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Abstract
The serum- and nutrient-sensitive protein kinase mTOR (mammalian target of rapamycin) is a master
regulator of cell growth and survival. The mechanisms through which nutrients regulate mTOR have
been one of the major unanswered questions in the mTOR field. Identification of the Rag (Ras-related
GTPase) family of GTPases as mediators of amino acid signalling to mTOR is an important step towards our
understanding of this mechanism.

The mTOR (mammalian target of rapamycin) kinase is
an evolutionarily conserved protein that regulates cell
growth, survival and metabolism. mTOR participates in two
biochemically and functionally distinct protein complexes:
mTORC (mTOR complex) 1 and 2 [1]. mTOR and mLST8
(mammalian lethal with sec-13) are common members of both
complexes; raptor (regulatory associated protein of mTOR)
and PRAS40 (proline-rich Akt substrate of 40 kDa) parti-
cipate in mTORC1 specifically; and rictor (rapamycin-
insensitive companion of mTOR), sin1 and protor (protein
observed with rictor) are unique members of mTORC2
[1–13]. mTORC1 is downstream of both growth factor and
nutrient signalling (glucose and amino acids), and integrates
the two so as to ensure cell growth only when conditions are
ideal. Given the central role of mTORC1 in cell growth, it is
not surprising that many upstream regulators of mTORC1
are involved in disease, and understanding how it is regulated
is of great interest.

The identification of the small GTPase Rheb as a potent
mTORC1 activator, and the finding that TSC (tuberous
sclerosis complex) 1/2 is the GAP (GTPase-activating
protein) for Rheb advanced our understanding of mTORC1
regulation significantly [14–20]. Both growth factors and
cellular energy levels regulate TSC1/2 activity, which in
turn modulates the level of Rheb-GTP, which binds to
and activates mTORC1 directly [7,21–27]. In addition, two
mTORC1 members, PRAS40 and raptor, are phosphorylated
in response to mitogenic stimuli and cellular stress, leading to
mTORC1 activation and inhibition respectively [6,7,28,29].

Although Rheb is necessary for amino-acid-induced
mTORC1 activation and Rheb overexpression can overcome
amino-acid-starvation-induced mTORC1 inhibition, TSC2-
null MEFs (mouse embryonic fibroblasts) are sensitive
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to amino acid starvation [30]. This observation suggested
that there are additional important players in the amino
acid regulation of mTORC1. Recently, the finding that Rag
(Ras-related GTPase) proteins mediate amino acid signalling
to mTORC1 provided new insights into this problem [31,32].

The Rag proteins are a unique family of GTPases with a
canonical N-terminal Ras-like GTPase domain and a unique
C-terminal RagA conserved region. In mammals, there
are four Rag genes (Rraga, Rragb, Rragc and Rragd), whereas
yeast and fruitflies have one RagA-like gene and one RagC-
like gene.

We identified RagC by MS mass spectrometric analysis as a
raptor-interacting protein [32]. Kim et al. [31] found that the
Rag proteins are important for amino-acid-induced TORC1
(target of rapamycin complex 1) activation in Drosophila
cells using an RNAi (RNA interference) screen. Both groups
showed that knocking down the Rag proteins impairs
amino acid signalling to TORC1, and that overexpression
of constitutively GTP-bound RagA-like mutant makes
TORC1 insensitive to amino acid deprivation. Moreover,
Kim et al. [31], monitoring cell and organ size, as well as
autophagy, observed that Rag overexpression or deletion in
Drosophila directly parallels the effects of dTOR (Drosophila
target of rapamycin) activation or inhibition respectively.

Although we do not completely understand how Rag
proteins activate mTORC1 in detail, the critical observation
that amino acid stimulation induces a change in mTORC1
localization prompted us to hypothesize that Rag proteins
may regulate mTORC1 localization. Supporting our hypo-
thesis, when Rag proteins are knocked down, amino-acid-
induced mTORC1 localization change is ablated. Similarly,
when a constitutively GTP-bound RagB mutant is expressed,
mTORC1 localization resembles the amino-acid-induced
state, even in the absence of amino acids. We also showed
that, after amino acid stimulation, mTORC1 moves to
Rab7-containing vesicles, where its activator Rheb is thought
to reside. On the basis of these observations, we proposed a
model: upon amino acid stimulation, Rag proteins initiate a
localizationchangeofmTORC1,takingit to Rheb-containing
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vesicles, leading to its activation. This model explains (i) how
overexpressed and thus mislocalized Rheb can overcome
amino acid starvation, and (ii) why TSC2-null MEFs are
sensitive to amino acid starvation: even though Rheb is
always in a GTP-bound state, mTORC1 is not in the same
subcellular compartment as its activator when amino acids
are not present.

The identification of Rag proteins as members of the
mTORC1 pathway is an important first step towards deciph-
ering the molecular events that signal nutrient availability
to mTORC1 and evokes many interesting questions. How
amino acid availability is sensed and communicated to the
Rag proteins, how mTOR localization contributes to its
activity, and whether Rag-related signalling can be targeted
in disease are some of the exciting questions for which
mTOR biologists will be seeking answers.
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