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Abstract

With the aim of developing a thermo-mechanically-coupled large-deformation constitutive theory and a
numerical-simulation capability for modeling the response of thermally-actuated shape-memory polymers,
we have (i) conducted large strain compression experiments on a representative shape-memory polymer
to strains of approximately unity at strain rates of 10−3 s−1 and 10−1 s−1, and at temperatures ranging
from room temperature to approximately 30C above the glass transition temperature of the polymer; (ii)
formulated a thermo-mechanically-coupled large-deformation constitutive theory; (iii) calibrated the material
parameters appearing in the theory using the stress-strain data from the compression experiments; (iv)
numerically implemented the theory by writing a user-material subroutine for a widely-used finite element
program; and (v) conducted representative experiments to validate the predictive capability of our theory
and its numerical implementation in complex three-dimensional geometries. By comparing the numerically-
predicted response in these validation simulations against measurements from corresponding experiments,
we show that our theory is capable of reasonably accurately reproducing the experimental results. As a
demonstration of the robustness of the three-dimensional numerical capability, we also show results from a
simulation of the shape-recovery response of a stent made from the polymer when it is inserted in an artery
modeled as a compliant elastomeric tube.

1 Introduction

The most common shape-memory polymers are those in which the shape-recovery is thermally-induced (e.g.,
Behl and Lendlein, 2007; Ratna and Kocsis, 2008).1 A body made from such a material may be subjected
to large deformations at an elevated temperature above its glass transition temperature ϑg. Cooling the
deformed body to a temperature below ϑg under active kinematical constraints fixes the deformed shape of
the body. The original shape of the body may be recovered if the material is heated back to a temperature
above ϑg without the kinematical constraints. This phenomenon is known as the shape-memory effect. If the
shape recovery is partially constrained, the material exerts a recovery force and the phenomenon is known
as constrained-recovery.

As reviewed by Gall et al. (2005), one of the first widespread applications of shape-memory polymers
was as heat-shrinkable tubes (Ota, 1981). Such rudimentary early applications did not necessitate a detailed
understanding or modeling of the thermomechanical behavior of these materials. However, in recent years
shape-memory polymers are beginning to be used for critical biomedical applications (e.g., Lendlein and

∗Corresponding author. Tel.: +1-617-253-1635; E-mail address: anand@mit.edu
1Shape-memory polymers which can recover from an imposed deformation by the application of other external stimuli such

as light of a specific frequency also exist (e.g., Lendlein et al., 2005; Jiang et al., 2006). However, in this study we limit our
attention to thermally-actuated shape-memory polymers.
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Langer, 2002; Metcalfe et al., 2003; Baer et al., 2007b), microsystems (e.g., Maitland et al., 2002; Metzger
et al., 2002; Gall et al., 2004), re-writable media for data storage (e.g., Vettiger et al., 2002; Wornyo et al.,
2007), and self-deployable space structures (Campbell et al., 2005). In order to develop a robust simulation-
based capability for the design of devices for such critical applications, one requires an underlying accurate
thermo-mechanically-coupled constitutive theory and an attendant validated numerical implementation of
the theory.

In the past few years several efforts at experimental characterization of the thermo-mechanical stress-
strain response of a wide variety of shape-memory polymers have been published in the literature (e.g.,
Tobushi et al., 1996; Baer et al., 2007a; Gall et al., 2005; Yakacki et al., 2007; Safranski and Gall, 2008;
Qi et al., 2008). Significant modeling efforts have also been published (e.g., Liu et al., 2006; Chen and
Lagoudas, 2008; Qi et al., 2008; Nguyen et al., 2008). However, at this point in time, a thermo-mechanically-
coupled large-deformation constitutive theory for modeling the response of thermally-actuated shape-memory
polymers is not widely agreed upon — the field is still in its infancy. The purpose of this paper is to present
results from of our own recent research in this area.

Specifically, with the aim of developing a thermo-mechanically-coupled large-deformation constitutive
theory and a numerical simulation capability for modeling the response of thermally-actuated shape-memory
polymers, we have

(i) conducted large strain compression experiments on a representative shape-memory polymer to strains
of approximately unity at strain rates of 10−3 s−1 and 10−1 s−1, and at temperatures ranging from
room temperature to approximately 30C above the glass transition temperature of the polymer;

(ii) formulated a thermo-mechanically-coupled large deformation constitutive theory;

(iii) calibrated the material parameters appearing in the theory using the stress-strain data from the com-
pression experiments;

(iv) numerically implemented the theory by writing a user-material subroutine for a widely-used finite
element program ABAQUS/Standard (2009); and

(v) conducted representative experiments to validate the predictive capability of our theory and its numeri-
cal implementation in complex three-dimensional geometries. By comparing the numerically-predicted
response in these validation simulations against measurements from corresponding experiments, we
show that our theory is capable of reasonably accurately reproducing the experimental results.

Also, as a demonstration of the robustness of the three-dimensional numerical capability, we show results
from a simulation of the shape-recovery response of a stent made from the polymer when it is inserted in an
artery modeled as a compliant elastomeric tube.

The plan of this paper is as follows. In §2 we describe results of our simple compression experiments
on a representative chemically-cross-linked thermoset shape-memory polymer. In §3 we summarize our
constitutive theory, and show the quality of the fit of the constitutive theory to the experimentally-measured
stress-strain curves. For ease of presentation, the details of the specialization of the constitutive theory to
model the particular shape-memory polymer used in our study are discussed in an Appendix. In §4 we
present experimental results and corresponding numerical simulations from our validation study. We close
in §5 with some final remarks.

2 Experimental characterization of the thermo-mechanical response

of a shape-memory polymer

As a representative thermally-actuated shape-memory polymer we chose to characterize the mechanical
response of a chemically-crosslinked thermoset polymer recently studied by Yakacki et al. (2007). Following a
procedure described by these authors, the shape-memory polymer was synthesized via photopolymerization
(UV curing) of the monomer tert-butyl acrylate (tBA) with the crosslinking agent poly(ethylene glycol)
dimethacrylate (PEGDMA), in the following specific composition: tBA 90% by weight (mol. weight: 128
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g/mol) with PEGDM 10% by weight (mol. weight: 550 g/mol).2 This polymer is chosen for study because the
shape-memory actuation temperature for this polymer is close to that of body-temperature — the nominal
glass transition temperature for this polymer is ϑg ≈ 37 C (Safranski and Gall, 2008).

We have conducted a set of simple compression experiments on this polymer. The cylindrical specimens
were 6.3mm diameter and 3.15mm tall. The compression experiments were conducted at true-strain rates
of 10−3 s−1 and 10−1 s−1 at 22C, 30C, 40C, 50C, and 65C, up to true strain-levels of ≈ 100%. Fig. 1
shows representative true stress-strain curves.3 The polymer exhibits two distinctly different responses at
temperatures below and above ϑg:

• The stress-strain curves at 22C and 30C are below ϑg. At these temperatures the polymer exhibits a
strain-rate and temperature-dependent response typical of a “glassy-polymer”. That is, a well-defined
yield-peak, followed by strain-softening, and eventual rapid strain-hardening at large strains. Upon
unloading after compression to a strain level of ≈ 100%, about 5% of the strain is recovered and the
remainder is left as a “permanent-set” (as long as the temperature is held constant).

• The stress-strain curves at 50C and 65C are above ϑg. At these temperatures the material exhibits a
“hysteretic-rubber”-like response. That is, the initial stiffness of the material drops dramatically from
its value below ϑg, the yield-peak disappears, and upon unloading there is essentially no permanent
set. However, there is significant hysteresis in the stress-strain response which is significantly rate- and
temperature-dependent.

Of particular interest are the two stress-strain curves at 40C, a temperature which is in the vicinity of
the nominal glass transition temperature of ϑg ≈ 37C. At the lower strain rate of 10−3 s−1 the material
responds like a “hysteretic-rubber”, while at the higher strain rate of 10−1 s−1 the material responds like
a “glassy-polymer.” Thus, in accordance with the well-known result from frequency-dependent dynamic-
mechanical-tests on amorphous polymers, this result shows that the “glass transition temperature” ϑg is not
a constant for a material — it increases as the strain rate increases.

