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An ecomorphodynamic model was developed
to study how Avicennia marina mangroves
influence channel network evolution in sandy
tidal embayments. The model accounts for the effects
of mangrove trees on tidal flow patterns and sediment
dynamics. Mangrove growth is in turn controlled by
hydrodynamic conditions. The presence of mangroves
was found to enhance the initiation and branching of
tidal channels, partly because the extra flow resistance
in mangrove forests favours flow concentration, and
thus sediment erosion in between vegetated areas.
The enhanced branching of channels is also the result
of a vegetation-induced increase in erosion threshold.
On the other hand, this reduction in bed erodibility,
together with the soil expansion driven by organic
matter production, reduces the landward expansion
of channels. The ongoing accretion in mangrove
forests ultimately drives a reduction in tidal prism
and an overall retreat of the channel network. During
sea-level rise, mangroves can potentially enhance the
ability of the soil surface to maintain an elevation
within the upper portion of the intertidal zone,
while hindering both the branching and headward
erosion of the landward expanding channels. The
modelling results presented here indicate the critical
control exerted by ecogeomorphological interactions
in driving landscape evolution.

© 2015 The Authors. Published by the Royal Society under the terms of the
(reative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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1. Introduction

Mangroves are highly productive ecosystems that cover the intertidal area of many tropical and
subtropical coastlines [1,2]. They have become adapted to a particular environment where only
a few other species can compete. In fact, mangroves are the only woody plants occupying the
margin between land and sea in low latitudes [3]. Over recent decades, these ecosystems have
been highlighted as areas of global importance as mangrove forests provide critical ecosystem
services such as carbon sequestration [4], create habitats for a variety of organisms [5] and protect
against coastal hazards [6]. Mangrove trees can grow on a variety of substrates, including mud,
sand and carbonate sediments [7] and they usually occur in sheltered environments, such as
estuaries and embayments. Although sheltered from intense wave action, these environments are
dynamic and undergo morphological change as a result of physical feedbacks that involve tidal
currents and associated sediment transport [8], mediated by biological agents. The evolution of
these tidal systems becomes even more complex, in fact, when mangroves are present as aquatic
vegetation has proved to be capable of modifying its physical environment [9]. Although there
is no doubt about the ecological and economic value of mangrove ecosystems and the question
of how such a highly coupled physical-biological system evolves is of great scientific interest,
relatively little research has focused on the interlinked processes that shape the evolution of these
ecosystems and the morphological setting that hosts them.

Mangrove forests in estuaries and embayments are often dissected by tidal channels, giving
rise to intriguing morphological patterns (figure 1). The channel forming processes resemble
those of salt marsh channels; channels typically form because flowing water concentrates
within small-scale topographic depressions, leading to an increase in flow velocity and the
erosion and deepening of the initial depression [10]. This drives a further concentration of
the flow so that a positive feedback mechanism between erosion and channel formation is
created [8,11,12]. In addition to this flow-sediment-topography feedback, mangroves are expected
to interact with these physical processes and to change the dynamics related to the formation
as well as the subsequent evolution of entire tidal channel networks. On the other hand,
mangroves are dependent on physical processes as their habitat is restricted to areas with
specific salinity and inundation regimes, and hence inherently linked to bed elevation [13].
A two-way biophysical coupling thus exists and it is this type of mutual influence of biotic
and abiotic components that can potentially govern large-scale, long-term landscape evolution
[9,14,15].

A number of studies have already examined the one-way coupling in which mangrove trees
affect hydrodynamic and sediment transport processes. This has been done through both field
and laboratory experiments, as well as modelling. Numerical modelling studies of hydrodynamic
processes have shown that mangrove trees have a significant impact on the flow structure in
mangrove creeks by enhancing the tidal asymmetry [16,17]; this effect was attributed to the extra
flow resistance in the mangrove forest (see also [18]). A two-dimensional depth-integrated model
that includes both the effects of the drag force and the blockage induced by mangrove trees
was developed by Wu et al. [19]. They performed modelling exercises with idealized cases as
well as a real estuary and found that tidal velocities were significantly reduced in the forested
area while an increase in velocities occurred in the main channel. More recently, Horstman
et al. [20,21] used extensive field measurements and state-of-the-art modelling techniques to
study tidal-scale flow routing and associated sedimentation patterns in a mangrove site in
Southern Thailand. They concluded that the tidal exchange was dominated by creek flow,
although the contribution by sheet flow through the mangrove vegetation increased for the
highest tides. During these higher tides, the sheltered interior of the forest also served as an
effective sediment sink. This capability of mangroves to trap sediment was also highlighted by
Furukawa & Wolanski [22], Furukawa et al. [23] and van Santen ef al. [24]. Related to this enhanced
sediment trapping are the field observations described by Stokes et al. [25], who showed that the
bed elevation decreased by 9-38 mmyr~! in areas where mangroves had been removed, while
the surface generally accreted where the mangroves were still intact, emphasizing again the
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Figure 1. Tidal channel network and mangroves in the Rangaunu Harbour, North Island, New Zealand. Photo courtesy of the
Department of Conservation, NZ.

influence of mangroves on sediment dynamics and the importance of better understanding these
environments also because of ongoing climatic changes and increasing anthropogenic activities
at the shoreline.

The studies described above and other similar types of studies have provided valuable insight
into the way mangroves can interact with physical processes. However, the question of how
such biophysical interactions affect the morphological evolution of tidal landscapes over decades
or even longer time scales has so far been largely unexplored. This includes the influence of
mangroves on the formation and evolution of tidal channel networks. These networks control
to a large extent the fluxes of water, sediments and nutrients [26,27], and their characteristics
determine the efficiency of the network to drain and feed the tidal landscape [28]. As such,
tidal networks are critical to the overall functioning of the system. For salt marsh systems, some
spatially explicit morphodynamic models incorporating vegetation effects have already been
developed [29-32], showing that the evolution of salt marshes cannot be fully understood without
considering biophysical interactions.

