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Abstract

We report here on the recent application of a now classical general reduction
technique, the Reduced-Basis (RB) approach initiated in [PRV+02], to the
specific context of differential equations with random coefficients. After an
elementary presentation of the approach, we review two contributions of the
authors: [BBM+09], which presents the application of the RB approach for
the discretization of a simple second order elliptic equation supplied with a
random boundary condition, and [BL09], which uses a RB type approach to
reduce the variance in the Monte-Carlo simulation of a stochastic differential
equation. We conclude the review with some general comments and also
discuss possible tracks for further research in the direction.

1 Introduction

In this work we describe reduced basis (RB) approximation and a posteriori
error estimation methods for rapid and reliable evaluation of input-output
relationships in which the output is expressed as a functional of a field vari-
able that is the solution of an input-parametrized system. In this paper our
emphasis is on stochastic phenomena: the parameter is random; the system
is a partial differential equation with random coefficients, or a stochastic
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differential equation, namely a differential equation forced by a Brownian
process.

The reduced basis approach is designed to serve two important, ubiq-
uitous, and challenging engineering contexts: real-time, such as estimation
and control; and many-query, such as design, multi-scale simulation, and
— our emphasis here — statistical analysis. The parametric real-time and
many-query contexts represent not only computational challenges, but also
computational opportunities: we may restrict our attention to a manifold of
solutions, which can be rather accurately represented by a low-dimensional
vector space; we can accept greatly increased pre-processing or “Offline” cost
in exchange for greatly decreased “Online” cost for each new input-output
evaluation. (All of these terms, such as ”Online,” will be more precisely
defined in the Section 2.1 which constitutes a pedagogical introduction to
the reduced basis approach.) Most variants of the reduced basis approach
exploit these opportunities in some important fashion.

Early work on the reduced basis method focused on deterministic al-
gebraic and differential systems arising in specific domains [FM71,ASB78,
Noo81,Noo82,NP80,NP83a,NP83b,Nag79]; the techniques were subsequently
extended to more general finite-dimensional systems as well as certain classes
of partial differential equations (and ordinary differential equations) [BR95,
FR83,Lin91,Noor84,NPA84,Por87,Rhe81,Rhe93,Por85]; the next decades
saw further expansion into different applications and classes of equations,
such as fluid dynamics and the incompressible Navier-Stokes equations [Pet89,
Gun89]. There is ample evidence of potential and realized success.

Recent research in reduced basis methods for deterministic parametrized
partial differential equations both borrows from earlier efforts and also em-
phasizes new components: sampling techniques for construction of optimal
reduced basis approximation spaces in particular in higher dimensional pa-
rameter domains [Sen08,BBM+09,Nguyen07]; rigorous a posteriori error
estimation in appropriate norms and for particular scalar outputs of inter-
est [KP09,HO08a]; and fastidious separation between the offline stage and
online stage of the computations to achieve very rapid response [NVP05].
These reduced basis methods can now be applied to larger, more global
parameter domains, with much greater certainty and error control.

In this paper we emphasize the application of certified reduced basis
methods to stochastic problems. Two illustrative approaches are explored.
In the first approach [BBM+09] we consider application of the reduced ba-
sis approach to partial differential equations with random coefficients: we
associate realizations of the random solution field to deterministic solutions
of a parametrized deterministic partial differential equation; we apply the
classical reduced basis approach to the parametrized deterministic partial
differential equation. Statistical information may finally be obtained, for ex-
ample through Monte Carlo approximations. New issues arise related to the
simultaneous approximation of both the input random field and the solution
random field.
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In the second approach [BL09] we directly consider a statistical em-
bodiment of the reduced basis notions. Here reduced basis ideas originally
conceived in the deterministic differential context are re-interpreted in the
statistical context: the deterministic differential equation is replaced by a
parametrized random process; snapshots on the parametric manifold are
replaced by correlated ensembles on the parametric manifold; error mini-
mization (in the Galerkin sense) is replaced by variance reduction; offline
and online stages are effected through fine and coarse ensembles. This tech-
nique is here applied to parametrized stochastic differential equations.

We begin, in Section 2, with an initiation to the RB approach, consid-
ering a simple, prototypical elliptic problem, with deterministic coefficients.
Section 3 then presents the application of the approach to a boundary value
problem supplied with a random boundary condition. The section summa-
rizes the results some of us obtained in [BBM+09]. With Section 4, we
address a problem different in nature, although also involving randomness.
The issue considered is the variance reduction of a Monte-Carlo method
for solving a stochastic differential equation. The RB approach has been
successfully employed in [BL09] to efficiently generate companion variables
that are used as control variate and eventually reduce the variance of the
original quantities. The section outlines the approach and shows its suc-
cess on representative results obtained. We conclude the article presenting
in Section 5 some potential, alternate applications of the approach in the
random context.

2 An Initiation to Reduced-Basis Techniques

We begin with an overview of Reduced Basis techniques. The level of our
exposition is elementary. Our purpose here is to introduce the main ideas
underlying the approach, leaving aside all unnecessary technicalities. The
reader already familiar with this family of approximation approaches may
easily skip this section and directly proceed to sections 3 and 4 where the
adaptation of the general technique to the specific case of partial differential
equations with random coefficients and to variance reduction using the RB
approach will be addressed. We also refer to [RHP,Qua09] for pedagogic in-
troductions to the standard RB method, though with different perspectives.

2.1 Outline of the Reduced Basis approach

Assume that we need to evaluate, for many values of the parameter µ, some
output quantity s(µ) = F (u(µ)) function of the solution u(µ) to a partial
differential equation parametrized by this parameter µ. If the computation
of u(µ) and s(µ) for each single value of the parameter µ already invokes
elaborate algorithms, and this is indeed the case in the context of partial
differential equations, then the numerical simulation of u(µ) and s(µ) for
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many µ may become a computationally overwhelming task. Reducing the
cost of parametrized computations is thus a challenge to the numerical sim-
ulation. This is the purpose of Reduced Basis technique (abbreviated as RB
throughout this article) to reduce this cost.

Let us formalize our discussion in the simple case of a partial differential
equation which is an elliptic second order equation of the form (see (6)
below):

− div
(
A(µ)∇u(µ)

)
= f,

on a domain D with homogeneous Dirichlet boundary conditions. The math-
ematical setting is classical. We assume that the solution of interest u(µ) ∈
X is an element of a Hilbert space X with inner product (·, ·)X and norm
‖·‖X . The output s(µ) = F (u(µ)) ∈ R is a scalar quantity where F : X → R
is a smooth (typically linear) function and µ is a P -dimensional parameter
varying in a fixed given range Λ ⊂ RP . An example of such output s is

s(µ) = F (u(µ)) :=
∫
D
f u(µ) (see (8) below). The function u(µ) is mathe-

matically defined as the solution to the general variational formulation:

Find u(µ) ∈ X solution to a(u(µ), v;µ) = l(v) , ∀v ∈ X , (1)

where a(·, ·;µ) is a symmetric bilinear form, continuous and coercive on X
and where l(·) is a linear form, continuous on X. For all µ ∈ Λ, a(·, ·;µ)
thus defines an inner product in X. The existence and uniqueness of u(µ),
for each µ, is then obtained by standard arguments.

We henceforth denote by ‖ · ‖µ the norm ‖ · ‖µ =
√
a(·, ·;µ) equivalent

to ‖ · ‖X (under appropriate assumptions on A, see below), which is usu-

ally termed the energy norm. In the sequel, we denote by uN (µ) ∈ XN an
accurate Galerkin approximation for u(µ) in a linear subspace XN ⊂ X of
dimension N � 1 and by sN (µ) = F (uN (µ)) the corresponding approxi-
mation for the output s(µ). For that particular choice of XN , we assume
that the approximation error |s(µ) − sN (µ)| is uniformly sufficient small
for all µ ∈ Λ. That is, sN (µ) is considered as a good approximation of the
output s(µ) in practical applications. The difficulty is, we put ourselves in
the situation where computing sN (µ) for all the values µ needed is too ex-
pensive, given the high dimensionality N of the space XN and the number
of parameters µ for which equation (1) need to be solved.

The RB approach typically consists of two steps. The purpose of the
first step is to construct a linear subspace

XN ,N = Span
(
uN (µNn ), n = 1, . . . , N

)
, (2)

subset of XN , of dimension N � N , using a few approximate solutions
to (1) for particular values of the parameter µ. The point is of course to
carefully select these values (µNn )1≤n≤N ∈ ΛN of the parameter, and we
will discuss this below (see (4) and (5)). For intuitively clear reasons, the
particular solutions uN (µNn ) are called snapshots. This first step is called the
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offline step, and is typically an expensive computation, performed once for
all. In a second step, called the online step, an approximation uN ,N (µ) ∈
XN ,N of the solution to (1) is computed as a linear combination of the
uN (µNn ). The problem solved states:

Find uN ,N (µ) ∈ XN ,N solution to a(uN ,N (µ), v;µ) = l(v) , ∀v ∈ XN ,N .
(3)

This problem is much less computationally demanding than solving for the
fine solution uN (µ), and will be performed for many values of the parameter
µ. We denote by sN ,N (µ) = F (uN ,N (µ)) the corresponding approximation
of the output s(µ). An a posteriori estimator ∆s

N (µ) for the output ap-
proximation error |sN (µ) − sN ,N (µ)| is needed in order to appropriately
calibrate N and select the (µNn )1≤n≤N . This a posteriori estimator may also
be used in the online step to check the accuracy of the output. We shall
make this precise below. For the time being, we only emphasize that the a
posteriori analysis we develop aims at assessing the quality of the approx-
imation of the output s (and not the overall quality of the approximation
of the solution), see [AO00] and references therein. The method is typically
called a goal oriented approximation method.

The formal argument that gives hope to construct an accurate approx-
imation of the solution u(µ) to (1) using this process is that the manifold
MN = {uN (µ), µ ∈ Λ} is expected to be well approximated by a linear
space of dimension much smaller than N , the dimension of the ambient
space XN . An expansion on a few snapshots N has therefore a chance
to succeed in accurately capturing the solution u(µ) for all parameter val-
ues µ. The reduced basis method is fundamentally a discretization method
to appoximate the state space MN , with a view to computing an accurate
approximation of the output. Of course, this requirement strongly depends
on the choice of the parametrization which is a matter of modelling.