3 Constitutive theory

Amorphous polymers are called thermoplastics when they are not chemically-crosslinked, and are called ther-
mosets when they are chemically-crosslinked. Both classes of amorphous polymers behave in a qualitatively
similar fashion when deformed below ϑg, but their response characteristics above ϑg are quite different. As
shown in Fig. 1, at temperatures above ϑg, after a certain amount of deformation, the crosslinked thermoset
material recovers almost fully upon reverse deformation – a response essential to the shape-memory effect.
Unlike a crosslinked thermoset polymer, an amorphous polymer which is not crosslinked shows permanent
set when subjected to a strain-cycle above ϑg, and is therefore said to be “thermoplastic” in character.

Over the past thirty years, considerable effort has been devoted to developing constitutive models to
represent the large-deformation elastic-viscoplastic behavior of amorphous thermoplastic polymers (cf., e.g.,
Parks et al., 1985; Boyce et al., 1988; Buckley and Jones, 1995; Boyce et al., 2000; Govaert et al, 2000; Dooling
et al., 2002; Anand and Gurtin, 2003; Anand and Ames, 2006; Dupaix and Boyce, 2007). These models have
been primarily used to describe the isothermal deformation of these polymers below their glass transition
temperatures. In a recent pair of papers (Anand et al., 2009; Ames et al., 2009) we have developed a thermo-
mechanically-coupled large-deformation theory for amorphous thermoplastic materials; however, this theory
is limited to a temperature range below the glass transition temperatures of such materials. Very recently,
we have extended this theory to model the response of amorphous thermoplastic polymers in a temperature
range which spans their glass transition temperature (Srivastava et al., 2009). For modeling the response of
amorphous thermoset shape-memory polymers, we adopt and adapt the constitutive framework of Srivastava
et al.. In what follows we summarize our constitutive framework, but relegate the specialization of the theory

2The chemicals were mixed in a glass beaker for 2 minutes, and the mixed liquid solution was then degassed in a vacuum
chamber for 10 minutes. The degassed mixture was then injected between two glass sheets that were separated with spacers. A
UV-Lamp was used to photopolymerize the solution at an intensity of ∼ 30mW/cm2 for 10minutes. Finally, the polymer was
heat-treated at 90 C for 1 hour to complete the polymerization reaction.

3As is customary, in order to calculate the deformed cross-sectional area (and thence the true stress), we have assumed
plastic incompressibility to estimate the stretch in the lateral direction of the compression specimens.
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to model shape-memory polymers and the specific application to model the response of tBA/PEGDMA to
an Appendix.

An essential kinematical ingredient of elastic-viscoplastic constitutive theories for amorphous polymers
below their glass transition temperatures is the classical Kröner (1960) – Lee (1969) multiplicative decompo-
sition4

F = FeFp, with detFe > 0 and detFp > 0, (3.1)

of the deformation gradient F into elastic and plastic parts Fe and Fp (e.g., Boyce et al., 1988; Govaert et al,
2000; Anand and Gurtin, 2003; Anand et al., 2009). Since we wish to model the behavior of polymers in the
technologically important temperature range which spans their glass transition temperatures, and since the
number of microscopic relaxation mechanisms in these polymers increases as the temperature is increased,
we base our theory on a “multimechanism” generalization of the decomposition (3.1),

F = Fe (α)Fp (α), with detFe (α) > 0 and detFp (α) > 0, α = 1, . . . ,M, (3.2)

where each α denotes a local micromechanism of deformation. Such a multi-mechanism generalization forms
the basis of the work of Buckley, Boyce, and their co-workers (e.g., Buckley and Jones, 1995; Bergstrom and
Boyce, 1998; Boyce et al., 2000; Dooling et al., 2002; Dupaix and Boyce, 2007). For each micromechanism
indexed by α, we refer to Fp (α) and Fe (α) as the plastic and elastic parts of F.

In what follows, when summing quantities over the M micro-mechanisms, we used the shorthand

∑

α

≡
M∑

α=1

.

REMARK 1. In a one-dimensional theory of linear viscoelasticity, which is based on a widely-used mechanical
analog of M Maxwell-elements assembled in parallel, the one-dimensional strain ǫ is decomposed as

ǫ = ǫe(α) + ǫp(α), α = 1, . . . ,M ;

the decomposition (3.2) is a three-dimensional, large-deformation, generalization of such a decomposition.

Restrict attention to a prescribed material point X, and let x denote its place in the deformed configu-
ration at a fixed time t. Then, bearing in mind that (for X fixed) the linear transformations Fe (α)(X) and
Fp (α)(X) at X are invertible, we let

MX
(α) def

= range of Fp (α)(X) = domain of Fe (α)(X), (3.3)

and refer to MX
(α) as the intermediate structural space at X for the α-th micromechanism. Even though

we use this terminology, there is no actual physical space that may be associated with an “intermediate
structural space” — such a space is a purely mathematical construct.

Also, it is important to note from the outset, that each Fp (α) is to be regarded as an internal variable of
the theory which is defined as a solution of the differential equation (the flow rule to be discussed shortly)

Ḟp (α) = Dp (α)Fp (α) with detFp (α) = 1, and with initial condition Fp (α)(X, 0) = 1. (3.4)

The corresponding Fe (α) is then defined by Fe (α) def
= FFp (α)−1. Hence the decompositions (3.2) are not

purely kinematical in nature as they are not defined independently of constitutive equations; they are to be
viewed as kinematical constitutive equations.

Our theory relates the following basic fields:

4Notation: We use standard notation of modern continuum mechanics (e.g., Gurtin, Fried, and Anand, 2009). Specifically:
∇ and Div denote the gradient and divergence with respect to the material point X in the reference configuration; grad and
div denote these operators with respect to the point x = χ(X, t) in the deformed body; a superposed dot denotes the material
time-derivative. Throughout, we write F

e−1 = (Fe)−1, F
p−⊤ = (Fp)−⊤, etc. We write trA, symA, skwA, A0, and sym0A

respectively, for the trace, symmetric, skew, deviatoric, and symmetric-deviatoric parts of a tensor A. Also, the inner product
of tensors A and B is denoted by A :B, and the magnitude of A by |A| =

√
A :A.
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x = χ(X, t), motion;

F = ∇χ, J = detF > 0, deformation gradient;

F = Fe (α)Fp (α), α = 1, . . . ,M , elastic-plastic decompositions of F;

Fe (α), Je (α) = detFe (α) = J > 0, elastic distortions;

Fp (α), Jp (α) = detFp (α) = 1, inelastic distortions;

Fe (α) = Re (α)Ue (α), polar decompositions of Fe (α);

Ce (α) = Fe (α)⊤Fe (α), elastic right Cauchy-Green tensors;

Bp (α) = Fp (α)Fp (α)⊤, plastic left Cauchy-Green tensors;

T =
∑

α T(α), T(α) = T(α)⊤, Cauchy stress;

TR = JTF−⊤, Piola stress;

ψR =
∑

α ψ̄(α), free energy density per unit reference volume;

ηR =
∑

α η̄(α), entropy density per unit reference volume;

ϑ > 0, absolute temperature;

∇ϑ, referential temperature gradient;

qR, referential heat flux vector;

qR, scalar heat supply.

In order to account for the major strain-hardening and softening characteristics of polymeric materials
observed during viscoplastic deformation, we introduce macroscopic internal variables to represent important
aspects of the microstructural resistance to plastic flow. Specifically, we introduce5

• A list of m scalar internal state-variables

ξ(α) = (ξ
(α)
1 , ξ

(α)
2 , . . . , ξ(α)

m )

for each α.

Further,

• we limit our attention to situations under which the material may be idealized to be isotropic. Ac-
cordingly, all constitutive functions are presumed to be isotropic in character.

3.1 Constitutive equations

1. Free energy:

We assume that the free energy has the separable form

ψR =
∑

α

ψ̄(α)(ICe (α) , ϑ), (3.5)

where ICe (α) represents a list of the principal invariants of Ce (α).

