of PMK-1 and DAF-16 among genes that are downreg-

ulated during aging. When mapped onto a scatter plot comparing

gene expression in Day 15 adult C. elegans to expression levels in

Day 6 adults, almost all PMK-1 targets show sharp downregula-

tion (Figure 3A). DAF-16 targets, however, exhibit a pattern that is

more representative of the genome-wide changes in expression

that occur during aging. Specifically, while the expression levels of

many DAF-16 targets either remain unchanged or decrease, other

target genes appear to be upregulated during mid- to late

adulthood, suggesting that DAF-16 remains active later in life, in

contrast to the apparent age-dependent decline in PMK-1 activity

(Figure S1).

Of the genes that are downregulated by at least 2-fold in older

adult animals, 42 have previously been shown to be regulated by

the PMK-1 p38 MAPK pathway [13]. A total of 26 of these PMK-

1 transcriptional targets are among the 379 genes that are sharply

downregulated late in aging, which represents a dramatic and

significant 24-fold enrichment (p = 8.7610230) for PMK-1-regu-

lated genes among genes exhibiting markedly decreased expres-

sion levels between Day 6 and Day 15 of adulthood. This

enrichment is particularly evident when highlighting PMK-1-

regulated genes on a scatter plot of expression levels of Day 15

versus Day 6 adults (Figure 3A). Quantitation of endogenous

transcript levels of two PMK-1 targets in wild type C. elegans during

mid- to late adulthood by qRT-PCR confirmed that a gradual

decline in the expression of PMK-1-regulated genes indeed occurs

between Day 6 and Day 15 of adulthood and is most pronounced

after Day 9 (Figure 3B). Furthermore, this analysis corroborated

the magnitudes of the changes that were measured by microarray-

based expression profiling. Supporting these measurements of

endogenous PMK-1 target transcript levels, we also observed

diminished expression of the agIs219 reporter transgene, which

consists of the promoter for a transcriptional target of PMK-1,

T24B8.5, fused to GFP [12], in the intestinal cells of older adult C.

elegans (Figure 3C). In sum, these studies indicate a striking age-

dependent decline in the expression of PMK-1 transcriptional

targets.

Electron microscopy of aging C. elegans has revealed dramatic

deterioration of multiple tissues, including the intestine, with

advancing age [8]. We anticipated that tissue deterioration would

result in the global attenuation of the expression of intestinal genes

in older adult animals. We compared the gene expression profile

for genes differentially expressed at Day 15 versus Day 6 of

adulthood with genes previously defined as being expressed in the

C. elegans intestine [24,25]. Consistent with the possibility that

tissue deterioration causes a global decline in intestinal cell

transcription toward the end of life, we found that over 40% of

intestine-expressed genes (305/659) are among the genes that are

downregulated by at least 2-fold late in aging (Figure 3A and

Table 1). A total of 60 of these genes were among the 379 genes

with a 10-fold or greater decrease in expression in Day 15 adults

compared to Day 6 animals (Figure 3A and Table 1). This is

greater than the number of intestine-expressed genes expected to

be found by chance and represents a 5-fold enrichment

(p = 2.0610224) for intestine-expressed genes among those that

are the most downregulated in older adult animals.

The sharp decline in the expression of transcriptional targets of

the PMK-1 pathway with advancing age, even relative to the age-

related decrease in intestinal gene expression, suggests that the

activity of the PMK-1 pathway fades in late adulthood in C. elegans.