The RB method yields good approximations sN ,N (µ) of sN (µ) under
appropriate assumptions on the dependency of the solution u(µ) on the
input parameter µ. As a consequence, optimal choices for the approxima-
tion space XN ,N should account for the dependency of the problem with
respect to µ. More precisely, the method should select parameter values
(µNn )1≤n≤N ∈ ΛN with a view to controlling the norm of the output approx-
imation error |sN (µ)− sN ,N (µ)| as a function of µ. For most applications,
the appropriate norm to consider for the error as a function of µ is the L∞

norm and this is the choice indeed made by the RB approach, in contrast
to many other, alternative approaches. The desirable choice of (µNn )1≤n≤N
is thus defined by:

(µNn )1≤n≤N ∈ arginf
(µn)1≤n≤N∈ΛN

(
sup
µ∈Λ
|sN (µ)− sN ,N (µ)|

)
(4)

Note that, although not explicitly stated, the rightmost term sN ,N (µ) in (4)
parametrically depends on (µn)1≤n≤N because the solution to (1) for µ is
developped as a linear combination of the corresponding snapshots uN (µn).
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It is unfortunately very difficult to compute (4) in practice. With the
publication [PRV+02], the RB approach suggests an alternative, practically
feasible procedure. Instead of the parameters (µn)1≤n≤N defined by (4), the
idea is to select approximate minimizers of

(µNn )1≤n≤N ∈ arginf
(µn)1≤n≤N∈ΛN

(
sup

µ∈Λtrial

∆s
N (µ)

)
. (5)

Note that there are two differences between (4) and (5). First, the set Λ
has been discretized into a very large trial sample of parameters Λtrial ⊂ Λ.
Second, and more importantly, the quantity ∆s

N (µ) minimized in (5) is an
estimator of |sN (µ)−sN ,N (µ)|. A fundamental additional ingredient is that
the approximate minimizers of (5) are selected using a specific procedure,
called greedy because the parameter values µNn , n = 1, . . . , N , are selected
incrementally. Such an incremental procedure is in particular interesting
when N is not known in advance, since the computation of approximate
µNn (1 ≤ n ≤ N) does not depend on N and may be performed until the
infimum in (5) is judged sufficiently low.

Of course, the computation of approximations to (5) with such a greedy
algorithm can still be expensive, because a very large trial sample of pa-
rameters Λtrial ⊂ Λ might have to be explored. The RB method is thus only
considered efficient when the original problem, problem (1) here, has to be
computed for such a large number of input parameter values µ, that the
overall procedure (computationally expensive offline step and then, efficient
online step) is practically more amenable than following the original, direct
approach. One often speaks of a many-query computational context when
it is the case. Notice that the RB method is not to be seen as a competitor
to the usual discretization methods; it rather builds upon already efficient
discretization methods using appropriate choices of XN in order to speed
up computations that have to be performed repeatedly.

The approach can therefore be reformulated as the following two-step
procedure

– in the offline stage (which, we recall, may possibly be computationally
expensive), one “learns” from a very large trial sample of parameters
Λtrial ⊂ Λ how to choose a small number N of parameter values; this is
performed using a greedy algorithm that incrementally selects the µn,
n = 1, . . . , N ; the selection is based on the estimator ∆s

N (µ); accurate
approximations uN (µn) for solutions u(µn) to (1) are correspondingly
computed at those few parameter values;

– in the online stage, computationally inexpensive approximations uN ,N (µ)
of solutions u(µ) to (1) are computed for many values µ ∈ Λ of the pa-
rameter, using the Galerkin projection (3); the latter values need not be
in the sample Λtrial, and yield approximations sN ,N (µ) for the output
s(µ); the estimator ∆s

N (µ), already useful in the offline step, is again
employed to check the quality of the online approximation (this check is
called certification).
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Notice that the computation of the error estimator ∆s
N (µ) needs to be

inexpensive, in order to be efficiently used on the very large trial sample in
the offline stage, and for each new parameter values in the online stage.

One might ask why we proceed with the reduced basis approach rather
than simply interpolate s(µ), given the few values {sN (µ1), . . . , sN (µN )}.
There are several important reasons: first, we have rigorous error estimators
based on the residual that are simply not possible based on direct interpo-
lation; second, these residuals and error bounds drive the greedy procedure;
third, the state-space approach provides Galerkin projection as an ”optimal”
interpolant for the particular problem of interest; and fourth, in higher pa-
rameter dimensions (say of the order of 10 parameters), in fact the a priori
construction of scattered-data interpolation points and procedures is very
difficult, and the combination of the greedy and Galerkin is much more
effective.

We are now in position to give some more details on both the offline and
online steps of the RB approach in a very simple case: an elliptic problem,
with an affine dependency on the parameter. Our next section will make
specific what the greedy algorithm, the estimator ∆s

N (µ), along with other
objects abstractly manipulated above, are.

2.2 Some more details on a simple case

As mentioned above, we consider for simplicity the Dirichlet problem−div
(
A(µ)∇u(µ)

)
= f in D ,

u(µ) = 0 on ∂D ,
(6)

where D is a two-, or three-dimensional domain and the matrix A(µ) is

parameterized by a single scalar parameter µ ∈ Λ = [µmin, µmax] ⊂ R∗+. We
assume that the matrix A is symmetric and depends on µ in an affine way:

A(µ) = A0 + µ A1 , ∀µ ∈ Λ . (7)

This assumption (7) is a crucial ingredient, responsible, as we shall ex-
plain below, for a considerable speed-up and thus for the success of the RB
approach here. More generally, either we must identify by inspection or con-
struction an ”affine” decomposition of the form (7), or we must develop an
appropriate affine approximation; both issues are discussed further below.

We assume we are interested in efficiently computing, for many values
of µ ∈ Λ, the output:

s(µ) = F (u(µ)) :=
∫
D
f u(µ) . (8)

This is of course only a specific situation. The output function can be much

more general, like a linear form
∫
D
g u(µ) with some g 6= f . Many other
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cases are possible, but they all come at a cost, both in terms of analysis
and in terms of workload. The case (8), where the output coincides with
the linear form present in the right-hand side of the variational formulation
of (6) (and where the bilinear form a involved in the variational formula-
tion is symmetric), is called compliant. Having (8) as an output function in
particular simplifies the a posteriori error analysis of the problem (namely
the construction of ∆s

N (µ)).
We equip the problem, somewhat vaguely formulated in (6)-(7)-(8) above,

with the appropriate mathematical setting that allow for all our necessary
manipulations below to make sense. For consistency, we now briefly sum-
marize this setting. The domain D is an open bounded connected domain
with Lipschitz boundary ∂D, the right-hand side f ∈ L2(D) belongs to
the Lebesgue space of square integrable functions, A(µ) is a symmetric ma-

trix, which is positive-definite almost everywhere in D. Each entry of A(µ)

is assumed in L∞(D). We assume A0 is symmetric positive-definite, and

A1 is symmetric positive. The ambient Hilbert space X is chosen equal to

the usual Sobolev space H1
0 (D). The function u(µ) is defined as the solu-

tion to the variational formulation (1) with a(w, v;µ) =
∫
D
A(µ)∇w · ∇v,

l(v) =
∫
D
f v, for all v, w, in X and all µ ∈ Λ.

As for the direct discretization of the problem, we also put ourselves in
a classical situation. If D is polygonal for instance, there exist many dis-
cretization methods that allow to compute Galerkin approximations uN (µ)
of u(µ) in finite dimensional linear subspaces XN of X for any fixed param-
eter value µ ∈ Λ. The Finite-Element method [SF73,Cia78] is of course a
good example. Then, for each parameter value µ ∈ Λ, the numerical com-
putation of uN (µ) =

∑N
n=1 Un(µ)φn on the Galerkin basis (φn)1≤n≤N of

XN is achieved by solving a large linear system

Find U(µ) ∈ RN solution to B(µ)U(µ) = b ,

for the vector U(µ) = (Un(µ))1≤n≤N ∈ RN , where b = (l(φn))1≤n≤N is
a vector in RN and B(µ) = B0 + µ B1 is a N × N real invertible ma-

trix. Note that the assumption of affine parametrization (7) makes possible,
for each parameter value µ, the computation of the entries of the matrix
B(µ) in O(N ) operations (due to sparsity), using the precomputed integrals

(Bq)ij =
∫
D Aq∇φi ·∇φj , i, j = 1, . . . ,N for q = 0, 1. The evaluation of U(µ)

for many J � 1 parameter values µ using iterative solvers costs J ×O(N k)
operations with k ≤ 3 [GvL96], where k depends on the sparsity and the
conditioning number of the involved matrices.

As mentioned above in our general, formal presentation, the goal of the
RB approach is to build a smaller finite dimensional approximation space
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XN ,N ⊂ XN sufficiently good for all µ ∈ Λ, with N � N , so that the
computational cost is approximately reduced to N ×O(N k) + J ×O(N3),
where N × O(N k) is the cost of offline computations and J × O(N3), the
cost of online computations, is independent of N , using the Galerkin ap-
proximation (3) in XN ,N .

We now successively describe in the following three paragraphs the con-
struction of the a posteriori estimator, that of the greedy algorithm em-
ployed in the offline step, and the combination of all ingredients in the
online step.

2.2.1 A posteriori estimator. For the coercive elliptic problem (6), the a
posteriori error estimator ∆s

N (µ) for the output RB approximation error
|sN (µ) − sN ,N (µ)| is simple to devise, based on a global a posteriori error
estimator ∆N (µ) for ‖uN (µ)− uN ,N (µ)‖µ using a classical technique with
residuals.

We refer to [VRP02,VPRP03,HP07,Dep09,PR07a,NRHP09,NRP08] for
the construction of similar a posteriori error estimators in various applied
settings of the RB method.

We first define the residual bilinear form

g(w, v;µ) = a(w, v;µ)− l(v) , ∀w, v ∈ X , ∀µ ∈ Λ ,

and the operator G(µ) : XN → XN such that

g(w, v;µ) = (G(µ) w, v)X , ∀w, v ∈ XN , ∀µ ∈ Λ .

