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Abstract

This thesis provides a complete design and implementation of audit trail collection and
storage for Aeolus, a distributed security platform based on information flow control.
An information flow control system regulates all activities that concern information
security. By recording all the operations monitored by Aeolus, our audit trails capture
all actions that can affect system security. In our system, event records are collected
on each system node and shipped to a centralized location, where they are stored and
processed. To correlate audit trail events of different system nodes we store event
dependencies directly in the event records. Each audit trail record keeps links to
its immediate predecessors. Therefore, our audit trails form dependency graphs that
capture the causal relationship among system events. These graphs can be used to
reconstruct the chains of events leading to a given system state. Our results show
that audit trail collection imposes a small overhead on system performance.
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Chapter 1

Introduction

The purpose of this thesis is to add audit trails to Aeolus, a distributed security

platform based on information flow control. Aeolus is designed to facilitate the de-

velopment of secure applications that protect confidential information entrusted to

them.

However, even applications implemented in Aeolus can contain errors that lead to

violations of security, and furthermore, malicious attacks can cause applications to

misbehave. Therefore, it is also important to evaluate what the system does in order

to determine whether it is behaving as expected, and if not, to discover what led up

to the problem.

Monitoring events that occur in a given system can be achieved through the

use of audit trails. Audit trails can be used to detect security violations, diagnose

performance problems, and discover programming errors. In this project, we focus

primarily on the goal of detecting security violations and assume that the system is

operating correctly and performs adequately under normal workload.

Support for auditing requires both collecting the data and providing means to

analyze it. This work is primarily concerned with the former. We provide a complete

design and implementation for collecting and storing audit trails for applications

that run on the Aeolus platform. In addition, we provide tools for examining and

displaying the collected information.



1.1 Related Work

This section discusses the relationship of our work to previous research in the area of

secure audit trails.

Our approach follows many common practices established by earlier work. For ex-

ample, we define a format for our event records that includes standard event informa-

tion, such as the type of the event, its approximate date and time, and success/failure

status [19, 5].

However, our project differs from prior work in a number of ways. First, to the

best of our knowledge ours is the first system that does auditing for a platform based

on information flow control instead of access control. Information flow control is a

reliable way to protect information because it can allow access to the data without

also allowing its release. For example, an administrator in a medical system may

need to examine patient records, e.g., to set up appointments. With access control,

allowing an individual to use information also allows him to release it, e.g., attach it

to an email. An information flow control system separates these activities, avoiding

information leaks.

A system based on information flow control provides a useful way of determining

what events need to be included in the audit trails. In particular, an information flow

control system regulates all activities that concern information security. This means

that to get a complete audit trail of actions that affect system security, it is sufficient

to capture all the operations that are monitored by the system; this is the approach

we take in auditing Aeolus.

In this project we focus on auditing in a distributed system. Although auditing

has been an active area of research for many years, much of the earlier work deals

with stand-alone single-processor machines [14, 18]. Auditing in a distributed set-

ting, which includes multiple processors operating asynchronously, introduces several

additional concerns [17]. One problem is to determine where and how to collect the

logs efficiently. We address this question by following a common audit trail collection

pattern; namely, we collect the logs locally on each node and then ship them to a



central location for storage and processing [2].

A much more fundamental problem is how to correlate events recorded on different

nodes of the system. On a single processor, events can be ordered using the machine

clock. However, this approach does not work in a multi-processor environment. Al-

though extensive work has been done on distributing a standard time among system

nodes (e.g. NTP [12]), the clocks cannot be synchronized precisely. Nevertheless

many distributed systems rely on the availability of accurate timestamps for event

ordering; a discussion on this topic can be found in [15].

Lamport logical clocks [10] can be used to get a "happened-before" ordering with

minimal overhead. These clocks guarantee that if an event happened before another

event, then its logical clock value will be smaller than that of the second event.

However, the converse is not necessarily true, i.e., if the clock value of an event is

smaller than that of a second event, it is not necessarily the case that this event

happened before the second event. Therefore, the total ordering provided by the

Lamport clocks is one of many possible total orderings of the system events.

In general, ordering events based on time (i.e. the "happened-before" relationship)

cannot be relied on to imply a causal relationship since it does not provide information

about how the events actually depend on each other, i.e. about what events could

have causally affected others. Vector timestamps [8] derived from Lamport clocks

provide a way to capture this information; however, they are not scalable and will

cause significant overhead if used in a large distributed system.

In this work we explicitly correlate audit trail records so that we can reconstruct

all the dependencies among the recorded events. This is achieved by uniquely iden-

tifying each recorded event in the system and storing event dependencies directly

in the audit trail. Each audit trail record stores links to its immediate predecessor

events. Therefore, our audit trails form dependency graphs, where the nodes are the

individual system execution events and the edges represent the causal relationships

captured by the predecessor links. From this information, we can easily reconstruct

event chains by following the event predecessor links. For example, we can find all

the events that could have led to an invalid system state.



Recent work on backtracking intrusions [9] presents dependency graphs constructed

by recording system calls that induce dependency relationships between OS-level ob-

jects (e.g. creating a process, reading and writing files). These graphs differ from the

ones generated by our audit trails since their nodes represent the individual system

objects (e.g. files and processes) and the edges represent system calls that involves

these objects (e.g. a process executing a file). In our system, as explained above,

the nodes are the events recorded during system execution (e.g. file read, I/O device

write) and the edges capture their causal relationship (e.g. a file read affects the

subsequent write of a different file).

There is a large body of work on audit trail discovery, e.g. intrusion detection. A

survey of this work can be found in [11, 15]. This work is concerned with discovering

anomalous user behavior, for example, using statistical analysis or attack signature-

detection [20, 22, 21, 13]. Although our project is primarily concerned with audit

trail collection, we need to ensure that our audit trails capture all the information

necessary to enable a useful audit trail analysis. Prior work introduced the concept

of goal oriented logging [3, 2]. This is the idea that the goals of the auditing process

should determine what information is logged. Bishop et al. [3] propose deriving audit

trail content requirements from the security policy of the system that partitions all

system states into secure and non-secure. The content of an audit trail then needs to

monitor all the events that can lead from a secure to a non-secure system state.

Our audit trails monitor events at the level of the user application interaction with

the Aeolus security platform. Logging at the interface to the Aeolus platform allows

us to capture all the security-sensitive system activity. As mentioned earlier, this is

because any operation that uses or affects information flow, which is at the basis of

our security model, is mediated by the Aeolus platform. In addition, we also provide

an interface to our auditing subsystem that can be used to capture application-level

events.



1.2 Thesis Outline

The remainder of this thesis is structured as follows. Chapter 2 presents the relevant

background on the Aeolus security platform and its implementation. In Chapter 3

we discuss how we reconstruct the history of program executions using Aeolus audit

trails. Chapter 4 describes the format of audit trail records and what kind of infor-

mation they capture. In Chapter 5 we provide specific information about the events

stored in the audit trail. Chapter 6 describes the implementation techniques used to

build the audit trail collection framework and Chapter 7 presents several examples

of how audit trail data can be used to monitor and evaluate system activity. Chap-

ter 8 evaluates the audit trail overhead on the performance of the system. Finally,

Chapter 9 concludes and discusses future work for this project. Appendix A provides

a complete summary of all the events recorded in the audit trails and Appendix B

includes a detailed description of the data structures used to collect and ship audit

trail data in our current prototype.



Chapter 2

Aeolus Platform

A complete description of the Aeolus platform can be found in Cheng[6]. In this

chapter we briefly present some relevant Aeolus background information. We begin

by describing the high-level platform architecture in Section 2.1 and then introduce

several key implementation concepts in Section 2.2. Any major differences between

the current platform implementation and the work presented in [6] will be discussed

in the appropriate sections of this thesis.

2.1 Aeolus Architecture

Aeolus is a distributed security platform based on information flow control: it tracks

information as it flows through programs and determines whether programs have the

authority to perform certain security-sensitive operations. Figure 2-1 shows the high-

level architecture of the platform. This figure shows the Aeolus platform running on

a collection of nodes divided into two categories: compute nodes and storage nodes.

Compute nodes are intended to run user application code and storage nodes are

used to persistently store sensitive user data (note: a node can be both a compute

and a storage node). Aeolus also includes a logically centralized shared authority

state (AS). Aeolus nodes consult the authority state in order to determine whether

privileged operations should be allowed. Communication can occur among Aeolus

system nodes, as well as with outside nodes and I/O devices, which are not trusted.



Compute Nodes Storage Nodes Authority State

User User
Data Data

Aeolus Aeolus Aeolus
A 0- Of

Figure 2-1: Aeolus Distributed Security Platform

More details about the Aeolus platform architecture can be found in Chapter 2 of [6].

2.2 Aeolus Platform Implementation

As shown in Figure 2-2, each compute node runs a set of platform instances (PIs).

Within each platform instance there is an Aeolus system process, which has access

to all system resources, and many user threads managed by the Aeolus process. User

threads make calls to the Aeolus process to get access to various system resources

(e.g. the file system and I/O devices). User code is executed in the user threads. It

interacts with the Aeolus platform through a set of methods exposed by the Aeolus

User API. Chapter 3 of [6] contains a detailed description of all the provided methods.

Each platform instance also has an audit trail collector object that is responsible for

collecting and shipping audit trail events from all the user threads in the platform

instance and a shared state manager that provides user access to shared memory.

In order to allow RPCs among Aeolus nodes, each node maintains a registry of

services provided by platform instances at that node. In addition, each node also

includes an authority state client that manages interactions with the authority state

server and file system clients that manage interactions with the corresponding storage

nodes.



Figure 2-2: Aeolus Compute Node Structure

.............



Chapter 3

Event Graphs

The purpose of an audit trail is to enable the reconstruction of the history of a

system execution. As a system runs, we need to capture "events" that represent

what it is doing. Furthermore, to reconstruct the chain of events leading to a given

system state, we need to correlate the events in the system - we need to order them,

recognizing any dependencies between them. Since Aeolus is a distributed system,

we cannot rely on system timestamps as a means for ordering the events due to the

possible lack of synchronization among machine clocks. One possibility would be

to use vector timestamps [8]; however, these are not scalable and would result in a

significant overhead.

Audit trails in our system are represented as event graphs, where each event

records some action that occurred as the system ran. We capture dependencies be-

tween events by storing them directly. Each audit trail event stores links to the events

that immediately preceded it. Following these predecessor links, we can reconstruct

a partial event order and thus correlate certain events in the log. More specifically,

given an event in the log, E, we define Pred(E) to be the set of events that are

immediate predecessors of E (we describe what these predecessors are in Chapter 5).
Iteratively applying the predecessor relation starting with E:

E -> Pred(E) -- Pred(Pred(E)) -.

we can order all the events that E depends on and thus find, by transitivity, all the



A D G X

F Y

C E)Z

Figure 3-1: Event Dependency Graph. Predecessors of event E are highlighted in
yellow; direct predecessors are contoured in red.

events that could have caused E.

In other words, audit trail event entries together with their predecessor links form

an event dependency graph of all the events recorded during the run of an application.

