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Inferential and visual analysis of ethogram data using multivariate techniques 17 

Activity budgets are frequently used to examine behaviours of animals, especially of large mammals 18 

in field or captivity conditions (e.g. Altmann 1974; Weller and Bennett 2001; MacNulty et al. 2007). 19 

Often, such processes are conducted using ethograms, where a number of typical behaviours are 20 

listed (such as foraging, sleeping, walking, standing still, interacting with others) and either the 21 

duration of each behaviour within each observation period is noted, or, more normally, the 22 

occurrence of a certain behaviour is recorded at a regular time interval (Dawkins 2007; Martin and 23 

Bateson 2007). The technique is simple, and clearly effective in calculating the proportion of time 24 

spent undertaking each of the behaviours. However, analysis of the data is problematic (Ramson and 25 

Cade 2009). Even if the same animal is repeatedly sampled (for example on different days), the 26 

averages and some measure of variability or precision are normally calculated for each of the 27 

behavioural categories included in the ethogram separately (Ramson and Cade 2009).  While 28 

inferential statistics could be used to calculate significant differences between individuals in terms of 29 

the occurrence of a specific behaviour, there are problems with the independence of these data 30 

both in terms of repeated measures, and because all behaviours must sum to 1 as they are mutually 31 

exclusive– see Aitchison 1986 and Underwood 1996 for more details about these points). Even if 32 

such strict limitations on data analysis are relaxed, then this still only indicates whether animal X 33 

conducts behaviour A more or less frequently than animal Y. 34 

 Because of these issues, it would be preferable to use a multivariate method to analyse the 35 

overall behaviour of individuals (defined as all behaviours in the activity budget e.g. Mielke and 36 

Berry 2007) and to compare it to other individuals for whom identical data are held. Principal 37 

Component Analysis (PCA), and associated plotting of resultant components in 2 or 3 dimensions, is 38 

one possible method (i.e. biplots, where any given case is plotted against the first two principal 39 

components). This can give an indication of how different animals behave, based on all the 40 

behaviours examined. However, several limitations to this technique exist. It is generally 41 
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recommended that the case to variable ratio for PCA is > 3:1, that is the number of observed animals 42 

should be >3 times the number of behaviours examined (Tabachnick and Fidell, 1989), and that 43 

ideally the number of cases should be high (> 300, Comrey and Lee 1992). Given that most 44 

ethograms include a large number of different behaviours, and the number of animals studied is 45 

often small, these limitations are significant. It is possible to use replicate sampling of the same 46 

animal to boost the number of cases (using each replicate sampling period as a separate case), but 47 

differences are likely to occur in behaviours based on factors such as time since eating, proximity of 48 

other individuals of the same or opposite sex, hormonal changes or seasonal changes. Furthermore, 49 

with traditional PCA techniques, it is not possible to determine whether differences in behaviour are 50 

statistically significant or not (despite techniques such as concentration ellipses, which do not give a 51 

good indication of statistical differences). Theoretically, if a biplot indicates clustering of cases from 52 

one animal, and distinct, separate clustering of cases from a second animal, then they are likely to 53 

be different, but, in practice, points are often interspersed and overlap with one another for the 54 

reasons mentioned previously. As such, judging differences in behaviour becomes very subjective 55 

(Gabriel 1971). 56 

 A method of combining inferential statistics with PCA has recently been developed, based on 57 

constructing bootstrapped confidence intervals (or confidence radii since precision is calculated in 58 

three dimensions) for each case in the PCA (Catlin-Groves et al. 2009). Because this technique 59 

calculates the precision of the mean using confidence intervals, many limitations of PCA, such as the 60 

case to variable ratio are less important, since lack of precision on the PCA axes is indicated by 61 

increased confidence intervals. Furthermore significant differences can be inferred on the basis of 62 

whether confidence radii overlap (Catlin-Groves et al. 2009). As such, the technique should be 63 

beneficial for application to activity budget behavioural data collected through ethogram studies. 64 
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 Here we develop the framework for applying this technique to activity budget studies, and 65 

show the results of its application to four studies (captive and non-captive mammals, and 66 

invertebrates) that indicate its potential broad application.  67 

Field data collection 68 

Tigers in captivity  69 

Data collection took place at West Midland Safari Park in Bewdley, Worcestershire, UK ° ” N,  70 

