Evolution and classification of the CRISPR/Cas systems 1 2 3 Kira S. Makarova¹, Daniel H. Haft², Rodolphe Barrangou³, Stan J. J. Brouns⁴, 4 Emmanuelle Charpentier⁵, Philippe Horvath⁶, Sylvain Moineau⁷, Francisco J. M. 5 Mojica⁸, Yuri I. Wolf¹, Alexander F. Yakunin⁹, John van der Oost⁴, and Eugene V. 6 Koonin^{1,*} 7 8 9 ¹National Center for Biotechnology Information, National Library of Medicine, National Institutes of 10 Health, 8600 Rockville Pike, Bethesda, MD 20894 11 12 ²The J Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850 13 14 ³Danisco USA Inc., 3329 Agriculture Drive, Madison, WI 53716 15 16 ⁴Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The 17 Netherlands 18 19 ⁵Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Department 20 of Molecular Biology, Umeå University, S-90187 Umeå, Sweden 21 22 23 24 25 26 27 28 29 ⁶Danisco France SAS, BP10, 86220 Dangé-Saint-Romain, France ⁷Département de Biochimie, Microbiologie et Bio-informatique, Faculté des Sciences et de Génie, Groupe de Recherche en Ecologie Buccale, Université Laval, Quebec City, Quebec, G1V 0A6, Canada ⁸Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03080-Alicante, Spain ⁹Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada 30

31 *for correspondence: koonin@ncbi.nlm.nih.gov

32 Abstract

33

34 The CRISPR/Cas modules are adaptive immunity systems that are widespread in 35 Archaea and Bacteria. These defense systems show extraordinary diversity in operon 36 architecture along with high rates of cas gene evolution. Several classifications of 37 CRISPR/Cas systems and Cas proteins have been proposed but it appears difficult to 38 capture the full complexity of these systems in a coherent scheme. Here, we provide an 39 updated analysis of the evolutionary relationships between CRISPR/Cas systems and Cas 40 proteins. Three major types of CRISPR/Cas systems are delineated, with a further 41 division into several subtypes and a few chimeric variants. Given the complexity of 42 genomic architectures and the extremely dynamic evolution of the CRISPR/Cas systems, 43 a unified classification of these systems should be based on multiple criteria. 44 Accordingly, a "polythetic" classification is proposed that integrates the phylogenies of 45 the most common cas genes, the sequence and arrangements of the CRISPR repeats, and 46 the architecture of the CRISPR/Cas loci. 47

48	The CRISPR/Cas (clustered regularly interspaced short palindromic repeats /
49	<u>C</u> RISPR- <u>as</u> sociated proteins) modules are adaptive immunity systems that act against
50	invading genetic elements and are encoded by most Archaea and many Bacteria 1-6
51	(Supplementary Table 1). Distinct arrays of short repeats interspersed with unique
52	spacers (CRISPR) have been recognized in bacterial and archaeal genomes for years, and
53	although it has been proposed that these repeat arrays could have an important common
54	function ⁷ , the nature of that function has been elucidated only much later.
55	Independently, Cas protein sequences encoded by putative operons adjacent to CRISPR
56	were analyzed in detail with computational methods and found to contain domains
57	characteristic of several nucleases, a helicase, a polymerase and RNA-binding proteins ⁸ .
58	Initially, it was speculated that these proteins might jointly constitute a novel DNA repair
59	system ⁹ . However, the observation that some of the unique CRISPR spacers were
60	(nearly) identical to fragments of virus and plasmid genes led to the hypothesis that
61	CRISPR/Cas might be involved in defense against selfish elements ¹⁰⁻¹² . On the basis of
62	these findings combined with a comprehensive computational re-analysis of the Cas
63	proteins ^{13,14} , a model was proposed ¹⁴ that drew an analogy between the putative novel
64	prokaryotic defense system and the eukaryotic RNA interference (RNAi) mechanisms ¹⁵ .
65	However, unlike the eukaryotic RNAi systems, the CRISPR/Cas system integrates a
66	small piece of DNA derived from foreign nucleic acid into the CRISPR locus of the host
67	genome as the first step in the series of events that leads to immunity to the given agent
68	¹⁴ . The hypothesis that the CRISPR/Cas system plays a role in defense against invading
69	DNA has been validated by the demonstration that integration of a short bacteriophage-
70	specific sequence into the CRISPR locus of the lactic acid bacterium Streptococcus

thermophilus conferred resistance to the cognate phage¹⁶. The phage resistance was
abrogated by even a single mismatch between the CRISPR insert (referred to as spacer)
and the target phage sequence (referred to as proto-spacer)¹⁶.

74

75 The CRISPR/Cas systems mediate immunity to invading genetic elements via three stages (Figure 1)^{1-3,6}. The first stage is adaptation which involves the integration of 76 short pieces of DNA homologous to virus or plasmid sequences into the CRISPR loci¹⁶⁻ 77 78 ¹⁸. Viral challenge typically triggers insertion of a single virus-derived, resistance-79 conferring spacer with a characteristic length of approximately 30 bp; acquisition of 80 multiple spacers from the same phage is less frequent. The insertion of new spacers has 81 been reported to depend on short (few nucleotides) proto-spacer adjacent motifs (PAMs) 82 which differ between variants of the CRISPR/Cas system and appear to determine the 83 selection of the inserted spacer ^{19,20}.

84

85 The second stage is the expression and processing, during which the long primary 86 transcript of a CRISPR locus (pre-crRNA) is processed into short crRNAs. The latter 87 processing step is catalyzed by endoribonucleases that either operate as a subunit of a 88 larger complex (e.g. Cascade, <u>CRISPR-associated complex for antiviral defense in</u> 89 Escherichia coli) (Figure 1) or as a stand alone enzyme (e.g., Cas6 in the archaeon 90 *Pyrococcus furiosus*). In the case of the Cascade complex²¹, the mature crRNA remains 91 associated with the complex after initial endonuclease cleavage (Figure 1), whereas in P. 92 *furiosus* the crRNA, processed by Cas6, is passed on to a distinct Cas protein complex 93 (Cmr-type, see below) where it is processed further 22,23 .