These event dependency graphs are directed acyclic graphs (DAGs) where the nodes

represent the recorded events and the edges denote the event predecessor relationship

(i.e. there will be an edge A --> B in the graph if node A is the direct predecessor

of node B, that is, the set Pred(B) includes A). Therefore, a given event P is a

predecessor of another event E if there is a path from node P to E in the event

dependency graph and so all the events that could have caused E are the nodes in

the graph that have a path to E. These graphs have no cycles due to the temporal

nature of the predecessor relation: if an event A is a predecessor of an event B, then

it must have occurred prior to B (note: there are no self-edges in these graphs since

an event cannot be its own predecessor). In order for a cycle to occur, there needs

to be some event C such that B is a predecessor to C and C is a predecessor to

A; however, if B is a predecessor to C, then C must have occurred after B and, by

transitivity, after A and so it cannot be a predecessor to A.

Figure 3-1 shows a sample event dependency graph. The direct predecessors of

E are the events F and H (i.e. Pred(E) = {F, H}). Events A, D, and G are also

E's predecessors since there is a path from these events to E (Pred(Pred(E))

{A, D, G}).

- ---------------- # .......



It is important to note that predecessor links do not provide us with a total or-

dering of all the events in the system and only allow us to order events that somehow

depend on each other. Concurrent events will be part of separate predecessor de-

pendency chains and cannot be correlated. For example, in Figure 3-1 we cannot

correlate the chain of events X --+ Y -* Z with any other events in the graph. How-

ever, since each event entry in the log includes an approximate timestamp, we will be

able to recognize the order of events occurring at sufficiently different times.



Chapter 4

Audit Trail Content

An Aeolus audit trail is an event log that monitors user code interaction with the

Aeolus platform; more specifically, it records the invocation of every method exposed

by the Aeolus User API. Each use of the Aeolus platform corresponds to one or more

event records in the log. By logging at the level of the Aeolus interface, we guarantee

that we can capture all security-sensitive operations. We also provide an interface to

the auditing subsystem that can be used to capture additional events. This interface

can be used by an application to record events that correspond to application level

activities. The Aeolus audit trail could also include events that correspond to internal

Aeolus platform actions. These events would be useful in debugging the platform

code; however, we do not investigate this use in this work.

We begin in Section 4.1 by describing the format and content of the recorded

events. Section 4.2 provides more details about what are the predecessors of an event

and introduces the terminology used to refer to them throughout the thesis. Finally,

Section 4.3 describes the operational interface to the auditing layer that can be used

to record additional application level events. Chapter 5 describes what events are

placed in the log for all the operations that make up the interface to Aeolus.

4.1 Event Record Format

An audit trail event record has the following format:



<eid, preds, method-name, parms, status, ret-val, timestamp>.

We now briefly describe each included field.

Event ID (eid)

Each event record is associated with a globally unique event ID. This ID is used to

refer to a particular event from other event records.

Event Predecessors (preds)

Event predecessors are a set of event IDs that correspond to events considered to

have immediately preceded the given event; that is, events upon which the given

event depends directly. We store the IDs of the predecessors to allow us to correlate

and order the event entries in the log. Since each event has a globally unique ID,

the stored predecessor IDs will always resolve to the appropriate events. Section 4.2

describes how the predecessors are determined.

Method Name (method-name)

The method name identifies the type of the recorded event (e.g. a file read or a

principal creation).

Parameters (parms)

The parameters are the user-supplied arguments to the methods of the Aeolus API

that are relevant to Aeolus (e.g. the name of the file a user is trying to read or

the labels for a shared state object to be created). We do not log application level

user-supplied arguments, such as arguments to remote procedure calls, or the data

being written to a file or to a shared state object. This information can be recorded

at the application level using the interface for application level logging. Storing

event parameters allows us to filter on events involving arguments of interest; for

example, we might want to track all the delegations of a given tag or find all the

failed attempts to release a sensitive file. Although the current prototype does not



support backtracking, user-supplied parameters can help support this functionality

in future work.

Status (status)

The status denotes the event outcome: whether it succeeded or failed. An operation

can fail in an expected way due to an illegal argument or non-deterministically due

to an unpredictable cause, such as a system network or I/O exception. Although

we assume the system is operating correctly (and hence will not generate exceptions

due to system code bugs), we would not be able to tell whether an operation actually

succeeded (and hence induced some changes to the state of the system) due to possible

unpredictable failures associated with many Aeolus operations. For example, we can

predict any failures due to information flow constraints or access of non-existent files

or shared state objects; however, we cannot predict a network failure during an RPC

or authority client communication with the authority server. Although it might be

useful to diagnose certain problems, we do not explicitly specify the cause of an

operation failure since it is not needed to satisfy our primary security goal specified

above.

Return Value (ret-val)

The return value of an event is an Aeolus-related result generated by the operation.

As with parameters, we do not log application-level information, such as the data

returned from a file read. The return value can be useful for event log filtering; for

example, we might be interested in the creation event of a given principal, tag, or

shared state object - this event can be found by matching the return value with the

given object ID.

Timestamp (timestamp)

The timestamp provides an approximate time at which the event occurred. Although

local system timestamps cannot be used to order events in a distributed system, they

can be useful for filtering audit trail data; for example, they can be used to answer



questions about what was happening in the system approximately before, at, or after

some given time of the day.

4.2 Event Predecessors

Most events are recorded during the execution of a user application. These events

always have at least one direct predecessor event, which is the event that immediately

preceded them in the same user thread, referred to as P-PRED. More specifically, this

event is the latest interaction with the Aeolus platform of the same user computation.

The P-PRED links provide a way to order all the events in a given user process.

If there were no communication between user processes, P-PRED links would be

sufficient to capture most of the user event dependencies. However, Aeolus provides

several mechanisms for inter-process communication: user processes can communicate

via the shared state, the file system, remote procedure calls, and, implicitly, through

the authority state. Any point of communication between two separate processes

creates a dependency between the events in these processes. For example, if a process

A writes to a file and another process B later reads from this file observing what A

wrote, then all the events in B starting with the file read depend on A's file write

event; therefore, the file write event serves as a predecessor to the file read and, by

transitivity, to all the subsequent events of B. For this reason, audit trail entries

corresponding to communication events usually store a second predecessor, C-PRED,

that may represent an event in a different user process.

To summarize, an event can generally have two predecessors: P-PRED and C-

PRED. P-PRED is the event that immediately preceded the given operation in the

same user process and C-PRED is an event of a possibly different user process that

also logically precedes the given operation due to some form of inter-process commu-

nication.

The mechanism of determining and assigning C-PREDs is different for each com-

munication mechanism. Chapter 5 describes the mechanisms that Aeolus provides

for inter-process communication and what the logical C-PREDs are for each type of



their explicit or implicit communication events.

4.3 Auditing User Interface

Although Aeolus records all security-sensitive operations executed by the user appli-

cation code, developers might be interested in including additional events into the

audit trails. We provide a simple interface to our auditing subsystem, which allows

adding application level information to Aeolus audit trails. This interface is an ex-

tension to the Aeolus User API.

In order to add an event to the audit trail, applications can use the CreateEvent

operation. This operation creates and stores a new event in the audit trail and returns

the ID of this event. This operation is treated like any other invocation of the Aeolus

User API and the new event is correlated accordingly with other events in the same

user process; namely, its P-PRED is set to the previous invocation of an Aeolus API

method by the same user thread. Applications can use the returned event IDs to

correlate their events; namely, they can specify them as predecessors when creating

other events. The created event has the same format as all other platform level events;

the arguments to the operation correspond to the fields described in Section 4.1.

Creating a new event :

e eid createEvent(preds, method-name, parms, status, ret-val,

timestamp): Creates a new event in the audit trail and returns its event ID.

The method name must be specified as a string; the parameters and the re-

turn value must be serializable objects, so that they can be persistently stored

and retrieved. This event automatically has the previous event of the calling

thread as its P-PRED; additional predecessors can be specified using the preds

argument.



Chapter 5

Audit Trail Events

This chapter describes in more detail what event records are included in the audit

trail for each type of user code interaction with the Aeolus platform. Each section

begins with a brief description of the mechanism involved and then discusses the

audit trail content it generates. A summary of events associated with each Aeolus

operation can be found in Appendix A.

5.1 Authority State

We differentiate between two types of authority events: updates and lookups. Author-

ity updates (e.g. authority delegations or revocations) are processed at the authority

server, while authority lookups (e.g. checks if a principal has authority for a given

tag or can switch to another principal) are answered by the local authority client of

each Aeolus node.

Although the authority state is not a mechanism for direct user process commu-

nication, authority events from one user process can influence the result of authority

events that follow them in a different user process and can logically serve as their

predecessors. For example, if principal A delegates authority for tag T to a different

principal B and the event of checking B's authority for tag T during a declassify

succeeds, then the authority delegation event is a logical predecessor of the success-

ful authority check event (assuming B did not already have authority for T from



somewhere else).

5.1.1 Authority Updates

Authority updates can be issued concurrently by different user processes and are

serialized at the authority server, which propagates these updates to authority clients.

Each update operation corresponds to three events in the audit trail. Two events are

logged at the client node. These correspond to the authority update request and

reply, respectively. When the authority server receives the update request it logs an

additional event that represents the update operation at the server. The C-PRED

of this event is the authority update request from the client and its P-PRED is the

update event that was serialized immediately before it at the server. The update

event at the authority server is the C-PRED of the update reply event at the client;

the P-PRED of the reply event is the update request. Figure 5-1 shows the correlation

of the events at the authority server and two authority clients.

updateX-request ...

server-updateX

updateX-reply update Y-request

server-updateY

updateY-reply

Client 1 Authority Server Client 2

Figure 5-1: Authority Updates Correlation

5.1.2 Authority Lookups

An authority lookup operation corresponds to one event in the audit trail. Authority

lookups are processed at the authority client, which caches authority state and may

not be up to date with the authority server. The C-PRED of these events is the latest



authority update event seen by their authority client - i.e. the latest authority update

reflected in the answer from the authority client.

5.2 Node Creation and Deletion

Once the authority state is running, nodes can be added to the Aeolus system. The

creation of an Aeolus node takes place in several steps. First the node is registered

with the authority state. As part of node registration, the authority state creates a

root principal ID for this node (the first platform instance on that node will run on

behalf of this principal ID). After registration, various node components are initialized

(for example, the file system manager (if this is a storage node), and the logging client;

the node also keeps structures to track platform instances it has launched and the

services they provide. Finally, the first platform instance is created on this node

to run the start-up application code. When the node is launched, a node creation

event is logged. This event record stores information about the node, such as the

node's hostname and root principal ID. This event has no P-PRED since it is the first

system event on this machine; however, it has a C-PRED event returned as part of the

authority state registration reply, representing the registration event at the authority

server. After the node creation event, two more events are recorded. First an event is

created to represent the launch of the start-up PI. This event has the node creation

event as its predecessor; the platform instance launch events are described in more

detail in the next section. The second event is the launch of the first user thread in

the start-up PI, which has the platform instance launch event as its predecessor and

stores the principal ID that the thread runs on behalf of.

A node can also be deleted from the Aeolus system. Upon node deleted, the

authority state is notified to remove the node from the system. Two events are

created for this operation in the user thread requesting the deletion: the request

event, which includes the information about the node (i.e. node hostname), and the

reply event. An event is also recorded at the authority state server to represent the

deletion at the server.