° ” W . In total, four Bengal tigers (Panthera tigris tigris) were studied, in two pairs. Each pair 71 

cohabited permanently, and was moved around a number of enclosures on a day-by-day basis. The 72 

first pair (tigers 1 and 2) was an unrelated male-female pair and the second pair (3 and 4) was a male 73 

– female sibling pair. The enclosures in which the tigers were studied contained trees and a dual 74 

layered platform in the centre of the compound. One of the enclosures also contained a small pool. 75 

 Data were collected in 1 h or 2 h periods, with behaviours recorded on an ethogram (Table 76 

1) at 30 second intervals. In total 12 h of data were collected for each tiger (with a data point 77 

collected from pairs of tigers simultaneously), giving 1440 ethogram observations per tiger.   78 

 79 

Elephants in a nature reserve 80 

This study was conducted at the 73.6km2  Po gola Natu e ‘ese e i  South Af i a ° S, 81 

° E . Data were collected on five adult males using instantaneous scan sampling at 5 min 82 

intervals (as per Altmann 1974). At each scan the behaviour of each elephant was recorded using the 83 

behavioural categories listed in Table 2. Data from each male was collected until the male s 84 

behaviour could no longer be accurately visually identified using binoculars. In total 154 data 85 

collection points were collected for the five elephants, with a minimum of 22 ethogram observations 86 

per individual. 87 
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 88 

Dogs in rescue shelters 89 

Dogs were studied at Cheltenham Animal Shelter, Gloucestershire, UK (51° 54' 50.84" N, 2° 4' 59.51" 90 

W). Dogs had already been assigned a traffic light coding of behaviour with red dogs being 91 

aggressive and green dogs being friendlier and with fewer behavioural problems. This coding was 92 

decided from a preliminary behaviour assessment by the shelter staff when the dogs entered the 93 

shelter. Th ee ed dogs a d th ee g ee  dogs e e o se ed hile ei g e e ised i  the shelte s 94 

paddock. Each dog was observed three times for a total of 20 minutes, and behaviours noted every 95 

20s from the list in Table 3. In total 180 ethogram observations were collected from each dog. 96 

 97 

Shore crab behaviour to a simulated predator 98 

C a s e e olle ted f o  a o kpool at C a to k Bea h i  Co all, UK ˚ ” N, ˚ ” W . 99 

The rockpool was ~ 2.5 m above chart datum. For each trial, three crabs were transferred to a 1 m 100 

diameter plastic experimental arena (filled with 10 cm depth of freshly collected seawater), located 101 

in situ next to the rock pool, and allowed to acclimatise for 1 h before being observed for 10 mins. 102 

During this 10 min period, crab behaviour was recorded every 30 s from the list of behaviours in 103 

Table 4. Crabs were placed in groups of either three adult crabs (carapace width > 40 mm) or 104 

juvenile crabs (carapace width > 20 but < 40 mm) and for each group, they were either left free from 105 

visual disturbance over the 10 min period or were presented with a shadow of a predator (a 106 

silhouette of a seagull) for 10 s at 60 s intervals. In total 24 crabs were used, hence each of the four 107 

treatments (adult or juvenile, in the presence or absence of a visual predator stimulus) was 108 

replicated twice. Each crab had 20 ethogram observations. After the study, crabs were released back 109 

into the rockpool from which they came. In no cases were crabs removed from their natural 110 

environment for more than 2 h. 111 
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Statistical methods 112 

The bootstrapped PCA process was derived from that described in Catlin-Groves et al. (2009) and 113 

slightly modified here for use on behavioural datasets. The code runs in the R statistics environment 114 

(R Core Development Team 2011) and is available as supplementary material to this paper, along 115 

with a sample dataset used in this study (the tiger dataset). 116 

 For each analysis, a frequency distribution table was set up for all cases using a spreadsheet. 117 