Here, we present a numerical model which accounts for the ecogeomorphological feedbacks
arising from the presence of mangroves, which we have developed to study the role of
mangroves in the large-scale and long-term morphological evolution of sandy tidal embayments.
The focus is on channel network-forming processes. Such a model requires the incorporation
of an ecosystem module which describes mangrove growth as a function of the physical
environment and vegetation dynamics. Mangrove species vary somewhat in their trunk
and root characteristics, and in this study we consider Avicennia marina, a species which
occurs in both hemispheres and with a range that extends into cooler warm-temperate
climates [33]. The effects of mangroves on physical processes that have been included in
the model are: (i) increasing flow resistance; (ii) increasing resistance of sediment to erosion
by tidal flow; (iii) increasing resistance of sediment to slope-driven sediment transport;
and (iv) soil expansion driven by the production of organic matter. The latter process has
received particular interest with respect to the ability of mangrove forests to adjust to sea-
level rise [34]. In this context, we performed additional simulations to explore how the
channel network might evolve under a rising sea level in both the presence and absence of
mangrove vegetation.
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2. Methodology

We used a numerical model which is capable of simulating the long-term morphological
evolution of tidal embayments as a result of the interactions between hydrodynamics, sediment
transport and the evolving morphology. This morphodynamic model was coupled to a mangrove-
population model so that the interactions between mangroves and physical processes could
be explored. The development of the morphodynamic model was originally described by van
Maanen et al. [35]. It is capable of simulating realistic tidal basin morphologies and the model
has been previously used to study the effects of tidal range and initial bathymetry on channel
network formation [36] and to simulate the response of tidal embayments to sea-level rise [37].
As such, it provides a good opportunity to extend this model to explore the influence of
biophysical feedbacks. As the model has been previously discussed in detail, we will only
give a brief description here (see §2a). After that, we explain in detail how we treated the
colonization by mangroves, and the growth and mortality of the trees as this is a key element
of our modelling approach (see §2b). The effects of mangroves on hydrodynamics and sediment
dynamics will be described as well (see §2c). Accounting for biophysical interactions within
morphodynamic models is not straightforward as it is not always clear how to represent all
processes in a quantitative way [9]. Overall, the model developed here falls in the category of
‘exploratory’ models [38] which are critical to improve our understanding but whose quantitative
predictive skills are likely to need future refinements. The parametrizations that we adopted were
developed to capture the main dynamics of mangrove environments and are not meant to result
in quantitatively accurate predictions. In §2d,e, we describe the model set-up and the technique
used here to extract the channel networks from the simulated morphologies.

(@) Morphodynamic model

The morphodynamic model applies Estuary and Lake Computer Model (ELCOM,; [39]) to obtain
information regarding the tidal currents and water depths throughout a tidal cycle. ELCOM is
a three-dimensional hydrodynamic model based on the unsteady Reynolds-averaged Navier—
Stokes equations. The equations are solved on a rectangular grid. Influences of Coriolis force,
density differences, wind and waves are neglected.

The depth-averaged flow fields, which are computed every hydrodynamic time-step, are used
to obtain instantaneous sediment transport rates which are calculated according to the sediment
transport formula developed by Engelund & Hansen [40]. Slope-driven sediment transport
is incorporated by following the approach of Kirwan & Murray [31]. Gradients in sediment
transport rate yield bed-level changes due to conservation of sediment mass. To facilitate the
execution of long-term simulations, various methods have been developed to increase the rate of
morphological change [41]. For the morphodynamic model, we applied here, bed-level changes
are first integrated over one tidal cycle and then multiplied by a morphodynamic time-step before
feeding back into the hydrodynamic model as an updated bathymetry. This morphodynamic
time-step (i.e. a specific number of tidal cycles) is optimized every iteration by increasing it until
bed-level changes at any single grid cell within the domain exceed 10% of the local water depth
at high tide. Subsequently, the morphodynamic time-step is applied to all grid cells to compute
overall morphological change.

(b) Mangrove colonization, growth and mortality

The upper and lower limits of the distribution of mangroves are governed by inundation patterns,
and thus closely related to bed elevation [13]. Clarke & Myerscough [42] found the distribution
of A. marina to lie in between mean sea level and mean high water. This is simulated by allowing
mangroves to establish themselves only in grid cells which are inundated less than half of the
time. Mangroves can start growing every year and the probability of initial establishment in a bare
grid cell is set to 5%, which is low as the dispersal distance of propagules (germinated seedlings
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used for reproduction) is generally limited (although the dispersal of propagules further that
10km has also been observed [43]). Furthermore, mangroves are allowed to expand laterally to
the four neighbouring grid cells. The initial mangrove density is set to 3000 individuals per ha
(which corresponds to 3000 individuals per grid cell) and the mangroves are given an initial stem
diameter of 1.37 cm. These parameter values are taken from Berger & Hildenbrandt [44] who used
these settings in their mangrove-population model.

Growth of the mangrove trees is described by Berger & Hildenbrandt [44], Shugart [45] and

Chen & Twilley [46]:

d£ B GD(1 — (DH)/(DmaxHmax)) 2.1)
dt (274 +3b,D — 4b3D?) ' '

where D is the stem diameter (cm), H is the tree height (cm), and ¢ is time (years). Dmax and Hmax
are the maximum stem diameter and tree height and are set to 40 and 1000 cm, respectively. These
mangrove dimensions are based on observations of A. marina trees in northern New Zealand [47].
G, by and b3 are species-specific growth parameters which are set here to, respectively, 152.17, 43
and 0.536 such that the maximum increase in stem diameter is 1cmyr—!. Tree height and stem
diameter are related according to the following formulation which assumes that a tree with a
diameter of 0 cm is 137 cm in height [44,45]. This is because the stem diameter is usually defined
at breast height, which is formalized as a distance of 137 cm (=4.5 feet) above ground level:

H =137 + byD — b3D?. (2.2)