5.3 Platform Instance Launch and Shutdown

As mentioned in Section 5.2, when a node starts up, Aeolus launches the start-up

platform instance. In addition, Aeolus provides a mechanism to launch other platform

instances locally and remotely. When a platform instance is created, it is associated

with a principal ID (the start-up platform instance of each node runs on behalf of

the node root principal). Application developers can specify what principal to launch

a platform instance with, as long as information flow rules are obeyed (namely, the

caller has null labels and has the authority to act on behalf of the specified principal).

The caller also specifies what application to run in this platform instance and any

application arguments (the application is specified as the full path name to its class).

This code starts running in a user thread of this platform instance.

The launch of a platform instance caused by a call in a user thread corresponds to

five event records in the audit trails. The first event is the PI launch request, which

includes the parameters discussed above, such as the platform instance's principal ID

and the application name (the arguments to the application are not included). This

event has only one predecessor; namely, its P-PRED. The second event is logged when

the new platform instance is created at the appropriate Aeolus node. This event has

as its P-PRED the node creation event and as its C-PRED the PI launch request

event; it also stores the the platform instance's principal ID and the application

name. The next event is logged when the first user thread of this platform instance is

launched to run the specified application. After this application thread finishes, the

return from the PI launch event is created. The P-PRED of the return event is the

latest invocation of an Aeolus API method in the user application thread. This event

becomes the C-PRED of the final event recorded for this operation. This last event

is created in the thread that issued the launch request and represents the PI launch

reply.

In the case of the start-up platform instance launch only three events are recorded.

These events are the events described above excluding the request and reply events

of the caller user thread.



Figure 5-2 shows the correlation of the platform instance launch events. The

events recorded during the start-up platform instance launch are the three events at

the server side; the figure also shows the node creation event that triggers the start-up

platform instance launch.

create-node
launch-PI-request

launch-PI

launch-user-thread

launch-PI-return

launch-PI-reply

Client-Side Server-Side

Figure 5-2: Platform Instance Launch Events Correlation

We are interested in knowing what code is being executed at this platform instance.

To monitor this, we log the hash value of the loaded application class (this is achieved

by extending the default Java ClassLoader to compute the MD5 hash function of all

the classes it loads).

A platform instance can also be shut down locally or remotely. This operation

corresponds to four events: the shutdown request and reply in the caller user thread

and two events for the shutdown at the appropriate node. When shutting down, the

platform instance terminates all its user threads and unregisters its services from the

node registry. It also ships any remaining event records to the centralized collector

(see Chapter 6 for more details about the audit trail collection framework).



5.4 Service Registration

In order to enable communication between system nodes, each node has a registry of

services it hosts. A user thread in a PI can register a service with Aeolus that will

be handled by that PI and a user thread on a different node can invoke a method on

this service (via the RPC mechanism described below). When registering a service,

the name of the service and the name of the implementing class are specified. The

service registration corresponds to one event in the audit trail. This event stores the

name of the service being registered.

5.5 Remote Procedure Calls

Users can invoke methods on remote services registered with Aeolus by retrieving a

service proxy from Aeolus at the client side - this proxy serves as a local reference to

the remote service object. A method invocation on this proxy triggers Aeolus to send

an RPC request from the client node to the node hosting the service. This request

carries some Aeolus specific information necessary to start the processing of the RPC

request at the server (such as the caller's process labels), as well as information about

the invoked service, method, and the user-supplied parameters to the remote method

call. When the server receives an RPC request it forwards it to the PI that handles

that service; the PI then starts a new user thread with the specified information flow

state running the specified service method (this thread runs on behalf of the platform

instance principal). When this new thread finishes, it sends back an RPC reply to

the client carrying the result of the computation and its process labels in order to

propagate any contamination back to the caller.

RPCs cause four events to be added to the audit trail: two events at the client side

(send-RPC and receive-RPC-reply) and two events at the server side (receive-RPC

and send-RP C-reply). We correlate the events at the client and the server side, such

that the first event that occurs at the server side as a result of the RPC request has as

its C-PRED the client's send-RPC event and the first event that occurs at the client



after receiving the RPC reply has as its C-PRED the last server-side event recorded

during the remote method invocation. This is achieved by carrying predecessor event

IDs via the RPC request and reply. Furthermore, the node service registry serves

as an indirect communication point for service registration and invocation events.

More specifically, if upon the receipt of an RPC request at a given Aeolus node, the

requested service is found on that node, then we know that the service registration

event is a predecessor to the subsequent events generated by this RPC's receipt.

Therefore, a predecessor of the receive-RPC event is the registration event of the

service whose method is being invoked.

Figure 5-3 shows the correlation of the client and server side events, as well as

the service registration and access events, which is achieved through the platform

instance service registry.

send-RPC register-service

receive-RPC

send-RPC-reply

receive-RPC-reply

Client-Side Server-Side

Figure 5-3: Remote Procedure Call Events Correlation

5.5.1 Client-Side

Before a user thread can make remote procedure calls it needs to get the service

proxy from Aeolus. This operation corresponds to one event in the audit trail that

specifies the name of the obtained service. Each remote method invocation on a

service corresponds to two events at the client side. The first event is the send-RPC

request, which is generated when a method is invoked on the local service proxy. This



event stores information about the service and the remote method being invoked (the

parameters to the remote method are not recorded). The second event is registered

upon the receipt of the RPC reply. This event has two predecessors. Its P-PRED is

the send-RPC request event and its C-PRED is the last server event.

5.5.2 Server-Side

Similar to the client side events, two events are recorded at the server side for each

received RPC request. After a new user thread starts processing the RPC request,

the first event in this new thread is the receipt of the RPC request. This event has two

predecessors: the send-RPC request event at the client and the registration event of

the service being invoked. When the method invocation returns, the send-RPC-reply

event is generated, which becomes the predecessor of the receive-RPC-reply event at

the client. The P-PRED of this event is the latest event generated by the remote

method or, if no events were recorded during the remote method execution, it is the

receipt of the RPC request event.

5.6 Local Calls and Forks

Users can make a local call with a different principal by invoking the Aeolus Call

operation, which runs the user-supplied code object with the desired principal ID in

the same user thread. Two events are recorded for this operation: one for the call and

one for the return from the call. The call event stores the principal ID that the call

runs with; it does not store the actual code. Both events only have one predecessor.

The event record for the return event has as its P-PRED the latest event recorded

during the execution of the supplied code object.

Users can also fork a new user thread by supplying the code and principal for this

thread. An Aeolus Fork operation corresponds to two events: a fork request event

recorded in the parent thread and the launch of the new user thread event recorded

in the child thread. The fork request event is the predecessor of the new user thread

launch event. As with the Call operation, the fork request stores the principal of the



child thread but does not store the code object being run in that thread.

5.7 Local Authority Closures

Authority closures provide the ability to grant authority directly to code. Users can

create authority closures by specifying the full class name of the desired closure to

the CreateClosure operation. This operation corresponds to one event in the audit

trails. A closure creation call is an authority update event and therefore has two

predecessors (its C-PRED is the latest authority update event at the server). It

stores as a parameter the class name of the closure. It also stores the closure ID as

its return value.

To run a closure, users need to get an instance of the given closure type by

providing the appropriate closure ID to the GetClosure method. This operation also

corresponds to one event in the trail. A call to the authority client is made to get the

information associated with the given closure ID; this is an authority lookup event

and, therefore, this event also has two predecessors (as described in Section 5.1).
Finally, the closure object can be invoked using the CallClosure method. This

operation executes the closure code inside the same user thread with the authority

associated with the closure ID. This is similar to the local call operation. Two events

are logged: one for the call and one for the return from the closure.

5.8 Boxes

Boxes encapsulate sensitive data, allowing it to be passed around without contami-

nating the process unless the box content is accessed. Users can create an AeolusBox

object by setting its inner and outer labels. Content can be read and written to the

box based on the inner labels. A process can also retrieve the inner and outer labels

of the box if the box outer labels permit. Each box operation corresponds to one

event record. Since users can share data using the box content, the C-PRED of a box

content read or write operation is the event that last updated the box content (or



the box creation event, if no content has been written to the box). In this way, we

can know what information was observed by a given box content read event and we

can capture the order of box content write events. The C-PRED of the inner or outer

label retrieval is the box creation event.

5.9 Shared State

The shared state provides a way for user processes of the same platform instance to

exchange information and synchronize. There are three ways of communicating via

the shared state - through the use of shared objects, shared queues, and shared locks.

Each shared state operation corresponds to one event in the audit trail.

5.9.1 Shared Objects

Shared objects allow for content to be stored and retrieved from the shared state by

different user processes. Users can create a shared object, read its content, update

its content, and delete the object. Each operation (except create) has as its C-PRED

the event that last updated the content of this shared object. Therefore, a write to a

shared state object is a predecessor to any subsequent reads and the subsequent write

or delete of this object. The create event is treated as a first write of the object.

5.9.2 Shared Queues

Shared queues provide messaging capabilities to user threads by allowing them to

enqueue and dequeue items. Information can be shared via the objects enqueued in

the shared queue and also via the order in which the objects were enqueued. When

a process dequeues an item from the queue, it gets access to the content provided

by a potentially different process; therefore, the C-PRED of each successful dequeue

operation is the enqueue event of the dequeued item. To maintain the order of the

enqueue and dequeue operations, the C-PRED of an enqueue event is the event that

last modified the queue (i.e. the latest enqueue or dequeue event). The queue creation



is the C-PRED of the first enqueue event.

5.9.3 Shared Locks

Shared locks are provided to allow for user process synchronization. Users can create

a shared lock and execute lock, unlock, and trylock operations on it. These opera-

tions are also considered process communication events although they don't directly

share any data. The C-PRED is maintained such that the chain of lock and unlock

operations on a shared lock can be reconstructed. More specifically, a lock (or suc-

cessful trylock) operation will be a predecessor of the unlock operation and the unlock

operation will be a predecessor to the subsequent successful lock or trylock.

5.9.4 Deleted Objects

A problem arises with setting the C-PRED of events accessing shared state objects

that have been deleted. Ideally, we would like to set the C-PRED of such an event

to be the object's deletion event; however, this would require us to keep the deleted

objects in the shared state forever. We do not store these objects and instead fill in the

record's C-PRED field in the post-collection processing step by finding the deletion

event for the appropriate object and setting the C-PRED field to that event's ID. Since

multiple delete operations could have been issued for the same object concurrently, we

are interested in the delete operation that actually succeeded, which will be captured

by the event's status field. If the delete event is not found because the deletion event

occurred a long time ago and has been archived, this field will remain blank.

5.10 File System

In the Aeolus distributed platform, sensitive user data can be stored persistently on

designated storage nodes. Each storage node runs an Aeolus FS manager, which is

responsible for servicing file system requests on data stored in the node's underlying

file system. Each Aeolus file and directory is associated with an immutable secrecy



and integrity label, specified at creation time. Before data can be read from or written

to a file or directory, Aeolus FS checks these labels and ensures that the requesting

user process is authorized to perform these operations. In the current implementation,

the label information is stored in a separate hidden metadata file (co-located with

the data file).