A unique classifying number for each behaviour in the ethogram was assig ed e.g. fo  Ta le ,  118 

would be assigned to feeding,  to fo agi g a d so o . This classification number was typed into 119 

the spreadsheet in a vertical column, with the number of entries corresponding to the percentage 120 

frequency of that behaviour. Fo  e a ple, if eha iou   o u ed % of the ti e, the te   121 

appeared in the first 32 rows of the spreadsheet. As such, each case is inputted in separate columns, 122 

and behaviours indicated in rows 1-100. The number of different columns was equal to the number 123 

of cases being considered within a specific analysis. The te  ase  is defi ed  the use . I  ost 124 

studies here, it is the combined ethograms from any individual animal, over all the sampling periods, 125 

but could be combined data from ethograms for an individual on days it had been fed, as compared 126 

to days it had not been fed, for example, or multiple individuals within a particular category such as 127 

sex. This lassifi atio  of ase  is o side ed i  g eate  detail i  the dis ussio  and examples of 128 

different classifications of case are given in the results. The conversion of behaviour into percentages is 129 

to ensure that there were always 100 data points in each sample, and allow consistent rules to be 130 

formulated (such as the size of the subsample for bootstrapping) to apply the technique generally to 131 

behaviours where the number of observations can vary (as per the studies considered here).  132 

From each case, 100 points were randomly taken, with replacement, to obtain a sample of 133 

the behaviour (the use of 100 points – with replacement – from 100 does not imply all points are 134 

sampled each time, and is the overwhelming consensus of sample size for bootstrapping in the 135 

literature – e.g. Efron 1979; Crawley 2007;  Martínez-Muoz and Suárez 2010). Usi g the p o p  136 
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function in R, the first three principal components of each sample were calculated and stored for 137 

each case, and the process repeated 10 000 times. A mean value of the 10 000 replicates was 138 

calculated and 95% confidence limits were calculated by excluding the highest and lowest 2.5 % of 139 

the values (Crawley, 2005). By altering this parameter to the highest and lowest 5% or 10%, 140 

confidence limits can be obtained at 90% or 80% levels, respectively. Upper and lower confidence 141 

intervals for all three of the stored principal components were averaged to give a confidence radius. 142 

The mean values of the principal components for each site were plotted in 3 dimensions and the 143 

confidence radius indicated the size of the sphere, or bubble. Plots were made using the RGL library 144 

and rgl.sphere function for R (Adler and Murdoch 2008). However, because of some issues of how 145 

principal components are calculated, the following modifications were required to produce the 146 

bootstrapped means and confidence radii. 147 

I itiall , the full dataset as a al sed usi g the p o p  fu tio  to gi e a aseli e alue fo  148 

each case. For each replicate run of the bootstrapped principal components (where n = 100; but 149 

sampled with replacement), the full dataset (where n = 100; but without replacement) for each case 150 

was also analysed, essentially doubling the cases in replicate run. By calculating a vector to 151 

transform each point from the full dataset back to its corresponding baseline point (equation 1), and 152 

then applying the same vector to the bootstrap points (equation 2), the variability in the 153 

bootstrapped points is restricted to variation between differences in the placement of points on the 154 

initial principal component axes, and not variation between both the placement of points and 155 

alignment of principal component axes. So: 156 

v[x,y,z] =  I[x,y,z] - i[x,y,z]         [1] 157 

Bmod[x,y,z] = Bcalc[x,y,z] + v[x,y,z]           [2] 158 

where v is the vector, I is the initial full data point calculated without the addition of the bootstrap 159 

points, i is the full data point calculated along with the bootstrap points, Bmod is the bootstrapped 160 

point modified by the vector and Bcalc is the bootstrap point calculated directly by PCA. 161 
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Applying this vector also accounted for the arbitrary sign applied to the magnitude of the principal 162 

component (during replicates on identical datasets, the value of a point on a principal component 163 

axis could be assigned as 1 or -1). The vector transformation eliminated this problem unless the sign 164 