Equation (2.1) defines the increase in stem diameter over time under optimal growth conditions.
In reality, however, the growth of mangroves is limited by stresses. We here consider inundation
(I) and competition (C) stress as the main factors controlling mangrove growth and the effects of
these stresses are, similar to Chen & Twilley [46] and Berger & Hildenbrandt [44], incorporated
by adding correction factors to equation (2.1):

d7D _ GD(1 — (DH)/(DmaxHmax)) )
dt — (2744 3byD — 4b3D2)

These stress multipliers I and C range between 0 (no growth) and 1 (unlimited growth). I is
dependent on the hydroperiod and it is assumed that there is an optimal inundation regime
for which the growth rate is at its maximum (I = 1), with reduced growth rates (I < 1) when the
mangroves are inundated for either longer or shorter. The growth and size of the mangrove trees
is thus directly dependent on inundation regime and thus also linked to bed elevation. This type
of response of the growth rate of mangroves to flooding has been previously described by, for
example, Krauss ef al. [13]. Competition among mangroves affects growth when neighbouring
trees have to share the available resources. The correction factor for competition C is thus
dependent on the total biomass of the mangrove trees and C decreases (reducing mangrove
growth) with increasing biomass. Details concerning the specification of I and C can be found
in the electronic supplementary material.

Tree mortality occurs after continuous periods of growth depression [44]. Mangrove growth is
therefore evaluated every year and trees die when the growth is less than 50% of the growth under
optimal conditions for five consecutive years. The death of mangroves reduces the competition
among the remaining trees, and therefore improves their growth conditions. Practically, when the
product I - C in equation (2.3) is below 0.5 for five consecutive years, mangrove density decreases
(reducing the total biomass which results in an increase in C in equation (2.3)) until the growth
depression is halted and the product I - C thus equals or exceeds again a value of 0.5. In the case
of no inundation stress (I = 1), the self-thinning process (decrease in number of individuals) in
the mangrove forest induced by competition among individuals eventually results in a mangrove
density of 125 trees per ha. This maximum density of 125 mature trees per ha is obtained by
applying the “zone of influence’ concept as described in detail in the electronic supplementary
material. When inundation stress hinders the growth of mangroves (I < 1), the final mangrove
density is lower. All mangroves die and mangrove density reduces back to zero when inundation
conditions become unfavourable for mangrove growth (I <0.5). As inundation stress and bed

I-C. (2.3)
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elevation are coupled, the maximum density of mature trees is dependent on the bed level at
which the trees are present. On the other hand, when conditions become more favourable for
mangrove growth because of a decrease in inundation stress, mangrove density increases until
the product I - C reaches a value of 0.5. The mangroves which are added to the model enter as
young trees with a diameter of 1.37 cm, which is the initial stem diameter as mentioned above.
As such, a single grid cell can contain mangrove trees of different sizes.

(c) Effects of mangroves on physical processes

Mangroves influence hydrodynamics and sediment dynamics in various ways. The effects that
we incorporated in the model are that mangroves:

— Increase the drag coefficient Cp. Mangrove trees and their pneumatophores (aerial roots)
offer additional resistance to the tidal flow and this effect is incorporated by defining
Cp as a function of the projected area of mangrove vegetation and the volume of the
vegetation. As a result, mangroves influence tidal flow velocities, and thus affect the

magnitude of sediment transport.
— Increase the erosion threshold 6... Mangroves increase the sediment’s resistance to erosion

by the tidal flow as the roots of the mangroves play a role in stabilizing the sediments [48].
In our model, we therefore correlated 6. with the below-ground biomass. This results in

reduced sediment transport rates.
— Decrease slope-driven sediment transport Sgope. Because of the stabilizing character of the

mangrove root system, Sy, decreases with increasing below-ground biomass.
— Increase the bed elevation through organic matter production AZog. Mangroves produce

organic matter and because the decomposition of the refractory component is extremely
slow, organic matter builds up which can raise the soil surface by a few millimetres
per year [49]. A recent study by Swales et al. [50] shows that the production of organic
material also plays an important role in A. marina ecosystems. The main constituent of
organic deposits in mangrove forests is usually refractory roots [51] and we thus related
AZorg to the below-ground biomass.

Further details regarding the parametrizations and implementation of these effects can be found
in the electronic supplementary material.

(d) Model set-up

An idealized and initially unchannelled bathymetry (figure 22) was used for the numerical
simulations performed in this study (this initial bathymetry is similar to the one used by van
Maanen et al. [36,37]). It covers an area of 17 x 17 km and is composed of an offshore area, inlet and
basin. Bed elevations in the offshore area increase from —8 m at the seaward boundary to —2m at
the entrance of the basin. The offshore area is separated from the tidal basin by the presence
of land regions which formed impermeable and non-erodible barriers. Within the basin, bed
elevation further increase towards +2 m at the landward boundary and random perturbations of
—1.5 to +1.5 cm were added to the bed level in this area. The model is forced with a semidiurnal
sinusoidal tide and the tidal range amounts to 2m. The sediments are unimodal with a grain size
diameter of 0.12 mm, representing very fine sand. A grid size of 100 m in both x- and y-direction
is used.

Simulations previously reported have shown that the initial depth and the overall slope of the
basin play a key role in the morphological evolution of the system [36]. The initial morphology
adopted here is relatively shallow and in a non-equilibrium with hydrodynamic forcing
conditions, resulting in the rapid formation of a tidal channel network. This has implications
for mangrove establishment as the trees start growing in a dynamic environment, with mangrove
colonization occurring first in the upper part of the basin, followed by the colonization of newly
generated intertidal areas associated with the formation of the channel network.
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Figure 2. (a) Initial bathymetry used for the simulations and simulated morphology after 160 years (b) without and (c) with
mangroves. Grey line represents the Tm contour line which approximates the high-tide level.