94	The third and final step is interference, during which the alien nucleic acid
95	(foreign DNA or RNA) is targeted and cleaved within the proto-spacer sequence ^{$6,17,18$} .
96	The crRNAs guide the respective complexes of Cas proteins to the complementary target
97	sequences of invading viruses or plasmids that match the spacer. In S. thermophilus and
98	E. coli targeting either strand of the phage DNA confers immunity to the cognate phage,
99	an observation that is best compatible with DNA being the target ^{16,24} . Furthermore,
100	insertion of a self-splicing intron into the proto-spacer sequence of the target gene
101	rendered the respective plasmid resistant to the CRISPR-mediated immunity in
102	Staphylococcus epidermidis, indicating that the invading DNA rather than mRNA is
103	targeted ²⁵ . However, <i>in vitro</i> experiments with the CRISPR/Cas system from <i>P. furiosus</i>
104	showed that in this case the crRNA rather targets the viral mRNA ²³ . These findings
105	emphasize the remarkable mechanistic and functional diversity of the CRISPR/Cas
106	systems, although the full range of their activities remains to be determined. Various Cas
107	proteins might participate in either one or multiple stages of the CRISPR/Cas system
108	action, most likely, as protein complexes ⁶ .
109	In agreement with the bioinformatic predictions, nuclease activities, RNAse
110	and/or DNAse, have been demonstrated for several Cas proteins, including the two
111	universal core Cas proteins: Cas1 (a metal-dependent DNAse with no sequence
112	specificity that has been proposed to be involved in the integration of the alien DNA
113	(spacer) into the CRISPR cassettes ²⁶) and Cas2 (a metal-dependent endoribonuclease
114	whose role in the CRISPR/Cas mechanism remains unclear ²⁷). The Cas proteins known
115	as RAMPs (<u>Repeat-Associated Mysterious Proteins</u>) contain a double ferredoxin-fold

domain; some of the RAMPs have been shown to possess sequence- or structure-specific
RNAse activity that is involved in the processing of pre-crRNA transcripts ^{21,22,24}.

118

119 The CRISPR/Cas systems can be divided into two distinct, quasi-independent 120 subsystems. The highly conserved "information processing" subsystem includes the Cas1 121 and Cas2 proteins in its core, and is thought to be involved in the maintenance and 122 replenishment of the spacer-repeat library. The "executive" subsystem, which is highly 123 variable in content, typically includes multiple RAMP proteins, and is involved in 124 processing of the CRISPR transcript (Cascade complex and its analogs) and the crRNA-125 directed interference of invading genetic elements. 126 127 Extensive bioinformatic analyses have shown that the genomes of various 128 CRISPR-containing organisms encode approximately 65 distinct Cas proteins which can 129 be classified into 23 to 45 families depending on the classification criteria (granularity of clustering)^{13,14}. Furthermore, 8 distinct subtypes of the CRISPR/Cas systems (CASS1 to 130 131 CASS8) have been delineated on the basis of the composition and architecture of the cas operons and Cas1 phylogeny ^{13,14}. 132 133 The diversity of CRISPR systems identified in newly sequenced genomes (in a 134 representative set of 703 archaeal and bacterial genomes, 310 (44%) encode one or more 135 CRISPR/Cas modules; Table 2 and Supplementary Table 1) is rapidly increasing ^{1,4}, 136 hence an urgent need exists for a rational and unified classification and nomenclature of 137 the cas genes. In this article, we summarize the shortcomings of the existing

138 classifications and nomenclatures of the CRISPR/Cas systems, and propose a new,

139 "polythetic" classification which combines information from comparative-genomic and140 phylogenetic analyses.

141

142 Problesm with the existing CRISPR/Cas classification

143 The original, widely used classification proposed by Haft et al. was based on the 144 topology of the Cas1 phylogenetic tree and *cas* operon organization in eight organisms ¹³. 145 The names of four core *cas* genes were kept as they were originally proposed by Jansen 146 et al. in 2002⁸. Two other core genes, *cas5* and *cas6*, were then added using the same 147 principle ¹³. In addition, gene names for proteins specific to each of the eight CRISPR 148 systems were proposed. For example, the unique genes found in the *E. coli* system were 149 denoted *cse1* (CRISPR system of *E. coli* gene number 1), *cse2*, *cse3*, *cse4*, and *cse5* 150 (elsewhere, these *E. coli* genes were also labeled as *casA*, *casB*, *casC*, *casD*, *and casE*)²¹. Although the original approach ¹³ offers attractive simplicity, its major 151 152 shortcoming is the failure to identify distant relationships between many proteins. For 153 example, the proteins that belong to the COG1857 family, that are present in the majority 154 of the CRISPR/Cas systems and are obviously orthologous, have been given at least 5 155 different names: Cse3, Csd2, Csh2, Cst2, and Csa2 (Table 1). The other shortcoming of this classification is that it does not take into account the complexity of the relationships 156 157 between the CRISPR/Cas systems and the respective Bacteria and Archaea. In particular, 158 the classification ignores the apparent relatedness between several CRISPR/Cas systems: 159 for example, the Ecoli and Ypest systems are definitely related, and so are the Apern, 160 Tneap/Hmari and Dvulg systems which share a common signature gene of the BH0338 161 family. Conversely, extensive recombination within CRISPR operons has resulted in

162	hybrid CRISPR/Cas systems that cannot be assigned to any of the proposed groups
163	although they contain typical cas genes. The linkage between CRISPR/Cas groups and
164	particular organisms can be misleading due to the presence of multiple CRISPR/Cas
165	systems in the same organism, the presence of different CRISPR/Cas systems in different
166	strains of same species, and again, the rather wide spread of hybrid systems. The
167	inconsistencies between the nomenclatures of the CRISPR/Cas systems and the names of
168	Cas proteins are rapidly growing. In particular, many of these proteins are currently
169	classified into families that do not have systematic names pointing to their involvement
170	with CRISPR/Cas (e.g., CXXC_CXXC family protein, GSU0053 family protein, etc.).
171	
172	Evolutionary relationships as a basis for a new classification of CRISPR/Cas
173	systems
174	Two Cas proteins (Cas1 and Cas2) are present in all CRISPR/Cas systems that are
175	predicted to be functionally active and are thought to be involved in spacer integration
176	(the adaptation stage) as the "information processing" subsystem. The cas1 and cas2
177	genes comprise the cores of three distinct types (I, II and III) of CRISPR/Cas systems that
178	form the basis of a new, polythetic (based on multiple criteria) classification we propose
179	here (Figure 2 and Table 1).
180	
181	Type I CRISPR/Cas system. Typical Type I loci contain a gene for a predicted
182	helicase/nuclease (Cas3) as well as several other proteins that probably form Cascade-
183	like complexes with different compositions ^{21,24} . These complexes include multiple
184	proteins of the RAMP superfamily, in particular, the widespread COG1857 (Cas7) family