We next assume we are given, for all µ ∈ Λ, a lower bound αLB(µ) for
the coercivity constant of a(·, ·;µ) on XN , that is,

0 < αLB(µ) ≤ αc(µ) = inf
w∈XN \{0}

a(w,w;µ)
‖w‖2X

, ∀µ ∈ Λ . (9)

The lower bound αLB(µ) can be given by an a priori analysis before dis-
cretization (αLB(µ) would then be the coercivity constant of a(·, ·;µ) on
X), or numerically evaluated based on an approximation procedure, which
might be difficult in some cases, see [HRSP07,RHP].

Then the a posteriori estimator we use is defined in the following.

Proposition 1 For any linear subspace XN ,N of XN , there exists a com-
putable error bound ∆s

N (µ) such that:

|sN (µ)− sN ,N (µ)| ≤ ∆s
N (µ) :=

‖G(µ) uN ,N (µ)‖2X
αLB(µ)

, ∀µ ∈ Λ . (10)
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For consistency, we now briefly outline the proof of this proposition. We
simply observe the sequence of equalities

|sN (µ)− sN ,N (µ)| = |F (uN (µ))− F (uN ,N (µ))|
= |l(uN (µ)− uN ,N (µ))|
= |a(uN (µ), uN (µ)− uN ,N (µ);µ)|
= |a(uN (µ)− uN ,N (µ), uN (µ)− uN ,N (µ);µ)|
= ‖uN (µ)− uN ,N (µ)‖2µ . (11)

using the linearity of F = l, the variational problem and its discretized ap-
proximation in XN , the symmetry of a(·, ·;µ) and the fact that a(uN (µ)−
uN ,N (µ), v) = 0, for all v ∈ XN ,N . On the other hand, inserting v = uN (µ)−
uN ,N (µ) in the general equality a(uN (µ)−uN ,N (µ), v;µ) = −g(uN ,N (µ), v;µ)
(for all v ∈ XN ), and using the bound

√
αLB(µ)‖v‖X ≤ ‖v‖µ (for all

v ∈ XN ), we note that

‖uN (µ)− uN ,N (µ)‖µ ≤ ∆N (µ) :=
‖G(µ) uN ,N (µ)‖X√

αLB(µ)
. (12)

We conclude the proof of (10) combining (11) with (12).

We may similarly prove (but we will omit the argument here for brevity)
the inverse inequality:

∆s
N (µ) ≤

(
γ(µ)

αLB(µ)

)2

|sN (µ)− sN ,N (µ)| , (13)

using the continuity constant

γ(µ) = sup
w∈XN \{0}

sup
v∈XN \{0}

a(w, v;µ)
‖w‖X‖v‖X (14)

of the bilinear form a(·, ·;µ) on XN for all µ ∈ Λ, which is bounded above
by the continuity constant on X. The inequality (13) ensures sharpness of
the a posteriori estimator (10), depending of course on the quality of the
lower-bound αLB(µ).

2.2.2 Offline stage and greedy algorithm. The greedy algorithm employed
to select the snapshots uN (µn) typically reads:
1: choose µ1 ∈ Λ randomly
2: compute uN (µ1) to define XN ,1 = Span (uN (µ1))
3: for n = 2 to N do
3: choose µn ∈ argmax{∆s

n−1(µ), µ ∈ Λtrial}
3: compute uN (µn) to define XN ,n = Span (uN (µm) , m = 1, . . . , n)
4: end for
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In the initialization step, we may equally use µ1 ∈ argmax{|s(µ)| , µ ∈ Λsmalltrial},
where Λsmalltrial ⊂ Λ is a very small trial sample in Λ, much smaller than
Λ itself. Likewise, the algorithm can in practice be terminated when the
output approximation error is judged sufficiently small (say, |∆s

N (µ)| ≤ ε
for all µ ∈ Λtrial), and not when the iteration number reaches a maximum
n = N .

The choice of the trial sample Λtrial (and similarly, the smaller sample
Λsmalltrial) is a delicate practical issue. It is often simply taken as a ran-
dom sample in Λ. Of course, this first guess may be insufficient to reach
the required accuracy level ε in ∆s

N (µ), for all µ ∈ Λ, in the online stage.
But fortunately, if the computation of ∆s

N (µ) for any µ ∈ Λ is sufficiently
inexpensive, one can check this accuracy online for each query in µ. Should
∆s
N (µ) > ε occur for some online value of the parameter µ, one can still

explicitly compute uN (µ) for that exact same µ and enrich the space XN ,N
correspondingly. This bootstrap approach of course allows to reach the re-
quired accuracy level ε at that µ. It provides significant computational
reductions in the online stage provided that the RB approximation space
XN ,N does not need to be enriched too often online. We will explain the
methodology for fast computations of ∆s

N (µ) below.
The offline selection procedure needs to be consistent with the online

procedure, and thus the above greedy algorithm uses the same estimator
∆s
N (µ) for all µ ∈ Λtrial as the online procedure. Since the computation of

∆s
N (µ) is, by construction and on purpose, fast for all µ ∈ Λ, the exploration

of a very large training sample Λtrial (which is a subset of Λ) is possible
offline.

No systematic procedure seems to be available, which allows to build
good initial guesses Λtrial ex nihilo. Even for a specific problem, we are not
aware either of any a priori results that quantify how good an initial guess
Λtrial is . The only option is, as is indeed performed by the RB approach,
to a posteriori check, and possibly improve, the quality of the initial guess
Λtrial (however, the quality of the initial guess Λtrial can be slightly improved
offline by using adaptive training samples in the greedy algorithm [HO08b]).

The estimators ∆s
N (µ) are employed in the greedy algorithm to filter

candidate values for Λ. Numerous numerical evidences support the success
of this pragmatic approach [VRP02,VPRP03,HP07,PR07b,PR07a,Dep09,
NRP08,NRHP09].

Last, notice that the cost of offline computations scales as Woffline =
O(|Λtrial|)×

(∑N−1
n=1 wonline(n)

)
+N×O(N k) where wonline(n) is the marginal

cost of one online-type computation for uN ,n(µ) and ∆s
n(µ) at a selected

parameter value µ ∈ Λtrial (where 1 ≤ n ≤ N − 1), and O(|Λtrial|) includes
a max-search in Λtrial. (Recall that k ≤ 3 depends on the solver used for
large sparse linear systems.)

2.2.3 Online stage: fast computations including a posteriori estimators.
We now explain how to efficiently compute uN ,n(µ), sN ,n(µ) and ∆s

n(µ)
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once the RB approximation space XN ,n has been constructed. This task
has to be completed twice in the RB approach. First, this is used in the
many offline computations when µ ∈ Λtrial explores the trial sample in or-
der to find µn ∈ argmax{∆s

n−1(µ), µ ∈ Λtrial} at each iteration n of the
greedy algorithm. Second, this is used for the many online computations
(when n = N). We present the procedure in the latter case.

By construction, the family (uN (µn))1≤n≤N generated by the greedy
algorithm described in Section 2.2.2 is a basis of

XN ,N = Span (uN (µn) , n = 1, . . . , N) .

For any µ ∈ Λ, we would then like to compute the RB approximation
uN ,N (µ) =

∑N
n=1 UN,n(µ)uN (µn), which can be achieved by solving a small

N ×N (full) linear system

C(µ)UN (µ) = c,

for the vector UN (µ) = (UN,n(µ))1≤n≤N ∈ RN , with c = (l(uN (µn)))1≤n≤N
a vector in RN and C(µ) = C0 + µ C1 is a N × N real invertible matrix.

In practice, the matrix C(µ) is close to a singular matrix, and it is essential

to compute the RB approximation as uN ,N (µ) =
∑N
n=1 ŨN,n(µ)ζn using a

basis (ζn)1≤n≤N of XN ,N that is orthonormal for the inner-product (·, ·)X .
The determination of appropriate (ζn)1≤n≤N is easily performed, since N
is small, using Simple or Modified Gram-Schmidt procedures. The problem
to solve states:

Find ŨN (µ) ∈ RN solution to C̃(µ)ŨN (µ) = c̃ , (15)

where ŨN (µ) =
(
ŨN,n(µ)

)
1≤n≤N

∈ RN , c̃ = (l(ζn))1≤n≤N is a vector

in RN and C̃(µ) = C̃0 + µ C̃1 is a N × N real invertible matrix. So, for

each parameter value µ ∈ Λ, the entries of the latter matrix C̃(µ) can be

computed in O(N2) operations using the precomputed integrals (C̃q)ij =∫
D Aq∇ζi · ∇ζj , i, j = 1, . . . , N for q = 0, 1. (Note that the assumption of

affine parametrization is essential here). And the evaluation of ŨN (µ) for
many J � 1 parameter values µ ∈ Λ finally costs J × O(N3) operations
using exact solvers for symmetric problems like Cholesky [GvL96].

For each µ ∈ Λ, the output sN ,N (µ) = F (uN ,N (µ)) can also be com-
puted very fast in O(N) operations upon noting that F is linear and all
the values F (uN ,N (µn)), n = 1, . . . , N can be precomputed offline. The
corresponding a posteriori estimator ∆s

N (µ) given by (10) has now to be
computed, hopefully equally fast. Because of the affine dependence of A(µ)

on µ, a similar affine dependence G(µ) = G0 + µ G1 holds for the oper-

ator G (for all µ ∈ Λ), where (G0 w, v)X =
∫
D
A0∇w · ∇v −

∫
D
f v, and
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(G1 w, v)X =
∫
D
A1∇w · ∇v for all v, w, in XN . So one can evaluate very

fast the norm

‖G(µ) uN ,N (µ)‖2X = ‖G0 uN ,N (µ)‖2X + 2µ(G0 uN ,N (µ), G1 uN ,N (µ))X
+ µ2‖G1 uN ,N (µ)‖2X (16)

for µ ∈ Λ, once, with obvious notation, the scalar products (GiuN ,N (µp), GjuN ,N (µq))X ,
have been precomputed offline and stored. Assuming that the lower-bound
αLB(µ) used in (10) is known, the computation of the a posteriori estimator
∆s
N (µ) itself is thus also very fast. Notice that the affine parametrization (7)

plays a crucial role in the above decomposition of the computation.
Finally, the marginal cost of one online-type computation on XN ,n for

one parameter value µ is wonline(n) = O(n3) (where n = 1, . . . , N). So, as-
suming that no basis enrichment is necessary during the online stage using
the RB approximation space XN ,N (that is, ∆s

N (µ) < ε for all the parame-
ter values µ queried online), the total online cost for many J � 1 parameter
values µ scales as Wonline = J × O(N3). And, the total cost of computa-
tions with the RB approach is then Woffline + Wonline = N × O(N k) +
(J +O(|Λtrial|)) × O(N3), which has to be compared to J × O(N k) oper-
ations for a direct approach (with k ≤ 3 depending on the solver used for
large sparse linear systems). In the limit of infinitely many online evaluations
J � 1, the computational saving of the RB approach is tremendous.