5In Srivastava et al. (2009) we had also included a list of symmetric and unimodular tensor fields

A
(α)(X, t), A

(α) = A
(α)⊤, detA(α) = 1,

as additional internal variables. Each such tensor field represents a dimensionless squared stretch-like quantity, which as a linear
transformation, maps vectors in the intermediate structural space for each α, into vectors in the same space. Such a list of
internal variables was included in our previous paper to allow for modeling cyclic-loading and Bauschinger-like phenomena in
polymers. Here, since we do not have any experimental data on cyclic loading for the tBA/PEGDMA shape-memory polymer,
we consider a simpler theory which does not include such internal variables.
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2. Cauchy stress:

The Cauchy stress in the deformed body is the sum of the contributions from each micromechanism

T =
∑

α

T(α), (3.6)

with
T(α) def

= J−1
(

Fe (α)Se (α)Fe (α)⊤
)

, T(α) = T(α)⊤, (3.7)

where

Se (α) = 2
∂ψ̄e (α)(ICe (α) , ϑ)

∂Ce (α)
(3.8)

is a symmetric second Piola stress defined with respect to the local intermediate structural space for
each α.

The driving stress for plastic flow is the symmetric Mandel stress

Me (α) = Ce (α)Se (α). (3.9)

Correspondingly, the scalar

τ̄ (α) def
=

1√
2
|Me (α)

0 | (3.10)

defines an equivalent shear stress for each α.

3. Flow rules:

The evolution equation for each Fp (α), with Wp (α) = 0,6 is

Ḟp (α) = Dp (α) Fp (α), (3.11)

with the plastic stretching given by

Dp (α) = νp (α)
(M

e (α)
0

2 τ̄ (α)

)

, (3.12)

where
νp (α) def

=
√

2 |Dp(α)| , (3.13)

is an equivalent plastic shear strain rate.

Let
Λ(α) = (Ce (α),Bp (α), ξ(α), ϑ) (3.14)

denote a list of constitutive variables. Then, for given τ̄ (α) and Λ(α), the equivalent plastic shear strain
rate νp (α) is obtained by solving a scalar strength relation

τ̄ (α) = Y (α)(Λ(α), νp (α)), (3.15)

where the strength function Y (α)(Λ(α), νp (α)) is an isotropic function of its arguments.

4. Evolution equations for internal variables:

The internal variables ξ
(α) are presumed to evolve according to the differential equations

ξ̇
(α)
i = h

(α)
i (Λ(α)) νp (α)

︸ ︷︷ ︸

dynamic evolution

− R(α)
i (Λ(α))

︸ ︷︷ ︸

static recovery

,
(3.16)

with the functions h
(α)
i and R(α)

i isotropic functions of their arguments.

6For a detailed discussion and justification of the Wp = 0 assumption in a single micro-mechanism isotropic theory, see
Gurtin and Anand (2005). On purely pragmatic grounds we adopt such an assumption here as well.
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The evolution equations for Fp (α) and ξ(α) need to be accompanied by initial conditions. Typical
initial conditions presume that the body is initially (at time t = 0, say) in a virgin state in the sense
that

F(X, 0) = Fp (α)(X, 0) = 1, ξ
(α)
i (X, 0) = ξ

(α)
i, 0 (= constant), (3.17)

so that by F = Fe (α)Fp (α) we also have Fe (α)(X, 0) = 1.

5. Entropy relation:

The entropy relation is given by

ηR =
∑

α

η(α), η(α) = −∂ψ̄
e (α)(ICe (α) , ϑ)

∂ϑ
. (3.18)

6. Fourier’s Law:

To the constitutive equations listed above, we append a simple Fourier’s law for the heat flux

qR = −κ∇ϑ, (3.19)

with κ(ϑ) > 0 the thermal conductivity.

3.2 Partial differential equations for the deformation and temperature fields

The partial differential equation for the deformation is obtained from the local force balance

DivTR + b0R = ρR χ̈, (3.20)

where b0R is the non-inertial body force per unit volume of the reference body, ρR > 0 is the mass density,
and

TR = JTF−⊤ (3.21)

is the standard first Piola stress, with T given by (3.6) through (3.8).
The specific heat in the theory is given by

c
def
= −ϑ

∑

α

∂2ψ̄e (α)(ICe (α) , ϑ)

∂ϑ2
, (3.22)

and balance of energy gives the following partial differential equation for the temperature

cϑ̇ = −DivqR + qR +
∑

α

τ̄ (α) νp (α) + ϑ
∑

α

∂2ψ̄e(α)

∂ϑ ∂Ce (α)
: Ċe (α)

︸ ︷︷ ︸

“thermoelastic” coupling term

, (3.23)

with qR given by (3.19). The thermo-elastic coupling terms which appear in (3.23), are a standard conse-
quence of continuum thermodynamics; specifically, the term

∂2ψ̄e(α)

∂ϑ ∂Ce (α)
=

∂

∂ϑ

(
∂ψ̄e(α)

∂Ce (α)

)

represents the variation of stress with temperature, a quantity which may be referred to as a stress-
temperature modulus for the αth micromechanism, and Ċe(α) represents a corresponding elastic “strain
rate.”

The specialization of the theory for application to thermoset shape-memory amorphous polymers is
described in the Appendix. As discussed there, we limit our attention to a theory with three “micro-
mechanisms” (M = 3). The material parameters appearing in the specialized theory were calibrated by
fitting the experimental stress-strain data for tBA/PEGDMA shown in Fig. 1, by following a procedure
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described in detail in Srivastava et al. (2009); these material parameters are listed in Table 1. The stress-
strain curves calculated using the specialized model and the material parameters for tBA/PEGDMA are
plotted in Fig. 1 as dashed lines. As shown in this figure, the constitutive model reasonably accurately
reproduces all the major features of the macroscopic stress-strain response of the material both in the
“glassy-polymer” regime below ϑg and the “hysteretic-rubber” response above ϑg.

REMARK 2. Theories of the type considered here, even in the linear-viscoelasticity regime, typically re-
quire a large number of Maxwell-elements M , with an associated large number of spring-constants and
dashpot-viscosities to fit experimentally observed stress-relaxation, creep and other mechanical response
characteristics of polymers in the small strain regime. In the large-deformation theory considered here,
our goal was to choose the minimum number of micro-mechanisms M , and thereby the associated number
of material parameters, which can replicate the experimentally-observed stress-strain curves in the strain,
strain-rate, and temperature range of interest with reasonable accuracy. Nevertheless, the number of ma-
terial parameters for tBA/PEGDMA listed in Table 1 is still quite large. This is a limitation of this class
of phenomenological continuum-level theories. However, once the material parameters are calibrated, as we
show next, the theory is able to predict the response of the material in complex three-dimensional geometries
which are subjected to a variety of thermo-mechanical histories.

REMARK 3. We have numerically implemented the theory by writing a user-material subroutine for a
widely-used finite element program ABAQUS/Standard (2009). For brevity, we do not give the details of
this numerical implementation in this paper.

4 Validation experiments and simulations

In order to validate the predictive capabilities of our constitutive theory and its numerical implementa-
tion, in this section we show the results of two thermo-mechanical experiments that we have performed on
the tBA/PEGDMA shape-memory polymer, and compare the results of macroscopic measurements from
these experiments against results from corresponding numerical simulations. The validation experiments
considered below are

(i) Measurement of the force-versus-time response of a ring-shaped specimen of tBA/PEGDMA which
was subjected to the following thermo-mechanical history: the specimen was heated to a temperature
above ϑg of the material, the ring was then compressed into an oval shape, the compression grips were
then held fixed while the specimen was first cooled to a temperature below ϑg, and then heated back to
its initial temperature above ϑg. We call an experiment of this type a constrained-recovery experiment.

(ii) Measurement of the displacement-versus-time response of a planar specimen of tBA/PEGDMA in the
shape of a diamond-shaped lattice which was subjected to the following thermo-mechanical history: the
specimen was compressed between two platens at temperature above ϑg of the material, the compression
platens were then held fixed while the specimen was cooled to a temperature below ϑg. The constraint
of the platens was then removed, and the specimen was heated to a temperature above ϑg and allowed to
freely recover its shape. We call an experiment of this type an unconstrained-recovery or a free-recovery
experiment.

Both thermo-mechanical experiments were conducted on an EnduraTEC Electroforce 3200 testing machine
equipped with a furnace. The temperature of the polymer was measured by using a thermo-couple attached
to the specimen. In the numerical simulations we prescribed the measured temperature profile to all nodes
in the finite element mesh, and neglected transient heat conduction within the polymer since these effects
were quite small.