We asked whether pmk-1 itself might be regulated at either the

level of mRNA, protein, or phosphorylation during aging. By

qRT-PCR analysis, we observed that compared to expression

levels at the L4 larval stage, pmk-1 expression showed a relatively

modest decline of no more than two-fold in 12- and 15-day-old

worms, far less than the degree to which PMK-1 transcriptional

target expression was reduced during aging (Figure 3D). In

contrast, the levels of PMK-1 protein showed a marked decline

starting around Day 9 of adulthood, to the point where by Day 15,

,16% of the levels of PMK-1 observed in late larval stage animals

remained (Figure 4). Using an antibody that specifically recognizes

the doubly phosphorylated activated form of PMK-1, we found a

corresponding age-dependent decrease in the levels of activated

PMK-1 during aging. Our studies of pmk-1 transcript and protein

Figure 2. Increased susceptibility of C. elegans to lethal
infection with aging. (A) Survival of wild type strain N2 transferred
from E. coli OP50 to P. aeruginosa PA14 at L4 (orange), Day 3 (magenta),
Day 6 (blue), or Day 9 (green) plotted as fraction of worms alive versus
time. (B) Accumulation of P. aeruginosa within the intestinal lumen of C.
elegans at ,24 h post-infection. Wild type N2 strain late larval stage (L4)
and adult worms were infected with a strain of P. aeruginosa that
expresses GFP and then scored the next day according to the extent of
bacterial colonization of the intestine. The pattern of P. aeruginosa
infection in individual animals was classified as either ‘‘None’’ when no
GFP-expressing P. aeruginosa could be detected in the intestine,
‘‘Partial’’ when P. aeruginosa colonization of the intestine was
incomplete or was localized to a bolus, or ‘‘Full’’ when the intestinal
lumen was completely packed with bacteria along its entire length.
doi:10.1371/journal.pgen.1002082.g002
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levels during aging suggest that diminishing PMK-1 protein

abundance is responsible for the attenuated activity of the PMK-1

signaling pathway later in life.

Previously, we established that mutations that attenuate the

activity of the PMK-1 pathway result in enhanced susceptibility to

killing by P. aeruginosa during larval development and young

adulthood [10]. The striking decrease in expression of PMK-1-

regulated genes and the observed decline in PMK-1 levels in aging

animals suggested a diminished role for the PMK-1 pathway in

host defense towards the end of life. Consistent with this

prediction, we observed that with advancing age, the difference

in survival between wild type and pmk-1 mutants challenged with

Figure 3. A decline in expression of PMK-1 transcriptional targets during aging in the C. elegans intestine. (A) Scatter plots comparing
gene expression levels in the C. elegans wild type N2 strain at Day 15 versus Day 6 of adulthood. Each dot represents an individual gene; brown, all
genes on the full-genome microarray; blue, genes previously shown to exhibit enriched expression levels in the C. elegans intestine; red, genes
previously identified as being regulated by the PMK-1 pathway. Genes on the solid diagonal line are expressed at equivalent levels at both time
points. Genes below the dashed diagonal line are downregulated by more than 10-fold between Day 6 and Day 15 of adulthood. (B) qRT-PCR of
endogenous C17H12.8 and T24B8.5 mRNA levels during aging relative to expression at Day 3 of adulthood. The average of three experiments using
independent biological replicates of total RNA for cDNA synthesis is shown. Bars indicate standard deviation. (C) Fluorescence microscopy of C.
elegans carrying the agIs219 transgene, a GFP reporter of PMK-1 activity, at the indicated ages. (D) qRT-PCR of pmk-1 transcript levels during aging
relative to expression at L4. The average of two experiments using independent biological replicates of total RNA for cDNA synthesis is shown.
doi:10.1371/journal.pgen.1002082.g003

Table 1. Distribution of intestine-enriched genes and PMK-1 transcriptional targets among genes downregulated at Day 15 versus
Day 6 of adulthood.

Day 15/Day 6 Expression Level

Genes Number of Genes $2-fold Decrease $10-fold Decrease p-value

Whole genome ,20,000 2535/20,000 379/20,000

Intestine-enriched 659 305/659 60/659 2.0610224

PMK-1 targets 58 42/58 26/58 8.7610230

The number of intestine-expressed genes (based on a list compiled from previous studies [24,25]) and PMK-1 transcriptional targets (identified previously [13]) with
levels of expression reduced by either $2-fold or $10-fold in Day 15 animals compared to expression levels in Day 6 adults is reported. The statistical significance of the
fold difference among genes downregulated by 10-fold or more between Day 6 and Day 15 of adulthood is represented by a hypergeometric p-value.
doi:10.1371/journal.pgen.1002082.t001
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P. aeruginosa subsides (Figure 5A–5D). Whereas pmk-1 loss of

function shortens the LT50 (median time to death) of 3- and 6-day-

old adult C. elegans challenged with P. aeruginosa by 50% and ,60%

respectively, when infection is initiated at Day 9 of adulthood, wild

type animals and pmk-1 mutants die at an equivalent rate.

Considering the decrease in abundance of the active, phos-

phorylated form of PMK-1 during aging (Figure 4) we tested

whether inactivating VHP-1, a phosphatase which negatively

regulates PMK-1 during larval development in C. elegans [26],

could rescue the enhanced susceptibility of older adult animals to

infection.