(+ or -) of the full dataset differed from the sign of the bootstrapped dataset for the same point. If 165 

this was the case, the magnitude of the vector in this dimension was ~ 2 x that of the magnitude of 166 

the value of the full dataset point. To account for this problem, if the magnitude of the vector 167 

exceeded 1.2 x that of the magnitude of the value of the full dataset point, the magnitude of the 168 

vector in this dimension was calculated by adding the two points (equation 3) and then subtracting 169 

the calculated bootstrap value from the vector (equation 4). 170 

v[x,y,z] =  I[x,y,z] + i[x,y,z]         [3] 171 

Bmod[x,y,z] = v[x,y,z] - Bcalc[x,y,z]        [4] 172 

  173 

The value of 1.2 x the magnitude as the demarcation between equations 1 and 3 being applied was 174 

previously been shown to be suitable, and sensitivity analysis of the results indicate that values 175 

between 1 and 1.5 do not cause changes in output (Catlin-Groves et al. 2009).  176 

 177 

Results and Discussion 178 

Tigers in captivity 179 

Usi g the sta da d p o p  fu tio  o  the full data set, the fi st th ee p i ipal o po e ts e e 180 

shown to explain 99.0% of the total variance of the data set. Analysis of the four tigers showed that 181 

the two females (2 and 4) had overlapping bubbles indicating that their behaviours were not 182 

significantly different from each other. The two males had bubbles which also overlapped, but tiger 183 

3 had a significantly different behaviour from tiger 4, but not from tiger 2 (Figure 1). Tiger 1 showed 184 
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significantly different behaviour compared to both females. The male tiger 3 was more similar in 185 

behaviour to the two females than the male tiger 1 – which spent a considerable less time pacing 186 

than the other three individuals. Indeed, Tiger 1 was recorded pacing on average 2.75 times per day, 187 

compared to an average of 65.5 times per day with the other male, Tiger 3. While little work has 188 

been conducted on sex specific behaviours in captive carnivores, some studies (e.g. Renner and 189 

Lussier 2002) have found sex specific differences to certain aspects of captive carnivore behaviours. 190 

The results from this study provide some support for sex specific differences in captive tiger behaviour, 191 

but also indicate that variability between individuals may be as important as sex based differences. 192 

 193 

Elephants in a nature reserve 194 

Usi g the sta da d p o p  fu tio  o  the full data set, the fi st th ee p i ipal o po e ts e e 195 

shown to explain 92.1% of the total variance of the dataset. A al sis of the fi e ull elepha ts  196 

activity budgets using the bootstrapping methods showed no significant differences between 197 

elephants at the 95 % confidence level, as there is overlap between all of the coloured bubbles that 198 

represented the individual elephants (Figure 2a). Such a lack of difference in activity budgets may be 199 

unsurprising, given that activity levels in the African savannah are heavily constrained by time spent 200 

resting as a means of coping with heat stress (Dunbar 1992). Moreover, elephant activity at Pongola 201 

is fu the  o st ai ed  li ited food a aila le to this populatio , hi h fa  e eeds the pa k s 202 

carrying capacity. However, the distribution of the bubbles does correspond closely to the previously 203 

determined dominance hierarchy of these bull elephants (H. Zitzer unpublished data), with the left 204 

most elephant being the most dominant, and the dominance hierarchy decreasing from left to right 205 

(Figure 2a). Given that dominance was calculated by aggressive interactions, and these data 206 

presented in this study are from activity budgets (where dominance interactions are largely absent), 207 

such a correlation of results is a good indication that the technique is incorporating many aspects of 208 

the elepha ts  eha iou .  209 
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The plot of all five bull elephants can make determining significant differences between non-210 

adjacent individuals difficult. However, pairwise comparisons can also be plotted, without the 211 

analysis being rerun. To minimise type I errors of pairwise comparisons, it is logical to examine the 212 

furthest apart individuals first (here elephants 1 and 5), as per the procedure in standard post-hoc 213 

tests such as Student-Newman-Keuls (SNK) tests. In this case, while no significant differences occur 214 

at the 95% confidence level (Figure 2b), differences do occur at the 90% confidence level between 215 

the overall activity budget of elephants 1 and 5 (Figure 2c). From an examination of the activity 216 

budget data, it can be seen that the key differences in behaviour are an increase in resting and 217 

feeding, and a decrease in moving in the most dominant elephant, as compared to the least 218 

dominant (Elephant 1 – movement = 43%, resting = 26%, feeding = 25%; Elephant 5– movement = 219 