2.3 Some elements of analysis, and some extensions, of the RB method

2.3.1 Some elements of theory. The RB approach has undoubtedly proved
successful in a large variety of applications [VRP02,VPRP03,HP07,PR07b,
PR07a,Dep09,NRP08,NRHP09]. The theoretical understanding of the ap-
proach is however still limited, and is far from covering all practical situ-
ations of interest. Of course, little theory is to be expected in the usual a
priori way. As already explained, the RB approach is deliberately designed
to a posteriori adapt to practical settings. The only available a priori anal-
ysis is related to two issues: the expected “theoretical” quality of the RB
approximation, and the efficiency of the greedy algorithm. We now briefly
summarize what is known to date on both issues.

The RB approach is in fact expected to perform ideally, in the following
sense. In the context of our simple problem (6), it is possible, adapting
the classical Lagrange interpolation theory to the context of parameterized
boundary value problems and assuming that the matrix A1 is non-negative,

to obtain an upper bound of (4). The following theoretical a priori analysis
result follows. It states the exponential accuracy of the RB approximation
in terms on the dimension N of the reduced basis.

Proposition 2 For all parameter ranges Λ := [µmin, µmax] ⊂ R∗+, there

exists an integer N0 = O
(

ln
(
µmax
µmin

))
as µmax

µmin
→ +∞, and a constant
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c > 0 independent of Λ such that, for all N ≥ N0 ≥ 2, there exist N
parameter values µmin =: λN1 < . . . < λNn < λNn+1 < . . . < λNN := µmax,
n = 2, . . . , N−2, sastisfying (recall ‖ ·‖0 = ‖ ·‖µ with µ = 0 is an Hilbertian
norm on X):

sup
µ∈Λ

(
inf
{‖uN (µ)− w‖0 , w ∈ Span

(
uN (λNn ), n = 1, . . . , N

)})
≤ e− c

N0−1 (N−1) sup
µ∈Λ
‖uN (µ)‖0 . (17)

We refer to [Boy09, Chapter 4] and [PR07b] for the proof of Proposition 2.

The approximation space Span
(
uN (λNn ), n = 1, . . . , N

)
used for the

statement and the proof of Proposition 2 is different from the RB approxi-
mation space XN ,N built in practice by the RB greedy algorithm. Numerical
experiments even suggest that it is not an equally good choice (see [PR07b]).
So it is desirable to better understand the actual outcome of the RB greedy
algorithm used offline. The concept of greedy algorithm appears in many
numerical approaches for problems of approximation. It typically consists
in a recursive procedure approximating an optimal solution to a complex
problem, using a sequence of sub-optimal solutions incrementally improved.
Otherwise stated, each iteration takes the solution of the previous itera-
tion as an initial guess and improves it. In the theory of approximation of
functions in particular [Dev93,V.N08], greedy algorithms are used to incre-
mentally compute the combinations of functions from a given dictionnary
which best approximate some given function. The RB greedy algorithm
has a somewhat different viewpoint: it incrementally computes for inte-
gers N some basis functions uN (µn), n = 1, . . . , N , spanning a linear space
XN ,N that best approximates a family of functions uN (µ), ∀µ ∈ Λ. The RB
greedy algorithm however has a flavour similar to other greedy algorithms
that typically build best-approximants in general classes of functions. It is
therefore possible to better understand the RB greedy algorithm using clas-
sical ingredients of approximation theory. The notion of Kolmogorov width
is an instance of such a classical ingredient. We refer to [Boy09, Chapter 3]
and [BMPPT10] for more details and some elements of analysis of the RB
greedy algorithm.

2.3.2 Extensions of the approach to cases more general than (6). The RB
approach of course does not only apply to simple situations like (6). Many
more general situations may be addressed, the major limitation to the gener-
icity of the approach being the need for constructing fast computable a
posteriori error estimators.

Instances of problems where the RB approach has been successfully
tested are the following: affine formulations, non-coercive linear elliptic prob-
lems, non-compliant linear elliptic problems, problems with non-affine pa-
rameters, nonlinear elliptic problems, semi-discretized (nonlinear) parabolic
problems. The purpose of this section is to briefly review these extensions



RB techniques for stochastic problems 15

of our above simple setting. In the next section, we will then introduce a
problem with random coefficients. For simplicity, we take it almost as simple
as the above problem (6), see (23)-(24) below. We anticipate that, if they
involve a random component, most of the extensions outlined in the present
section could also, in principle, be treated using the RB approach.

Affine formulations. Beyond the simple case presented above in Section 2.2,
which involves an elliptic operator in divergence form affinely depending on
the parameter, the RB approach can be extended to general elliptic prob-
lems with variational formulation of the form

Find u(µ) ∈ X solution to g(u(µ), v;µ) = 0 , ∀v ∈ X , (18)

where the form g(·, ·;µ) on X × X admits an affine parametrization, that
is, writes

g(w, v;µ) =
Q∑
q=1

Θq(µ)gq(w, v) , ∀w, v ∈ X , ∀µ ∈ Λ , (19)

with parameter-independent forms (gq(·, ·))1≤q≤Q (where some of the gq
may only depend on v) and coefficients (Θq(µ))1≤q≤Q. We emphasize that
the whole RB algorithm presented in the simple case above directly trans-
lates in this situation. In particular, the matrices used in the online evalu-
ation procedure can be constructed offline.

Non-coercive symmetric linear elliptic problems. The RB approach can be
extended to the case where the symmetric continuous bilinear form a(·, ·;µ)
is not coercive but only inf-sup stable. An example is the Helmholtz problem
treated in [SVH+06]. Our discussion of the elliptic problem above can be
adapted in a straightforward way, the only change in offline and online
computations being that the inf-sup stability constant on XN :

0 < βLB(µ) ≤ β(µ) := inf
w∈XN \{0}

sup
v∈XN \{0}

a(w, v;µ)
‖w‖X‖v‖X , ∀µ ∈ Λ , (20)

is substituted for αLB(µ). In practice, the evaluation of βLB(µ) is typically
more involved than the evaluation of the coercivity constant αLB(µ). We
refer to [HKY+09] for an appropriate technique.

Non-compliant linear elliptic problems. In (8), the particular choices of
F = l for the output and of symmetric matrices A(µ) for the definition

of the bilinear form a(·, ·;µ) correspond to a particular class of problems
called, we recall, compliant. Non-compliant linear elliptic problems can be
treated as well, but this is somewhat more technical. These are the cases
where, for some µ ∈ Λ at least, either u(µ) is solution to a weak form (18)
with g(v, w;µ) = a(v, w;µ)− l(w), ∀v, w ∈ X and the bilinear form a(·, ·;µ)
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is not symmetric, or the output is s(µ) = F (u(µ)) 6= l(u(µ)) with any linear
continuous function F : X → R.

For instance, we explain how to treat the case of a bilinear form a(·, ·;µ)
that is not symmetric, but of course still continuous and inf-sup stable. The
analysis requires considering the solution to the adjoint problem

Find ψ(µ) ∈ X solution to a(v, ψ(µ);µ) = −F (v) , ∀v ∈ X , (21)

along with the corresponding Galerkin discretization ψN (µ) ∈ XN , the
approximation space X?

N ,N? for the solution to (21), and an additional RB
approximation space X?

N ,N? ⊂ XN of dimension N? � N . The a posteriori
estimator obtained is similar to (10), and writes

|sN (µ)−sN ,N,N?(µ)| ≤ ∆s
N,N?(µ) :=

‖G(µ) uN ,N (µ)‖X ‖G?(µ) ψN ,N?(µ)‖X
βLB(µ)

,

(22)
where G? is defined from the adjoint problem (21) similarly to how G is
defined from the original problem. Notice that we again used the inf-sup
stability condition (20), which indeed holds true after permutation of the
arguments v and w (since we work in a finite dimensional space XN ), the
value of the inf sup constant however being not the same. To build the
reduced basis of the primal (respectively the dual) problem, in the offline
stage, the a posteriori estimator is based on ‖G(µ)uN ,N (µ)‖X (respectively
‖G?(µ) ψN ,N?(µ)‖X). Apart from the above introduction and use of the
adjoint problem, the treatment of the non-compliant case then basically
follows the same lines as that of the compliant case.

Notice that a simple, but less sharp, estimate of the error (namely the

left-hand side of (22)) can be obtained as
(

sup
x∈XN

|F (x)|
‖x‖X

)
‖G(µ)uN ,N (µ)‖X .

This simple error bound does not involve the solution of any dual problem,
and may be of interest in particular in the case when multiple outputs are
considered. However, the primal–dual error bound (22) will be much smaller
(since it is quadratic and not linear in the residual) and in many situations,
very easy to obtain, since the dual problem is typically simpler to solve than
the primal problem (it is indeed linear).

Non-affine parameters. We have exploited in several places the affine de-
pendence of A(µ) in (6) in terms of the coefficient µ. However, there are
many cases for which the dependency on the parameter is more complicated,
as for example, when associated with certain kinds of geometric variations.
Extending the RB approach to the case of non-affine parametrization is
feasible using suitable affine approximations. The computation of approx-
imations

∑M
m=1 β

M
m (µ)Am(x) for functions A(x;µ) (having in mind as an

example the prototypical problem (6)), is a general problem of approxima-
tion. A possibility, introduced and further developed in [BNMP04,GMNP07,
MNPP09] is to modify the standard greedy procedure described above, us-
ing interpolation. In short, the approach consists in selecting the coefficients
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β̃Mm (µ)

)
m=1,...,M

of the approximation IM [g(·;µ)] :=
∑M
m=1 β̃

M
m (µ)g(·;µgm)

of orderM to g(·;µ) (g denoting here a general bilinear form, as in (18)–(19))
using an interpolation at the so-called magic points xm selected sequentially
with

x1 ∈ argmax
x∈D

|g(·;µg1)| , xm ∈ argmax
x∈D

|g(·;µgm)− Im−1[g(·;µgm)]| ,

for all m = 2, . . . ,M . We refer to the contributions cited above for more
details.