We reasoned that reduced VHP-1 function might prevent or

delay the decrease in PMK-1 activity that occurs during aging.

RNAi-mediated knock-down of vhp-1 during adulthood failed to

improve the resistance of Day 9 adults to P. aeruginosa infection

(Figure S2). These data provide further evidence to suggest that

the age-dependent decline in PMK-1 activity later in life results

from the waning abundance of PMK-1 protein and not from a

decrease in PMK-1 phosphorylation.

PMK-1 mediates host defense in C. elegans by regulating the

expression of genes encoding proteins important for the response

to infection [13,14]. In earlier studies, we found that RNAi of

individual transcriptional targets of the PMK-1 pathway did not

yield a pathogen susceptibility phenotype, indicative of functional

redundancy among putative immune effectors regulated by PMK-

1 [13]. We repeated this analysis in older C. elegans, carrying out

the inactivation of 29 individual PMK-1 targets by RNAi to

determine if we could phenocopy the susceptibility phenotype of

Day 6 pmk-1 mutants upon infection with P. aeruginosa (Figure S3,

Figure S4). Included among these genes were several found to be

upregulated in response to P. aeruginosa infection [13]. For 27 of 29

targets, RNAi-mediated gene inactivationn produced no repro-

ducible effect on pathogen susceptibility. A modest effect on

pathogen susceptibility was observed upon RNAi of nlp-31

(B0213.6) and tag-38 (B0222.4), but the small effects suggest that

downstream targets of PMK-1 primarily function redundantly to

mediate innate immunity in aging C. elegans, as was observed for

young adult C. elegans [13].

The standard laboratory food source for C. elegans, E. coli OP50,

is likely pathogenic to aging animals [7,9,27]. Therefore, if the role

of PMK-1 in host defense is to protect against infection, then the

effects of exposure to E. coli that mimic an infection should be

enhanced by the progressive decline in PMK-1 activity during

aging. Intestinal distention due to bacterial packing develops in

aging adults [7], with ultrastructural evidence that this accumu-

lation of bacteria can contribute to death [8]. Consistent with the

role of PMK-1 in innate immunity, we observed that the pmk-1

mutant exhibited increased accumulation of E. coli with aging

relative to wild-type C. elegans (Figure 6A). As assessed by intestinal

distention, we observed a 5-fold greater prevalence of E. coli

accumulation within the intestine of pmk-1 mutants as compared to

wild type C. elegans at Day 6 of adulthood. Whereas the

Figure 4. A gradual reduction in the levels of total and
activated PMK-1 protein throughout adulthood in C. elegans.
Immunoblot analysis of total and activated PMK-1 during aging. Total
protein isolated from L4 larval stage pmk-1(km25) (lane 1), L4 sek-1(km4)
(lane 2) or L4 and adult wild type N2 strain (lanes 3-8) was separated by
SDS-PAGE, and immunoblots were decorated with antibodies to either
PMK-1 (Total PMK-1), phosphorylated PMK-1 (Active PMK-1) or b-tubulin
(Tubulin).
doi:10.1371/journal.pgen.1002082.g004

Figure 5. Age-dependent decrease in the contribution of PMK-1
p38 MAPK signaling to C. elegans immunity. (A) Survival of wild type
strain N2 (orange) and the pmk-1(km25) mutant (blue) transferred from
E. coli OP50 to P. aeruginosa PA14 at L4, and at Days 3, 6, and 9 of adulthood
(B–D, respectively), plotted as fraction of worms alive versus time.
doi:10.1371/journal.pgen.1002082.g005

Immunosenescence in C. elegans

PLoS Genetics | www.plosgenetics.org 5 May 2011 | Volume 7 | Issue 5 | e1002082



accumulation of E. coli increased in an age-dependent manner, we

observed that the difference between wild type and pmk-1 mutant

C. elegans diminished with advancing age (Figure 6A). By Day 9

and Day 12 of adulthood, twice as many pmk-1 mutants exhibited

a distended intestinal lumen as compared to age-matched wild

type animals, in contrast to the 5-fold difference observed at Day 6

of adulthood. These data corroborate our observations that the

contribution of PMK-1 to host defense declines in an age-

dependent manner during adulthood.