(e) Extracting the channel network

A key measure of the morphological evolution is the development of a channel network.
To determine the density of channels, we extracted the channel network from the simulated
morphologies using a technique based on the work by Passalacqua et al. [52]. This technique
(previously used to analyse tidal networks [36,37]) includes nonlinear geometric filtering of
the topography to enhance features that are critical to the network extraction. The geometric
curvature of the isoheight contours is then calculated (see [26]). Channelized areas are
characterized by positive curvature and channels are defined as areas where a sudden change
in the statistical signature of the landscape occurs. We refer the reader to Passalacqua ef al. [52]
for further details.

3. Results

(a) Morphological evolution with and without mangroves

The numerical model was first used to simulate the formation of a tidal channel network starting
from the unchannelled initial bathymetry and in the absence of mangroves (figure 2b). This initial
run showed that a fully developed channel network formed over long time scales, indicating
that the interactions between hydrodynamics, sediment transport and the evolving topography
are sufficient to give rise to channel pattern development. Large bathymetric changes occurred
especially within the first few years as deep channels rapidly developed in the inlet of the tidal
system. During ebb-tides, large volumes of sediment were transported towards the offshore area
where decelerating flows caused sediment deposition and the formation of an ebb-tidal delta.
In the tidal basin itself, channel initiation and the development of intertidal areas modified the
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morphology. Over time, as small channels grew larger and some of them branched, a complex
network of channels emerged.

We used the initial model simulation without mangroves as a reference case against which
to explore the effects of mangroves on morphological evolution. A second simulation was thus
conducted, also starting from the unchannelled bathymetry, but in this case we allowed the
growth of mangrove trees. Mangroves colonized bare areas when the inundation regime favoured
mangrove establishment, and the trees started to have an effect on hydrodynamics and sediment
transport processes as described in §2c. Figure 2c shows the simulated morphology after 160
years of mangrove growth, when mangroves had colonized nearly all areas above mid-tide.
A detailed overview of mangrove growth is presented in figure 3. From figure 34, which shows
the diameter of the mangrove stems after 3 years, it can be easily detected where initial mangrove
establishment took place (and from where mangroves expanded to neighbouring grid cells), as
this is where the mangrove trees are the largest. During the first 15 years of mangrove growth,
the trees were still relatively small (figure 3c) so that the limited competition among trees allowed
for the presence of 3000 trees per ha (figure 3b,d), which equals the initial density. While the trees
become larger in size, total biomass is increasing which increases the tree-to-tree competition. This
in turn hinders the growth of individual trees (as C in equation (2.3) decreases) which ultimately
drives tree mortality and a reduction in mangrove density. The majority of mangrove trees had
a stem diameter of more than 35 cm after 160 years (figure 3e) and for these trees the mangrove
density was around 125 individuals per ha (figure 3f).

Important differences can be observed when the evolution of the channel network in the
unvegetated and vegetated scenario is compared in detail (figure 4). The number of channels
as a function of distance from the inlet is plotted in the third column of figure 4 and shows that
there is a general initial increase in the landward direction, because of the naturally branching
character of the network. Channel occurrence then declines as their landward extent is halted.
Figure 4c shows that mangroves enhance the initial formation of channels as it can be observed
that the channel network has advanced further in comparison to the unvegetated scenario. This is
particularly evident when the 0 m contour lines of both bathymetries are followed (black lines in
figure 4a,b). The 0 m contour line refers to the elevation above which mangrove trees occur and in
the presence of mangroves this contour line has become somewhat irregular after 20 years, which
is related to erosion and deposition as a result of the formation of channels.

After the initial stage of channel formation, the headward erosion and branching of channels in
subsequent decades drives expansion of both networks (with and without mangroves), although
the rate at which the channel network expands in the presence of mangroves diminishes over
time. More specifically, from 20 to 80 years, morphological evolution causes channel occurrence
to increase significantly (compare green lines in figure 4c,f), while in the following period towards
160 years the network remains relatively static with only small changes in channel distribution
(figure 4f,i). After 160 years, the effects of mangroves on hydro- and sediment dynamics have
contributed to the development of a dense channel network (figure 4h). However, it is the
unvegetated basin in which the channels have extended landward the furthest (figure 4i; black
line exceeds green line in upper part of basin).

When assessing the channel network evolution over even longer time scales, it can be
seen that, while the unvegetated network continues to expand, a strong reduction in channel
occurrence takes place in the vegetated scenario (figure 4I). This process is related to organic
matter production. That is, in addition to the transport of inorganic sediments, organic matter
accumulation in areas covered by mangroves causes the bed elevation to increase up to a few
millimetres per year. Vegetated areas in the upper part of the tidal basin therefore continue to raise
their bed elevation until the soil surface reaches a level at which it is no longer inundated. At that
point, mangrove growth is reduced by 50% (see electronic supplementary material, figure S1)
and tree mortality follows, such that the production of organic matter ceases as well. The loss
of mangroves in the upper region of the basin can also be seen in figure 3¢,. This die-back of
mangroves in those areas that become only rarely inundated has been described and observed for
natural mangrove systems [53]. An important related effect is that the high-tide mark consistently
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Figure 3. Stem diameter of the mangrove trees (in cm) after (a) 3, (c) 15, (€) 160 and (g) 1000 years of mangrove growth. Note
that the subplots have a different colour-scale. Subplots (b,d,f,h) show the corresponding mangrove densities (in individuals
per ha). Stem diameter of the trees and mangrove densities are superimposed on the bathymetry.

moves seaward (grey line in figure 4k), reducing the total surface area that gets flooded during a
tidal cycle. This in turn affects the tidal prism. In fact, not only the total water volume entering
the basin through the inlet is reduced as a consequence of a smaller total inundated area, but also
the discharge of the channels in the upper basin is affected. As will be shown in §4b, this results
in weaker tidal flows, ultimately causing channel infilling. It is this infilling of channels, together
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Figure 4. Simulated morphologies after 20, 80,160 and 1000 years (a,d,g,j) without and (b,e,h,k) with mangroves. White, black
and grey lines represent —1 (low-tide), 0 (mid-tide) and 1 (high-tide) m contour lines, respectively. The dots on panel (b,e,h,k)
indicate the grid cells where mangroves are present. Plots with number of channels versus distance from the coastal inlet for the
unvegetated (black) and vegetated (green) morphologies are shown in (cf,i,/). The number of channels is shown as a moving
average over 500 m (five grid cells). The dashed lines in these plots indicate the maximum number of channels and associated
location. The blue triangles in (g,h,k) and blue cross in (h) indicate the locations for which the stage—velocity curves, as shown
infigure 7, are developed.

with the ongoing accretion in vegetated areas, that causes the seaward retreat of the tidal channel
network as indicated in figure 4I.