185	recently proposed to adopt the RAMP fold (KSM, unpublished observations), and
186	BH0338-like families; in addition, the complexes may contain other, less conserved
187	subunits. In the Cascade complex, a RAMP protein has been demonstrated to be the
188	major enzyme (RNA endonuclease) that catalyzes the processing of the long
189	spacer/repeat-containing transcript into a mature crRNA ^{21,24} . In most cases, the catalytic
190	RAMP protein (Cas6, Cas6e and Cas6f; see Table 1) does not belong to the most
191	prevalent Cas5 or Cas7 family of RAMPs and is often encoded in the periphery of the
192	respective operon. However, an exception might be the subtype I-C system (also known
193	as Dvulg/CASS1, Table 1 and Figure 2) in which either Cas5 or Cas7 are likely
194	candidates to possess RNAse activity. The Type I CRISPR systems appear to target
195	DNA, and the cleavage might be catalyzed by the HD nuclease domains of Cas3 and/or
196	by the RecB-family nucleases (Cas4). However, the fact that in several Type I
197	CRISPR/Cas systems the RecB nuclease domain is fused to Cas1, may suggest a role for
198	Cas4 in spacer acquisition.
199	

200 *Type II CRISPR/Cas system.* The Type II systems include the "HNH" type 201 system (Streptococcus-like, also known as Nmeni subtype or CASS4, Table 3) in which (in addition to the ubiquitous Cas1 and Cas2) a single, very large protein, Cas9 202 203 (COG3513), appears to be sufficient for both generating crRNA and cleaving the target 204 DNA. The Cas9 protein (~1,000 amino acids) contains at least two nuclease domains, 205 namely, the N-terminal RuvC-like nuclease (RNAse H fold) and the HNH (McrA-like) 206 nuclease domain that is located in the middle of the protein. The functional specialization 207 of these nuclease domains remains to be elucidated. However, the HNH nuclease domain

is abundant in restriction enzymes and possesses endonuclease activity^{28,29}, so it is likely
to be responsible for target cleavage.

210

211 *Type III CRISPR/Cas system.* The Type III systems contain polymerase-RAMP 212 modules in which at least some of the RAMPs appear to be involved in the processing of 213 the CRISPR-spacer transcripts analogously to the Cascade complex. Targeting of plasmid DNA by this system (subtype III-B) has been demonstrated in vivo in S. epidermidis ²⁵, 214 215 and it seems plausible that the HD domain of the polymerase-like protein (COG1353) is 216 involved in the target DNA cleavage. There is also strong evidence that at least *in vitro* the Type III-A CRISPR/Cas system from *P. furiosus* can target RNA ²³. Apart from the 217 218 universal Cas2 protein, the only identified ribonucleases in the Type III CRISPR/Cas 219 systems are RAMP proteins. Beside Cas6 that is involved in CRISPR transcript processing, Type III systems contain at least two additional RAMPs. These RAMPs 220 221 appear to be the most likely candidate enzymes for the subsequent trimming of the 222 crRNA. In many organisms, Type III CRISPR/Cas operons lack the *cas1-cas2* gene pair; 223 in all these cases, an additional CRISPR locus (Type I or II) is present in the respective 224 genome, so the polymerase-RAMP module probably interacts with Cas1-Cas2 in trans. 225 In other organisms, the polymerase-RAMP modules are present in a single operon with 226 cas1 and cas2, e.g., a module with the typical architecture in Staphylococcus epidermidis 227 and Mycobacterium tuberculosis (Type III-A) and a distinct version in Halorhodospira 228 halophila (Type III-B). In these organisms the Type III operon is the only CRISPR/Cas 229 locus, suggesting that, combined with Cas1-Cas2, the polymerase-RAMP module forms a 230 fully functional, autonomous Type III system.

232	The three types of CRISPR systems show a distinctly non-uniform distribution
233	among the major lineages of Archaea and Bacteria (Table 2). In particular, the Type II
234	systems so far have been found exclusively in bacteria whereas Type III systems are
235	more common in Archaea. The previously observed trend of overrepresentation of
236	CRISPR in Archaea compared to Bacteria ³⁰ still holds (Table 2). Moreover, the majority
237	of archaeal genomes carry more than one CRISPR/Cas system; typically, different
238	modules within the same genome are unrelated.
239	
240	Subtypes of the CRISPR/Cas systems and their evolution
241	Based on the gene composition and architecture of the respective cas operons, the
242	three basic types of CRISPR/Cas systems can be further classified into subtypes that
243	largely agree with the previously delineated variants ^{13, 14} . Each of the subtypes contains a
244	distinct signature gene (Figure 2 and Table 1). The ubiquitous, highly conserved Cas1
245	protein can be used as a scaffold to investigate the evolution of the CRISPR/Cas system
246	(the other universal protein, Cas2, is too small to yield a well-resolved tree). The
247	phylogenetic tree of Cas1 includes several well-resolved branches that generally agree
248	with the classification of CRISPR/Cas systems into subtypes (I-A, I-B, I-C, I-E, I-F, II
249	and III-A) ¹⁴ , with a few notable exceptions (Figure 3). In particular, Cas1 proteins
250	associated with the polymerase-RAMP module (type III) appear in several unrelated
251	positions in the tree (Figure 3), suggesting that this module can operate with a variety of
252	cas1-cas2 genes both in cis and in trans.
253	

254	The CRISPR repeats can be classified into at least 12 groups based on sequence	
255	similarity ³¹ . Four groups of CRISPR repeats clearly correspond to distinct CRISPR/Cas	
256	subtypes (all of Type I): group 2 – I-E (Ecoli/CASS2), group 3 – I-C (Dvulg/CASS1),	
257	group 4 – I-F (Ypest/CASS3) and group 10 – type II (Nmeni/CASS4). These four	
258	variants of CRISPR/Cas systems have the most stable operon organizations; on the other	
259	hand, subtypes I-A, I-B, I-D, and Type III appear to be prone to recombination between	
260	different subtypes. Structural characteristics of CRISPR repeats of these four groups can	
261	be potentially employed for classification, in addition to phylogenetic data and signature	
262	genes. Other groups of repeats cannot be unequivocally associated with particular	
263	CRISPR/Cas system subtypes.	
264	Integration of all the above considerations in a dendrogram, reflects our present	
265	understanding of the evolutionary history of CRISPR/Cas systems (Figure 2). Subtypes	
266	of the Type I system are grouped according to their operon organizations and the	
267	phylogeny of their Cas1 proteins.	
268		
269	Proposals for the CRISPR/Cas system nomenclature	
270	Most of the CRISPR/Cas loci can be readily classified into the proposed types and	
271	subtypes based on the presence of type- and subtype-specific signature genes (Table 1	
272	and Table 3). In addition, we introduce the catch-all subtypes I-U, II-U and III-U (U for	
273	unclassified) for systems that lack currently defined subtype-specific signature genes but	
274	might fit one of the established subtypes based on further structure and sequence analysis	
275	or potentially could become founders of new subtypes. In the same vein, we propose	

Type U for the loci that cannot be classified even at the type level (e.g., the CRISPR/Cas
system in *Acidithiobacillus ferrooxidans* ATCC 23270 discussed below).