Discussion

Immunosenescence in C. elegans
Although a number of observations in diverse species suggest

dysfunction of the innate immune system with aging, how innate

immunity changes over the course of the aging process has been

unclear. Our data suggest that the diminishing contribution of the

PMK-1 pathway to resistance to P. aeruginosa infection in aging

animals underlies the increasing susceptibility to infection of C.

elegans with advancing age. The global decline in intestinal gene

expression with advancing age is consistent with ultrastructural

observations that show a deterioration of intestinal cells with aging.

Because the intestinal cells are the principal cells of host defense in

C. elegans, functioning as a mucosal defense barrier, tissue aging

may compromise the ability of these cells to function in resistance

to infection. Thus, we hypothesize that the aging of intestinal cells

may contribute to immunosenescence which, in turn, as we discuss

below, may promote the aging process.

A cycle of intestinal tissue aging, immunosenescence,
and bacterial infection promotes aging and mortality in
C. elegans

While the activity of the genetic determinants of aging appears

to be coordinated among the various tissue types in C. elegans [28–

31], different tissues exhibit distinct degrees of deterioration with

advancing age. For example, whereas neurons exhibit minimal

evidence of age-related damage in C. elegans, intestinal cells exhibit

morphological changes during aging, including areas of plasma

membrane disruption and the disappearance of microvilli [8].

Stochastic localized aging has also been reported in murine models

where mucosal immunity in the gastrointestinal tract may exhibit

early aging relative to components of systemic immunity such as

the spleen [32]. Unlike the intestinal cells of vertebrates, intestinal

cells of C. elegans are post-mitotic, and thus bacteria present in the

intestinal lumen may accelerate tissue aging during the infection

process through the secretion of toxins and other virulence

mechanisms. Therefore, investigating the interaction between

older adult C. elegans and pathogenic bacteria that infect the gut

provides a system for understanding the chronic effects of aging on

immune function and, in a reciprocal manner, the contribution of

innate immunity to tissue aging.

The proliferation of bacteria in the intestinal lumen of aging C.

elegans suggests two opposing hypotheses regarding innate immune

function. One possibility is that increased bacterial packing and

proliferation might lead to the pathological activation of innate

immune responses that may directly contribute to host lethality.

Derangement and hyperactivation of innate immunity is observed

in septic shock during overwhelming infection in humans [33]. In

this scenario the sustained, excessive activity of the immune system

could result in collateral tissue damage that exacerbates age-

related deterioration. Indeed, we recently characterized how the

innate immune response itself can be lethal during C. elegans

development in the absence of homeostatic endoplasmic reticulum

stress responses [34]. However, we found no evidence of increased

immune function in older adult C. elegans. Instead our data suggest

an alternative situation in which innate immune function declines

during aging, likely contributing to progressive bacterial prolifer-

ation. Infection has been hypothesized to be a major cause of

death in aging worms, based on lifespan extensions conferred by

feeding animals killed instead of live bacteria [7,9] and the

Figure 6. A cycle of intestinal tissue aging, immunosenescence,
and progressive intestinal proliferation of bacteria towards the
end of life in C. elegans. (A) Fraction of wild type N2 C. elegans (white
bars) or pmk-1(km25) mutants (grey bars) maintained on lawns of E. coli
OP50 that exhibit intestinal distention at Days 6, 9, and 12 of adulthood.
Inset, ratio of the average number of pmk-1 mutants with intestinal
distention versus the average number of wild type animals with
intestinal distention at Days 6, 9, or 12 of adulthood. (B) As the primary
immune cells in C. elegans, age-related damage to intestinal cells may
impair their ability to execute processes required for immune
protection, such as the expression of immune effector proteins,
including those regulated by the PMK-1 pathway. The consequent
reduction in host defense would lead to increased colonization of the
C. elegans intestine by pathogenic microbes, which contribute to and
amplify intestinal cell deterioration during the infection process. Thus a
self-perpetuating cycle of increased intestinal deterioration, decreased
immunity, and increased accumulation of bacteria may underlie
immunosenescence and significantly contribute to mortality later in life.
doi:10.1371/journal.pgen.1002082.g006
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aforementioned ultrastructural observations [8]. Because the

intestinal cells function as immune cells in C. elegans, intestinal

tissue deterioration may impair mucosal immune defenses. Taken

together with prior observations of intestinal tissue aging and

bacterial proliferation in aging animals, our data on C. elegans

immunosenescence suggest a downward spiral during aging such

that a decline in immunity promotes the increased proliferation of

bacteria, which in turn, may accelerate intestinal tissue aging and

deterioration (Figure 6B). Ultimately, the senescence of innate

immunity suggests that aging C. elegans lack components of host

defense that confer protection from infection earlier in life,

allowing for the proliferation of even relatively non-pathogenic

bacteria that may substantially contribute to mortality. We

speculate that immunosenescence may herald the transition to

the terminal stages of the aging process in C. elegans.