Nonlinear elliptic problems For the extension of the RB approach to non-
linear problems, one major difficulty is again the construction of appro-
priate a posteriori error estimators, which, additionally, need to be com-
puted efficiently. Several examples of successful extensions are reported on
in the literature [VRP02,VPRP03,HP07,Dep09,PR07a,NRHP09,NRP08].
But no general theory can of course be developed in the nonlinear context.

Semi-discretized parabolic problems After time-discretization, parametrized
parabolic problems can be viewed as a collection of elliptic problems with
the time variable as an additional parameter. A natural idea is then to build
a reduced basis spanned by solutions for given values of the parameter and
the time variable. Examples of contributions are [GP05,GMNP07]. This first
approach has been improved by techniques combining the RB idea for the
parameter with a proper orthogonal decomposition (POD) in the time vari-
able, first introduced in [HO08a] and further discussed in [KP09]. A route
which would be interesting to follow could be to try to adapt on-the-fly, as
time goes, the reduced basis which is the most adapted to the current time.

3 RB Approach for Boundary Value Problems with Stochastic
Coefficients

The first application of the RB approach to a problem with stochastic coeffi-
cients is introduced in [BBM+09]. The purpose of this section is to overview
this contribution, in particular showing how the general RB approach needs
to be adapted to the specificities of the problem. We refer to [BBM+09] for
all the details omitted below.

3.1 Setting of the problem

Let us denote by (Ω,F ,P) a probability space, and by ω ∈ Ω the stochastic
variable. We consider the stochastic field U(·, ω) that is the almost sure
solution to

−div
(
A(x)∇U(x, ω)

)
= 0 , ∀x ∈ D , (23)
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D2

D1ΓB

ΓN

ΓR

Figure 1 D has the geometry of a (piece of) heat sink: a spreader D2 with a fin
D1 on top.

supplied with a random Robin boundary condition

n(x) ·A(x)∇U(x, ω) +B(x, ω) U(x, ω) = g(x) , ∀x ∈ ∂D . (24)

In (24), the matrix A(x) writes A(x) = σ(x)Id where 0 < σ(x) <∞ for a.e.

x ∈ D. Of course, n denotes the outward unit normal at the boundary of
the smooth domain D. The boundary is divided into three non-overlapping
open subsets: ∂D =

(
ΓN ∪ ΓR ∪ ΓB

)
(see Fig. 1). The boundary source term

g is assumed to vanish everywhere except on ΓR where it has constant unit
value: g(x) = 1ΓR ,∀x ∈ ∂D. The scalar random field B(·, ω), parametrizing
the boundary condition, also vanishes almost everywhere on the boundary
∂D , except on some subset ΓB of the boundary ∂D with non-zero measure,
where 0 < b̄min ≤ B(·, ω) ≤ b̄max <∞ almost surely and almost everywhere.
Note that on ΓN, (24) thus reduces to homogeneous Neumann conditions.
Physically, U(·, ω) models the steady-state temperature field in a heat sink
consisting of an isotropic material of thermal conductivity σ, contained in
the domain D. The sink is subject to zero heat flux on ΓN, a constant flux
on ΓR modeling the heat source, and a convective heat transfer on ΓB.
The Biot number B models the effect of the exterior fluid convection on
the solid thermal conduction problem inside D. In real world engineering
applications, the value of B is only approximately known. It is therefore
legitimate to encode the uncertainties on B using a random field B(·, ω),
see [LL02] for more details.

Correspondingly, the solution to (23)-(24), along with any output com-
puted from this solution, are also random quantities. Only statitistics on
these quantities are relevant. We thus consider two statistical outputs for
the problem: the expected value E(S) and the variance Var(S) of the ran-
dom variable

S(ω) = F (U( · , ω)) =
∫
ΓR

U( · , ω) (25)

linearly depending on the trace of the solution U( · , ω) on ΓR.
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A typical question, example of an Uncertainty Quantification problem, is
to quantify the sensitivity of the output S(ω). Many existing contributions
already addressed the issue: [BTZ05,DBO01,MK05,DNP+04].

A possible approach (which we will indeed adopt here) is to evaluate
E(S) and Var(S) with the plain Monte-Carlo method using M independent
random variables (Sm)1≤m≤M with the same distribution law as S. The
expectation and the variance are respectively approached by the empirical
sums

EM [(Sm)] =
1
M

M∑
m=1

Sm, VM [(Sm)] =
1

M − 1

M∑
n=1

(Sn − EM [(Sm)])2
,

(26)

where the normalization factors used (respectively
1
M

and
1

M − 1
) allow,

as is traditional in the community of Monte-Carlo methods, to have un-
biased estimators: E (EM [(Sm)]) = E(S) and E (VM [(Sm)]) = Var(S) for
all M . Large values of M are typically needed to obtain from (26) accu-
rate approximations of E(S) and Var(S). Since, for each m = 1, . . . ,M , a
new realization of the random parameter B is considered and the boundary
value problem (23)-(24) has to be solved, the task is clearly computationally
demanding. It is a many-query context, appropriate for the application of
the RB approach.

3.2 Discretization of the problem

We begin by considering the Karhunen–Loève (abbreviated as KL) expan-
sion

B(x, ω) = bG(x) + b

K∑
k=1

Φk(x) Yk(ω) (27)

of the coefficient B(x, ω) (see [Kar46,Loè78,ST06]). In (27), K denotes
the (possibly infinite) rank of the covariance operator for B(·, ω), which
has eigenvectors (Φk)1≤k≤K and eigenvalues (λk)1≤k≤K (sorted in decreas-
ing order). The random variables (Yk)1≤k≤K are mutually uncorrelated in
L2

P(Ω) with zero mean, G is supposed to be normalized
∫
∂D G = 1 and

b =
∫
Ω
dP(ω)

∫
∂D B(·, ω) is a fixed intensity factor.

Based on (27), we introduce the deterministic function

b(x, y) = bG(x) + b

K∑
k=1

Φk(x)yk (28)

defined for almost all x ∈ ∂D and all y ∈ Λy ⊂ RK, where Λy denotes
the range of the sequence Y = (Yk)1≤k≤K of random variables appearing
in (27). Notice that B(x, ω) = b(x, y(ω)).
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It is next useful to consider, for any positive integer K ≤ K, trun-
cated versions of the expansions above, and to define, with obvious no-
tation, UK(·, ω) as the solution to the problem (23)-(24) where B(·, ω) is
replaced by the truncated KL expansion BK(·, ω) at order K. Similarly, for
all yK ∈ Λy, uK( · ; yK) is defined as the solution to−div

(
A(x)∇uK(x; yK)

)
= 0 , ∀x ∈ D ,

n(x) ·A(x)∇uK(x; yK) + bK(x, yK)uK(x; yK) = g(x) , ∀x ∈ ∂D,
(29)

where bK is the K-truncated sum (28).
For a given integer K ≤ K, we approximate the random variable S(ω) by

SK(ω) := F (UK(·, ω)) where UK(·, ω) ≡ uK(·;Y K(ω)), and the statistical
outputs E(SK) and Var(SK) by the empirical sums

EM [(SmK )] =
1
M

M∑
m=1

SmK , VM [(SmK )] =
1

M − 1

M∑
n=1

(SnK − EM [(SmK )])2
,

(30)
using M independent realizations of the random vector Y K . In practice,
uK(·;Y Km ) is approached using, say, a finite element approximation uK,N (·;Y Km )
with N � 1 degrees of freedom. Repeating the task for M realizations of the
K-dimensional random vector Y K may be overwhelming, and this is where
the RB approach comes into the picture. We now present the application of
the RB approach to solve problem (29), parametrized by yK ∈ Λy.

In echo to our presentation of Section 2, note that problem (29) is
affine in the input parameter yK thanks to the KL expansion (28) of b,
which decouples the dependence on x and the other variables. To use the
RB approach for this problem, we consider S in (30) as the output of the
problem, the parameter being yK (this parameter takes the values Y K,m,
m ∈ {1, . . . ,M} being the realization number of Y K) and, as will become
clear below, the offline stage is standard. On the other hand, in the on-
line stage, the a posteriori estimation is completed to take into account the
truncation error in K in (28).

Before we turn to this, we emphasize that we have performed above an
approximation of the coefficient b, since we have truncated its KL expansion.
The corresponding error should be estimated. In addition, the problem (29)
after truncation might be ill-posed, even though the original problem (23)-
(24) is well posed. To avoid any corresponding pathological issue, we con-
sider a stochastic coefficient b having a KL expansion (28) that is positive for
any truncation order K (which is a sufficient condition to ensure the well-
posedness of (23)-(24)), and which converges absolutely a.e. in ∂D when
K → K. For this purpose, (i) we require for k = 1, . . . ,K a uniform bound
‖Φk‖L∞(ΓB) ≤ φ, (ii) we set Yk := Υ

√
λkZk with independent random vari-

ables Zk uniformly distributed in the range (−√3,
√

3), Υ being a positive
coefficient, and (iii) we also ask

∑K
k=1

√
λk < ∞. Note that, if K = ∞,

condition (iii) imposes a sufficiently fast decay of the eigenvalues λk while
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k increases. We will see in Section 3.4 that this fast decay is also impor-
tant for the practical success of our RB approach. Of course, (i)-(ii)-(iii) are
arbitrary conditions that we impose for simplicity. Alternative settings are
possible.

3.3 Reduced-Basis ingredients

We know from Section 2 that two essential ingredients in the RB method
are an a posteriori estimator and a greedy selection procedure. Like in most
applications of the RB method, both ingredients have to be adapted to the
specificities of the present context.

As mentioned above, the statistical outputs (30) require new a posteriori
estimators. Moreover, the statistical outputs can only be computed after M
queries Y Km , m = 1, . . . ,M , in the parameter yK , so these new a posteriori
estimators cannot be used in the offline step.

The global error consists of two, independent contributions: the first
one is related to the RB approximation, the second one is related to the
truncation of the KL expansion.