58%, resting = 17%, feeding = 15%). The differences in activity budget between the highest and 220 

lowest ranking male are in line with previous field observations of these elephants. The dominant 221 

male spent nearly all of his time travelling with the larger of the two female herds. As he constantly 222 

had access to females, the dominant male travelled less and spent more time resting and feeding 223 

with the females. The subordinate male spent a significant amount of time alone wandering 224 

between the two female herds attempting to gain access to the females and as a result spent 225 

significantly more time moving than the dominant male (K. Slater and H. Zitzer unpublished data).  226 

 227 

Dogs in rescue shelters 228 

Usi g the sta da d p o p  fu tio  o  the full data set, the fi st th ee p i ipal o po e ts e e 229 

shown to explain 92.1% of the total variance of the data set. The bubble plot displayed some 230 

significant differences between dogs (Figure 3a). The clustered group of three bubbles represent the 231 

red dogs, and the three separated bubbles represent the green dogs. There is a clear significant 232 

difference between all three green dogs in relation to one another and each of the red dogs, 233 

indicating that their initial behavioural classification could also be determined by activity budget 234 
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ethograms. By redefining the classes used here, it was also possible to determine if differences occur 235 

between the red and green dogs studied in general. By combining all data on the three red and three 236 

green dogs, the process can be rerun. This is case, pooling the data in this way demonstrates that 237 

there is not an overall significant difference between the red and green dogs, despite each individual 238 

green dog being different from all red dogs (Figure 3b), although again, a significant difference 239 

occurs at 90% confidence (Figure 3c). As with the tiger data, such a response indicates that variability 240 

between dogs (especially the green classified dogs) can be large. In this case, differences in green 241 

dog behaviour are larger than between red dogs. This may be explained by the fact that red dogs are 242 

classified by aggressive characteristics – hence all behave in an aggressive manner, whereas green 243 

dogs display a more natural, and varied range of domestic dog behaviours. 244 

 245 

Shore crab behaviour to a simulated predator 246 

Usi g the sta da d p o p  fu tio  o  the full data set, the fi st th ee principal components were 247 

shown to explain 99.7% of the total variance of the data set. Significant differences in behaviours 248 

between the treatment groups were found at the 95% confidence level (Figure 4). Juvenile crabs 249 

behaved in a similar way in the absence of a predator stimulus to adult crabs in the presence of the 250 

predator stimulus. Both juveniles and adults showed a similar response to predators (a downwards 251 

movement in the plot of behaviour in Figure 4). From a re-examination of the data, this tends to 252 

indicate an increase in hiding behaviour from both juveniles and adults in the presence of a predator 253 

(from 13 to 37 % of the time in mature crabs and from 47 to 75 % of the time in juveniles). 254 

Differences in behaviour of crustaceans, especially in regard to life- and moult-cycle stage, are well 255 

classified, with reduced locomotion and feeding activity at the most vulnerable stages (e.g. Lipcius 256 

and Herrnkind 1992), hence while both adult and juvenile respond to a predator stimulus by hiding, 257 

they start from different baseline activity behaviours.  258 
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 259 

The statistical methods 260 

The technique of bootstrapping PCA analysis works well on the examples of activity budget / 261 

ethogram-recorded behaviours studied here. The technique is flexible as regards: the number of 262 

samples taken per animal, the confidence level examined, and, to a large extent, the definition of 263 

ase , hi h ould e a  i di idual a i al, o  a g oup of a i als of the sa e se , age g oup o  a  264 

other logical classification). However, there are some potential considerations and 265 

recommendations for the application of the technique.  266 

Firstly, the number of ethogram recordings used (or the sample size) must be large enough 267 

to provide a good estimate of the activity budget of the animal studied. While the conversion of 268 

different behaviours to percentages (hence the effective sample size is always 100) will not affect 269 