278

279 We propose to retain the well-established names for core genes of the information 280 processing (ubiquitous cas1 and cas2) and executive (cas3-6, characteristic for Type I 281 system) components of the CRISPR/Cas systems. In several cases for which orthology could be confidently traced, we extend the usage of these six cas gene names (thus, cmx5 282 283 of I-C is renamed *cas5* and *cmx6* is renamed *cas6*). In cases when significant sequence 284 similarity between Cas proteins is observed but orthologous relationships cannot be 285 definitively assigned, we use an additional letter derived from the subtype label (hence 286 *cas6e* and *cas6f*, former *cse3* and *csv4*, respectively, which are likely to be extremely 287 divergent derivatives of *cas6*; Table 1).

288

In Type I systems, there are two additional genes for which orthology is readily detectable between different subtypes. We refer to these genes as *cas7* and *cas8(abc)*; both encode subunits of the Cascade complex (Table 1). The *cas8a*, *cas8b* and *cas8c* genes are the signature genes for subtypes I-A, I-B and I-C, respectively. In type II and type III systems, the respective signature genes are designated *cas9* (formerly *csn1* and *css12*) and *cas10* (*cmr2*, *csm1* and *css11*).

295

When a gene clearly is a fusion or fission of established genes, we propose an *ad hoc* nomenclature indicating the relationship of this variant to the "canonical" forms:

thus, *cas2/cas3* in I-F systems denotes a fusion of *cas2* and *cas3*, whereas *cas3* and *cas3* denote the solo helicase domain and the solo HD domain, respectively.

For other, less common genes that have been named previously¹³, the "legacy" 301 302 nomenclature can be used along with the family classification given in Table 1 (eg. csx9). 303 Due to the fact that many of the Cas protein sequences are highly diverged, it is expected 304 that with the increasing representation of sequences and structures, many of these genes 305 eventually will be included into existing families. We propose to continue assigning 306 further "numerical" names to newly merged orhologous families in the future (cas11, 307 *cas12* etc.). 308 309 For the remaining CRISPR-associated genes, we propose to assign interim gene 310 names (csx1), where "x" stands for unclassified family), with an indication of the 311 (super)family where known (e.g. csx1, COG1517 family or csx10, RAMP superfamily). 312 313 **Outstanding problems**

Subtype assignment. As pointed out above, the phylogenetic tree of Cas1
reproduces most of the previously established groups fairly well, with the exception of
the Type III systems (Figure 3). However, for the deep branches, assigning a subtype can
be problematic. In many cases, detailed analysis of the gene orders reveals a more
complicated picture, with different arrangements of *cas* genes in the operons, apparently,
due to frequent horizontal gene transfer (HGT) and recombination that involve the
CRISPR loci. In particular, a notable recombinant CRISPR/Cas system is present at least

321	in certain cyanobacteria (e.g., Synechocystis sp. PCC 6803: slr7010-ssr7072) and
322	Archaea. In this case, the Type I-C system combines with a distinct polymerase/RAMP
323	module genes in the following arrangement: cas3, cas10 (predicted inactivated
324	polymerase with a HD-domain), csc2 (COG1337 family, RAMP superfamily), csc2
325	(RAMP subfamily), cas6, cas4, cas1, cas2. This peculiar hybrid system containing
326	signature genes for both type I and type III systems is represented in a variety of genomes
327	(and thus likely functional), so we introduce it as a new subtype I-D (Figure 1).
328	
329	Another interesting CRISPR/Cas system typified by Acidithiobacillus
330	ferrooxidans ATCC 23270 (AFE_1037-AFE_1040) was found so far only in four
331	genomes. This locus appears to possess a distinct gene content and potentially could
332	contribute to our understanding of the functions and evolution of CRISPR/Cas systems in
333	general. This system contains neither of the two ubiquitous core genes (cas1 or cas2) nor
334	any other signature genes of the three CRISPR/Cas types or the 10 subtypes. The A.
335	ferrooxidans system consists of four genes denoted csf1, csf2, csf3 and csf4
336	(TIGRFAMS: TIGR03114, TIGR03115, TIGR03116, TIGR03117, respectively). These
337	genes encode, respectively, a Zn-finger domain containing protein, a protein containing
338	two RAMP domains, another distinct RAMP protein and a DinG-like helicase of the
339	XPD family ³⁰ . According to the CRISPRdb database ³² , a CRISPR array is present in the
340	vicinity of the above four genes in all of the respective genomes; the architecture of these
341	arrays is unique in each genome. Thus, this system might function in conjunction with
342	different CRISPR arrays and does not require a distinct repeat signature. Indeed, three of
343	the four genomes containing this system additionally possess cas1 and cas2 genes that

are located in other parts of these genomes and are associated with Type I CRISPR/Cas
systems. It remains unclear whether this is a self-sufficient system or rather a defective
system that captures and utilizes preexisting CRISPR arrays generated by other, Cas1containing CRISPR/Cas systems. More data are needed to classify this novel system as a
separate CRISPR/Cas type, but this finding illustrates the diversity of CRISPR systems
and the challenges associated with their classification.