Materials and Methods

C. elegans growth for aging and lifespan assays
Animals were synchronized by hypochlorite treatment and L1

arrest. Starved L1 larvae were placed onto NGM plates seeded

with E. coli OP50 and grown at 20uC to the L4 stage. L4 animals

were transferred by chunking to 10 cm NGM plates supplemented

with 50 mg/ml 5-fluorordeoxyuridine (FUdR) and seeded with E.

coli OP50. Worms were maintained on these plates at 20uC until

they were used for experiments at Days 3, 6, 9, 12, or 15 of

adulthood. Plates that became contaminated or significantly

depleted of E. coli OP50 over time were discarded.

To determine the lifespan of C. elegans wild type strain N2, worms

were synchronized and grown to L4 as described above and then

picked over to 6 cm E. coli OP50-seeded NGM plates containing

50 mg/ml FUdR at 20uC where they were maintained throughout

the assay. A total of approximately 100 worms were transferred to

three NGM plates (,30 worms/plate) in each replicate assay.

Worms were scored every 2–4 days beginning at Day 7 of adulthood

by gently prodding with a platinum wire to test for touch sensitivity

as an indication of life or death. Lifespan is defined as the time

elapsed from when worms were transferred to FUdR plates (time

= 0 on survival curves) to when they were scored as dead.

Analysis of bacterial accumulation
To analyze bacterial accumulation in the intestinal lumen

during infection with P. aeruginosa, worms were transferred from

plates containing E. coli OP50 to plates containing a strain of P.

aeruginosa PA14 which expresses GFP [15]. Animals were

monitored for the presence of GFP-P. aeruginosa within the

intestinal lumen by fluorescence microscopy ,24 h after initiating

the infection. At the time of scoring, in order to visualize worms in

the absence of interfering GFP signal from the bacterial lawn,

worms were transferred from plates containing GFP-P. aeruginosa to

E. coli OP50 plates. At 4x magnification bacterial accumulation

was scored according to the following criteria: ‘‘none’’ if no GFP

signal could be detected in the intestinal lumen, ‘‘partial’’ if GFP-

P. aeruginosa was observed in only a portion of the intestine or was

dispersedly distributed throughout the intestine, or ‘‘full’’ if a

robust GFP signal could be detected without interruption along

the entire length of the intestinal lumen.

To measure the prevalence of E. coli accumulation within the

intestinal lumen during aging, wild type N2 C. elegans or pmk-1

mutants were maintained on lawns of E. coli OP50 at 20uC as

described above. Beginning at Day 6 and continuing at regular

intervals until Day 12 of adulthood, animals were examined for

evidence of bacterial packing as manifest in intestinal distention.

At each time point, at least 70 worms of each strain were

anaesthetized with 10 mM sodium azide and mounted on glass

slides for examination by Nomarski microscopy. At 100x

magnification animals were scored positive for intestinal distention

if sections of their intestinal lumen appeared to be abnormally

wide and resulted in the apparent compression of the bordering

intestinal cells.

Isolation of RNA for quantitative RT-PCR and microarray
analysis

Synchronized populations of C. elegans were generated as

described above and then harvested at the indicated ages by

rinsing plates with M9 buffer and collecting animals into 15 ml

conical tubes. After allowing worms to settle, the supernatant was

removed and animals were rinsed with fresh M9. Washed worms

were transferred to a screw-capped tube, resuspended in Tri

reagent (Ambion) and vortexed before flash freezing in liquid

nitrogen for storage at 280uC. Following phenol-chloroform

extraction, RNA was precipitated in isopropanol and resuspended

in RNAse-free water. For replicate microarray experiments and

qRT-PCR, RNA was isolated from three populations of N2

worms that were independently propagated.

Quantitative RT-PCR (qRT-PCR) analysis
Total RNA was reverse-transcribed using the Retroscript kit

(Ambion). The resulting cDNA was used as the template in

triplicate qRT-PCR reactions using SYBR Green detection

(Roche) in a Mastercycler Realplex (Eppendorf). Primers for

amplification of T24B8.5 and C17H12.8 were as described in a

previous study [13]. The DDCt method was used determine

relative mRNA levels using expression of tba-1 (primers described

previously [35]) as a normalization control. The abundance of tba-

1 did not change during aging (data not shown) when normalized

to the levels of either nhr-23 (primers described previously [13]) or

act-1 (primers described previously [36]).