In the greedy algorithm, we use a standard a posteriori estimation |SmK,N−
SmK,N ,N | ≤ ∆s

N,K(Y Km ) for the error between the finite element approxi-
mation SmK,N := F(uK,N ( · ;Y Km )) and the RB approximation SmK,N ,N :=
F(uK,N ,N ( · ;Y Km )) of SmK at a fixed truncation order K, for any realization
Y Km ∈ Λy. This is classical [Boy08,NVP05,RHP] and similar to our exam-
ple of Section 2, see [BBM+09] for details. Note however that the coercivity
constant of the bilinear form for the variational formulation

Find u(·; yK) ∈ H1(D) s.t.∫
D
σ∇u(·; yK) · ∇v +

∫
ΓB

b(·, yK)u(·; yK)v =
∫
ΓR

g v, ∀ v ∈ H1(D) (31)

of problem (29) depends on K. To avoid the additional computation of
the coercivity constant for each K, we impose b(x, yK) ≥ bG(x)/2, for all
x ∈ ΓB , and thus get a uniform lower bound for the coercivity constant. In
practice, this imposes a limit 0 < Υ ≤ Υmax on the intensity factor in the
ranges of the random variables Yk, thus on the random fluctuations of the
stochastic coefficient, where Υmax is fixed for all K ∈ {0, . . . ,K}

Let us now discuss the online a posteriori error estimation. As for the
truncation error, an a posteriori estimation |SmN −SmK,N | = |F(uN (·;Y Km ))−
F(uK,N ( · ;Y Km ))| ≤ ∆t

N,K(Y Km ) is derived in [BBM+09]. The error estima-
tors ∆s

N,K(Y Km ) and ∆t
N,K(Y Km ), respectively for the RB approximation

and the truncation, are eventually combined for m = 1, . . . ,M to yield
global error bounds in the Monte-Carlo estimations of the statistical out-
puts: |EM [(SmK,N ,N )] − EM [(SmN )]| ≤ ∆E((SmK,N ,N )) and |VM [(SmK,N ,N )] −
VM [(SmN )]| ≤ ∆V ((SmK,N ,N )). The control of the truncation error may be
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used to improve the performance of the reduced basis method. In partic-
ular, if the truncation error happens to be too small compared to the RB
approximation error, the truncation rank K may be reduced.

3.4 Numerical results

Our numerical simulations presented in [BBM+09] are performed on the
steady heat conduction problem (23)-(24) inside the T-shaped heat sink
D ⊂ D1∪D2 pictured in Fig. 1. The heat sink comprises a 2×1 rectangular
substrate (spreader) D2 ≡ (−1, 1) × (0, 1) and a 0.5 × 4 thermal fin D1 ≡
(−0.25, 0.25)× (1, 5) on top. The diffusion coefficient is piecewise constant,
σ = 1D1 +σ0 1D2 , where 1Di of course denotes the characteristic function of
domain Di (i = 1, 2). The finite element approximation is computed using
quadratic finite elements on a regular mesh, with N = 6 882 degrees of
freedom. The thermal coefficient is σ0 = 2.0. To construct the random input
field b(·, ω), we consider the covariance function Covar(b(x, ω)b(y, ω)) =
(bΥ )2 exp(−(x − y)2/δ2) for b = 0.5, Υ = 0.058, and a correlation length
δ = 0.5. We perform its KL expansion and keep only the largest K = 25
terms. We then fix G(x) ≡ 1 and the variables Yk(ω), 1 ≤ k ≤ K, as
independent, uniformly distributed random variables. This defines b(·, ω) as
the right-hand side of (27).

After computing the reduced basis offline with our RB greedy algorithm
on a trial sample of size |Λtrial| = 10 000, the global approximation error in
the output Monte-Carlo sums EM [(SmK,N ,N )] and VM [(SmK,N ,N )] decays very
fast (in fact, exponentially) with the size N = 1, . . . , 14 of the reduced basis,
see Fig. 2 with K = 20. Note that M = 10 000 for the Monte-Carlo sums.
We would also like to mention that these reduced bases have actually been
obtained letting varying not only the parameter Y K , but also additional
parameters (namely the diffusion coefficient σ and the mean b of the Biot
number) but this does not influence qualitatively the results presented here,
and we omit this technical issue for simplicity (see [BBM+09] for more
details).

It is observed that the global approximation error for truncated prob-
lems at a fixed order K and for various N (the size of the reduced basis) is
quickly dominated by the truncation error. More precisely, beyond a critical
value N ≥ Ncrit(K), where Ncrit(K) is increasing with K, the global ap-
proximation error becomes constant. Notice that the approximation error
is estimated as usual by a posteriori estimation techniques.

When K is infinite (or finite but huge), the control of the KL truncation
error may be difficult. This is a general issue for problems involving a de-
composition of the stochastic coefficient. Our RB approach is still efficient
in some regimes with large K, but not all. In particular, a fast decay of
the ranges of the parameters (yk)1≤k≤K facilitates the exploration of Λy

by the greedy algorithm, which allows in return to treat large K when the
eigenvalues λk decay sufficiently fast with k.
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Figure 2 Global error bounds for the RB approximation error and the KL trun-
cation error of the output expectation (top: ∆E((SmK,N ,N ))) and of the output
variance (bottom: ∆V ((SmK,N ,N ))), as functions of the size N = 2, . . . , 14 of the
reduced basis, at different truncation orders K = 5, 10, 15, 20.

In [BBM+09], we have decreased the correlation length to δ = 0.2 and
could treat up to K = 45 parameters, obtaining the results in a total com-
putational time still fifty times as short as for direct finite element compu-
tations.

4 Variance Reduction using an RB approach

In this section, we present a variance reduction technique based upon an
RB approach, which has been proposed recently in [BL09]. In short, the
RB approximation is used as a control variate to reduce the variance of the
original Monte-Carlo calculations.
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4.1 Setting of the problem

Suppose we need to compute repeatedly, for many values of the parameter
λ ∈ Λ, the Monte-Carlo approximation (using an empirical mean) of the
expectation E(Zλ) of a functional

Zλ = gλ(Xλ
T )−

∫ T

0

fλ(s,Xλ
s ) ds (32)

of the solutions
(
Xλ
t , t ∈ [0, T ]

)
to the Stochastic Differential Equation (SDE)

Xλ
t = x+

∫ t

0

bλ(s,Xλ
s ) ds+

∫ t

0

σλ(s,Xλ
s )dBs, (33)

where
(
Bt ∈ Rd, t ∈ [0, T ]

)
is a d-dimensional standard Brownian motion.

The parameter λ parametrizes the functions gλ, fλ, bλ and σλ. In (33), we
assume bλ and σλ allow for the Itô processes

(
Xλ
t ∈ Rd, t ∈ [0, T ]

)
to be well

defined, for every λ ∈ Λ. Notice that we have supplied the equation with
the deterministic initial condition Xλ

0 = x ∈ Rd. In addition, fλ and gλ are
also assumed smooth, such that Zλ ∈ L2(Ω). Recall that a symbolic concise
notation for (33) is

dXλ
t = bλ(t,Xλ

t ) dt+ σλ(t,Xλ
t ) dBt with Xλ

0 = x.

Such parametrized problems are encountered in numerous applications,
such as the calibration of the volatility in finance, or the molecular sim-
ulation of Brownian particles in materials science. For the applications in
finance, E(Zλ) is typically the price of an European option in the Black-
Scholes model, and λ enters the diffusion term (the latter being called the
volatility in this context). The calibration of the volatility consists in opti-
mizing λ so that the prices observed on the market are close to the prices
predicted by the model. Any optimization procedure requires the evaluation
of E(Zλ) for many values of λ. On the other hand, the typical application
we have in mind in materials science is related to polymeric fluids mod-
elling. There, E(Zλ) is a stress tensor which enters the classical momentum
conservation equation on velocity and pressure, and Xλ

t is a vector describ-
ing the configuration of the polymer chain, which evolves according to an
overdamped Langevin equation, namely a stochastic differential equation
such as (33). In this context, λ is typically the gradient of the velocity field
surrounding the polymer chain at a given point in the fluid domain. The
parameter λ enters the drift coefficient bλ. The computation of the stress
tensor has to be performed for each time step, and for many points in the
fluid domain, which again defined a many-query context, well adapted to the
RB approach. For more details on these two applications, we refer to [BL09].

We consider the general form (32)–(33) of the problem and as output the
Monte-Carlo estimation EM[(Zλm)] = 1

M

∑M
m=1 Z

λ
m parametrized by λ ∈ Λ,

where we recall (Zλm) denotes i.i.d. random variables with the same law as
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Zλ. These random variables are build in practice by considering a collection
of realizations of (33), each one driven by a Brownian motion independent
from the others. In view of the Central Limit Theorem, the rate at which the
Monte-Carlo approximation EM[(Zλm)] approaches its limit E(Zλ) is given
by 1√

M
, the prefactor being proportional to the variance of Zλ. A standard

approach for reducing the amount of computations is therefore variance
reduction [Aro04,MO95,OvdBH97,BP99,HDH64,MT06]. We focus on one
particular variance reduction technique: the control variate method. It con-
sists in introducing a so called control variate Y λ ∈ L2(Ω), assumed centered
here for simplicity:

E(Y λ) = 0,

and in considering the equality:

E(Zλ) = E(Zλ − Y λ).

The expectation E(Zλ − Y λ) is approximated by Monte-Carlo estimations
EM[(Zλm−Y λm)] which hopefully have, for a well chosen Y λ, a smaller statis-
tical error than direct Monte-Carlo estimations EM[(Zλm)] of E(Zλ). More
precisely, Y λ is expected to be chosen so that Var(Zλ) � Var(Zλ − Y λ).
The central limit theorem yields

EM [(Zλm − Y λm)] :=
1
M

M∑
m=1

(Zλm − Y λm) P−a.s.−−−−→
M→∞

E(Zλ − Y λ), (34)

where the error is controlled by confidence intervals, in turns functions of
the variance of the random variable at hand. The empirical variance

VarM
(
(Zλm − Y λm)

)
:=

1
M − 1

M∑
n=1

(
Zλn − Y λn − EM ((Zλm − Y λm))

)2
(35)

which, as M →∞, converges to Var(Zλ), yields a computable error bound.
The Central Limit Theorem indeed states that: for all a > 0,

P

(∣∣E(Zλ − Y λ)− EM
(
(Zλm − Y λm)

)∣∣ ≤ a√VarM ((Zλm − Y λm))
M

)
−−−−→
M→∞

∫ a

−a

e−x
2/2

√
2π

dx .

(36)
Evaluating the empirical variance (35) is therefore an ingredient in Monte-
Carlo computations, similar to what a posteriori estimates are for a deter-
ministic problem.