Users can communicate with specific storage nodes by invoking corresponding file

system methods of the Aeolus API and passing the hostname of the desired storage

node as an argument to these calls. When a request is submitted for a given storage

node for the first time at a compute node, a new Aeolus FS client is created to

communicate with the Aeolus FS manager running on the specified node (there will

be one client running on a given Aeolus node for each storage node that a user

process on that node has communicated with). The Aeolus FS client submits file

system requests to its Aeolus FS manager. To improve performance, the Aeolus FS

client caches the information received from the manager. The client cache stores file

content and labels based on the file pathname. If the data for a file is present in the

cache upon a file read operation, the client checks the file labels and returns the data

from the cache if the read is permitted. All file writes and directory updates (i.e. file

and directory creations and deletions) are forwarded to the server. To ensure causal

consistency, the server invalidates files in client caches by piggybacking a list of file

names that have been modified in each client reply (the server also sends periodic

invalidations to the clients). File stream operations are treated as block reads and

writes; more specifically, when a file stream is open for reading, the entire file content

is fetched to the client and writes to a file stream are accumulated locally and only

sent to the server when the file stream is closed (as one file write).

We need to capture dependencies between events of different user threads that

communicate by observing and updating data stored in the file system. More specifi-

cally, we want to set the C-PRED of each file read and write event to be the event that

corresponds to the write operation that they observe (we treat directory content list-

ing and file creations and deletions as reads and writes to the directory, respectively).

Therefore, we would like to know the latest write event of each file or directory. One



possibility would be to keep this information in the metadata file that currently just

stores the labels (this is similar to the shared state approach); however, this solution

would require an additional write of the metadata file per each data file write opera-

tion (each file write would need to update the metadata file to reflect the latest write

event). To avoid the cost of two disk writes, we have the Aeolus FS manager log

its own events and correlate these events with those at the user side compute nodes.

We describe this approach in detail below. Figure 5-4 shows the correlation of events

recorded at the file system server and client side for file read and write operations

described below.
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read-file-reply

server-write-file

write-file-reply
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Figure 5-4: File System Events Correlation. (a) Events generated by two consecutive
reads of the same file. The first read is cached at the client. (b) Events generated
by two consecutive writes to the same file. The two write events at the server are
correlated in the post-collection step.

5.10.1 Client Side

Each file system operation invoked through Aeolus corresponds to two events at the

file system client side (i.e., in the invoking user thread). The first event represents the



file system operation request (e.g., file read request). This event includes information

about the file involved (e.g. the file path name and file labels if the file is being

created) but does not include application level data, such as the content written to or

read from the file. The second event represents the file system reply and includes any

Aeolus-relevant information returned from the file system to the client; for example,

its status indicates whether the operation failed at the server, which could be due

to a violation of information flow control rules. This event has two predecessors: its

P-PRED is the request event and its C-PRED is the event at the file server that the

reply observes.

5.10.2 Server Side

Aeolus FS manager receives concurrent file system requests from its clients. For each

given file, it serializes the requests for this file such that there are no concurrent writes

or concurrent reads and writes (i.e. only concurrent reads are allowed). Therefore,

the Aeolus FS manager observes the exact order of file write operations for each given

file and for each file read operation it knows what write operation preceded it (since

reads and writes do not run concurrently).

The order that the manager observes is reflected in the order of its logged events.

For each client request, the manager logs an event after the execution of this request.

This event has as its predecessor the request event from the client. The manager

then forwards the ID of its server event back to the client where that is set as the

predecessor of the reply event. The client also stores this ID in its cache, so that any

read from the cache has this event as its predecessor. Since operations are serialized

at the server, we can reconstruct the predecessors of each server event in the post-

collection step: for each file operation, we can find the latest update event at the

server stored earlier in the log.



5.11 Use of I/O Devices

Users can write or read from various I/O devices. I/O devices are considered to be

outside of our system. To ensure that sensitive data cannot be leaked outside the

system, writing to an I/O device is only allowed if the security label of the user

thread is null. To ensure that low-integrity data does not influence a high-integrity

user thread, reading from an I/O device is only allowed if the integrity label of the

user thread is null. Both operations correspond to one event record in the log, which

denotes whether the user was reading or writing to a device outside the system. In

the current prototype, we do not include information about the device being accessed;

however, this can be included in the future.

5.11.1 Application Level Event Creation

Applications can include additional events in the audit trail by calling the createEvent

method of the interface to our auditing sub-system. This method creates an event

containing the user-supplied information and sets its P-PRED to the latest event in

this user thread.



Chapter 6

Implementation

In this chapter we describe our audit trail collection and storage strategy, as well

provide more details about what information is actually stored in an event record.

More details on the implementation of the collection data structures can be found in

Appendix B.

6.1 Collection and Storage

6.1.1 Collection

The audit trail collection framework consists of a central logging service responsible

for aggregating event records generated across the entire system and logging clients

responsible for sending local event records to the central service.

As illustrated in Figure 6-1, each platform instance runs a logging client that ships

the event records generated by its user threads' activities to the central logging service

via Java RMI. To optimize performance, event records are sent to the logging service

periodically in batches, instead of sending an event record as soon as it is created.

This strategy may lead to some events being lost if a node fails; we leave the repair

of the audit trail in the presence of failures as something to be dealt with in future

work (see discussion in Chapter 9).

Therefore, event records are stored locally by each platform instance's local log



collector. The log collector accumulates event records based on the ID of the user

thread in which the corresponding user operation ran. When an event record is

created, it is appended to the collection of event records generated by its user thread.

This allows event records generated concurrently by different user threads to be stored

in parallel.

When the records are shipped to the central logging service they are assembled

into a structured collection that maps the user thread ID to a list of its event records.

The event record shipment is scheduled at a fixed time rate, as opposed to shipping

when a given record volume has been reached; the rate is a configuration parameter,

e.g. 1 second. Along with the event records, each shipment also includes the ID of

the sender platform instance and a system timestamp: all the events in this shipment

will be stored with this timestamp to reduce performance overhead of querying the

system clock every time an event occurs.
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Figure 6-1: Audit Trail Collection and Storage Framework



6.1.2 Storage

After arriving at the central logging service, tihe event records are processed and

stored in a logically centralized database. The processing step includes filling in the

timestamp field, as well as the P-PRED if it's missing (the next section explains why

this predecessor is not stored whenever possible). However, this field is easily derivable

since the event records are stored and shipped in the order that they were created by

the user thread; therefore, with some exceptions, the P-PRED is the previous event

in the event record list associated with the given user thread ID.

Storing logs in the database provides more efficiency and flexibility for data pro-

cessing. We store the records in a MySQL relational database and the Neo4j graph

database; the later is good for dependency graph generation [1]. Currently, a database

entry includes all the information stored in an event record, as well as the ID of its

platform instance and user thread.

Archiving and protecting the data in the database is left for future work, as

discussed in Chapter 9.

6.2 Event Records

This section describes our strategy for creating globally unique event IDs and what

event information is excluded from an event record to reduce the logging overhead.

6.2.1 Event IDs

We use a uniform scheme for creating structured unique IDs for the events in our

system. The structure of event IDs provides information about the context of each

event within our system (e.g. the node or platform instance at which the event ran),

which can be used in recovering from partial audit trail data loss (e.g. due to a node

failure) and provides additional user-readibility of audit trail records.

Most recorded events are generated at the invocation of an Aeolus API method in a

user thread of a platform instance running on one of our system nodes. Each platform



instance has a system-wide unique ID (no platform instance will ever run with the

same ID in the system). Within each platform instance, each user computation runs

inside a user thread whose ID is unique relative to the platform instance; however,

user threads can be reused and an event from the same user thread may or may not be

part of the same user computation. To identify events within a user thread, we keep

a counter that is incremented after each recorded event.- To avoid endlessly increasing

this event counter, we reset it every time a user thread is reused and associate instead

an incarnation number with each user thread to reflect how many times it has been

reused.

Therefore, most events can be uniquely identified by the following 4-tuple:

(PI ID, user thread ID, user thread incarnation #, event counter).

However, there are several events in the system that are not recorded inside a user

thread. These are special events recorded at the creation and deletion of a system

node, the launching and shutdown of a platform instance, and the Aeolus FS manager

events. Since each platform instance has a unique ID, we have two special event IDs

for the PI launch and shutdown events, namely:

PI Launch: (PI ID, -, -, 0)

PI Shutdown: (PI ID, -, -, 1).

Furthermore, if we associate the node hostname with the unique ID of its start-up

PI, we obtain the following unique IDs for a node creation and node deletion events:

Node Creation: (hostname, start-up PI ID, -, 0)

Node Deletion: (hostname, start-up PI ID, -, 1).

The file system manager events need to be unique across storage nodes and storage

node relaunches. We differentiate events at different storage nodes by including the

node hostname in the ID. We use an incarnation number for each relaunch of the

file system manager (this is a counter persistently stored in a special file system

configuration file on each node). Finally, the file system manager maintains an event



counter for its events and so the IDs of events logged by the file manager look as

follows:

Aeolus FS manager events: (hostname, incarnation #, -, event counter)

6.2.2 Eliding

We avoid storing information in event records whenever possible in order to reduce

event processing costs and the size of the event records. Since event records are sent

to a central log collector, the size of the record affects the communication overhead.

Primarily, we do not include information that can be deduced from the audit trail

history. For example, we can derive the labels of each user thread event since they

are stored when the thread first starts running and any further label modifications

are recorded in the audit trail. Therefore, it is not necessary to record the return

value of an authority operation, such as a declassify or endorse request. On the other

hand, we do log the return values of all non-deterministic operations, such as the

IDs of newly created principals, tags, closures, and shared state objects, which are

generated randomly. We also record whether an operation succeeded or failed, since

unpredictable non-Aeolus failures are possible.

Due to the way that the event records are collected (as discussed in Section 6.1.1),

we often do not need to store the P-PRED of these events. This information can be

re-derived at the central log collector when the event records are processed after the

shipment.

Finally, we do not record the timestamp in the event records. This reduces the

size of the events and avoids the expensive read of the system clock for each event.

Instead, the timestamp is computed when the PI's logging client sends events to the

central logging service, as described in the Section 6.1.1.



Chapter 7

Auditing Case Studies

In this chapter, we present audit trail records collected during the run of several

sample applications. Our first example is a small application built solely for demon-

strative purposes. It shows uses of the shared state, forks, and remote procedure calls.

Our next example is a simple medical clinic application. It demonstrates uses of au-

thority and persistent data storage via the file system. We present the collected audit

trails as dependency graphs. These graphs were generated using the open source tool

graphviz [7] from the data stored in the log database.

7.1 Demo Application

Our first example is a small distributed client-server application built for demon-

strative purposes only. The application runs on two nodes: the service runs on

26-2-69 .dynamic. csail .mit .edu and the client runs on eigenharp. csail. mit .edu.

Table 7.1 shows the pseudocode of the program executed at the service and the

client and Figure 7-1 shows the graph of event records stored during the run of

this application. The service program registers the RpcTest service with Aeolus,

writes to an I/O device, and waits for clients to connect. The client program runs in

two threads. The starter thread first creates a shared queue, forks a second thread

providing it the handle to the queue, and then waits to dequeue a value from the

shared queue. The forked thread3 places an object in the queue and terminates.