RNA hybridization and analysis of microarray chips
RNA was quantified and quality confirmed using an Agilent

2100 Bioanalyzer (Agilent Technologies, Inc.). 100 ng of total

RNA was amplified and labeled using the NuGEN Ovation RNA

amplification v2 kit (NuGEN Technologies, Inc.) according to the

manufacturer’s instructions. Samples were hybridized to Gene-

Chip C. elegans genome microarrays at 45uC for 16 h, and chips

were scanned using an Affymetrix GeneChip Scanner 3000 7G

(Affymetrix Inc.). Absent/present calls were generated by

analyzing the data with Microarray Suite version 5 (MAS5.0).

Processed arrays were normalized and log2 expression values

output using GCRMA [37]. Microarray data have been deposited

in NCBI’s Gene Expression Omnibus and are accessible online

through GEO Series accession number GSE21784 (http://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21784).

Statistical analysis of microarray data
The GCRMA output was filtered such that genes without at

least one present call were eliminated. For the remaining genes,

log2 expression values were normalized by first calculating the

mean of the expression values of all replicates at all time points for

an individual gene and then subtracting the result from every

expression value corresponding to that gene in all of the replicates.

To determine age-dependent changes in gene expression the mean

log ratio of gene expression at two different points during aging

was calculated, and a 2-tailed unpaired Student’s t test was used to

identify genes with statistically significant (p-value #0.05) changes

in expression levels as a function of age.
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Lists of genes with significant changes in expression during aging

were queried for the presence of transcriptional targets of PMK-1 or

for genes with enriched levels of expression in the C. elegans intestine.

PMK-1 targets were identified in a previous study [13] and are

defined as genes upregulated by 2.5-fold or greater in glp-4(bn2)

versus glp-4 (bn2); sek-1(ag1) with a p-value of ,0.05 (t-test). A list of

genes with enriched intestinal expression was compiled by

combining the unique results from SAGE library analysis of

intestinal tissue isolated from adult C. elegans [24] and from

microarray-based studies of intestine-expressed genes in L4 larval

stage animals [25]. In cases where no CDS identifier was available

in the WormBase genome database (http://www.wormbase.org),

the gene was excluded from comparison to our microarray data.

To determine the fold enrichment of PMK-1 target genes,

PA14-induced, or intestine-expressed genes in our data sets, the

fraction of target genes in a given data set (e.g. 26 PMK-1-

regulated genes/379 genes with decreased expression at Day 15

versus Day 6) was divided by the fraction of target genes present in

the C. elegans genome (e.g. 58 total PMK-1 targets/20,000 genes in

the genome). p-values for fold enrichment were determined by

calculating hypergeometric distribution. Significant GO ontology

terms associated with subsets of genes in the microarray

experiments were identified using the web-based application

FatiGO (http://babelomics3.bioinfo.cipf.es/) [38]. Scatter plots

were constructed by plotting average raw transformed intensities

from three independent biological replicates for each gene on the

GeneChip C. elegans genome microarrays using GraphPad Prism

(version 4.0b).

Immunoblot analysis
To prepare total protein lysates for western analysis, worms

were harvested as described above for RNA isolation, except that

after transferring animals to a screw-capped tube, the supernatant

was replaced with 300 ml of SDS Sample Buffer (4% sodium

dodecyl sulfate [SDS], 100 mM Tris?Cl pH 6.8, 20% glycerol).

After boiling worms for 15 min, insoluble material was pelleted by

centrifuging tubes at 10,000 g for 5 min, and the supernatant was

transferred to a new tube which was immediately frozen at 280uC
for storage until further analysis. The amount of total protein

present in the lysates was determined using a BCA Protein Assay

kit (Pierce). To prepare samples for SDS-PAGE, 100 mM

dithiothreitol (DTT) and 0.1% bromphenol blue were added

before boiling for 5 min. Proteins were separated on 10% SDS-

PAGE gels (Bio-Rad) and then transferred to nitrocellulose

membranes (Bio-Rad) according to the manufacturer’s instruc-

tions. For western blotting analysis, membranes were probed with

anti-PMK-1 antibody ([10]; gift of K. Matsumoto), anti-phospho-

p38 (Promega) or anti-b-tubulin (E7, Developmental Studies

Hybridoma Bank, Iowa City, Iowa). Immune complexes were

detected using HRP-conjugated secondary antibodies (GE

Healthcare) followed by chemiluminescence (Amersham ECL

Advance Western Blotting Detection Kit, GE Healthcare).