The production of organic matter also plays a role in altering the overall hypsometry of the
tidal basin. Figure 5 shows hypsometric curves for the initial bathymetry, as well as for the
unvegetated and vegetated morphologies at different moments in time. These curves can be used
to characterize large-scale bathymetric changes [36,54]. Initially, sediment is mainly redistributed
from the deep areas to the shallow areas, such that more intertidal areas are generated. The
hypsometric curves of the unvegetated and vegetated morphologies after 160 years (compare
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Figure 5. Hypsometric curves for the simulated morphologies with and without mangroves after 160 and 1000 years.

grey and light shaded green lines in figure 5) indicate that, although the differences are small, a
larger proportion of the bed elevations occur within the upper portion of the intertidal zone when
mangroves are present. From these curves, it is difficult to tease apart the relative contributions
of inorganic and organic accretion in causing this difference. However, the clear change in
hypsometry for the vegetated morphology after 1000 years (dark shaded green line in figure 5),
whereby a considerably larger area occurs above a bed elevation of 1m is inevitably driven
by the ongoing production of organic matter. By then, the hypsometric curve has flattened for
the higher elevations and exhibits a shape which deviates from the typical sigmoidal shape as
observed for the simulated morphologies without mangroves and described by, for example,
Boon & Byrne [54]. This effect becomes dominant only over longer time scales as the accretion
of organic material is a slow but gradual process [49].

(b) Effects of mangroves on hydrodynamics

The differences in morphological evolution as described above are partly driven by the way
mangroves alter the characteristics of the tidal flow. Therefore, with the purpose of unravelling
the mechanisms with which mangroves affect channel network dynamics, we extracted the flow
fields during rising and falling tide over both the unvegetated and vegetated morphologies.
Figure 6 shows that the direction as well as the magnitude of the flow is affected by the presence
of mangrove trees. During rising tide, the flow in the vegetated scenario (figure 6c) is mainly
confined within the tidal channels. When areas with mangroves become inundated, the extra
drag caused by the trees and pneumatophores drives a strong reduction in the magnitude of the
flow. In terms of sediment dynamics, this leads to negative gradients in sediment transport fluxes
and thus an increase in deposition and bed elevation. On the other hand, the extra flow resistance
in mangrove forests results in flow concentration and sediment erosion in between vegetated
areas, enhancing thus the formation of channels at those locations. When mangroves are absent,
the flow is less constricted to the channel network (figure 6a). The flow over intertidal areas also
reaches higher velocities in comparison with the vegetated scenario.

Similar differences in the flow characteristics can be observed between the vegetated and
unvegetated scenarios during falling tide (figure 6b,d). In the absence of mangroves (figure 6b),
the water is drained through the channels as well as over the intertidal areas. The magnitude
of the flow is relatively homogeneous and the flow is primarily directed towards the main
inlet of the tidal basin (the left-top corner in figure 6b). By contrast, the flow field is rather
heterogeneous in the vegetated scenario with smaller velocities occurring within the mangrove
forest (figure 6d). The flow is often directed towards the nearest channel through which the water
is then subsequently drained. The tidal flow thus concentrates again within the channels. As
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Figure 6. Flow field during (a,c) rising and (b,d) falling tide over a part of the (a,b) unvegetated and (c,d) vegetated
morphologies after 160 years. Arrows on the panels represent magnitude and direction of the flow. Scale of the arrows is
indicated in between the panels. The white circles on panel (¢,d) indicate the grid cells where mangroves are present.

will be discussed in more detail in §4a, similar types of flow patterns and feedbacks have been
described for salt marsh systems [30,55].

Stage-velocity curves provide an additional way to study flow characteristics in tidal
environments [56,57]. We therefore developed several of such curves for channels in the
simulated morphologies with and without mangroves (figure 7). Focusing first on the flow in
the unvegetated basin, we can observe that the stage—velocity curve for a particular channel (red
line in figure 7a) reveals the typical asymmetry in flow between flood and ebb [58-60]. Fagherazzi
et al. [27,56] discussed this asymmetry in detail and they describe the occurrence of two distinct
surges in the tidal flow, one when the adjacent intertidal platform is being flooded and one when
the platform has drained. They also point out that it takes time for the water to flood and drain the
platform such that the maximum ebb and flood currents occur at different water levels. Although
these concepts have been described in the context of salt marshes for which the intertidal platform
is nearly flat, similar type of asymmetry in the tidal flow exists for the simulations here as the
maximum ebb flow occurs at an elevation of 0.25m, while the maximum velocity during flood
occurs at an elevation of 0.57 m (figure 7a).

Examining the stage—velocity curve for a channel flanked by mangroves (light shaded green
line in figure 7a) further highlights their effects on the tidal flow. An obvious difference is the
higher water elevation at which the maximum flood velocity is reached (bed elevation equals
0.78m). This is related to the channel banks, which for this channel have become higher in
the presence of mangroves. In fact, the channel banks of this channel are at an elevation of
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unvegetated value. The horizontal dashed line in (a) indicates the channel bank elevation of the channel flanked by mangroves
after 160 years.

approximately 0.6m (which is higher than the water elevation at which the flood surge is
occurring when mangroves are absent, as described above). As expected, the increase in channel
bank height causes the flood surge to occur later within the tidal cycle. An additional difference
caused by mangroves can be found in the overall strength of the tidal current. When mangroves
are present, the magnitude of the flow velocity is higher for nearly the entire tidal cycle. Over
longer time scales, the reduction in tidal prism feeds back into the dynamics of the channels
promoting other longer term changes in the overall character of the landscape. The stage—-velocity
curve after 1000 years (dark shaded green line in figure 7a) shows that the tidal current has become
significantly weaker over time, with flow velocities not exceeding 0.2ms™ !, neither during ebb
or flood.