Table 7.1: Demo Client-Service Program

Server - Side

1. RpcTestService service = new RpcTestService()
2. registerService("RpcTest", service)
3. writeToIODevice(screen, "Started service...")
Client - Side

1. handle = createSharedQueue(sLabel=empty, iLabel=empty)
2. AeolusCallable c = new TestCallable(handle)
3. fork(c, p2)
4. value = waitAndDequeue (handle)
5. RpcTest serviceStub = (RpcTest) getServi ce (26-2-69.dynamic.csail.mit.edu,

"edu.mit.csail. aeolus.testing.RpcTest")
6. result = serviceStub.testMethod(value)
7. createEvent("APP-EVENT-RECEIVE-RPC-REPLY", ret-val result)
TestCallable(handle)

1. value = new Integer(5)
2. enqueue(handle, value)
RpcTest Service.test Method(value)

1. writeToIODevice(screen, value)
2. return 1

After it receives the value from the queue, the starter thread obtains a local stub

for the service RpcTest on host 26-2-69.dynamic. csail.mit.edu and invokes the

remote method testMethod. The method runs at the server in a new user thread;

it writes to an I/O device and returns to the client. Finally, since Aeolus does not

log application values such as parameters and results of remote procedure calls, the

client creates an application event to store the value returned by the remote method

invocation.

The IDs of each event in the graph provide information about what platform in-

stance and user thread a given event occurred in. For example, the CREATE-SHARED-

QUEUE event was created in platform instance with ID 7 and user thread with ID

13. Each node also includes the parameters and the return value stored with each

event record. For example, the PI-LAUNCH event parameters specify the ID of the

created platform instance and its root principal ID; the parameter to FORK speci-



fies the principal to run the forked thread with (in this case the principal ID is 3);

the return value of the CREATE-SHARED-QUEUE event stores the handle of the new

shared queue and this handle becomes the parameter of the ENQUEUE and WAIT-AND-

DEQUEUE events (here the handle value is 13); the parameters of the GET-SERVICE

and SEND-RPC events store information about what host the service runs on, the

service name, and the method name for the latter (in this case the hostname is

26-2-69. dynamic. csail. mit . edu, the service is RpcTest, and the method name is

testMethod).

The edges of the graph show the dependencies among the recorded events. We

can see that the WAIT-AND-DEQUEUE event depends both on the previous event in

the same thread (namely, FORK) and on the ENQUEUE event of the forked thread. In

the case of the remote procedure call, we can see that the RECEIVE-RPC event at the

server depends on the SEND-RPC at the client and the RECEIVE-RPC-REPLY event at

the client has the SEND-RPC-REPLY event as its predecessor. The RECEIVE-RPC also

has the REGISTER-SERVICE event of the requested service as its predecessor.

7.2 The Medical Clinic

This section presents the data collected from a simple medical clinic application.

Our clinic has three types of members: the patients seeking treatment at the clinic,

the administrators responsible for registering patients and assigning their doctors,

and the doctors responsible for examining the patients and updating their medical

history. Tables 7.2 and 7.3 show the pseudocode for the patient registration and the

doctor's patient examination subprograms.

The following steps occur when a new patient, Alice, is registered at the clinic

using the registration program (i.e. via a call to registerPatient(Alice) of Figure

7.2). First, a new principal ID, PAlice, is generated to represent Alice along with

a tag, TAliceMedical, to protect her medical history. A new file is created to store

Alice's medical history data; this file's security and integrity labels include the tag

TAliceMedical. A special principal is then created to represent Alice's current physical,



Table 7.2: Patient Registration by a Clinic Administrator

registerPatient (Patient)

// registration runs with PAdmin

1. PPatient createPrincipal()
2. TPatientMedical = createTagQ

3. createFile( "/patients/PatientRecord", sLabel = TPatientMedical, iLabel = TPatientMedical)

4. PPatientDoctor = createPrincipal()
5. delegate(TPatientMedical , PAdmin, PPatientDoctor)

// assign a doctor to patient
6. actFor(PPatientDoctor, PDoctor)

// update the all-patients file to include this patients's registration info
7. patientInfo = "Patient: PPatient, TPatientMedical, PPatientDoctor"

8. endorse(TAdmin)
9. appendFile( "/patients/AllPatients", patientInfo)
10. removeIntegrity(TAdmin)

PAliceDoctor, and TAliceMedical is delegated to this principal to allow it to review and

update her medical history. Finally, an available physician, Bob, is assigned to treat

Alice; this is achieved by letting Bob's principal, PDoctorBob, act for Alice's physician

(each doctor has his or her own principal ID in the clinic). Note that if Alice switches

to a different doctor, the act-for link between Alice's physician and Bob is revoked.

When registering a patient, the administrator also updates the all-patients file to

store Alice's administrative information, such as the principals PAlice and PAliceDoctor-

Each administrator has its own principal, PAdmin, and all administrators share the

tag, TAdmin, which is stored in the integrity label of the all-patients file, such that

only administrators can update this file (however, doctors can read it).

During Alice's medical exam, her doctor reviews the all-patients file and switches

to PAliceDoctor via a local call operation. PAliceDoctor is authoritative for the tag

TAliceMedical, which the doctor adds to his integrity label in order to update Alice's

medical history. This is illustrated in Figure 7.3.

Figure 7-2 and 7-3 show the audit trails collected from each subprogram during

the registration of one patient, Alice, and her medical examination by the assigned

physician. We only depict the events generated by the programs in Tables 7.2 and



Table 7.3: Patient Examination by a Doctor

7.3 and do not present the node creation, platform instance, and user thread launch

events; we condense all missing events from the user thread into one event, the LAST-

USER-THREAD-EVENT; the latest authority update at the authority server is denoted

as LATEST-AUTH-UPDATE. Each program runs in single user thread. No other code

executes in the system while these programs are running.

Figure 7-2 shows the results of registering Alice at the clinic. First Alice's principal

and medical tag are created. Each of these operations is an authority update and

corresponds to three events: two events at the client (the request and reply) and

one event at the authority server. The principal and tag IDs are captured by the

return values of the CREATE-PRINCIPAL-REPLY and CREATE-TAG-REPLY and have,

respectively, the values of 3 and 15. The file path of Alice's medical data is captured by

the parameter to the create file operation. As described in Chapter 5, this operation

corresponds to two events at the file client node: the CREATE-FILE request event and

the CREATE-FILE-REPLY event and one event at the file server, FS-CREATE-FILE. The

labels of the created file are also stored in the event parameters; they include Alice's

medical tag, 15. Next, we see the creation of Alice's doctor principal; its ID is 4,

as indicated by the return value of the reply event. Alice's medical tag, with ID 15,

is then delegated to Alice's doctor principal. The assignment of a doctor to Alice is

examinePatient (Patient)

// examination runs with PDoctor
7/ doctor first reads the patient registration data for patName
1. (TPatientMedical, PPatientDoctor) = readFile("/patients/AllPatients")
2. AeolusCallable c = new AeolusCallableO {

3. addSe cre cy(TPatientMedical)
4. patientHistory = readFile("/patients/PatientRecord")
5. newHistory = "The examination revealed... Recommended treatment...."
6. endorse(TPatientMedical)

7. appendFi le ( "/patients/PatientRecord", newHistory)
8. removeIntegrity(TPatientMedical)
9. declassif y(TPatientMedical) }

10. call(c, PPatientDoctor")



captured by the ACT-FOR event, which creates an act-for link between the doctor with

principal ID 2 and Alice's doctor principal with ID 4. Finally, the administrator adds

the administrator tag (with ID 10) to his integrity label to update the all-patients

file.

After Alice is registered, she is seen by her doctor who runs the patient exami-

nation program. The audit trail events are depicted in Figure 7-3. The doctor first

reads the all-patient file and then makes a call operation to switch to Alice's doctor

principal (with ID 4 depicted in the parameters to CALL). During the execution of

the call, the doctor reads and updates Alice's medical file. He adds Alice's medical

tag with ID 15 do his secrecy and integrity label to perform these operations (as de-

picted by the ADD-SECRECY and ENDORSE events). The ENDORSE event, as well as

the CALL, REMOVE-INTEGRITY, and DECLASSIFY events, is an authority lookup and

has the latest authority update event of the authority client as its C-PRED. Finally

the return from the call is represented by the CALL-RETURN event.



Figure 7-1: Audit Trail Generated By the Client-Service Demo Application
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Figure 7-2: Audit Trail Generated By the Patient Registration Program
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Figure 7-3: Audit Trail Generated By the Doctor Examination Program
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Chapter 8

Performance Evaluation

Aeolus audit trails monitor all user activity in the system and provide means to

reconstruct the chain of events leading to a given system state, by recording every

user call to the Aeolus API (as well as occasional system events) and maintaining

links between the recorded events. This poses additional overhead in serving Aeolus

API calls. In this chapter we examine the performance characteristics of collecting

and storing the audit trail content. We present a series of micro-benchmarks to

evaluate the logging overhead on each individual operation type. We also include

results from several macro-benchmarks that examine the overall impact of logging on

system performance.

8.1 Experimental Setup

All experiments described in this chapter were performed on identical machines run-

ning Ubuntu 9.10 with OpenJDK Java version 1.6.0_0 and Eclipse 3.5.1 installed.

Each system has 2.83 Ghz Intel Q9550 quad core processors and 4GB of RAM. The

machines were connected via a 100Mbps switch with the network roundtrip time of

less than 1 millisecond. In order to measure steady-state performance, Java rec-

ommended micro-benchmarking practices [16, 4] were followed. In particular, all

experiments included a warmup phase intended to trigger all initializations and com-

pilations. We ensured that no code path was taken for the first time during the timing



phase to avoid deoptimization and recompilation effects. In order to avoid dead-code

elimination, we also ensured that the results computed by the benchmark were some-

how used (otherwise the compiler can eliminate the computation if it determines that

the computation cannot affect the output). In order to avoid full garbage collection

to take place during the timing phase, we clean up the JVM before each bench-

mark (using System.gc() and ensure that sufficient memory is available (the JVM

-Xmx parameter was set to 2GB during the runs). The -XX: +PrintCompilation and

-verbose: gc parameters were set during the runs to ensure that the compiler and

the garbage collector are not performing unexpected tasks during the timing phase.

The -XX:CICompilerCount=1 argument was also used to prevent the compiler from

running in parallel with itself. In order to avoid CPU caching effects, tests were run

with varying sizes of the data set, whenever appropriate. Each benchmark was run

multiple times, always in a separate JVM. The number of iterations was set such that

the total time exceeds a couple of seconds whenever possible (most average values

were computed over 100,000 runs). Finally, noise was reduced as much as possible

during the measurements.

8.2 General Costs

Since all user interactions with Aeolus are monitored, there is a generic cost of creating

and storing an event record associated with every call to the Aeolus API. Although

event records vary in size (e.g., due to the number and size of the user-supplied pa-

rameters), there is a common cost associated with storing the record in local memory,
shipping it to the server, and finally storing it in the database. On the other hand,

the cost of capturing and storing event predecessors varies significantly among differ-

ent types of Aeolus API calls. For example, we maintain additional information for

each shared state object in order to track its update history and we create special

log entries at the file server so that we can capture the order of file system events.