350

351 Gene name assignments. Many cas genes, in particular genes that encode RAMP 352 proteins, evolve at exceptionally high rates. Gene (protein) family assignment becomes 353 increasingly complicated with the appearance of CRISPR/Cas systems containing genes 354 that encode highly divergent proteins that, after the structure is solved, might (or might 355 not) fall into a known Cas protein family. For example, a CRISPR system very similar to 356 that of subtype I-F (Ypest/CASS3 as determined by Cas1 similarity) is present in 357 Photobacterium profundum and several other bacteria. This system includes two proteins, 358 PBPRB1992 and PBPRB1993, that show no significant sequence similarity to any Cas 359 proteins. However, analysis of the sequence motifs that are conserved in these proteins, 360 the predicted secondary structure, as well as the length and position of the corresponding 361 genes in the operon, strongly suggest that they belong to the Cas7 and Cas5 families of 362 RAMPs, respectively. Another example includes the CRISPR/Cas system of Geobacter 363 sulfurreducens that, according to the phylogeny of Cas1, should be assigned to the I-C 364 subtype. This operon encodes three uncharacterized proteins GSU0052, GSU0053, 365 GSU0054; the last two proteins contain several motifs similar to the characteristic motifs 366 of the RAMP superfamily and thus might be RAMP homologs (Table 1). However, none

367	of these proteins could be linked to known Cas families, even using the most sensitive of		
368	the available methods for remote sequence similarity detection ³³⁻³⁵ . Thus, only		
369	comparison of solved structures will shed light on the relationships between these and		
370	other highly diverged Cas proteins and known Cas families. In such cases, assignment of		
371	new gene names appears to be premature because these proteins are likely to eventually		
372	assume already existing names. Therefore, it is proposed that these genes are given		
373	temporary "csx" names.		
374 375	Many CRISPR loci belong to "islands" that contain various "high-mobility"		
376	genes such as components of other defense systems, toxin-antitoxins, and transposases		
377	³⁶ . Some of these genes can be erroneously linked to CRISPR/Cas systems, so caution		
378	should be exercised in the classification and naming of genes as "cas" or even "csx"		
379	before functional connections with CRISPR/Cas systems are convincingly established.		
380 381	An additional challenge to the nomenclature is presented by the variable domain		
382	architectures of some of the Cas proteins including domain fusions and fissions as		
383	discussed above for the Cas3 protein. Other notable fusions include cas2-cas3 in the		
384	Ypest/CASS3 system, cas1-cas4 (eg. GSU0057 from Geobacter sulfurreducens), cas1		
385	and DEDDh family exonuclease (eg. LBUL_0800 from Lactobacillus delbrueckii subsp.		
386	bulgaricus), cas1 and reverse transcriptase fusion (eg. VVA1544 from Vibrio vulnificus),		
387	and more.		
388	In several genomes, homologs of some cas genes also appear in contexts		
389	different from CRISPR/Cas systems; these proteins might either represent (components		
390	of) distinct antivirus defense systems, or they could be involved in other functions such		

391	as DNA repair. These proteins include RAMPs of the COG5551 subfamily, COG1517,
392	COG1468 and COG3513 families. In cases like this, classification and labeling of such
393	genes as "cas" should be avoided.
394	
205	

The CRISPR arrays contain few stop codons and accordingly are often erroneously translated into bogus "hypothetical proteins". Unfortunately, these artifacts then enter the databases and tend to be amplified during the analysis of new genomes, so currently there are at least two Pfam entries each of which consists of non-existent "pseudo-Cas proteins" (pfam11194; pfam11664). Care should be taken during the annotation of new genome sequences to avoid further proliferation of these errors.

401

402 Conclusion

403 Given the complexity and the highly dynamic mode of evolution of the CRISPR/Cas 404 systems, it would be counter-productive to attempt classification on the basis of any 405 single criterion, for instance, the phylogeny of Cas1. Thus, we propose here a 406 "polythetic" classification that integrates the phylogenies of the conserved *cas* genes, 407 sequences and structural similarities between other Cas proteins, and the composition and 408 organization of the (putative) operons. It should be emphasized that a robust family 409 classification of the Cas proteins, many of which diverge rapidly, is not only a matter of 410 convenient description, but also a basis for experimental validation of the respective 411 functional predictions. Therefore it is important that this classification is continuously 412 updated and revised when necessary, using new sequence and structure information 413 combined with state of the art computational methods. The classification described in this

414	article is available at the NCBI website along with tools for identification of Cas proteins
415	(ftp://ftp.ncbi.nih.gov/pub/wolf/_suppl/CRISPRclass/index.html). In the future, a fine-
416	grain classification of the CRISPR/Cas systems should become feasible on the basis of
417	phylogenies and structures of Cas proteins, cas operon organizations of cas genes, and
418	CRISPR repeat architectures.
419	
420	Acknowledgements
421	The authors thank Michael Terns for critical reading of the manuscript and useful
422	discussions. KSM, YIW and EVK are supported by the intramural funds of the US
423	Department of Health and Human Services (National Library of Medicine); E.C.
424	acknowledges funding from Umeå University and the Swedish Research CouncilS.M.
425	acknowledges funding from NSERC of Canada (Discovery program); FJMM
426	acknowledges support from the University of Alicante (Vicerrectorado de Investigacion,
427	Desarrollo e Innovacion) for the use of its research technical services; AFY is supported
428	by Genome Canada (through the Ontario Genomics Institute; 2009-OGI-ABC-1405).
429	