Finally, as a demonstration of the robustness of our three-dimensional numerical simulation capability,
we also show results from a simulation of the shape-recovery response of a stent made from the polymer
when it is inserted in an artery modeled as a compliant elastomeric tube.
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4.1 Force-time response of a ring-shaped specimen subjected to a constrained-

recovery experiment

The flat specimen, 3mm thick, was ring-shaped with two extension arms which were used for gripping the
specimen. The ring portion of the specimen had an outer diameter of 11.9mm and an inner diameter of
6.3mm, while the extension arms were each 12.7mm long and 4.1mm wide. The experimental set-up with
the tBA/PEGDMA specimen mounted in place within the furnace of the EnduraTEC testing machine is
shown in Fig. 2. The top and the bottom flat surfaces of the extension arms were rested against the base of
the grips, and the vertical sides were securely tightened in the grips.

The specimen was subjected to the following thermo-mechanical history: (i) it was heated to 58C and
gripped; (ii) the bottom grip was fixed in place while the top grip was moved downwards at a velocity
0.01mm s−1 for a total displacement of 2.5mm to deform the ring; (iii) the grips were then held fixed in
their positions and the specimen was first cooled to 32C and then heated back to 58C. The displacement and
temperature histories for the experiment are shown in Fig. 3a. The reaction forces during the experiment
were recorded using a load-cell, and the measured force-versus-time curve is shown in Fig. 3b.

For the finite element simulation of this constrained-recovery experiment we make use of the symmetry of
the geometry, and only mesh one-eighth of the geometry using 537 ABAQUS-C3D8HT thermo-mechanically-
coupled elements; Fig. 4a. Referring to this figure, all the nodes on the surface formed by CD extending
into the 3-direction were prescribed displacement boundary conditions which enforced symmetry in the 1-
direction, all the nodes on the surface formed by AB extending into the 3-direction were prescribed symmetry
in the 2-direction, and all the nodes on the front surface defined by ABCD were prescribed symmetry in
the 3-direction. A displacement history was prescribed to the highlighted nodes on the outer surface of the
extension arm such that the displacement history for the complete geometry matched that of the experiment.
The experimentally-measured temperature history was prescribed to the whole mesh. Fig. 4b shows the
deformed mesh at the end of the compression step.

Fig. 3b compares the experimentally-measured and the numerically-predicted force-versus-time curves.
The measurements from the experiment show that a compressive force was generated during the deformation
at 58C. Subsequently, under the fixed-grip conditions, upon cooling to 32C the compressive force gradually
reduces and transitions to a state of tension; and finally, upon heating back to 58C, the reaction force
transitions back to a compressive state. As shown in Fig. 3b, the simulation is able to reasonably accurately
predict the force-versus-time response for the constrained-recovery experiment.

4.2 Displacement-time response of a diamond-lattice-shaped specimen subjected

to an unconstrained-recovery experiment

The flat diamond-lattice-shaped specimen, Fig. 5a, was 50mm wide, 35mm tall, and 3mm thick. Each
diamond-shaped cut-out was a square with 6.5mm sides with a 1mm fillet-radius at the corners; the width
of the ligaments forming the lattice was 2.16mm.

The specimen was subjected to the following thermo-mechanical history: (i) it was compressed between
two platens at 60C at a relative platen velocity of 0.02mm s−1, and the height of the specimen was reduced
from 35mm to 20.5mm — this resulted in an increase in its width from 50mm to 59.5mm; (ii) the platens
were held in place and the specimen was cooled to 21C following a temperature profile similar to what is
shown in Fig. 3a — the deformed shape is shown in Fig. 5b; (iii) the compression platens were then removed
and the specimen was heated to 58C according to the temperature-versus-time history shown in Fig. 6.
The dimensional changes in the specimen during this unconstrained-recovery phase were measured using a
video-extensometer. The experimentally-measured stretches (L/L0) in the 1- and 2-directions as functions
of temperature and time during the unconstrained heating phase of the experiment are shown in Fig. 7 and
Fig. 8, respectively.

For the finite element simulation of this experiment we make use of the symmetry of the geometry
and only mesh one-eighth of the geometry, using 1962 ABAQUS-C3D8HT thermo-mechanically-coupled
elements, Fig. 9. Referring to this figure, all the nodes on the 2-3 symmetry plane were prescribed sym-
metry displacement boundary conditions in the 1-direction, all the nodes on the 1-3 symmetry plane were
prescribed symmetry boundary conditions in the 2-direction, and all the nodes on the front surface were
prescribed symmetry boundary conditions in the 3-direction. The displacement history was prescribed
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to the highlighted nodes on the top surface during the hot-deformation and cooling steps. Our numeri-
cal simulation included all the steps described above for the thermo-mechanical history, including the initial
hot-deformation, cooling, and finally the unconstrained shape-recovery with the applied temperature change.
The results from the numerical simulation for the stretch in the 2-direction versus the temperature for the
complete thermo-mechanical cycle are shown in Fig. 10. Fig. 7 and Fig. 8 compare the numerically-predicted
and experimentally-measured stretches in the 1- and 2-directions versus temperature and time, respectively,
during the unconstrained heating phase of the experiment. The numerically-predicted results are in good
agreement with experimental measurements.

Finally, the left pane in Fig. 11 shows images of the specimen at various temperatures during uncon-
strained shape-recovery, while the right pane in this figure shows corresponding predictions from the numer-
ical simulations.7 The shapes at various temperatures predicted by the numerical simulation closely match
those which were observed in the experiment.

4.3 Numerical simulation of insertion of a stent in an artery

Shape-memory polymers have been proposed as potential materials for stents which expand and/or support
blood vessels, and several experimental demonstrations of this concept have been published in the literature
(e.g., Wache et al., 2003; Yakacki et al., 2007; Baer et al., 2007b). However, to the best of our knowledge,
no reports of a numerical-simulation capability that can aid in understanding the performance of shape-
memory-polymer-based stents exist in the current literature. As a demonstration of the robustness of our
three-dimensional numerical-simulation capability in what follows we show results from a simulation of the
shape-recovery response of a stent made from tBA/PEGDMA when it is inserted in an artery, with the latter
modeled as a tube made from a nonlinear elastic material. Note that this is purely a numerical exercise to
show the robustness of the constitutive theory and its implementation, we have not attempted to reproduce
the actual deployment of a stent in a human body.

In our simulation we considered a cylindrical stent made from tBA/PEGDMA with diamond-shaped
perforations, similar to those in the planar geometry considered in the previous subsection. The stent was
modeled to have an initial length of 8 mm, and the outer and inner diameters of the stent were modeled
as 8 mm and 7mm, respectively. For the artery, we assumed a tubular geometry with an inner diameter of
5mm, a wall thickness of 0.35mm, and a length of 50mm. The artery was modeled as an incompressible
elastic Neo-Hookean material with a shear modulus of 33.33 kPa.

The stent was subjected to the following thermo-mechanical history: (i) it was radially compressed above
ϑg at 60C to reduce its outer diameter to 4.7mm; (ii) cooled under kinematical constraints to 22C at a rate
of 0.1C s−1 to fix its deformed shape; (iii) the constraints were removed; (iv) following which it was inserted
into an arterial tube; and (v) was heated back to 60C at a rate of 0.1C s−1 to allow the stent to attempt to
recover its initial shape under the constraints imposed by the artery.8

Due to the symmetry of the problem in our simulation we considered only one-eighth of the stent geometry,
which was modeled using 1077 ABAQUS-C3D8HT thermo-mechanically-coupled elements, Fig. 12. The
displacement boundary conditions prescribed to the stent were as follows: symmetry in the 1-direction for
all the nodes on the surface defined by edge CD extending into the 3-direction; symmetry in the 2-direction
for all the nodes on the surface defined by edge AB extending into the 3-direction; and symmetry in the
3-direction for all the highlighted nodes on the front surface. To apply the initial deformation above ϑg, all
of the nodes at the outer diameter were given an inward radial displacement.

The finite element mesh for the artery consisted of 1500 ABAQUS-C3D8H elements: 2 elements through
the thickness, 50 elements along the length, and 15 elements around the one-quarter circumference. For the
artery, the displacement boundary conditions u1 = 0, u2 = 0 and u3 = 0 were applied for all the nodes on the
face perpendicular to the 3-direction and away from the stent; symmetry in the 3-direction was applied to
all the nodes that were on the face perpendicular to the 3-direction and close to the stent. Contact between
the stent and artery was modeled as frictionless.