The micro-benchmarks presented next describe the costs associated with logging each

individual operation type. In order to maximize the logging overhead, we try to mini-



mize the execution time of each operation; for example, we supply small-sized objects

to shared state operations and use null labels whenever appropriate.

8.3 Local Forks and Calls

8.3.1 Forks

Aeolus provides the Fork method, which allows programmers to fork a new user thread

running some provided code with a given principal. An event record is created by

the Fork method before the new user thread starts executing and an additional event

record is registered at the new user thread launch. In addition, in order to correlate

the events in the parent and child threads, the ID of the fork event is carried over to

the child process where it becomes the predecessor of its first event (namely, the user

thread launch event). Table 8.1 shows the average request time for executing Fork

requests with and without logging. This time includes the allocation of an unused user

thread and the execution of the code inside that thread. The code simply outputs

a character to the screen. Since the processing of a fork request itself is on the

order of several microseconds, the experiment measures the total time of executing

1000 consecutive fork requests and then computes their average. Therefore, a small

overhead is added due to the synchronization of the parent and child thread; namely,

the parent thread needs to be notified that the child has finished in order to fork the

consecutive thread (this is achieved through the use of a static variable).

Since any user process can switch to the public principal, Ppcblic, running fork

with this principal is less expensive - the switch is authorized without consulting

the authority client. Similarly, any principal can fork with the its own pid. When

requesting to run with a different principal, a request to check the authority of the

caller process is sent to the authority client, whose reply carries both the return value

of the authority lookup, as well as the ID of its preceding authority update event,

which creates some additional overhead in performing the authority check.

We found that the logging overhead of the Fork operation is statistically insignif-



icant.

Table 8.1: Average Request Time (ms) of Fork

Operation Aeolus Aeolus w/ Logging
Fork to pid 0.028 0.03
Fork to Ppublic 0.023 0.024

8.3.2 Calls

Programmers can also run code with different authority in the same user process

using the Call method. Two event records are created for this operation - before

and after the code invocation. Similarly to the Fork call, switching to a non-public

principal requires an additional authority lookup that carries logging information

from the authority client. In the case of the Call operation, however, the event ID

of the predecessor of the first event in the invoked code can be easily accessed (since

the method is invoked in the same user domain). Table 8.2 presents the average of

performing a Call operation with and without logging. The executed code simply

prints a character to the screen. Averages were computed over 10,000 runs. Similarly

to the Fork operation the switch to a public principal is always authorized and requires

less processing time. As with the Fork operation, the logging overhead is very small

(less than 10 microseconds per call).

Table 8.2: Average Request Time (ms) of a Call

Operation Aeolus Aeolus w/ Logging
Call to pid 0.02 0.028
Call to Ppublic 0.017 0.028

8.4 Remote Procedure Calls

Users can invoke methods on remote services registered with Aeolus by retrieving a

service proxy from Aeolus at the client side - this proxy serves as a local reference



to the remote service object. A method invocation on this proxy triggers Aeolus to

send an RPC request from the client node to the node hosting the service. In order

to correlate the events at the client and server side, both the RPC request and reply

carry predecessor event IDs. Two events are recorded at the client side: when sending

the RPC request and upon the receipt of the reply. Respectively, two events are also

recorded at the server side: upon the receipt of the RPC request and when sending

the RPC reply. In addition, some logging state is maintained at each node service

registry to correlate the registering and access of user services.

For this benchmark, we created a service that simply maintains an integer counter.

A client can invoke increment (value) to increase the counter by the specified amount.

Our experiment consisted of a client and a server running on two separate machines.

Table 8.3 shows the average round-trip latency of the increment method call with

and without logging. Logging adds a small overhead of roughly 80 microseconds per

one RPC. The presented values were averaged over 1000 invocations (each call simply

incremented the counter by 1). We expect the costs of an Aeolus RPC operation to

be higher in our final implementation; however, this cost increase is not related to

the logging costs and would only make the logging overhead comparatively smaller.

Table 8.3: Average Round-Trip Latency (ms) of a Basic RPC

Aeolus Aeolus w/ Logging
2.37 2.455

8.5 Shared State

The shared state provides a way for user processes of the same platform instance

to exchange information and synchronize. Every shared state operation corresponds

to one event record. There are three ways of communicating via the shared state:

through the use of shared objects, shared queues, and shared locks. In order to

correlate access and modifier events of these objects, additional state is maintained

at each object to capture its latest modification event. Therefore, calls that modify



the shared state objects also carry the IDs of the modifier events and each reply from

the shared state manager carries the ID of the predecessor event.

8.5.1 Shared Objects

Every update of the shared object content needs to modify the associated field stor-

ing the latest modifier event ID. Every read of the file content also reads this field.

Since access to shared objects is synchronized through the use of read-write locks, no

additional synchronization is necessary to maintain this field.

Table 8.4 shows the cost of basic operations on a shared object that contains an

integer and no labels with and without logging. These values were averaged over

100,000 iterations. In all cases, the logging overhead is very small (on the order of a

microsecond).

Table 8.4: Average Request Time (ms) of Basic Operations on Shared Object

Shared Object Operation Aeolus Aeolus w/ Logging
CreateObject 0.0134 0.0141
GetObject 0.0116 0.0124
ReplaceObject 0.0113 0.0118

8.5.2 Shared Queues

The enqueue and dequeue operations are also synchronized, which removes the need

of synchronizing the update of the last queue modifier event. However, each queue

entry needs to store the ID of its enqueue event.

Table 8.5 shows the cost of basic operations on a shared queue with no labels that

contains integer-size objects with and without logging. These values were averaged

over 100,000 iterations. In all cases, the logging overhead is very small (on the order

of a microsecond).



Table 8.5: Average Request Time (ms) of Basic Operations on Shared Queue

8.5.3 Shared Locks

Each lock also has an associated last-modified field which is updated when a lock

is acquired or released. Since lock acquire and release operations serialize lock state

modifications, there is no need for additional synchronization.

Table 8.5 shows the cost of basic operations on a shared queue with no labels that

contains integer-size objects with and without logging. These values were averaged

over 100,000 iterations. In all cases, the logging overhead is very small (less than a

microsecond).

Table 8.6: Average Request Time (ms) of Basic Operations on Shared Lock

Shared Lock Operation Aeolus Aeolus w/ Logging

Lock 0.00047 0.00085
TryLock 0.00046 0.00084
Unlock 0.00046 0.00083

8.6 Authority State

Users interact with the authority state via authority update and lookup operations.

8.6.1 Authority Lookups

Authority lookups are processed at the local authority client and do not pass any

additional information to the client since they are not reflected in the authority state

modifier chain. As part of its reply, the authority client includes the ID of the latest

authority update event that becomes the predecessor of the given lookup event. Table

8.7 shows the average time of a successful Declassif y (t) operation with and without



logging. A call to Declassify includes an authority lookup operation, which checks

if the user process is authorized to remove the given tag t from its secrecy label. This

Declassify succeeds and required information is in the authority client cache during

the measurement. The benchmark first creates the tag so that the predecessor ID

passed back when logging is turned on is not null (this ID will be the ID of the tag

creation event). The average was computed over 100,000 runs. The logging overhead

is very small (less than a microsecond).

Table 8.7: Average Request Time (ms) of an Authority Lookup Operation

Aeolus Aeolus w/ Logging

0.00057 0.00076

8.6.2 Authority Updates

An authority update corresponds to two recorded events at the client (the request

and the reply). The ID of the authority update request event needs to be carried to

the authority server. The authority server logs an additional event. The ID of this

event is stored in the database together with other information associated with this

update event. This ID is also included as part of the server's reply back to the client.

Table 8.8 includes the average value of a createPrincipal operation computed over

1000 iterations. The network roundtrip time was found to be under 1 millisecond.

Table 8.8: Average Request Time (ms) of an Authority Update Operation

Operation Aeolus Aeolus w/ Logging
createPrincipal (total) 1.692 1.714

8.7 File System

The Aeolus FS manager runs on Aeolus storage nodes and manages the data stored in

the underlying file system. Namely, it checks that all the incoming file system requests



are authorized by verifying the file secrecy and integrity labels. The manager serializes

all the operations on the same file, such that there are no concurrent writes to the file

or concurrent reads and writes (only file reads can run concurrently). For each file

operation it executes, the manager creates an audit trail event record that captures

the information about the executed operation. It sends the ID of this event back to

the client.

At the file system client node, each file system operation corresponds to two event

records: one representing the file operation request and one the reply. The ID of the

request event is forwarded to the server, where it becomes the predecessor of the sever

logged event. The server event ID is sent back to the client, where it becomes the

predecessor of the reply event. The client caches the file read operations. This cache

includes the content of the file, as well as the ID of its read event at the file server.

If the information is found in the cache, this ID is set as the predecessor of the file

read reply event.

The number of created events and the way they are correlated is the same for

all file operations except for cached file reads. Our experiment measures the logging

overhead on file writes and cached file reads. The client and the server are located on

two separate machines. Table A.18 shows the average value of a file read operation

on a 5KB file when the file content is found in the cache and the average value of a

file write operation (5KB of data are written to the file in each call). The averages

were computed over 1000 iterations. The cached file read operation is very fast and

the logging overhead is very small (under 1 microsecond). The logging overhead on

the file write operation is also small (around 15 microseconds).

Table 8.9: Average Request Time (ms) of Basic File Operations

File Operation Aeolus Aeolus w/ Logging

Read (cached) 0.00022 0.00084
Write (server) 0.4801 0.4957



8.8 End-to-End Evaluations

8.8.1 Medical Clinic

We implemented a simple medical clinic application to examine the overall logging

overhead on a common application pattern involving authority updates and frequent

access to the file system. A detailed description of this application can be found

in Chapter 7. In this experiment we have an administrator principal that registers

several patients and assigns them to a doctor and one doctor that later examines and

updates all the patient files. In total, 1000 patients are first registered and assigned

to a doctor and all their medical records are then examined and modified by their

assigned doctor (for simplicity the clinic only has one doctor). The patient medical

records are small files of 10KB. We only measure the time it takes one doctor to view

and update all patient files. Each file update overwrites the entire file so that the

patient files always remain the same size. Table 8.10 includes the average time it

takes the application to run with and without logging on 1000 patient files. We found

that logging created roughly 9% overhead.

Table 8.10: Average Runtime (s) of the Medical Clinic service

Aeolus Aeolus w/ Logging Overhead Factor

1.010 1.100 1.08



Chapter 9

Conclusions

This thesis has presented the design and implementation of audit trail collection for

Aeolus, a distributed security platform based on information flow control. Aeolus

audit trails are event logs that monitor the interaction of user application code with

the Aeolus platform. In addition they can include application level events recorded

using the provided user interface to the auditing framework.

Event records are collected on each system node and shipped to a centralized

location, where they are stored in a database and processed. We correlate events

by capturing any dependencies between them in the audit trail records. Each au-

dit trail record stores links to its immediate predecessor events; this is achieved by

uniquely identifying each event in the system. Audit trail records form event depen-

dency graphs, where the nodes are the events and the edges represent the causality

relationship between them captured by the predecessor links. From this information,

we can easily reconstruct event chains by following the event predecessor links. For

example, we can find all the events that could have led to a given system state.