Of course, the ideal control variate is, ∀λ ∈ Λ:

Y λ = Zλ −E(Zλ) , (37)

since then, Var
(
Zλ − Y λ) = 0. This is however not a practical control

variate since E(Zλ) itself, the quantity we are trying to evaluate, is necessary
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to compute (37). Itô calculus shows that the optimal control variate (37)
also writes:

Y λ =
∫ T

0

∇uλ(s,Xλ
s ) · σλ(s,Xλ

s )dBs, (38)

where uλ(t, y) ∈ C1
(
[0, T ], C2(Rd)

)
satisfies the backward Kolmogorov

equation: {
∂tu

λ + bλ · ∇uλ +
1
2
σλ(σλ)T : ∇2uλ = fλ ,

uλ(T, ·) = gλ(·).
(39)

Even using this reformulation, the choice (37) is impractical since solving
the partial differential equation (39) is at least as difficult as computing
E(Zλ). We will however explain now that both ”impractical” approaches
above may give birth to a practical variance reduction method, when they
are combined with a RB type approximation.

Loosely speaking, the idea consists in: (i) in the offline stage, compute
fine approximations of E(Zλ) or respectively uλ for some appropriate values
of λ, in order to obtain fine approximations of the optimal control variate
Y λ (at those values) and (ii) in the online stage, for a new parameter λ, use
as a control variate the best linear combination of the variables built offline.

4.2 Two algorithms for variance reduction by the RB approach

Using suitable time discretization methods [KP00], realizations of the stochas-
tic process (33) and the corresponding functional (32) can be computed for
any λ ∈ Λ, as precisely as needed. Leaving aside all technicalities related to
time discretization, we thus focus on the Monte Carlo discretization.

We construct two algorithms, which can be outlined as follows.
Algorithm 1 (based on formulation (37)):

– Offline stage: Build an appropriate set of values {λ1, . . . , λN} and, con-
currently, for each λ ∈ {λ1, . . . , λN} compute an accurate approximation
EMlarge [(Z

λ
m)] of E(Zλ) (for a very large number Mlarge of realizations).

At the end of the offline step, accurate approximations

Ỹ λ = Zλ − EMlarge [Z
λ
m]

of the optimal control variate Y λ are at hand. The set of values {λ1, . . . , λN}
is chosen in order to ensure the maximal variance reduction in the forth-
coming online computations (see below for more details).

– Online stage: For any λ ∈ Λ, compute a control variate Ỹ λN for the
Monte-Carlo estimation of E(Zλ) as a linear combination of

(Ȳi = Ỹ λi)1≤i≤N .

Algorithm 2 (based on formulation (38)):
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– Offline stage: Build an appropriate set of values {λ1, . . . , λN} and, con-
currently, for each λ ∈ {λ1, . . . , λN}, compute an accurate approxima-
tion ũλ of uλ, by solving the partial differential equation (39). The set
of values {λ1, . . . , λN} is chosen in order to ensure the maximal variance
reduction in the forthcoming online computations (see below for more
details).

– Online stage: For any λ ∈ Λ, compute a control variate Ỹ λN for the
Monte-Carlo estimation of E(Zλ) as a linear combination of(

Ȳi =
∫ T

0

∇ũλi(s,Xλ
s ) · σλ(s,Xλ

s )dBs

)
1≤i≤N

.

In both algorithms, we denote by Ỹ λN the control variate built online as a
linear combinations of the Ȳi’s, the lowerscript index N emphasizing that
the approximation is computed on a basis with N elements. An important
practical ingredient in both algorithms is to use for the computation of Zλ

the exact same Brownian motions as those used to build the control variates.
The construction of set of values λ ∈ {λ1, . . . , λN} in the offline stage of

both algorithms is done using a greedy algorithm similar to those considered
in the preceeding sections. The only difference is that the error estimator
used is the empirical variance. Before entering that, we need to make precise
how the linear combinations are built online, since this linear combination
construction is also used offline to choose the λi’s.

The online stage of both algorithms 1 and 2 follow the same line: for
a given parameter value λ ∈ Λ, a control variate Ỹ λN for Zλ is built as an
appropriate linear combination of the control variates (Ȳi)1≤i≤N (obtained
from the offline computations). The criterium used to select this appropriate
combination is based on a minimization of the variance:

Ỹ λN =
N∑
n=1

α∗n Ȳn, (40)

where

(α∗n)1≤n≤N = arg min
(αn)1≤n≤N∈RN

Var

(
Zλ −

N∑
n=1

αnȲn

)
. (41)

In practice the variance in (41) is of course replaced by its empirical approx-
imation VarMsmall . Notice that we have an error estimate of the Monte Carlo
approximation by considering VarMsmall

(
Zλ − Ỹ λN

)
. It is easy to check that

the least squares problem (41) is computationally inexpensive to solve since
it amounts to solving a linear N ×N system, with N small. More precisely,
this linear system writes:

CMsmallα
∗ = bMsmall
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where α∗ here denotes the vector with components α∗n, CMsmall is a matrix
with (i, j)-th entry

CovMsmall(Ȳi,m, Ȳj,m)

and bMsmall is a vecteur with j-th component

CovMsmall(Z
λ
m, Ȳj,m)

where for two collections of random variables Um and Vm,

CovM (Um, Vm) =
1
M

M∑
m=1

UmVm −
(

1
M

M∑
m=1

Um

)(
1
M

M∑
m=1

Vm

)
.

In summary, the computational complexity of one online evaluation is the
sum of the computational cost of the construction of bMsmall (wich scales like
NMsmall), and of the resolution of the linear system (which scales like N2

for Algorithm 1 since the SVD decomposion of CMsmall may be precomputed
offline, and scales like N3 for Algorithm 2, since the whole matrix CMsmall

has to be recomputed for each new value of λ).
The greedy algorithms used in the offline stages follow the same line as

in the classical RB approach. More precisely, for Algorithm 1, the offline
stage writes: Let λ1 ∈ Λtrial be already chosen and compute EMlarge(Z

λ1).
Then, for i = 1, . . . , N − 1, for all λ ∈ Λtrial, compute Ỹ λi and inexpensive
approximations:

Ei(λ) := EMsmall(Z
λ − Ỹ λi ) for E(Zλ) ,

εi(λ) := VarMsmall

(
Zλ − Ỹ λi

)
for Var

(
Zλ − Ỹ λi

)
.

Select λi+1 ∈ argmax
λ∈Λtrial\{λj ,j=1,...,i}

{εi(λ)}, and compute EMlarge(Z
λi+1).

In practice, the number N is determined such that εN (λN+1) ≤ ε, for a
given threshold ε. The greedy procedure for Algorithm 2 is similar.

4.3 Reduced-Basis ingredients

The algorithms presented above to build a control variate using a reduced
basis share many features with the classical RB approach. The approach
follows a two-stage offline / online strategy. The reduced basis is built using
snapshots (namely solutions for well chosen values of the parameters). An
inexpensive error estimator is used both in the offline stage to build the
reduced basis in the greedy algorithm, and in the online stage to check
that the variance reduction is correct for new values of the parameters. The
construction of the linear combinations for the control variates is based on a
minimization principle, which is reminiscent of the Galerkin procedure (3).

The practical efficiency observed on specific examples is similar for the
two algorithms. They both satisfactorily reduce variance. Compared to the



RB techniques for stochastic problems 29

plain Monte Carlo method without variance reduction, the variance is di-
vided at least by a factor 102, and typically by a factor 104. Algorithm 2
appears to be computationally much more demanding than Algorithm 1 and
less general, since it requires the computation (and the storage) of an ap-
proximation of the solution to the backward Kolmogorov equation (39) for
a few values of the parameter. In particular, Algorithm 2 seems impractical
for high dimensional problems (Xλ

t ∈ Rd with d large). On the other hand,
Algorithm 2 seems to be more robust with respect to the choice of Λtrial: it
yields good variance reduction even for large variations of the parameter λ,
in the online stage. We refer to [BL09] for more details.

Notice also that Algorithm 1 is not restricted to a random variable Zλ

that is defined as a functional of a solution to a SDE. The approach can
be generalized to any parametrized random variables, as long as there is
a natural method to generate correlated samples for various values of the
parameter. A natural setting for such a situation is the computation of
a quantity E(gλ(X)) for a random variable X with given arbitrary law,
independent of the parameter λ. In such a situation, it is easy to generate
correlated samples by using the same realizations of the random variable X
for various values of the parameter λ.

4.4 Numerical Results

The numerical results shown on Figure 3 are taken from [BL09] and relate
to the second application mentioned in the introduction, namely multiscale
models for polymeric fluids (see [LL07] for a general introduction). In this
context, the non-Newtonian stress tensor is defined by the Kramers formula
as an expectation E(Zλ) of the random variable:

Zλ = Xλ
T ⊗ F (Xλ

T ) , (42)

where Xλ
t is a vector modelling the conformation of the polymer chain. The

latter evolves according to an overdamped Langevin equation:

dXλ
t =

(
λXλ

t − F (Xλ
t )
)
dt+ dBt. (43)

Equation (43) holds at each position of the fluid domain, the parameter λ ∈
Rd×d (d = 2 or 3) being the local instantaneous value of the velocity gradient
field at the position considered. The evolution of the ”end-to-end vector”Xλ

t

is governed by three forces: a hydrodynamic force λXλ
t , Brownian collisions

Bt against the solvent molecules, and an entropic force F (Xλ
t ) specific to

the polymer molecule. Typically, this entropic force reads either F (Xλ
t ) =

Xλ
t (for the Hookean dumbbells), or F (Xλ

t ) = Xλt
1−|Xλt |2/b

(for the Finitely-

Extensible Nonlinear Elastic (FENE) dumbells, assuming |Xλ
t | <

√
b).

The numerical simulations of the flow evolution of a polymeric fluid using
such a model typically consist, on many successive time slots [nT, (n+1)T ],
of two steps: (i) the computation of (43), for a given gradient velocity field
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λ, at many points of the fluid domain (think of the nodes of a finite element
mesh) and (ii) the computation of a new velocity gradient field in the fluid
domain, for a given value of the non-Newtonian stress tensor, by solving
the classical momentum and mass conservation equations, we omit here for
brevity. Thus, E(Zλ) has to be computed for many values λ corresponding
to many spatial positions and many possible velocity fields at each such
positions in the fluid domain.