Predictions from the numerical simulation for the outer-diameter of the stent at different temperatures
during the imposed thermo-mechanical history of insertion of a stent in an artery are shown in Fig. 13. These

7In Fig. 11, for ease of visualization, we have mirrored the simulation results along the symmetry planes.
8We emphasize that this a purely numerical exercise; no actual stent for application in humans is expected to be heated to

60C!
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simulation results show that the outer diameter of the stent recovered from 4.74mm to 6.06mm by the time
the temperature reached 47C during heating; further heating to 60C only increased the outer diameter from
6.06mm to 6.22mm; that is, 90% of the total shape-recovery occurred by the time the stent was heated
to 47C. Fig. 14a shows the initial undeformed stent, while Fig. 14b shows the deformed stent after radial
compression at 60C. Fig. 14c shows snapshots of the stent inside the artery during shape-recovery at 22C,
42C, and 60C.

5 Concluding remarks

We have developed a thermo-mechanically-coupled large-deformation constitutive theory and a numerical
simulation capability for modeling the response of thermally-actuated shape-memory polymers. The theory
and methodology developed in this study offers the potential for the development of a robust simulation-
based capability for the design of devices made from shape-memory polymers for a variety of applications.
Such a capability should help reduce the amount of expensive experimentation.

In closing, we would like to point out some limitations of the present theory and its implementation,
which need additional future work:

• In the specialization of the theory for the applications considered here (cf. Section 6, Appendix),
we have neglected the static recovery terms in the evolution equations for the internal variables (cf.
(3.16)). It is clear that this is not a suitable approximation for arbitrary thermo-mechanical histories,
especially if the initial deformation of the material is performed below ϑg, rather than above ϑg.

• The fit of the specialized constitutive model to the experimental data in the vicinity of the rate-
dependent ϑg (cf. Figure 1) is not optimal. Additionally, in the vicinity of ϑg our constitutive equations
are quite stiff; hence, care needs to be exercised in developing robust numerical time-integration schemes
which take suitable-sized time-steps in this regime.

• With reference to Figures 3b and 8, the predicted force-time and the stretch-time recovery responses
are faster than the corresponding experimental results; at the present time we do not fully understand
the cause of this discrepancy.
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6 Appendix

Here, we specialize the constitutive theory discussed in §3 for application to amorphous thermoset shape-
memory polymers in the strain, strain-rate, and temperature range of interest shown in Fig. 1. Based on
our previous experience with modeling the response of amorphous thermoplastic polymers (Srivastava et al.,
2009), we consider a theory with three micromechanisms, M = 3. Although no real material is composed of
springs and dashpots, as a visual aid, Fig. 15 shows a schematic “spring-dashpot” rheological representation
of our three micromechanism model. These three micromechanisms are intended to represent the following
underlying physical phenomena:

• The first micromechanism (α = 1): The nonlinear spring represents an “elastic” resistance due to
intermolecular energetic bond-stretching. The dashpot represents thermally-activated plastic flow due
to “inelastic mechanisms,” such as chain-segment rotation and relative slippage of the polymer chains
between neighboring cross-linkage points.

• The second and third micromechanisms (α = 2, 3): In addition to the chemical crosslinks which
are present throughout the temperature range of interest in thermoset polymers, at temperatures
below ϑg we expect that the polymer also exhibits a significant amount of mechanical-crosslinking. We
conceptually distinguish molecular chains between mechanical-crosslinks and molecular chains between
chemical-crosslinks by introducing two micromechanisms α = 2 and α = 3, respectively. The nonlinear
springs in these two mechanisms represent resistances due to changes in the free energy upon stretching
of the molecular chains between the crosslinks. The mechanical-crosslinks are expected to disintegrate
when the temperature is increased through ϑg; the dashpot in micromechanism α = 2 represents
thermally-activated plastic flow resulting from such a phenomenon. The micromechanism α = 3
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represents chemically-crosslinked backbone of the thermoset polymer in which the crosslinks do not
slip; accordingly we do not use a dashpot for this micromechanism, and we set Fp(3) = 1, so that
Fe(3) = F.

Our strategy to phenomenologically model the response of the material as the temperature traverses ϑg is
as follows:

(i) For temperatures ϑ < ϑg, we do not allow any plastic flow in the dashpot associated with micromech-
anism α = 2. Thus, since the springs in α = 2 and α = 3 are in parallel, the three-micromechanism
model reduces to a simpler two-micromechanism model, which we have recently successfully used to
model the response of amorphous polymers for temperatures below ϑg (Anand et al., 2009; Ames et
al., 2009).

(ii) For temperatures ϑ > ϑg, we allow for plastic flow in the dashpot associated with micromechanism
α = 2, but quickly drop the plastic flow resistance in mechanism α = 2 to a very small value, so that
for all practical purposes in this temperature range, only mechanisms α = 1 and α = 3 contribute to
the macroscopic stress.

REMARK 4. As is well-known, the “glass transition” in amorphous polymers occurs over a narrow range
of temperatures, and whatever the means that are used to define a glass transition temperature ϑg,

9 it also

depends on the strain rate to which the material is subjected. With D0 = sym0(ḞF−1) denoting the total
deviatoric stretching tensor, let

ν
def
=

√
2|D0| (6.1)

denote an equivalent shear strain rate. As a simple model for the variation of the glass transition temperature
with strain rate, we assume that

ϑg =







ϑr if ν ≤ νr,

ϑr + n log
( ν

νr

)

if ν > νr,
(6.2)

where ϑr a reference glass transition temperature at a reference strain rate νr, and n is a material parameter.

In the following subsections we present special constitutive equations for the three micromechanisms
discussed above. For brevity we do not give a detailed development; the reader is referred to our recent
papers (Anand et al., 2009; Ames et al., 2009; Srivastava et al., 2009) for the intermediate steps of continuum-
mechanical arguments and derivations.

6.1 Constitutive equations for micromechanism α = 1

1. Free energy

Let

Ce(1) =

3∑

i=1

(λe
i )2 re

i ⊗ re
i , (6.3)

denote the spectral representation of Ce(1), where (λe
1, λ

e
2, λ

e
3) are the positive eigenvalues of Ue(1),

and (re
1, r

e
2, r

e
3) are the orthonormal eigenvectors of Ce(1) and Ue(1). With

Ee(1) =
3∑

i=1

Ee
i re

i ⊗ re
i , Ee

i = lnλe
i , (6.4)

denoting an elastic logarithmic strain measure, we consider an elastic free energy of the form10

ψ̄(1) = G|Ee (1)
0 |

2
+ 1

2K(trEe(1))2 − 3K (trEe(1))αth(ϑ− ϑ0) + f̃(ϑ), (6.5)

9Such as the peak in the tan-δ curve in a DMA experiment.
10This is a useful free energy function for moderately large elastic stretches, Anand (1979, 1986).
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where f̃(ϑ) is an entropic contribution to the free energy related to the temperature-dependent specific
heat of the material. The temperature-dependent parameters

G(ϑ) > 0, K(ϑ) > 0, αth(ϑ) > 0, (6.6)

are the shear modulus, bulk modulus, and coefficient of thermal expansion, respectively, and ϑ0 is a
reference temperature.

For polymeric materials the magnitude of the elastic shear modulus G decreases by a very significant
amount as the temperature increases through the glass transition temperature of the material. Follow-
ing Dupaix and Boyce (2007), we assume that the temperature dependence of the shear modulus may
be approximated by the following function

G(ϑ) = 1
2 (Ggl +Gr) − 1

2 (Ggl −Gr) tanh
( 1

∆
(ϑ− ϑg)

)

−M(ϑ− ϑg), (6.7)

where ϑg is the glass transition temperature, Ggl and Gr (< Ggl) are values of the shear modulus in
the glassy and rubbery regions, and ∆ is a parameter related to the temperature range across which
the glass transition occurs. The parameter M represents the slope of the temperature variation of G
outside the transition region, with

M =

{

Mgl ϑ ≤ ϑg,

Mr ϑ > ϑg.
(6.8)

Next, the temperature dependence of Poisson’s ratio νpoi of the material is assumed to be

νpoi(ϑ) =
1

2
(νpoi

gl + νpoi
r ) − 1

2
(νpoi

gl − νpoi
r ) tanh

( 1

∆
(ϑ− ϑg)

)

, (6.9)

with νpoi
gl and νpoi

r representing values below and above ϑg, respectively. The temperature dependence
of the bulk modulus K is then obtained by using the standard relation for isotropic materials

K(ϑ) = G(ϑ) × 2(1 + νpoi(ϑ))

3(1 − 2 νpoi(ϑ))
. (6.10)

The coefficient of thermal expansion is taken to have a bilinear temperature dependence, with the
following contribution to the thermal expansion term αth(ϑ− ϑ0) in the free energy relation (6.5):

αth(ϑ− ϑ0) =

{

αgl(ϑ− ϑ0) if ϑ ≤ ϑg,

αgl(ϑ− ϑ0) + (αr − αgl)(ϑ− ϑg) if ϑ > ϑg.
(6.11)

2. Cauchy stress. Mandel stress

Corresponding to the special free energy (6.5), the contribution T(1) to the Cauchy stress is given by

T(1) def
= J−1 Re (1) Me(1) Re (1)⊤, (6.12)

where Me(1), the Mandel stress, is given by

Me(1) =
∂ψ̃e (1)(Ee(1), ϑ)

∂Ee(1)
, (6.13)

which yields

Me(1) = 2GE
e (1)
0 +K (trEe(1))1 − 3Kαth(ϑ− ϑ0)1; (6.14)

note that Me(1) is symmetric.