A new prototype of the Aeolus platform has been developed in Java and includes

the auditing collection framework. Our results show that logging imposes a small

overhead on system performance.

This work has focused on the content, format, and the collection and storage

mechanism of the audit trails. Subsequent work will mostly focus on the analysis and

management of the collected data. We now discuss future project directions.



" Protection. We want to ensure that only authorized parties can get access to

the data stored in the audit trail database and that no erroneous data can be

added to the database. This can be achieved using information flow control to

protect the database.

* Archiving. Events that occurred long in the past need to be moved from the

working database to an archive. We need a criteria for determining when events

can be removed; the archive files also need to be protected.

* Reliability. We need to replicate the central audit trail storage node to ensure

that audit trail information will not be lost if this node fails.

* Recovery. Since audit trails are shipped to the central storage only periodically,

some event records can be lost due to a node failure. We need to develop a

strategy for recovering from this loss. First, we need a way of determining

when missing events are permanently lost. If a loss is detected, we need to

reconstruct the chains of events that have been broken. Event IDs will be useful

for recovering some missing information. For example, they include enough

information to discover the latest event of a user thread that has not been lost;

they can also identify how many events are missing from some given user thread

execution based on the value of the event counter.

* Graphical User Interface. We need to find ways to present the event dependency

graphs to the users. These graphs can be very large; therefore, the interface

needs to provide some way of focusing on some chosen events, while representing

others in a condensed way. The interface should also handle node rearrangement

and deletion.

" Filtering. We need to develop a graph algorithm for filtering out event records

based on some criteria. If an event record needs to be removed (e.g. because

it does not match the criteria of interest), its predecessor chains need to be

changed appropriately (i.e. if event E is being removed and it's a predecessor of

an event A, then Pred(A) needs to be set to Pred(A)-E+Pred(E)). Since the



event dependency graphs can be very large, the algorithm could be parallelized

to explore nodes concurrently.

" Querying. We need to understand what kind of queries are useful for analyzing

the audit trail records and provide efficient algorithms for running them and

representing their results. Additional data might be stored in the database

event record entries to improve performance. For example, if a common query

is to find all the events created by a given principal, we might want to store the

principal ID associated with each event in the event database entry (currently

the principal ID is only stored in the user thread launch event of a fork, a local

call, and an authority closure call).

" Detection. We might want to provide tools to help detect anomalies in the audit

trails. There are various attack signature-detection tools that look for a specific

sequence of events that signals a security violation. We can provide a similar

tool that would match a given chain of events to the events stored in the audit

trails. We need to understand what patterns are relevant to our system.

" Backtracking. Audit trails maintain a history of system event execution and

if a security violation is detected, we could use this information to backtrack

to a valid system state. For example, we could store periodic snapshots of the

authority state and replay authority updates from a given valid snapshot.



Appendix A

Audit Trail Events

This appendix describes what events are recorded for each Aeolus operation and what

information they store. We do not include context-dependent information, such as

the timestamp and success/failure status. Only normal case behavior is explained.

The P-PRED is assumed, unless explicitly included.



Table A.1: Principals

Aeolus API Method Event Records
el. CREATE-PRINCIPAL-REQUEST

pid createPrincipal() e2. CREATE-PRINCIPAL (at server):

preds={el,last-auth-server-update},

parms={caller-pid}, ret-val={pid}
e3. CREATE-PRINCIPAL-REPLY:

preds={ el, e2}, ret-val={pid}
el. CREATE-PRINCIPAL-NEWCORE-REQUEST:

e2. CREATE-PRINCIPAL-NEWCORE (at server):

preds={el,last-auth-server-update},

parms={caller-pid}, ret-val={ pid }
e3. CREATE-PRINCIPAL-NEWCORE-REPLY:

preds={e1, e2}, ret-val={pid}
el. CREATE-PRINCIPAL-INCORE-REQUEST:

parms={pidl}
pid2 createPrincipalInCore (pid1) e2. CREATE-PRINCIPAL-INCORE (at server):

preds={el,last-auth-server-update},

parms={caller-pid, pid1}, ret-val={pid2}
e3. CREATE-PRINCIPAL-INCORE-REPLY:

preds={el, e2}, ret-val={pid2}

Table A.2: Tags

Aeolus API Method Event Records
el. CREATE-TAG-REQUEST:

tid createTag() e2. CREATE-TAG (at server):

preds={el, last-auth-server-update}, parms={caller-pid},
ret-val={tid}
e3. CREATE-TAG-REPLY:

preds={el, e2}, ret-val={tid}
el. CREATE-SUBTAG-REQUEST:

parms={tid1}
tid2 createSubTag(tidl) e2. CREATE-SUBTAG (at server):

preds={el, last-auth-server-update}, parms={caller-pid,
tidl}, ret-val={ tid2 }
e3. CREATE-SUBTAG-REPLY:

preds={el, e2}, ret-val={tid2}



Table A.3: Delegations and Revocations

Aeolus API Method Event Records
el. ACT-FOR-REQUEST:

actFor(pl, p2 ) parms={ pl, p2 }
e2. ACT-FOR (at server):
preds={el, last-auth-server-update}, parms={caller-pid,
pl, p2}
e3. ACT-FOR-REPLY:

preds={ el, e2}
el. REVOKE-ACT-FOR-REQUEST:

revokeActFor(pl, p2) parms={pl, p2}
e2. REVOKE-ACT-FOR (at server):
preds={el, last-auth-server-update}, parms={caller-pid,
p1, p2}
e3. REVOKE-ACT-FOR-REPLY:

preds=f{el, e2}
el. DELEGATE-REQUEST:

delegate(t, p1, p2) parms = {t, pl, p2}
e2. DELEGATE (at server):
preds={el, last-auth-server-update}, parms={caller-pid,
t, p1, p2}
e3. DELEGATE-REPLY:

preds={el, e2}
el. REVOKE-DELEGATE-REQUEST:

revokeDelegate(t, p1, p2) parms={t, p1, p2}
e2. REVOKE-DELEGATE (at server):
preds={el, last-auth-server-update}, parms={caller-pid,
t, p1, p2}
e3. REVOKE-DELEGATE-REPLY:

preds={el, e2}

Table A.4: Label Manipulations

Aeolus API Method Event Records

addSecrecy(t) el. ADD-SECRECY:
parms={t}

removeIntegrity(t) el. REMOVE-INTEGRITY:
parms={t}

declassify(t) el. DECLASSIFY:
preds={last-auth-client-update}, parms= {t}

endorse(t) el. ENDORSE:
preds={last-auth-client-update}, parms={t}



Table A.5: Authority Closures

Aeolus API Method Event Records
el. CREATE-CLOSURE-REQUEST:

cid createClosure (class) parms={class.Name}
e2. CREATE-CLOSURE (at server):

preds = {el ,last-auth-server-update}, parms={caller-
pid, class.Name}, ret-val={cid}
e3. CREATE-CLOSURE-REPLY:

preds={el, e2}, ret-val={cid}

closureObj getClosure(cid) el. GET-CLOSURE:
closure_ bjgetlosure_(cid) preds={last-auth-client-update}, parms={cid}

el. CALL-CLOSURE:

callClosure(cid, closureObj) preds= {last-auth-client-update}, parms={cid, c.pid}
e2. CALL-CLOSURE-RETURN

preds={last-event-of-closure-invocation}

Table A.6: Boxes

Aeolus API Method Event Records
el. CREATE-BOX:

b createBox(outerSLabel, outerlLabel, parms={outerSLabel, outerILabel, inner-
SLabel, innerILabel}

innerSLabel, innerILabel)

el. GET-INNER-SLABEL:
b.getInnerSLabel() preds={b.CREATE-BOX}

el. GET-INNER-ILABEL:

b.getInnerILabel() preds={b.CREATE-BOX}

el. GET-OUTER-SLABEL:

b.getOuterSLabel() preds={b.CREATE-BOX}
el. GET-OUTER-ILABEL:

b. getOuterILabel () preds={b.CREATE-BOX}

obj b .getContent ()el. GET-BOX-CONTENT:
preds={b. last-PUT-BOX-CONTENT/

b.CREATE-BOX}

b. putContent (obj) el. PUT-BOX-CONTENT:
preds={b. last-PUT-BOX-CONTENT/

b.CREATE-BOX)



Table A.7: Shared State: Shared Objects

Aeolus API Method Event Records

obj getSharedRoot ( el. GET-SHARED-ROOT
preds={last-UPDATE-SHARED-ROOT}

updat eSharedRoot (obj) el. UPDATE-SHARED-ROOT
preds={last-UPDATE-SHARED-ROOT}

objID createSharedfbject(sLabel, el. CREATE-SHARED-OBJECT:
' parms={sLabel, iLabel}, ret-val={objID}

iLabel, obj)

obj getSharedObject (obj ID) el. GET-SHARED-OBJECT:
preds=f{obj.last-UPDATE-SHARED-OBJECT),
parms= {objID}

updateSharedObj ect (obj ID, obj) el. UPDATE-SHARED-OBJECT:
preds={obj.laSt-UPDATE-SHARED-OBJECT},

parms=f{objI D}

deleteSharedObj ect (obj ID) el. DELETE-SHARED-OBJECT:
preds={obj. last-UPDATE-SHARED-OBJECT},
parms={objID}

Table A.8: Shared State: Shared Queues

Aeolus API Method Event Records

qID createSharedQueue(sLabel, iLabel) el. CREATE-SHARED-QUEUE:
parms={sLabel, iLabel}, ret-val={qID}

el. ENQUEUE:
enqueue (qID, obj) preds=f{q.last-ENQUEUE/DEQUEUE),

parms={qID}
el. DEQUEUE:

obj dequeue(qID) preds=f{obj.ENQUEUE}, parms={qID}
el. WAIT-AND-DEQUEUE:

obj waitAndDequeue (qID) preds={obj.ENQUEUE}, parms={qID}
el. DELETE-SHARED-QUEUE:

deleteSharedQueue (qID) preds={q.lat-ENQUEUE/DEQUEUE),
parms = {qID}



Table A.9: Shared State: Shared Locks

Aeolus API Method Event Records
el. CREATE-SHARED-LOCK:

lockID createSharedLock(sLabel, iLabel) parms={sLabel,iLabel}, ret-

val={lockID}
el. LOCK:

lock(lockID) preds={lock. last-UNLOCK/ CREATE-
SHARED-LOCK}, parms={lockID}

el. TRY-LOCK:

bool trylock(lockID) preds={lock.last-UNLOCK/CREATE-
SHARED-LOCK}, parms={lockID},

ret-val={bool}
el. UNLOCK:

unlock(lockID) preds={lock. last-LOCK},
parms={lockID}
el. DELETE-SHARED-LOCK:

deleteSharedLock(lockID) preds={lock.last-LOCK/UNLOCK/
CREATE-SHARED-LOCK},

parms={lockID}



Table A. 10: File System: Files

Aeolus API Method Event Records
el. CREATE-FILE-REQUEST:

parms={hostname, filePath, sLabel, iL-bool createFile(hostname, filePath, ael} snae ie~tsabl L
abel}