Mangroves influence stage—velocity curves by affecting the morphological evolution (such as
changing the height of channel banks), as well as by increasing flow resistance. To separate these
effects, we extracted the curves for the vegetated morphologies with a drag coefficients reset to
the standard value indicative of no mangroves. For the stage—velocity curves discussed above,
leaving out the drag only has a minor effect (compare solid and dashed green lines in figure 7a).
However, for a channel located further within the mangrove forest (see blue cross in figure 4h
for location), the influence of mangroves on drag does have an important effect on the way the
tidal current propagates through the channel (compare solid and dashed green lines in figure 7b).
Neglecting the extra flow resistance results in smaller flow velocities, especially for the higher
water levels. This again indicates that the increased drag by mangroves enhances the flow within
the channels.

(c) Effects of mangroves on channel density

As described in §2c, mangroves affect hydrodynamics and sediment dynamics by increasing both
the drag coefficient and the erosion threshold, decreasing the slope-driven sediment transport and
by producing organic matter. Differences in the channel networks of the unvegetated (figure 2b)
and vegetated (figure 2c) morphologies are the cumulative result of these effects. To enhance
our understanding of how mangroves affect the formation of tidal channels, we performed
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Figure 8. Simulated morphologies after 160 years (a) without mangroves, (b) with mangroves, and when only the effect of
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the grid cells where mangroves are present.

additional simulations to elucidate how each of these single effects that mangroves have on
physical processes influence channel formation.

Four additional simulations were performed and each time only one out of the four effects of
mangroves was included while the remaining three were ignored. Figure 8c-e,f shows part of the
simulated morphology after 160 years, including the effect of mangroves on, respectively, Cp, 6cr,
Sslope and AZgrg. Due to the extra drag produced by the trees and pneumatophores, mangroves
obstruct the flow which leads to flow convergence and increased erosion in the areas between
vegetated regions. As a result, channel formation is enhanced in the simulation used to assess
the importance of the extra flow resistance in areas covered by mangroves (cf. figure 8a,c). The
maximum number of channels at a specific distance from the coastal inlet is slightly higher when
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Figure 9. Number of channels versus distance from the coastal inlet for the unvegetated (black) and vegetated (red)
morphologies after 160 years. For the vegetated scenarios, only the effect of mangroves on (a) (p, (b) Oq, () Sqope and
(d) AZyq was included. The number of channels is shown as a moving average over 500 m (five grid cells). The green lines
indicate the number of channels when all the four effects are taken into account (similar to the green line in figure 4i).

only the effect of mangroves on drag is included than when all four effects are taken into account
(compare red and green line in figure 9a). Moreover, in the upper part of the basin (where channel
occurrence is decreasing again), channel density in the unvegetated and vegetated scenario with
only drag included is nearly equal. This suggests that the extra drag force caused by mangroves
is not the main factor responsible for the limited ability of tidal channels to expand landward in
vegetated basins (as was noted when discussing figure 4i; see also green line in figure 9a).

The additional simulation to investigate how a changing erosion threshold influences
morphological evolution shows that its effect on channel formation is twofold. Incorporating
a critical mobility parameter, which increases within the mangrove forest, results in a strong
reduction in sediment transport fluxes once the flow encounters mangroves trees. Net sediment
deposition in the mangrove forest then allows the difference in bed elevation between the
unvegetated channel and the adjacent vegetated platform to increase, giving rise to a positive
feedback. Over longer time scales, the vegetation-induced variation in the sediment’s resistance
to erosion drives additional branching of the channels, increasing channel density (figures 84
and 9b). At the same time, mangroves which cover the area at the headward side of the channels
decrease the erodability of the sediment and hinder the possibility of these channels to expand
further landward. Consequentially, the number of channels starts to decrease relatively close
to the coastal inlet in comparison to the unvegetated morphology, resulting in a lower channel
density in the upper part of the basin (compare red and black lines in figure 9b).

Channel density remains essentially unaltered when only the effect of mangroves on slope-
driven sediment transport is included (figure 9c). However, the strength of channel banks
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Figure 10. Simulated morphology after 160 years of sea-level rise at a rate of 5.0 mm yr~' () without and (b) with mangroves.
Sea level started to rise after 160 years of morphological evolution under a stable mean water level (the morphologies shown in
figure 2). Grey line represents the 1m contour line which approximates the high-tide level. (c) Stem diameter of the mangrove
trees (in cm), showing the landward migration of mangroves.

increases when they are covered with mangroves because of the stabilizing character of the roots.
As such, mangroves affect the cross-sectional shape of channels because the increase in bank
stability allows the channels to develop steeper banks (see the arrow in figure 8e).

Not surprisingly, the expansion of the channel network is hindered in the simulation for which
only the production of organic matter is included. As highlighted earlier, the vertical growth of
the vegetated areas reduces the volume of water stored on these vegetated platforms, in turn
reducing the tidal prism flowing through the tidal channels. As a result, current velocities and the
erosive power of the channels decrease as well. This has large-scale implications as the channels
do not have the ability to extend landward as far as in the unvegetated scenario and, after 160
years, a less dense channel network in the higher regions of the embayment can be observed
(figures 8f and 9d).