The Mandel stress is the driving stress for plastic flow in the theory. The corresponding equivalent
shear stress and mean normal pressure are given by

τ̄ (1) def
=

1√
2
|Me (1)

0 |, and p̄
def
= −1

3
trMe(1), (6.15)

respectively.
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3. Internal variables

For the micromechanism α = 1, we restrict the list ξ(1) of internal variables to three positive-valued
scalars

ξ(1) =
(

ϕ, Sa, Sb

)

,

where

• The parameters ϕ ≥ 0 and Sa ≥ 0 are introduced to model the “yield-peak” which is widely-
observed in the intrinsic stress-strain response of glassy polymers. A key microstructural feature
controlling the strain-softening associated with the “yield-peak” in glassy polymers is the local
change in molecular-packing due to deformation-induced disordering. The variable ϕ, a positive-
valued dimensionless “order”-parameter, is introduced to represent such deformation-induced dis-
ordering; and a stress-dimensioned internal variable Sa which is coupled to the microstructural
disordering of the material, represents the corresponding transient resistance to plastic flow.

• The internal variable Sb ≥ 0 represents a dissipative resistance to plastic flow to model “isotropic
hardening” at large strains as the chains are pulled taut between entanglements resulting in
increasing interaction between the neighboring chains and pendant side-groups; this is in addition
to any entropic or energetic contribution from network chain-stretching.

4. Flow rule

The evolution equation for Fp(1) is
Ḟp (1) = Dp(1) Fp(1), (6.16)

with Dp(1) given by

Dp(1) = νp(1)

(

M
e (1)
0

2τ̄ (1)

)

. (6.17)

Following our recent work on amorphous polymers (Srivastava et al., 2009, and references therein) we

assume that the corresponding strength relation (3.15) at fixed Λ(1) is invertible, and we choose a
thermally-activated relation for the equivalent plastic strain rate in the specific form

νp(1) =







0 if τ
(1)
e ≤ 0,

ν
(1)
0 exp

(

− 1

ζ

)

exp
(

− Q

kB ϑ

)
[

sinh
(τ

(1)
e V

2kBϑ

)
]1/m(1)

if τ
(1)
e > 0,

(6.18)

where
τ (1)
e

def
= τ̄ (1) − (Sa + Sb + αp p̄), (6.19)

denotes a net shear stress for thermally-activated flow ; here αp ≥ 0 is a parameter introduced to

account for the pressure sensitivity of plastic flow. The parameter ν
(1)
0 is a pre-exponential factor with

units of 1/time, Q is an activation energy, kB is Boltzmann’s constant, V is an activation volume, and
m(1) is a strain rate sensitivity parameter. The term exp(−1/ζ) in (6.18) represents a concentration of
“flow defects,” where ζ is a dimensionless parameter referred as normalized equilibrium free-volume in
the literature on amorphous materials.

The thermally activated form for the flow function (6.18) with
{

ν
(1)
0 ,m(1), ζ, Q, V

}

constants, usually

holds over a narrow range of temperatures. Here, in order to model the plastic flow response over a
wide range of temperature which spans the glass transition temperature of the material, the parameters
ζ and Q are taken to be temperature dependent :

• The variation of ζ with temperature is expected to be small for temperatures below ϑg. Accord-
ingly we assume that

ζ =

{

ζgl for ϑ ≤ ϑg,

ζgl + d(ϑ− ϑg) for ϑ > ϑg.
(6.20)
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The simple relation (6.20) is well-defined at temperatures lower than ϑg, and has a linear form,
similar to the classical Vogel-Fulcher-Tamman (VFT) equation which is used widely to describe the
temperature dependence of viscosity of polymeric liquids near their glass transition temperature
(Vogel, 1921; Fulcher, 1925; Tammann and Hesse, 1926).11

• The temperature dependance of the activation energy Q is taken as

Q(ϑ) =
1

2
(Qgl +Qr) −

1

2
(Qgl −Qr) tanh

(
1

∆
(ϑ− ϑg)

)

, (6.22)

where, Q = Qgl in the glassy regime, and Q = Qr(< Qgl) in the rubbery regime.

5. Evolution equations for internal variables

Recall that the internal variables ξ have been presumed to evolve according to the differential equations
of the form (3.16) in which the functions Ri represent static recovery (or time recovery, or thermal
recovery), since they do not depend on the plastic strain rate. The static recovery terms are important
in long time situations such as creep experiments over a period of hours and days at high temperatures.
Here, we focus our attention on recovery processes that occur in relatively shorter periods of time
(typically less than 10 minutes), in which case the slow static recovery effects may be neglected.
Accordingly, in what follows, as a simplification, we neglect the effects of any static recovery in the
evolution of the internal variables.

Evolution of ϕ and Sa:

We assume that the material disorders, and is accompanied by a microscale dilatation as plastic
deformation occurs, resulting in an increase of the order-parameter ϕ,12 and this increase in disorder
leads to a change in the resistance Sa, causing a transient change in the flow stress of the material
as plastic deformation proceeds. Accordingly, the evolution of the resistance Sa is coupled to the
evolution of the order-parameter ϕ. Specifically, we take the evolution of Sa and ϕ to be governed by

Ṡa = ha (S∗

a − Sa) νp(1), with initial value Sa(X, 0) = Sa0, (6.23)

ϕ̇ = g (ϕ∗ − ϕ) νp(1) with initial value ϕ(X, 0) = ϕ0. (6.24)

In the evolution equations for Sa and ϕ, the parameters ha, g, Sa0 and ϕ0 are constants. During plastic
flow, the resistance Sa increases (the material hardens) if Sa < S∗

a, and it decreases (the material
softens) if Sa > S∗

a. The critical value S∗

a of Sa controlling such hardening/softening transitions
is assumed to depend on the current values of the plastic strain rate, temperature, and the order-
parameter ϕ. The function S∗

a, which controls the magnitude of the stress-overshoot, is taken as

S∗

a = b (ϕ∗ − ϕ) . (6.25)

In (6.24), the parameter ϕ∗ represents a strain-rate and temperature dependent critical value for
the order-parameter: the material disorders when ϕ < ϕ∗, and becomes less disordered if ϕ > ϕ∗.
Considering the temperature and strain-rate dependence of ϕ∗, it is expected to decrease with increasing

11Instead of the VFT form, other authors (e.g. Richeton et al., 2007; Nguyen et al., 2008) have recently used a Williams-
Landel-Ferry (WLF)-type temperature-dependent expression for the plastic shear strain rate to extend to the applicability of
their theories to temperatures ϑ > ϑg. The WLF equation (Williams et al., 1955) can be written as

exp
“

− 1

ζ

”

= exp
“ (log

e
10) × C1 (ϑ− ϑg)

C2 + ϑ− ϑg

”

, (6.21)

where C1 and C2 are constants with dimensions of temperature. As is well-known, using suitable manipulations, the VFT and
the WLF forms may be shown to be equivalent. Although the WLF and VFT equations are equivalent, the slightly simpler
form of the VFT-type equation is often preferred.