431 Referen

- 4341Deveau, H., Garneau, J. E. & Moineau, S. CRISPR/Cas System and Its Role in435Phage-Bacteria Interactions. Annu Rev Microbiol 64, 475-493 (2010).
- 436 2 Horvath, P. & Barrangou, R. CRISPR/Cas, the immune system of bacteria and archaea. *Science* 327, 167-170 (2010).
- 4383Karginov, F. V. & Hannon, G. J. The CRISPR system: small RNA-guided439defense in bacteria and archaea. *Mol Cell* **37**, 7-19 (2010).
- 440 4 Koonin, E. V. & Makarova, K. S. CRISPR-Cas: an adaptive immunity system in 441 prokaryotes. *F1000 Biol Rep* **1**, 95 (2009).
- Sorek, R., Kunin, V. & Hugenholtz, P. CRISPR--a widespread system that
 provides acquired resistance against phages in bacteria and archaea. *Nat Rev Microbiol* 6, 181-186 (2008).
- 445 6 van der Oost, J., Jore, M. M., Westra, E. R., Lundgren, M. & Brouns, S. J.
 446 CRISPR-based adaptive and heritable immunity in prokaryotes. *Trends Biochem*447 Sci 34, 401-407 (2009).
- Mojica, F. J., Diez-Villasenor, C., Soria, E. & Juez, G. Biological significance of
 a family of regularly spaced repeats in the genomes of Archaea, Bacteria and
 mitochondria. *Mol Microbiol* 36, 244-246 (2000).
- 451 8 Jansen, R., Embden, J. D., Gaastra, W. & Schouls, L. M. Identification of genes
 452 that are associated with DNA repeats in prokaryotes. *Mol Microbiol* 43, 1565453 1575 (2002).
- Makarova, K. S., Aravind, L., Grishin, N. V., Rogozin, I. B. & Koonin, E. V. A
 DNA repair system specific for thermophilic Archaea and bacteria predicted by
 genomic context analysis. *Nucleic Acids Res* 30, 482-496 (2002).
- Mojica, F. J., Diez-Villasenor, C., Garcia-Martinez, J. & Soria, E. Intervening
 sequences of regularly spaced prokaryotic repeats derive from foreign genetic
 elements. *J Mol Evol* 60, 174-182 (2005).
- 460 11 Bolotin, A., Quinquis, B., Sorokin, A. & Ehrlich, S. D. Clustered regularly
 461 interspaced short palindrome repeats (CRISPRs) have spacers of
 462 antrophysical antrophysical and 151 (2005)
- 462 extrachromosomal origin. *Microbiology* **151**, 2551-2561 (2005).
- Pourcel, C., Salvignol, G. & Vergnaud, G. CRISPR elements in Yersinia pestis
 acquire new repeats by preferential uptake of bacteriophage DNA, and provide
 additional tools for evolutionary studies. *Microbiology* 151, 653-663 (2005).
- Haft, D. H., Selengut, J., Mongodin, E. F. & Nelson, K. E. A guild of 45
 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes
 exist in prokaryotic genomes. *PLoS Comput Biol* 1, e60 (2005).
- 469 14 Makarova, K. S., Grishin, N. V., Shabalina, S. A., Wolf, Y. I. & Koonin, E. V. A
 470 putative RNA-interference-based immune system in prokaryotes: computational
 471 analysis of the predicted enzymatic machinery, functional analogies with
- 472 eukaryotic RNAi, and hypothetical mechanisms of action. *Biol Direct* **1**, 7 (2006).
- 473 15 Carthew, R. W. & Sontheimer, E. J. Origins and Mechanisms of miRNAs and
 474 siRNAs. *Cell* 136, 642-655 (2009).

475	16	Barrangou, R. et al. CRISPR provides acquired resistance against viruses in
476		prokaryotes. Science 315, 1709-1712 (2007).
477	17	Garneau, J. E. et al. The CRISPR/Cas bacterial immune system cleaves
478		bacteriophage and plasmid DNA. Nature 468, 67-71 (2010).
479	18	Sontheimer, E. J. & Marraffini, L. A. Microbiology: slicer for DNA. Nature 468,
480		45-46 (2010).
481	19	Mojica, F. J., Diez-Villasenor, C., Garcia-Martinez, J. & Almendros, C. Short
482		motif sequences determine the targets of the prokaryotic CRISPR defence system.
483		Microbiology 155, 733-740 (2009).
484	20	Marraffini, L. A. & Sontheimer, E. J. Self versus non-self discrimination during
485		CRISPR RNA-directed immunity. Nature 463, 568-571 (2010).
486	21	Brouns, S. J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes.
487		Science 321 , 960-964 (2008).
488	22	Carte, J., Wang, R., Li, H., Terns, R. M. & Terns, M. P. Cas6 is an
489		endoribonuclease that generates guide RNAs for invader defense in prokarvotes.
490		Genes Dev 22, 3489-3496 (2008).
491	23	Hale, C. R. <i>et al.</i> RNA-guided RNA cleavage by a CRISPR RNA-Cas protein
492		complex. <i>Cell</i> 139 , 945-956 (2009).
493	24	Haurwitz, R. E., Jinek, M., Wiedenheft, B., Zhou, K. & Doudna, J. A. Sequence-
494		and structure-specific RNA processing by a CRISPR endonuclease <i>Science</i> 329
495		1355-1358 (2010)
496	25	Marraffini, L. A. & Sontheimer, E. J. CRISPR interference limits horizontal gene
497		transfer in staphylococci by targeting DNA <i>Science</i> 322 1843-1845 (2008)
498	26	Wiedenheft B <i>et al.</i> Structural basis for DNase activity of a conserved protein
499		implicated in CRISPR-mediated genome defense <i>Structure</i> 17 904-912 (2009)
500	27	Beloglazova N <i>et al.</i> A novel family of sequence-specific endoribonucleases
501	_,	associated with the clustered regularly interspaced short palindromic repeats J
502		<i>Biol Chem</i> 283 20361-20371 (2008)
503	28	Kleanthous C <i>et al.</i> Structural and mechanistic basis of immunity toward
504		endonuclease colicins <i>Nat Struct Biol</i> 6 243-252 (1999)
505	29	Jakubauskas A Giedriene J Buinicki J M & Janulaitis A Identification of a
506	_,	single HNH active site in type IIS restriction endonuclease Eco311 . <i>I Mol Biol</i>
507		370 157-169 (2007)
508	30	White M F Structure function and evolution of the XPD family of iron-sulfur-
509	20	containing 5'>3' DNA helicases <i>Biochem Soc Trans</i> 37, 547-551 (2009)
510	31	Kunin V Sorek R & Hugenholtz P Evolutionary conservation of sequence and
511	51	secondary structures in CRISPR repeats Genome Riol 8 R61 (2007)
512	32	Grissa I Vergnaud G & Pourcel C. The CRISPR db database and tools to
512	52	display CRISPRs and to generate dictionaries of spacers and repeats <i>BMC</i>
514		Riginformatics 8, 172 (2007)
515	33	Altschul S F & Koonin F V PSI-BI AST - a tool for making discoveries in
516	55	sequence databases Trends Riochem Sci 23 444-447 (1998)
517	34	Marchler-Bauer A & Bryant S H CD-Search: protein domain annotations on
518	57	the fly Nucleic Acids Res 37 W327-331 (2004)
510		(10.11). (2007).