(d) Morphological evolution under a rising sea level

Sea-level rise has a strong impact on tidal embayments and the morphological response of
these systems to sea-level rise may be significant. To explore the effects of mangroves on
possible changes in the morphology and characteristics of the channel network, we subjected
the landscapes shown in figure 2 to an increase in sea level. The rate of sea-level rise for these
particular simulations was set to 5.0mm yr~!. In the vegetated basin, some of the shallow areas
close to the inlet, although significantly reduced in size, still have a bed elevation above 0 m after
160 years, which is sufficient for the growth of mangroves (figure 10b,c). The hypsometric curves
of the basins after sea-level rise (figure 11) indicate that the proportion of bed elevations above 0 m
is around 5% larger when mangroves are present and around 8% larger with respect to the 0.5m
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Figure 12. Number of channels versus distance from the coastal inlet for the unvegetated and vegetated morphologies before
and after sea-level rise. The number of channels is shown as a moving average over 500 m (five grid cells). The arrows indicate
the increase in the maximum number of channels due to sea-level rise.

bed elevation. Mangroves and the related soil expansion driven by organic matter production can
thus potentially play an important role in enhancing the ability of the soil surface to maintain an
elevation within the upper portion of the intertidal zone while the sea level is rising.

Sea-level rise induces a decrease in channel density for a small part of the basin (for the
unvegetated basin, this is between 3.0 and 4.4 km; compare grey and black lines in figure 12).
This is caused by the increase in water depth which drives the channels to become larger and
more widely spaced (see also [37]). In addition, sea-level rise results in headward erosion of the
channels and expansion of the overall network, a process which is influenced by the presence
of mangroves. Where the channels expand landward, the number of channels increases more
substantially in the unvegetated basin than in the basin with mangroves (as highlighted by the
arrows in figure 12). This indicates that the branching of channels is hindered when the channels
expand into an area which is completely covered with mangroves. The limited ability of the
channels to branch while expanding landward in the vegetated basin is further indicated by the
channel occurrence which remains nearly constant between 5 and 6 km from the inlet. A nearly
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constant channel occurrence implies that the channels are extending landward, but without being
subject to a regular branching process. After sea-level rise, the existence of channels near high
tide is still suppressed when mangroves are occupying the basin, partly related to the difficulty
for channels to carve through vegetated surfaces.

4. Discussion

(a) Influence of vegetation on channel network formation and evolution

Elements of our simulations reflect previous studies that have focused on tidal channel networks
that are influenced by salt marsh vegetation. Temmerman et al. [30], for example, applied
a morphodynamic model which accounted for the effects of salt marsh plants on drag and
turbulence to simulate channel formation on an initially bare tidal flat. Model results showed
that channel drainage density increases with denser vegetation and it was concluded that
the flow concentration between vegetated patches is responsible for the enhanced channel
erosion. Over recent years, these biophysical interactions in salt marsh settings have received
particular attention [61-63]. Our simulations of large-scale channel network-forming processes
indicate that mangroves give rise to similar types of feedbacks. The additional flow resistance
in mangrove forests has shown to drive enhanced flow and thus erosion, giving rise to a denser
channel network.

The effect of vegetation on increasing the erosion threshold and the influence of this on channel
formation has received less attention. Here, we have shown, however, that a spatial variation
in the sediment’s resistance to erosion, governed by the presence of vegetation, contributes to
the additional branching of the channels. An increase in the erosion threshold where mangrove
trees are present leads to extra sedimentation in the forest. This indicates that, in addition to the
vegetation-induced channel erosion, enhanced forest deposition also plays an important role in
the formation of the channel network. While these ecogeomorphological feedbacks can enhance
channel initiation and branching, our model results indicate that the branching of channels is
hindered when sea level is rising. Sea-level rise causes the channels to expand landward, but
when this expansion occurs over a surface which is completely covered with mangroves, the
feedback mechanisms leading to, for example, enhanced flow concentration do not operate as
effectively. Channel development is thus accelerated in areas which are only partly vegetated.

The observed seaward retreat of the channel network over longer time scales occurs through
a combination of organic accumulation, reduction in tidal prism, and channel infilling. This is
consistent with model results described by D’ Alpaos et al. [64], who simulated the cross-sectional
evolution of a salt marsh channel and showed that infilling of the channel can indeed occur after
the emergence of a marsh platform. Contrasting responses were reported by Vandenbruwaene
et al. [62] who analysed a series of aerial photographs and digital elevation models to study how
the geometric properties of tidal channels changed while the intertidal marsh platform accreted.
They found that continued sediment accretion and tidal prism reduction did not affect channel
drainage density or channel dimensions (although their study did not explicitly assess the effect
on channel depth and instead focused on channel width). It was hypothesized that the smaller
tidal prism only reduced the sheet flow over the platform, while the flow in the channel was not
much affected. Clearly, whether a reduction in tidal prism affects the landscape-forming flow is
dependent on the geomorphic setting and on how vegetation alters flow routing patterns; a topic
which deserves further investigation.

The changes in tidal prism noted above may provide insight into the process of mangrove
establishment. For example, do mangroves dictate morphological evolution and create/modify
their own habitat by actively building land, or are mangroves more passive and do they respond
to depositional processes rather that causing them [65-68]? Although our simulations only
concern idealized cases, they indicate that infilling of the channels leads to increased channel
bed elevations and can ultimately generate a bed surface which is sufficiently high to support the
growth of mangrove trees. In this way, mangroves modify the physical environment by reducing
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channel depths and can potentially play a role in creating their own habitat. In this context, it
should be emphasized that the morphologies presented here after 1000 years were still evolving
under the influence of mangroves. It is difficult to anticipate whether ongoing sedimentation and
accretion would ultimately result in complete infilling of the simulated basin as these processes
occur over much longer time scales (see also [69]).

(b) Modelling approach, limitations and perspectives

The simulations presented here provide insight into the effects of A. marina mangroves on
channel network evolution. A number of assumptions, however, were made throughout model
development and included processes were simplified. The parametrizations used here to describe
how mangroves affect physical processes and vice versa were based on previous studies
performed by other authors combined with common and widely accepted knowledge of the
system. While these parametrizations capture the main processes governing the dynamics of
mangrove environments in natural systems, some other features of vegetation dynamics are
neglected. The growth of mangroves, for example, is a complex process and tree growth may
be constrained by salinity stress, availability of nutrients and temperature. To keep the numerical
model relatively simple and model output as transparent as possible, we preferred to include
only a minimum number of processes. We decided to limit the growth of the mangrove trees only
by inundation and competition stress. Incorporating just these two stresses allow the numerical
model to reproduce important behaviour typical of mangrove forests: the self-thinning process
due to the competition among trees and the limited growth of the trees when they are inundated
for either longer or shorter than the optimum inundation period.