12The microscale dilatation is extremely small, and at the macroscopic level we presume the plastic flow to be incompressible.
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temperature at a fixed strain-rate, and increase with strain-rate at a fixed temperature. We model this
temperature and strain rate dependence using the following phenomenological equation

ϕ∗(νp(1), ϑ) =







z

(

1 − ϑ

ϑg

)r
(

νp(1)

νr

)s

if (ϑ ≤ ϑg) and (νp(1) > 0),

0 if (ϑ > ϑg) or (νp(1) = 0),

(6.26)

with constants (z, r, s).

Thus, gathering the number of material parameters introduced to phenomenologically model the yield-
peak, we have the following rather large list13

(
ha, b, Sa0, g, ϕ0, z, r, s

)
.

Evolution of Sb:

Our experiments above ϑg indicate that the non-linear stress response at large strains is not purely
elastic as the unloading response shows significant hysteresis. It is for this reason that we have in-
troduced the internal variable Sb to model a dissipative resistance to plastic flow which arises as the
chains are pulled taut between entanglements, and there is increasing interaction between the long-
chain molecules and pendant side-groups; this resistance is in addition to any entropic contribution
from network chain-stretching. For the resistance Sb we assume

Sb = Sb0 +Hb(λ̄− 1)ℓ, (6.27)

where

λ̄
def
=
√

trC/3 ≡
√

Ce(1) :Bp (1)/3 (6.28)

is an effective stretch which increases or decreases as the overall stretch increases or decreases. In (6.27)
the material parameter Hb is temperature dependent:

Hb(ϑ) =
1

2
(Hgl +Hr) −

1

2
(Hgl −Hr) tanh

( 1

∆
(ϑ− ϑg)

)

− L(ϑ− ϑg), (6.29)

where Hgl and Hr (< Hgl) are values of Hb in the glassy and rubbery regions near the glass transition
temperature ϑg, and L represents the slope of the temperature variation of Hb beyond the glass
transition region, with

L =

{

Lgl ϑ ≤ ϑg,

Lr ϑ > ϑg.
(6.30)

6.2 Constitutive equations for micromechanism α = 2

1. Free energy

Let
F

e (2)
dis

def
= J −1/3 Fe(2), detF

e (2)
dis = 1, (6.31)

denote the distortional part of Fe(2). Correspondingly, let

C
e (2)
dis

def
= (F

e (2)
dis )⊤F

e (2)
dis = J−2/3Ce(2), (6.32)

denote the elastic distortional right Cauchy-Green tensor and consider a free energy function in the
special form14

ψ(2) = ψ̄(2)(C
e (2)
dis , ϑ), (6.33)

13Modeling the temperature and rate-sensitivity of the yield-peak over a wide-range of temperatures and strain rates is known
to be complex. If a simpler theory with fewer material parameters is desired, and if it is deemed that modeling the yield-peak
is not of interest, then there is no need to introduce the internal variables ϕ and Sa, and thereby also the attendant constants
in their evolution equations.

14Since Je (α) = J , and we have already accounted for a volumetric elastic energy for ψ(1), we do not allow for a volumetric
elastic energy for ψ(2) or ψ(3).
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with ψ̄(2)(C
e (2)
dis , ϑ) an isotropic function of its arguments. We use a simple phenomenological form for

the free energy function ψ(2) proposed by Gent (1996)15:

ψ(2) = − 1
2µ

(2) I
(2)
m ln

(

1 − I
(2)
1 − 3

I
(2)
m

)

, with I
(2)
1

def
= trC

e (2)
dis , (6.34)

where
µ(2)(ϑ) > 0 and I(2)

m (ϑ) > 3 (6.35)

are two temperature-dependent material constants, with µ(2) representing the ground state rubbery

shear modulus of the material, and I
(2)
m represents a maximum value of (I

(2)
1 − 3) associated with the

limited extensibility of the polymer chains.

Experimental results indicate that the rubbery shear modulus µ(2) decreases with increasing tempera-
ture; the empirical function chosen to fit the experimentally-observed temperature dependence of µ(2)

is
µ(2)(ϑ) = µ(2)

g exp
(

−N(ϑ− ϑg)
)

, (6.36)

where µ
(2)
g is the value of µ(2) at the glass transition temperature, and N is a parameter that rep-

resents the slope of temperature variation on a logarithmic scale. The parameter I
(2)
m is taken to be

temperature-independent constant
I(2)
m (ϑ) ≈ constant. (6.37)

2. Cauchy stress. Mandel stress

The free energy (6.34) yields the corresponding second Piola stress as

Se(2) = 2
∂ψ(2)

∂Ce(2)
(6.38)

= J−2/3µ(2)
(

1 − I
(2)
1 − 3

I
(2)
m

)
−1
[

1 − 1

3

(

trC
e (2)
dis

)

C
e(2)−1
dis

]

, (6.39)

which gives a deviatoric contribution T(2) to the Cauchy stress as

T(2) = J−1Fe(2)Se(2)Fe(2)⊤ (6.40)

= J−1

[

µ(2)
(

1 − I
(2)
1 − 3

I
(2)
m

)
−1

(B
e (2)
dis )0

]

, (6.41)

where
B

e (2)
dis

def
= F

e (2)
dis (F

e (2)
dis )⊤ = J−2/3Be (2) (6.42)

denotes the elastic distortional left Cauchy-Green tensor.

The corresponding (deviatoric) Mandel stress is

Me(2) = Ce(2)Se(2) = µ(2)
(

1 − I
(2)
1 − 3

I
(2)
m

)
−1

(C
e (2)
dis )0, (6.43)

and the equivalent shear stress for plastic flow is given by

τ̄ (2) def
=

1√
2
|Me(2)|. (6.44)

15There is a conceptual difficulty with using statistical-mechanical ideas of the theory of entropic rubber elasticity to de-
scribe the strain hardening due to chain-stretching at temperatures below the glass transition temperature, because at these
temperatures the chains do not have sufficient mobility to sample all possible molecular conformations. The phenomenological
Gent free energy function has been shown by Boyce (1996) to yield predictions for the stress-strain response similar to the
entropic-network model of Arruda and Boyce (1993).
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3. Flow rule. Internal variables

The evolution equation for Fp(2) is
Ḟp (2) = Dp(2) Fp(2), (6.45)

with the plastic stretching Dp(2) given by

Dp(2) = νp(2)

(
Me(2)

2τ̄ (2)

)

, where νp(2) def
=

√
2|Dp(2)| (6.46)

is the corresponding equivalent plastic shear strain rate. With S(2)(ϑ) a positive-valued stress-dimensioned
shear resistance, we take the equivalent plastic strain rate to be

νp(2) = ν
(2)
0

(

τ̄ (2)

S(2)

)1/m(2)

, (6.47)

where ν
(2)
0 is a reference plastic shear strain rate and m(2) is a positive-valued strain-rate sensitivity

parameter.

We assume that S(2) varies with temperature as

S(2)(ϑ) = 1
2 (S

(2)
gl + S(2)

r ) − 1
2 (S

(2)
gl − S(2)

r ) tanh
( 1

∆2
(ϑ− ϑg)

)

, (6.48)

where, S(2) = S
(2)
gl in the glassy regime, and S(2) = S(2)

r (≪ S
(2)
gl ) in the rubbery regime, and ∆2 is

a parameter related to the temperature range across which the transition occurs. A high value of

S(2) = S
(2)
gl leads to νp(2) ≈ 0 when ϑ < ϑg, and as the temperature increases through the glass

transition, the value of S(2) smoothly transitions to a very low value, allowing for plastic flow above
ϑg. This assumption is meant to reflect the major effect of the rapid destruction of a large fraction
of mechanical cross-links as the temperature increases beyond ϑg. To ensure a very rapid transition

of S(2) near ϑg, we take ∆2 = ∆/20. Thus, under a macroscopically-imposed deformation history
at temperatures greater than a few degrees higher than ϑg, micromechanism α = 2 freely deforms
inelastically by relative chain-slippage, and there is no further increase in the corresponding elastic
stretch Ue (2), and thereby the corresponding stress.