the confidence interval size of a bootstrap method, clearly, limited recording may not capture the 270 

full behaviour of the animal, as such, it is best to use similar sample sizes for different animals in the 271 

study and to report the sample sizes used in the methods or results. 272 

Secondly, all the data sets considered here had very large proportions of variability 273 

explained by the first three principal components (> 90% in all cases). This means that the positions 274 

of the bubbles on three dimensional plots are accurate simplifications of the multivariate complexity 275 

inherent in the original data. If the proportion of variability explained by the first three principal 276 

components decreases, the number of dimensions required of the plots needs, theoretically, to 277 

increase – although this would make visual interpretation of the data very difficult. As such it is 278 

recommended that this technique only be used where > 90% of the variability in the data is 279 

explained by the first three principal components (this figure also follows standard practice 280 

recommendations for biplots given in Crawley 2007).  281 
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Thirdly, the technique will naturally face some of the disadvantages of all confidence interval 282 

methods as compared to inferential statistical hypothesis tests (Lanzante 2005). For example, 283 

confidence interval estimation for univariate methods is not as powerful as equivalent t-tests or 284 

ANOVA, at least when the data fulfil parametric assumptions. However, following the procedures 285 

derived for ANOVA post-hoc tests, which involve testing the most different cases first, reduces the 286 

number of pairwise comparisons which need to be made (see elephant example above). 287 

Furthermore, corrections to eliminate type I error could easily be made by increasing the level of 288 

significance from 95%, as per Bonferroni corrections or that occur in the standard Tukey test, 289 

although this should be undertaken with caution since many authors advise against such 290 

modifications due to the unproportional risk of type II error over minimising type I error (e.g. 291 

Underwood 1996). Whether or not such changes to confidence limits need to be made depends on 292 

the study in question, and whether interpretation of results is most sensitive to falsely detecting 293 

differences, or not detecting real differences. While these modifications can help prevent issues of 294 

type I error, the problems of pooling estimates of variability to a common standard deviation, which 295 

can result in type 2 errors (the type most frequently found with the use of confidence interval 296 

analysis - Lanzante 2005) do not apply to bootstrapping processes, where confidence intervals are 297 

estimated directly from the data, and do not require an estimation of standard deviation. 298 

Furthermore, the bootstrapping process does not necessarily result in symmetrical confidence 299 

intervals around the mean, making the technique robust to the assumptions for parametric statistics 300 

such as normally distributed data. Therefore, in many ways, the bootstrapping method detailed here 301 

is more robust than many statistics for hypothesis testing, which require the homogeneous standard 302 

deviations and normally distributed data between cases (Underwood 1996).  303 

Fi all , the issue of sele ti g a ase  is ot as ad a ed as fo  so e statisti al te h i ues. I  304 

normal PCA, a case would correspond to a single observation period. Here, multiple observation 305 

periods of a single individual can be combined as a case, as can multiple observation periods of many 306 

individuals within a group (providing the replication of directly observed behaviour proposed by 307 
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Dawkins 2007). While this provides a flexible framework for hypothesis testing, a parallel can be 308 

drawn with nested designs in general linear models.  Nesting hierarchical responses (i.e. 309 

observations of the same individual are nested within each individual, individuals of the same sex 310 

are then nested within sex), rather than simply combining responses across all levels would, 311 

potentially, allow differences in individuals, as well as differences between higher level ases  to e 312 

determined in a single analysis, and allow an understanding of where the greatest variability lies (i.e. 313 

between a behavioural category, between individuals or between replicate measures of the same 314 

individual). However, such an approach would not present data in such a visually simple manner, 315 

and in some cases, nesting factors within others produces less powerful inferential tests than not 316 

conducing this nesting process (Hernández-Sánchez et al. 2003). A method of including nesting 317 

would be a useful future improvement to this technique, however, it would also create an additional 318 

level of complexity in performing the analysis, which in most cases, would not make a significant 319 

difference to the outcome of the analysis.  320 

The technique presented here provides an excellent framework for visualising activity 321 

budget collected data and provides a novel method for determining significant differences between 322 

classifications of interest within the dataset. While there are some residual issues in the application 323 

of the technique, which necessitate researchers to think through analysis and interpretation of 324 

resultant plots carefully, the method is a vast improvement on the statistical methods currently used 325 

for such analysis. 326 
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Table 1. Ethogram of behaviours used for activity budget data collection of tigers 382 

Behaviour Description of behaviour (where required) 

Eating - 

Drinking - 

Playing Engaging in playing activities alone 

Social interaction Interacting with another tiger – either aggressive or affiliative; including 

grooming one another 

Rolling - 

Scent marking Spraying an object, rubbing back paws on ground or rubbing head 

against objects.  