519	35	Soding, J., Remmert, M., Biegert, A. & Lupas, A. N. HHsenser: exhaustive
520		transitive profile search using HMM-HMM comparison. <i>Nucleic Acids Res</i> 34,
521		W374-378 (2006).
522	36	Makarova, K. S., Wolf, Y. I., van der Oost, J. & Koonin, E. V. Prokaryotic
523		homologs of Argonaute proteins are predicted to function as key components of a
524		novel system of defense against mobile genetic elements. <i>Biol Direct</i> 4, 29,
525		(2009).
526	37	Deveau, H. et al. Phage response to CRISPR-encoded resistance in Streptococcus
527		thermophilus. J Bacteriol 190, 1390-1400 (2008).
528	38	Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate
529		large phylogenies by maximum likelihood. Syst Biol 52, 696-704 (2003).
530	39	Han, D., Lehmann, K. & Krauss, G. SSO1450a CAS1 protein from Sulfolobus
531		solfataricus P2 with high affinity for RNA and DNA. FEBS Lett 583, 1928-1932
532		(2009).
533	40	Han, D. & Krauss, G. Characterization of the endonuclease SSO2001 from
534		Sulfolobus solfataricus P2. FEBS Lett 583, 771-776 (2009).
535	41	Guy, C. P., Majernik, A. I., Chong, J. P. & Bolt, E. L. A novel nuclease-ATPase
536		(Nar71) from archaea is part of a proposed thermophilic DNA repair system.
537		<i>Nucleic Acids Res</i> 32 , 6176-6186 (2004).
538	42	Selengut, J. D. et al. TIGRFAMs and Genome Properties: tools for the assignment
539		of molecular function and biological process in prokaryotic genomes. Nucleic
540		<i>Acids Res</i> 35 , D260-264 (2007).
541		
542		
543		
544		

546 Figure legends

547

548 Figure 1. The current model of CRISPR/Cas mechanism.

549 The figure shows a schematic representation of the three stages of the CRISPR/Cas

action based on a summary of biochemical and genetic data for the CRISPR/Cas systems

551 from different organisms and some specific details for the *Escherichia coli* system (Type

552 IE, see Fig.2).

553	(1) Adaptation. DNA fragments of an invading virus/plasmid are integrated as a new
554	unit at the leader side of a CRISPR in the host chromosome, with the
555	simultaneous duplication of a repeat. Selection of sequences to be integrated
556	(proto-spacers) is likely to depend on a proto-spacer <u>a</u> djacent <u>m</u> otif (* PAM) ¹⁹ .
557	Although no direct evidence is presently available on the mechanism of spacer
558	acquisition, the core of the CRISPR/Cas system (Cas1/Cas2), possibly with
559	additional proteins, are prime candidates ^{16,21} . In Type II and Type III systems,
560	substantial variations have been demonstrated (see text).
561	

562 (2) Expression and Processing. In the Type IE system, a Cascade complex is
 563 responsible for processing of pre-crRNA to crRNA via a single cut in the repeat
 564 part²¹.

(3) Interference. In *E. coli*, the Cascade complex with the crRNA guide target the
complementary DNA of an invading virus/plasmid, and Cas3 is required, most
likely, to cleave the alien DNA through the endonuclease activity of the HD
domain²¹. The PAM (*) appears to play an important role in the interference
process^{20,37}. In Type II and Type III systems, no Cas3 ortholog is involved.

571

572 Figure 2. The three major types and 10 subtypes of CRISPR systems and their

573 relationships

574 The operon organization cartoons and color scheme were generally adopted from Ref. 14, 575 with the addition of the identification of Cas7 (COG1857) as a member of the RAMP superfamily. Orthologous genes are color-coded and identified by a family name as in 576 577 Table 1: bold for definitive proposals and regular font for "legacy names". The signature 578 genes for CRISPR/cas types are shown within green boxes, and for subtypes within red 579 boxes. The letters above the genes show major categories of Cas proteins: L, large 580 CASCADE subunit; S, small CASCADE subunit; R, RAMP CASCADE subunit; RE, 581 RAMP family RNase involved in crRNA processing (experimentally characterized 582 nucleases shown be asterisks); T, transcriptional regulator. Genes coding for inactivated 583 (putative) polymerases are shown by crosses. Question marks denote tentative predictions 584 based on weak sequence similarity. For subtype I-A, the cas8a1 and cas8a2 genes are 585 typically mutually exclusive but both can be considered signature genes for the subtype. 586 For type III systems, the *cas1* and *cas2* genes are shown in a dashed box that indicates the 587 loose association of these genes with the type III polymerase/RAMP modules.

- 588
- 589

Figure 3. A schematic representation of the phylogenetic tree for Cas1/COG1518
proteins.

592 The maximum likelihood tree was constructed using the PHYML program ³⁸ from 182

- informative positions in the multiple alignment of a representative set of 228 Cas1
- 594 proteins from 442 complete genomes. Six major CRISPR/Cas system subtypes of Type I
- 595 systems as well as type II and type III systems are color-coded. Dashed lines show *cas*1
- 596 genes found in "hybrid" CRISPR loci containing genes from both Type I and Type III
- 597 CRISPR/Cas systems (see text). The subtypes of CRISPR/Cas systems are denoted as in
- 598 Figure 2. Subtypes I-U, II-U and III-U (U for <u>unclassified</u>) denote CRISPR/Cas systems
- 599 that lack currently defined subtype-specific signature genes (see text).

Proposed gene name	Type or subtype	^a Name from ¹³	Name from ²¹	Structure (PDB code)	^b Family (superfamily)	Representatives	Comment and references
cas1	Type I, Type II, Type III	cas1	cas1	3GOD, 3LFX, 2YZS	COG1518	ygbT, SPy1047, SERP2463	metal-dependent deoxyribonuclease; a unique fold consisting of a N-terminal β strand domain and a C- terminal α -helical domain ^{26,39} ; also binds RNA ^{26,39}
cas2	Type I, Type II, Type III	cas2	cas2	2IVY, 2I8E, 3EXC	COG1343, COG3512	ygbF, SPy1047, SERP2462, y1723 (N-term. domain)	small protein related to VapD; shown to be a RNAse specific to U-rich regions ²⁷
cas3'	Type I	cas3	cas3	-	COG1203	ygcB, APE1232	DNA helicase; most proteins have fusion to HD nuclease ²¹ (<i>cas3</i> ')
cas3''	I-A, I-B	-	-	-	COG2254	APE1231, BH0336	HD-like nuclease, specifically digesting double-stranded oligonucleotides and preferably cleaving at G:C pairs ⁴⁰
cas4	I-A, I-B, I-C, I-D, II-B	cas4, csa1	-	-	COG1468	APE1239, BH0340	RecB-like nuclease with three-cysteine C-terminal cluster
cas5	I-A, I-B, I-C, I-E	cas5e,d,a,t,h ,p, cmx5	casD	3KG4	COG1688 (RAMP)	APE1234, BH0337, DevS, ygcI	predicted subunit of the Cascade complex ²¹ ; in subtype I-C this protein might be the endoribonuclease that generates crRNAs
cas6	I-A, I-B, I-D, III- A, III-B	cas6, cmx6	-	3I4H	COG1583 COG5551 (RAMP)	PF1131, slr7014	Cas6 is an endoribonuclease that generates crRNAs ^{22,23} , predicted subunit of Cascade complex
саѕбе	I-E	cse3	casE	1WJ9	(RAMP)	ygcH	homologous to Cas6, but distinct family
cas6f	I-F	csy4	-	2XLJ	(RAMP)	y1727	homologous to Cas6, but distinct family; shown to be is an endoribonuclease that generates crRNAs ²¹
cas7	I-A, I-B, I-C, I-E	cse4, csd2, csh2, cst2, csa2, csp1	casC	-	COG1857, COG3649 (RAMP)	YgcJ, DevR	α/β protein; subunit of Cascade complex ²¹
cas8a1	I-A	csx8, cmx1, csp2, cst1, CxxC-CxxC, csx13	-	-	BH0338-like	BH0338, MTH1090, TM1802, LA3191°	large proteins, some contain Zn-finger domain; nuclease activity has been reported for MTH1090 ⁴¹