Western blots were quantitated using ImageJ 1.43u software

(available online at http://rsb.info.nih.gov/ij/download.html).

RNAi of PMK-1 transcriptional targets, vhp-1, and pmk-1
RNAi by bacterial feeding using E. coli HT115 bearing plasmids

corresponding to the transcriptional targets of PMK-1 (obtained

from the Ahringer library [39]), vhp-1 [26] or pmk-1 [26] was carried

out as described [40] with the following modifications. No

tetracycline or isopropyl b-D-1 thiogalactopyranoside (IPTG) was

added to liquid bacterial cultures. RNAi plates contained a final

concentration of 2 mM IPTG to induce expression of RNAi

constructs and were not supplemented with tetracycline. For

experiments involving RNAi treatment of adult animals, 50 mg/

ml FUdR was added to the plates. In experiments involving RNAi

of PMK-1 targets, synchronized C. elegans L1 larvae were added to

RNAi bacteria plates, then transferred to new RNAi plates

containing FUdR once they reached the L4 stage where they were

maintained until challenged with P. aeruginosa at Day 6 of adulthood.

For RNAi of vhp-1, Day 6 adult C. elegans were transferred from E.

coli OP50 to RNAi food where they were maintained until

challenged with P. aeruginosa at Day 9 of adulthood.

Supporting Information

Figure S1 DAF-16 targets are representative of genome-wide

changes in expression during aging in C. elegans. Scatter plot

comparing gene expression levels in the C. elegans wild type N2

strain at Day 15 versus Day 6 of adulthood. Each dot represents an

individual gene; brown, all genes on the full-genome microarray;

red, genes previously identified as being regulated by the DAF-16

pathway [13,22,23]. Genes on the solid diagonal line are expressed

at equivalent levels at both time points.

(TIF)

Figure S2 Inactivation of VHP-1 during adulthood fails to

rescue age-related enhanced susceptibility to pathogen in C. elegans.

Wild type N2 animals were treated with RNAi directed against

vhp-1 (orange), pmk-1 (black) or an empty vector (L4440, blue) from

Day 6 until Day 9 of adulthood. Survival of RNAi-treated animals

transferred to P. aeruginosa PA14 at Day 9 of adulthood is plotted as

fraction of worms alive versus time.

(TIF)

Figure S3 Functional redundancy among PMK-1 transcription-

al targets in C. elegans innate immunity (Replicate 1). (A–G) Wild

type N2 C. elegans were treated with RNAi directed against the

indicated PMK-1 transcriptional targets or with empty vector

L4440 from the L1 stage until Day 6 of adulthood. Survival of

RNAi-treated animals transferred to P. aeruginosa PA14 at Day 6 of

adulthood is plotted as fraction of worms alive versus time. The

results of the first biological replicate are shown.

(TIF)

Figure S4 Functional redundancy among PMK-1 transcription-

al targets in C. elegans innate immunity (Replicate 2). (A–G) Wild

type N2 C. elegans were treated with RNAi directed against the

indicated PMK-1 transcriptional targets or with empty vector

L4440 from the L1 stage until Day 6 of adulthood. Survival of

RNAi-treated animals transferred to P. aeruginosa PA14 at Day 6 of

adulthood is plotted as fraction of worms alive versus time. The

results of the second biological replicate are shown.

(TIF)

Table S1 PMK-1 targets downregulated by 10-fold or more in

Day 15 adults, relative to expression levels in Day 6 adults. List of

PMK-1 targets identified amonggenes with a $10-fold reduction

in expression levels in Day 15 adults compared to Day 6

expression levels (p#0.05).

(XLS)

Table S2 Significant GO terms associated with genes downreg-

ulated by 10-fold or more between Day 6 and Day 15 of adulthood

in C. elegans. List of Gene Ontology (GO) terms describing

biological processes or molecular functions with significant

enrichment (p,0.05) among genes downregulated during aging

in C. elegans. For comparison, significant GO terms (p,0.05)

associated with transcriptional targets of PMK-1 and DAF-16 are

also included.

(XLS)
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