6.3 Constitutive equations for micromechanism α = 3

1. Free energy

Let
Fdis

def
= J −1/3 F, detFdis = 1, (6.49)

denote the distortional part of F. Correspondingly, let

Cdis
def
= (Fdis)

⊤Fdis = J−2/3C, (6.50)

denote the distortional right Cauchy-Green tensor, and consider a free energy function in the special
form

ψ(3) = ψ̄(3)(Cdis, ϑ). (6.51)

Similar to the case α = 2, we assume the free energy in the Gent form as

ψ(3) = − 1
2µ

(3) I
(3)
m ln

(

1 − I
(3)
1 − 3

I
(3)
m

)

, with I
(3)
1

def
= trCdis, (6.52)

where
µ(3) > 0, and I(3)

m > 3 (6.53)

are two material constants. These two material constants are assumed to be temperature-independent.
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2. Cauchy stress

Using the free energy (6.52) yields the corresponding second Piola stress as

Se(3) = J−2/3µ(3)
(

1 − I
(3)
1 − 3

I
(3)
m

)
−1
[

1 − 1

3

(

trCdis

)

C−1
dis

]

, (6.54)

and the contribution T(3) to Cauchy stress as

T(3) = J−1

[

µ(3)
(

1 − I
(3)
1 − 3

I
(3)
m

)
−1

(Bdis)0

]

, (6.55)

where
Bdis

def
= Fdis(Fdis)

⊤ = J−2/3B (6.56)

denotes the distortional left Cauchy-Green tensor.

6.4 Partial differential equation for the temperature field

At this stage of the specialization of the theory, since very little is experimentally known about the variation
of specific heat with elastic deformation (cf., (3.22)), viz.

c
def
= −ϑ

∑

α

∂2ψ̄e (α)(ICe (α) , ϑ)

∂ϑ2
,

we assume (i) that the specific heat depends only on temperature, c ≈ ĉ(ϑ); and (ii) we also neglect the
thermoelastic coupling terms in (3.23), viz.

ϑ
∑

α

∂2ψ̄e(α)

∂ϑ ∂Ce (α)
: Ċe (α).

To compensate for these approximative assumptions, we assume instead that only a fraction 0 / ω / 1 of the
rate of plastic dissipation contributes to the temperature changes. Under these assumptions, the simplified
partial differential equation for the temperature becomes

cϑ̇ = −DivqR + qR + ω
(

τ̄ (1) νp (1) + τ̄ (2) νp (2)
)

. (6.57)
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Table 1: Material parameters

Parameter Value Parameter Value
ρ (kg m−3) 1020 b (MPa) 5850
αgl (K−1) 13 × 10−5 g 5.8
αr (K−1) 25 × 10−5 ϕ0 0
νr (s−1) 5.2 × 10−4 z 0.083
ϑr (K) 310 r 1.3
n (K) 2.1 s 0.005
∆ (K) 2.6 Sb0 (MPa) 0
Ggl (MPa) 156 Hgl(MPa) 1.56
Gr (MPa) 13.4 Lgl (MPa K−1) 0.44
Mgl (MPa K−1) 7.4 Hr (MPa ) 0.76
Mr (MPa K−1) 0.168 Lr (MPa K−1) 0.006

νpoi
gl 0.35 l 0.5

νpoi
r 0.49 µ

(2)
g (MPa) 1.38

αp 0.058 N (K−1) 0.045

ν
(1)
0 (s−1) 1.73 × 1013 I

(2)
m 6.3

m(1) 0.17 ν
(2)
0 (s−1) 5.2 × 10−4

V (m3) 2.16 × 10−27 m(2) 0.19

Qgl (J) 1.4 × 10−19 S
(2)
gl (MPa) 58

Qr (J) 0.2 × 10−21 S(2)
r (MPa) 3 ×10−4

ζgl 0.14 µ(3) (MPa) 0.75

d (K−1) 0.015 I
(3)
m 5.0

Sa0 (MPa) 0 ω 0.7
ha 230
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Figure 1: Stress-strain curves in simple compression for the shape-memory polymer at strain rates of 10−3 s−1

and 10−1 s−1, and at temperatures of 22C, 30C, 40C, 50C, and 65C. The figure also shows the fit of our
constitutive model to experimental stress-strain curves. The experimental data is plotted as solid lines, while
the fit is shown as dashed lines. Note the change in scale for the stress axis between various figures.
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10 mm

Figure 2: Experimental set-up for a thermo-mechanical constrained-recovery experiment on a ring-shaped
specimen of tBA/PEGDMA.
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Figure 3: (a) Histories of the specimen-temperature and the relative-displacement of the grips: the specimen,
initially at 58C, was compressed and the grips were then fixed in position while the specimen was first
cooled to 32C and then heated back to 58C; corresponding reaction forces were measured by a load-cell.
(b) The solid line shows the experimentally-measured force-versus-time curve for the constrained-recovery
experiment. The corresponding numerically-predicted response is shown as a dashed line.
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Figure 4: (a) One-eighth symmetry finite element mesh for the ring-shaped polymer. All the nodes on
the surface formed by CD extending into the 3-direction were prescribed symmetry in the 1-direction, all
the nodes on the surface formed by AB extending into the 3-direction were prescribed symmetry in the
2-direction, and all the nodes on the front surface defined by ABCD were prescribed symmetry in the
3-direction. A displacement history was prescribed to the highlighted nodes on the outer surface of the
extension arm such that the displacement history for the complete geometry matched that of the experiment
in Fig. 4b. (b) Deformed mesh.
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(a) (b)

Figure 5: Diamond-lattice-shaped specimen: (a) Undeformed specimen. (b) Deformed specimen in its
“temporary shape” at room temperature — deformed at 60C, constrained cooling to 21C, and constraints
removed.
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Figure 6: Time-temperature history for the diamond-lattice-shaped specimen during the unconstrained
heating phase of the experiment.

27



20 30 40 50 60
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Temperature (C)

S
tr

et
ch

(L
/
L

0
)

 

 

Experiment
Simulation

Heating

Stretch in
2-direction

Stretch in
1-direction

Figure 7: The solid lines show the experimentally-measured stretch-versus-temperature curves in the 1- and
2-direction during the unconstrained heating phase of the experiment. The dashed-lines are the corresponding
numerically-predicted results.
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Figure 8: The solid lines show the experimentally-measured stretch-versus-time curves in the 1- and 2-
direction during the unconstrained heating phase of the experiment. The dashed-lines are the corresponding
numerically-predicted results.
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Figure 9: One-eighth symmetry finite element mesh for the diamond-shaped lattice geometry. All the nodes
on the symmetry plane 2-3 were prescribed symmetry in the 1-direction, all the nodes on the symmetry
plane 1-3 were prescribed symmetry in the 2-direction, and all the nodes on the front surface were prescribed
symmetry in the 3-direction. A displacement history was prescribed to the highlighted nodes on the top
surface to obtain a temporary shape that closely matches that from the experiment.
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Figure 10: Numerical simulation results for the complete thermo-mechanical shape-recovery cycle of the
lattice geometry. The lattice was deformed in the 2-direction at 60C; after which it was constrained in
the 2-direction and was cooled to 21C; the constraints were then removed which resulted in a small elastic
recovery; finally, the lattice was heated to 58C during which, it recovered almost to its original shape.
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Figure 11: Comparison of (a) the experimentally-observed, and (b) the numerically-predicted recovered
shapes at various temperatures during the unconstrained-recovery phase of the experiment.

30



1

2

Projected Side View

A B

C

D

1

2

3

Figure 12: One-eighth symmetry finite element mesh for a vascular stent. The displacement boundary
conditions prescribed were: symmetry in the 1-direction for the nodes on the surface formed by edge CD
extending into the 3-direction; symmetry in the 2-direction for the nodes on the surface defined by edge
AB extending into the 3-direction; and symmetry in the 3-direction for the highlighted nodes on the front
surface.
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Figure 13: Predictions from the numerical simulation for the outer-diameter of the stent at different
temperatures during the imposed thermo-mechanical history of insertion of a stent in an artery: (i) the
tBA/PEGDMA stent was radially compressed at 60C to reduce its outer diameter from its initial 8 mm
value to 4.7mm; (ii) the compressed stent was cooled to 22C; (iii) the constraints were then removed and
the stent recovered to a diameter of 4.74mm at 22C; finally (iv) the stent was inserted into an artery and
was heated to 60C during which its outer diameter recovered to a value of 6.22mm.
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Figure 14: Numerically-predicted thermo-mechanical shape-recovery cycle for the vascular stent; for clarity
the mesh has been mirrored along relevant symmetry planes to show the full stent and artery. (a) Undeformed
original stent. (b) Deformed stent. (c) Shape-recovery of the stent inside the artery with temperature.
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Figure 15: A schematic “spring-dashpot” representation of the constitutive model.
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