sLabel, iLabel) e2. FS-CREATE-FILE (at server):
preds={el ,last-parentdir-update}
parms={filePath, sLabel, iLabel}
e3. CREATE-FILE-REPLY:

preds={el, e2}, ret-val={bool}
el. READ-FILE-REQUEST:

content readFile(hostnaine, filePath) parms={hostname, filePath}
e2.if(cache-miss):FS-READ-FILE(at server):
preds={el ,file. last-write},
parms= {filePath}
e3. READ-FILE-REPLY:

preds={el, e2/cache.file.fs-read}
el. WRITE-FILE-REQUEST:

parms={ hostname, filePath}writeFile(hostname, filePath, content) p2rmS-{hoteFILEath}
e2. FS-WRITE-FILE (at server):
preds={el ,file.last-write},
parms= {filePath}
e3. WRITE-FILE-REPLY:

preds={el, e2}
el. DELETE-FILE-REQUEST:

bool deleteFile(hostname, filePath) parms=fhostname, filePath}
e2. FS-DELETE-FILE (at server):
preds={el, file. last-write, last-parentdir-
update}, parms={filePath}
e3. DELETE-FILE-REPLY:

preds={el, e2}, ret-val={bool}



Table A.11: File System: Directories

Aeolus API Method Event Records
el. CREATE-DIR-REQUEST:

bool createDir(hostname, filePath, parms={hostname, filePath, sLabel, iLabel}
sLabel, iLabel) e2. FS-CREATE-DIR (at server):

preds={el, last-parentdir-update}
e3. CREATE-DIR-REPLY:

preds={el, e2}, ret-val={bool}
el. LIST-DIR-REQUEST:

content listDir(hostname, filePath) parms {hostname, filePath}
e2. FS-LIST-DIR (at server):
preds={el, last-dir-update}
e3. LIST-DIR-REPLY:

preds={el, e2}
el. DELETE-DIR-REQUEST:

bool deleteDir(hostname, filePath) parms = {hostname, filePath}
e2. FS-DELETE-DIR (at server):
preds={el, last-dir-update, last-parentdir-
update}
e3. DELETE-DIR-REPLY:

preds={el, e2}, ret-val={bool}



Table A.12: File System: File Streams

Aeolus API Method

handle openFilestream(hostname, filePath,
mode)

Event Records
el .OPEN-FILESTREAM-REQUEST:

parms={hostname, filePath, mode}
e2.if(mode=READ&cache-miss)
FS-READ-FILE(at server):
preds={el,file.last-write},
parms={filePath}
if(mode=READ&cache-hit)
cache.file.fs-read
if(mode=WRITE) no-event
e3. OPEN-FILESTREAM-REPLY
preds={el, e2}, ret-val={handle}

content readFilestream(handle, el.READ-FILESTREAM:
offset, count) preds={cache.file.fs-read},

parms={handle}
writeFilestream(handle, content, el.WRITE-FILESTREAM:
offset, count) parms=f{handle}

el .CLOSE-FILESTREAM-REQUEST:
closeFilestream(handle) prs{ade

parms={ handle}

if(mode=WRITE) e2. FS-WRITE-
FILE (at server):

preds={el,file.last-write},
parms={filePath}
e3. CLOSE-FILESTREAM-REPLY

preds={el, e2}



Table A.13: Service Registry and Remote Procedure Calls

Aeolus API Method Event Records
el. REGISTER-SERVICE:

registerService(serviceName, className) parms={serviceName}

serviceStub getService(hostnaine, serviceName) el. GET-SERVICE:
parms= {hostname, serviceName}
el. SEND-RPC (at client):

result serviceStub.remoteMethod(params) preds=last-auth-client-

update}, parms={hostname,
serviceStub.serviceName,
remoteMethod.Name}
e2. RECEIVE-RPC (at server):
predsz={el, service.registration,
last-auth-client-update}, parms

= {serviceName, methodName,
sLabel, iLabel}
e3. SEND-RPC-REPLY:

preds={last-event-in-method-
invocation, last-auth-client-
update}
e4. RECEIVE-RPC-REPLY:

preds={el, e3, last-auth-client-

update}

Table A.14: Local Calls and Forks

Aeolus API Method Event Records
el. FORK: (in parent thread)

. cpreds={last-auth-client-update}, parms={pid}
e2. USER-THREAD-LAUNCH (in child thread):
preds={el}, parms={pid}
el. CALL:

call(pid, code) preds={last-auth-client-update}, parms={pid}
e2. CALL-RETURN:

preds= {last-event-in-code-execution}



Table A.15: Node Creation / Deletion

Aeolus API Method Event Records
el. CREATE-NODE (at auth-server):

start-up(appName, appArgs, isDataNode) preds{ast-auth-server-update},
parms= {hostname}, ret-
val={nodeRootPid}
e2. CREATE-NODE:

preds={el}, parms={hostname, node-
RootPid, isDataNode}
e3. LAUNCH-PI:

(this is not part of the API) preds={e2},parms={piID, nodeRootPid,
appName}
e4. LAUNCH-USER-THREAD:

preds={e3}, parms={nodeRootPid}
el. DELETE-NODE-REQUEST:

deleteNode(hostname) parms={hostname}
e2. DELETE-NODE (at auth-server):

preds = {el},parms={hostname}
e3. DELETE-NODE-REPLY:

preds = {el, e2}



Table A.16: Platform Instance Launch / Shutdown

Aeolus API Method Event Records
el. PI-LAUNCH-REQUEST:

preds={last-auth-client-update},
parms={hostname, piPid, appName}
e2. LAUNCH-PI (at hostname):
preds={el,pi.node.creation},
parms={piID, piPid, appName}
e3. LAUNCH-USER-THREAD (at host-
name):
preds={e2}, parms={pid=piPid}
e4. LAUNCH-PI-RETURN (at hostname):
preds= {last-event-in-app-thread}
e5. LAUNCH-PI-REPLY:

preds={el, e4}
el. PI-SHUTDOWN-REQUEST:

shutdownPlatformInstance (hostname, piID) parms={hostname, piID}
e2. SHUTDOWN-PI (at hostname):
preds = {el, last-auth-client-update},
parms={caller-pid, piID}
e3. SHUTDOWN-PI-RETURN (at host-
name):
e4. SHUTDOWN-PI-REPLY:

preds = {el, e4}

Table A.17: Auditing Interface

Aeolus API Method Event Records
eid createEvent(preds, event-name, parms, el. event-name:
status, ret-val, timestamp) event info as specified by the arguments

Table A.18: I/O Devices

launchPlatformInstance(hostname, piPid,

appName, appArgs)

Type of I/O Event Event Records
read el. READ-FROM-LO-DEVICE:

parms={device-type}

write el. WRITE-TO-IO-DEVICE:

parms={device-type}



Appendix B

Implementation Details: Audit

Trail Collection and Shipment

Structures

This appendix includes a detailed description of the data structures used to collect

and ship audit trail data in our current prototype.

B.O.2 Local In-Memory Collection

An Aeolus event is captured by an EventRecord object, whose fields store the infor-

mation associated with the event (the event ID, event predecessors, operation name,

parameters, return value, timestamp, and the status). EventRecords are submitted

to the platform instance Collector for storage. The Collector is responsible for

aggregating EventRecords from all user threads of this platform instance. Since user

threads run concurrently, we need to guarantee that submitting EventRecords to the

Collector is a thread-safe routine. Moreover, since the record data is forwarded

periodically to a central server, we also need to synchronize this routine with the

removal of the records that have already been shipped. In order to guarantee the

thread-safety of these operations without a significant synchronization overhead, we

use a specialized concurrent data structure, called SynchronizedEventsTable, to



store all the records submitted to the Collector.

The SynchronizedEventsTable maps user thread IDs to the list of EventRecords

generated in these threads. Internally, it relies on Java's

ConcurrentHashMap collection provided by the java. util .concurrent package, which

is an efficient and scalable thread-safe implementation of Map that does not use table-

wide locking and is optimized for retrieval operations (read operations almost always

run concurrently). Since user threads are reused by the platform instance, there is

no need to remove any entries from our map - once an event record was submitted to

the Collector from a user thread, the table will always have an entry for this thread

ID; therefore, write operations will be very rare, occurring only upon the addition

of a new user thread ID to the table. Iterating over map elements is also tread-safe;

however, insertions or deletions occurring after the creation of the Iterator may or

may not be included (as specified by the Java documentation).

Our SynchronizedEventsTable provides two operations: addEvent and

getAllAndReset. The addEvent operation adds a new event record to the table

based on the ID of the calling user thread: if the ID is already in the table, the

event is just appended to the list of events associated with this ID; otherwise, a new

table entry is created for this user thread. The getAllAndReset operation runs when

the event records are being shipped to the central server. It returns all the event

records currently stored in the table. In order to retrieve the content of the table, the

procedure iterates over all the table entries, assembling the current event lists into

a separate collection, while resetting map's events list references to new empty lists

(the value of each map entry is actually a special object that holds a reference to the

events list). Even though there might be recent additions to the table that were not

returned by the map iterator, these will be captured the next time this procedure

runs. Both addEvent and getAllAndReset are read operations with respect to the

events table, since they only modify the value of the event list referenced from the

table entry (either by appending to the existing list or resetting the value to a new

list). As already mentioned these operations are optimized by the underlying Java

collection and usually require no locking.



Since user threads are single threads, only one addEvent operation at a time can

run on the same event list and so, we have no race conditions when it comes to

appending events to the list. However, the getAllAndReset operation can process

a table entry concurrently with the addEvent operation on that entry's event list.

In order to avoid this race condition, we associate a lock with each table entry to

synchronize the access to its event list reference. The getAllAndReset operation will

lock each entry at a time as it iterates over the table. This lock will only be held

briefly since the procedure only resets the list reference to a new list. The addEvent

operation will also need to grab this lock when appending to the list; however, the

contention on this lock will be low since getAllAndReset only runs periodically when

the the data is shipped to the server.

B.O.3 Shipment to a Centralized Location

Audit trail data collected locally by each platform instance is periodically sent to a

centralized location for persistent storage and processing. Each platform instance runs

a LoggingClient, which sends the audit trail data to the central LoggingService

via Java RMI. When the shipment event happens, the Collector passes all the

accumulated EventRecords to the LoggingClient. Scheduling the log shipment is

implemented as a recurring task using Java's ScheduledThreadPoolExecutor class.

This thread pool accepts Runnable task objects and can execute them at a fixed time

rate with any specified delays using one of its available worker threads. This pool is

managed by the platform instance.

In order to facilitate the processing of the received data at the server and reduce

the amount of information being sent, all event records are aggregated into a struc-

tured form. In our current implementation the records are sent as a Java HashMap

object, which maps the ID of the user thread to a list of its event records (similar to

the form in which the data is locally stored). We rely on Java Serialization to send

this map across the network (we also provide an XML alternative for assembling and

parsing this data). Along with the event records, each data shipment also includes

the ID of the sender platform instance and a system timestamp - all the events in



this shipment will be actually stored with this approximate timestamp to reduce the

performance overhead of querying the system clock every time an event occurs.

In our current implementation, the central LoggingService runs at one system

node. For example, it could be co-located with the authority server.
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