Walking - 

Running - 

Pacing Repeated walking in the same pattern without an apparent goal. 

Alert standing - 

Alert sitting - 

Alert laying down Lying down with eyes open  

Not alert laying down Lying down with eyes closed  

Stalking Walking slowly with eyes fixed on one object 

Grooming - 

Defecating/urinating - 

Jumping at fence - 

Vocalise  - 

Other Any behaviour that does not fit into any of the above descriptions.  

 383 
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Table 2: Ethogram of behaviours used for activity budget data collection of elephants 385 

Behaviour Description of behaviour (where required) 

Feeding - 

Foraging Actively searching for or extracting food items such as bark stripping 

Moving Excluding foraging 

Resting Including sleep 

Socialising Including both aggressive and affiliative behaviours 

Vigilant Elephant is standing alert 

Drinking - 

 386 

 387 
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Table 3: Ethogram of behaviours used for activity budget data collection of dogs (adapted from van 389 

den Berg et al., 2003).  390 

Behaviour Description of behaviour (if required) 

Barking - 

Pulling (on lead) - 

Tail wagging - 

Growling - 

Jumping Up - 

Sitting still - 

Spinning Dog spins in circles or changes direction frequently whilst 

on or off the lead. 

Standing upright - 

Tail erect - 

Territorial Marking Including urination 

Approach other dogs - 

Panting - 

Whining/Whimpering - 

Yawn - 

 391 

 392 
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Table 4. Ethogram of behaviours used for activity budget data collection of shore crabs 394 

Behaviour Description of behaviour (if required) 

Claws outstretched - 

Hide - 

Pile Piling on top of, or forcing themselves 

underneath other crabs 

Still - 

Quick movement ≥  .s-2 

Slow movement < 5 cm.s-2 

 395 

  396 



22 

 

Figure 1. Three dimensional principal component bubble plot with confidence radii for tiger 397 

behavioural data. Bubbles represent individual tigers. Tigers 1 and 3 are males and 2 and 4 are 398 

females. 399 

 400 
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Figure 2. Three dimensional principal component bubble plot with confidence radii for elephant 402 

behavioural data. (a) Each bubble represents one of the five vasectomised bull elephants, overlap of 403 

bubbles indicates no significant differences at the 95% confidence level between adjacent 404 

individuals. (b) Pairwise bubble plot between the most behaviourally different elephants (as 405 

determined in figure 2a) at 95% confidence – overlap between bubbles indicates no significant 406 

difference. (c) Pairwise bubble plot between the most different elephants at 90% confidence, here 407 

no overlap of bubbles occurs, so differences can be considered significant with 90% confidence. 408 
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Figure 3. Three dimensional principal component bubble plot with 95% confidence radii for dog 411 

behavioural data. (a) the clustered group of three dogs on the right indicate red dogs, the three 412 

remaining, non-overlapping bubbles indicate the green dogs. (b) combining the data into two cases, 413 

green dogs (upper bubble) and red dogs (lower bubble) shows no overall significant difference in 414 

behaviour in these classifications of dogs. (c) differences do occur at the 90% confidence level 415 

between green and red dogs. 416 
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Figure 4. Three dimensional principal component bubble plot with 95% confidence radii for crab 418 

behavioural data. Key: 1) Adult crabs in the absence of a visual predator stimulus, 2) Adult crabs in 419 

the presence of visual predator stimulus, 3) Juvenile crabs in absence of visual predator stimulus, 4) 420 

Juvenile crabs in the presence of visual predator stimulus.  421 
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