In the numerical simulations of Figure 3, the SDE (43) for FENE dumb-
bells when d = 2 is discretized with the Euler-Maruyama scheme using 100
iterations with a constant time step ∆t = 10−2 starting from a determinis-
tic initial condition x = (1, 1). Reflecting boundary conditions are imposed
on the boundary of the ball with radius

√
b. For b = 16 and |Λtrial| = 100

trial parameter values randomly chosen in the cubic range Λ = [−1, 1]3

(the traceless matrix λ has entries (λ11 = −λ22, λ12, λ21)), a greedy algo-
rithm is used to incrementally select N = 20 parameter values after solving
|Λtrial| = 100 least-squares problems (41) (with Msmall = 1000) at each
step of the greedy algorithm (one for each of the trial parameter values
λ ∈ Λtrial). Then, the N = 20 selected parameter values are used online
for variance reduction of a test sample of |Λtest| = 1000 random parameter
values.

The variance reduction obtained online by Algorithm 1 with Mlarge =
100Msmall is very interesting, of about 4 orders of magnitude. For the Algo-
rithm 2, we use the exact solution ũλ to the Kolmogorov backward equation
for Hookean dumbells as an approximation to uλ solution to (39). This also
yields satisfying variance reduction though apparently not as good as in
Algorithm 1. As mentioned above, Algorithm 2 is computationally more
demanding but seems to be slightly more robust than Algorithm 1 (namely
when some online sample test Λtestwide uniformly distributed in [−2, 2]3

extrapolates the trial sample used offline, see Fig. 3).
Our numerical tests, although preliminary, already show that the reiter-

ated computations of parametrized Monte-Carlo estimations seem to be a
promising opportunity of applications for RB approaches. More generally,
even if RB approaches may not be accurate enough for some applications,
they may be seen as good methods to obtain first estimates, which can then
be used to construct more refined approximations (using variance reduction
as mentioned here, or maybe preconditionning based on the coarse-grained
RB model). This is perhaps the most important conclusion of the work
described in this section.

5 Perspectives

The standard RB method has proved numerically efficient and reliable
at reducing the cost of computations for the approximation of solutions
to parametrized boundary value problems in numerous benchmark many-
query frameworks. These accomplishments claim for a wider use of the RB
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Figure 3 Algorithm 1 (left) and 2 (right) for FENE model with b = 16. The
x-axis is the size N of the reduced basis. We represent the minimum +, mean
× and maximum ◦ of VarM [Zλ − Ỹ λN ]/EM [Zλ − Ỹ λN ]2 over online test samples
Λtest ⊂ Λ (top) and Λtestwide ⊃ Λ (bottom) of parameters.

method in more realistic settings, and even suggest that some RB ideas
could still be extended in numerous many-query frameworks yet largely un-
explored, including the stochastic context. The success of the RB approach
in parametrized boundary value problems is only understood precisely from
a mathematical perspective in a few very simple cases. This should motivate
further theoretical investigations.

In this section, we discuss various tracks for the development of reduced
basis techniques, both from a methodological viewpoint and in terms of
possible applications, with a focus on the stochatic context presented above.

5.1 A posteriori estimation in the stochastic context

We already emphasized that a crucial ingredient in the RB approach is an
accurate and fast a posteriori estimator for the approximation error between
two levels of discretization (the initially discretized, non-reduced one and
the reduced one). Therefore, before everything, the future developments of
the RB method should definitely concentrate on improving the a posteri-
ori estimators. In particular, for the new contexts of application that are
stochastic, there seems to remain some room for a yet better understanding
of the a posteriori error estimation. More precisely, the best way to evaluate
the reduction error when the Galerkin approximations (used by determin-
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istic applications) are replaced with Monte-Carlo approximations is still
unclear. For a first application of the RB ideas to stochastic applications,
we have used confidence intervals as a probabilistic measure of the Monte-
Carlo approximation error. These confidence intervals are only reliable in
the limit of infinitely many realizations of the random variables. But there
are other possibilities, like using non-asymptotic upper-bounds for the error
which hold whatever the number of realizations (using for example Cheby-
shev inequalities or Berry-Esseen type bounds). In addition, the numerical
evaluation of the variance is not obvious either. Until now, we have used
Monte-Carlo estimators, but there exist other possibilities too which could
be faster or more accurate and should thus be tested. Finally, another idea
related to the method presented in Section 4 would be to mimick the usual
RB approach, by considering that the reference result is the one obtained
with Mlarge realizations, and to develop a posteriori error bounds with re-
spect to this reference solution (using for example conditional expectations
with respect to the Mlarge realizations).

5.2 Affine decompositions and the stochastic context

As explained above, the RB approach is to date only efficient at yielding
computational reductions in the context of affine parametrization. How-
ever, as shown in the previous sections, a many-query parametrized frame-
work is not necessarily parametrized in an affine way. So one may have to
pretreat the problem in order to transform it as the limit of a sequence
of affinely-parametrized problems. It would thus be interesting to derive
rapidly convergent affine approximations for non-affine problems. For in-
stance, the Karhunen-Loeve decomposition used to pretreat a random field
entering a partial differential equation as a coefficient may converge too
slowly for an efficient use of the RB method applied to truncated decom-
positions, in the context of random fields with small correlation lengths.
One should then look for other possible affine representation of the random
variations in the input coefficient. Now, there are many possible tracks to
solve this problem, like projecting the random field on a well-chosen basis
for the oscillation modes of the coefficient for instance (many possible bases
may exist for the realizations of the random field, depending on its regular-
ity), interpolating (recall the so-called empirical interpolation with magic
points), etc.

5.3 Application to Bayesian statistics

A context where the RB ideas could be applied is Bayesian statistics where
the many-query parametrized framework is naturally encountered. We now
make this more precise by presenting a specific example that would be well-
suited for the application of Algorithm 1 in Section 4.
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Let us consider, for given values of a parameter µ1, an ensemble of ob-
servations (xµ1

i )1≤i≤Nµ1
data

. Following the Bayesian framework, a stochastic
model is proposed to model the observation: the quantities (xµ1

i )1≤i≤Nµ1
data

are supposed to form a set of independent and identically distributed sam-
ples following a given distribution parametrized by another set of param-
eters µ2 (think for example of a mixture of Gaussians, µ2 being then the
triplets of weights, means and variances of each Gaussians). The Bayesian
approach then consists in postulating a so-called prior distribution (with a
probability density function denoted Prior(µ2) below) on the parameters µ2,
and to compute the so-called posterior distribution, namely the distribution
of µ2 given the observations (with a probability density function denoted
Π
(
µ2|(xµ1

i )1≤i≤Nµ1
data

)
below). Of course, the posterior distribution for µ2

is expected to depend on µ1: for each µ1, the aim is thus to sample the
probability measure Π

(
µ2|(xµ1

i )1≤i≤Nµ1
data

)
dµ2, with

Π
(
µ2|(xµ1

i )1≤i≤Nµ1
data

)
= (Zµ1)−1Π

(
(xµ1
i )1≤i≤Nµ1

data
|µ2

)
Prior(µ2)

where Zµ1 is the normalization constant, and Π
(
(xµ1
i )1≤i≤Nµ1

data
|µ2

)
is the

so-called likelihood function, namely the probability density function of the
observations given the datas. One possible technique to sample the posterior
distribution consists in drawing samples according to the prior distribution,
and to weight each of them using the likelihood function, which depends on
µ1. With such a sampling technique, it is easy to draw correlated samples
for various values of µ1. Following Algorithm 1 in Section 4, it would thus
be possible to build a reduced basis based on the sampling of the posterior
distribution for some selected values of µ1 (offline stage), in order to reduce
the variance for the sampling of the posterior distribution for other generic
values of µ1 (online stage).

5.4 Relation to functional quantization

One computationally demanding stochastic context that defines a many-
query framework is the approximation of the solution to a parametrized
stochastic differential equation, for many values of the parameter. We al-
ready mentioned applications in finance and rheology in Section 4, where
a variance reduction technique based on RB was proposed. Another idea
consists in first computing precise discretizations of a few processes at some
well-chosen parameter values, and then to use them for a faster computation
of an approximation of the processes for other values of the parameter.

Functional quantization is an approach that has independently been de-
veloped along this line, see for instance [LuPa02,PP05]. The idea of quanti-
zation is to approximate a square-integrable random variable with values in
a Hilbert space by a random variable that takes a finite number of values,
in an optimal way. In its simplest form, quantization deals with Gaussian
random variables with values in Rd, but it can also be applied to Gaussian
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processes. The numerical approach developped in [PS08] to solve stochastic
differential equations is to first quantize the Brownian motion, and then
to solve a collection of ordinary differential equations in order to recover
approximations of the solutions to the stochastic differential equations as
linear combinations of the ordinary differential equations solutions. Clearly,
this approach for the discretization of stochastic differential equations has
intimate connection with a RB approach. In particular, the computations
are split into two parts: an offline step, which is computationally expensive,
to quantize the Brownian motion, and then an online step to solve ordinary
differential equations rather than stochastic differential equations.

In a setting where the stochastic differential equations are parametrized,
a natural similar idea would be to quantize the solution to the stochastic
differential equations for a few values of the parameter, and next to build
the solution to the stochastic differential equation for another value of the
parameter as a linear combination of these precomputed solutions.
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[BBM+09] S. Boyaval, C. Le Bris, Y. Maday, N.C. Nguyen, and A.T. Patera.
A reduced basis approach for variational problems with stochastic
parameters: Application to heat conduction with variable Robin co-
efficient. Computer Methods in Applied Mechanics and Engineering,
198(41–44):3187–3206, 2009.
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[LL07] C. Le Bris and T. Lelièvre. Multiscale modelling of complex fluids:
A mathematical initiation. In Multiscale Modeling and Simulation in
Science Series, B. Engquist, P. Lötstedt, O. Runborg, eds., LNCSE
66, Springer, p. 49-138, 2009.

[LL02] J. H. Lienhard IV and J. H. Lienhard V. A Heat Transfer Textbook.
Phlogiston Press, Cambridge, Mass., 2002.

[Lin91] M. Y. Lin Lee. Estimation of the error in the reduced-basis method so-
lution of differential algebraic equations. SIAM Journal of Numerical
Analysis, 28:512–528, 1991.
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