The sediment transport module applied in this study is based on the Engelund and Hansen
formulation [40]. Although this approach has been widely used to simulate the long-term
evolution of tidal systems [70,71], there are certain limitations associated with the formulation
that should be considered. For example, it only allows modelling of non-cohesive sediments
and it does not distinguish between bed load and suspended load. This has implications for
the implementation of the biophysical interactions. In the ecomorphodynamic model presented
here, mangroves modify sediment transport rates directly by increasing the erosion threshold
and indirectly by reducing the strength of the tidal currents in the forest. Other effects such
as enhanced settling and the direct capture of sediment particles on the tree stems and
pneumatophores are not included as these processes apply more to the dynamics of cohesive
sediments [72], while our study focuses on sandy environments. Also, to parametrize the slope-
driven sediment transport term, we used the formulation described by Kirwan & Murray [31].
While they adopted this formulation for salt marsh channels, it should be noted that the approach
on which this formulation is based was initially developed for fluvial channels [73]. Further
research is clearly needed to test if these approaches are transferrable and to develop more
accurate representations of gravitationally driven sediment fluxes. In terms of hydrodynamics, we
included the effect of the trees and pneumatophores by increasing the drag coefficient. While this
is sufficient to capture important feedbacks occurring in mangrove ecosystems, other vegetation
effects such as modifying the turbulent field [74] are not included.

Another example of a complex process which is difficult to capture in numerical models is
the accumulation of organic material. Organic accumulation is the result of the balance between
the production and decomposition of organic matter, and field measurements indicate that this
balance varies widely across different settings [49]. Field data as described by McKee et al. [75]
revealed a tight coupling between the organic accumulation of Caribbean mangroves and sea-
level rise. This finding was suggested to be the result of flooding effects on the balance between
subsurface root production and decomposition. Despite the complexity of the process, we
followed a relatively simple (but commonly used) approach and linearly related soil expansion
to the below-ground biomass. In addition, the model used here was developed to capture the
dynamics of sandy shoals colonized by mangroves. This implies that the accumulation of organic
material altered the bed composition, but this effect was not included in the model.
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Linking the types of model results presented here to field observations is not straightforward,
especially given the large spatial and temporal scales involved. A potential way forward lies
in the use of remote sensing. Aerial photographs have already been used in the study of
tidal channel dynamics in salt marsh systems [30,62,63]. As the availability of such images is
continuously increasing, as well as the time span over which they are obtained, this opens up
extra possibilities to analyse how mangroves affect channel network formation. At the same time,
such remote sensing-based analyses would provide ways to further test our model results. In
the electronic supplementary material, we have included aerial photographs that show how the
geometry of a river flowing into a New Zealand estuary was subject to several changes while
mangrove growth expanded. Remote sensing studies of dynamic mangrove settings elsewhere,
together with the development of new methodologies that allow for a detailed analysis of channel
network characteristics (e.g. [76]), can help to close the gap between numerical modelling and
field observations.

The model presented here dynamically couples biotic and abiotic processes and is used
to simulate the large-scale and long-term morphodynamics of tidal basins. Future model
development could potentially help to address a wide range of environmentally inclined
questions. Ecomorphodynamic model simulations could for example shed light on the
consequences of the removal of mangrove trees for morphological change and the overall
system’s functioning. This is relevant as mangrove forests are in rapid decline as they are
cleared for aquaculture, urbanization or coastal landfill [1]. Also, the ability of mangrove
forests to continue providing important ecosystem services (such as carbon sequestration)
is dependent on how the geomorphic system and the ecosystem itself responds to climate
change impacts, including sea-level rise. Models that account for the complex biophysical
interactions are needed to improve our understanding of such issues which inevitably require
an interdisciplinary approach.

5. Conclusion

We developed an ecomorphodynamic model to explore the effects of A. marina mangroves
on the long-term evolution of sandy tidal embayments. The model accounts for the effects of
mangroves on hydrodynamics and sediment dynamics. In turn, hydrodynamic conditions affect
the colonization, growth and mortality of the trees so that a two-way coupling between physics
and biology arises. Parametrizing such biophysical feedbacks is not straightforward and the
selected interactions have been incorporated here based on previous field and analytical studies,
as well as other modelling efforts. Simulations were carried out starting from an unchannelled
tidal basin and results indicate that mangroves have a strong control on tidal channel network
evolution. The enhanced branching of tidal channels in the presence of mangroves, which results
in a higher channel density, is mainly caused by the additional drag produced by the trees and
its pneumatophores. The extra flow resistance in mangrove forests drives flow concentration and
sediment erosion in between vegetated areas and thus enhances the formation of channels. The
increase in the erosion threshold when the surface is covered with mangroves has contrasting
effects. The process of channel branching is again enhanced. On the other hand, headward
erosion of the channels is reduced so that channel density decreases in the upper part of the
tidal embayment. The accumulation of organic matter leads to a reduction in the tidal prism
which flows through the channels, reducing the extent to which the channels are expanding
landward and ultimately causing a seaward retreat in the overall network. The decrease in
slope-driven sediment transport in areas with mangroves allows the channel banks to become
steeper, but does not have an effect on channel density. Simulated morphological evolution under
a rising mean water level indicates that channel networks expand landward during sea-level
rise. However, when channels expand into an area covered with mangroves, channel formation
is hindered which decreases both the branching and headward erosion of channels. Overall,
the model simulations presented here highlight the role of mangroves in the morphological
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evolution of tidal embayments and further emphasize the need to include biophysical interactions
in morphodynamic models.
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