Table 1. Classification and nomenclature of CRISPR genes

Cas8a2	I-A	csa4, csx9	-	-	PH0918	MJ0385,	see cas8a
						PF0637,	
						AF0070,	
						PH0918,	
						SSO1401,	
						AF1873	
cas8b	I-B	csh1, TM1802,	-	-	-		see cas8a
cas8c	I-C	csd1	-	-	-		see cas8a
cas9	Туре П	csn1, csx12	-	-	COG3513	SPy1046,	very large protein containing McrA/HNH-nuclease related
						FTN_0757	domain and a RuvC-like nuclease domain;
cas10	Type III	cmr2, csm1,	-	-	COG1353	MTH326,	multidomain protein with permuted HD nuclease domain,
		csx11				alr1562°,	palm domain, polymerase-thumb-like domain and Zn-
						slr7011°	ribbon; MTH326-like has inactivated polymerase catalytic
							domain; alr1562 and slr7011 – predicted only on the basis
							of size, presence of HD domain, and location with RAMPs
							in one operon; subunit of Cmr complex ²³
cas10d	I-D	csc3	-	-	COG1353	slr7011	inactivated homolog of Cas10, contains N-terminal HD
							domain
csyl	I-F	csyl	-	-	y1724-like	y1724	~450 aa protein, predicted to be a subunit of Cascade
							complex
csy2	I-F	csy2	-	-	(RAMP)	y1725	predicted Cas7 ortholog
csy3	I-F	csy3	-	-	(RAMP)	y1726	predicted Cas5 ortholog
csel	I-E	csel	casA	-	ygcL-like	ygcL	large Zn-finger containing proteins; a subunit of the
							Cascade complex ²¹ ; signature gene for Ecoli/CASS2
							subtype
cse2	I-E	cse2	casB	2ZCA	ygcK-like	ygcK	~180 aa protein; a subunit of the Cascade complex ²¹
csc1	I-D	cscl	-	-	alr1563-like	alr1563	
					(RAMP)		
csc2	I-D	csc2, csc1	-	-	COG1337	slr7012	
					(RAMP)		
csa5	I-A	csa5	-	-	AF1870	AF1870,	~150 aa protein; alpha-helical
						SSO1398,	
						PF0643,	
						MJ0380	

csn2	II-A	csn2	-	-	SPy1049-like	SPy1049	\sim 220 aa protein; predicted to be a functional analog of	
							Cas4 ⁶ based on anti-correlated phyletic patterns	
csm2	III-A	csm2	-	-	COG1421	MTH1081,	~150 aa protein; mostly α -helical protein; part of distinct	
						SERP2460	polymerase cassette	
csm3	III-A	csm3, csc2	-	-	COG1337	SERP2459,		
					(RAMP)	MTH1080		
csm4	III-A	csm4	-	-	COG1567	SERP2458,		
					(RAMP)	MTH1079		
csm5	III-A	csm5	-	-	COG1332	SERP2457,		
					(RAMP)	MTH1078		
сѕтб	III-A	сѕтб,	-	2WTE	COG1517	SSO1445,	HTH-type transcriptional regulator; often fused to	
		APE2256				APE2256	COG1517-like domain	
cmrl	III-B	cmr1	-	-	COG1367,	PF1130	subunit of Cmr complex ²³	
					(RAMP)		1	
cmr3	III-B	cmr3	-	-	COG1769	PF1128	subunit of Cmr complex ²³	
					(RAMP)		I I I I I I I I I I I I I I I I I I I	
cmr4	III-B	cmr4	-	-	COG1336	PF1126	subunit of Cmr complex ²³	
					(RAMP)			
cmr5	III-B	cmr5	-	2ZOP.	COG3337	PF1125.	subunit of Cmr complex ²³	
				20EB		MTH324		
cmr6	III-B	cmr6	-	-	COG1604	PF1124	subunit of Cmr complex ²³	
					(RAMP)			
csb2	I I I d	-	_	-	(RAMP?)	GSU0054	Contains RAMP superfamily motif (G-rich loop) and	
0001	1-0				(101011)	Balac 1305	conserved histidine at the C-terminus	
csh1	I-U	GSU0053	_	-	(RAMP?)	GSU0053	Contains several motifs similar to Cas7 family	
0501	10	0000000			(101011.)	Balac 1306		
csh3	I-U	-	-	-	(RAMP?)	Balac 1303	Contains RAMP superfamily motif (G-rich loop) and	
0500	10				(101011.)	Bulue_1909	conserved histidine at the C-terminus	
csr17	I-II	-	_	_	_	Btus 2683		
csr14		_	_	_	_	<u>GSU0052</u>		
$\frac{c_{SA14}}{c_{SY10}}$		csr10	_	_	(PAMP)	$\frac{\text{GBC0032}}{\text{Caur} 2274}$		
csn2		csn?	-	-	DG2018	DG2018	predicted Case ortholog	
csp2		<u></u>	-	-	102018	VVA 1549	100 so protoin: often scon in provimity to COC1517	
		VVAIJ40	-	-	-	<u>v v A1340</u>	250 as protein, onen seen in proximity to COOTST/	
CSUA		CSUA	-	-	-	5501438	\sim 500 aa protein, no prediction	
CSX3	III-U	CSX3	-	-	-	AF1864	\sim 100 aa domain, in some cases fused to COG151 / family	
							aomains	

csx1	III-U	<i>csa3, csx1</i> (DxTHG motif), <i>csx2,</i> <i>NE0113,</i> <i>TIGR02710</i>	-	1XMX, 2I71	COG1517, COG4006	PF1127, MJ1666, TM1812, NE0113	some are fused to HTH domain (see COG1517/HTH); some proteins have the domain duplication; some have a fusion with HTH and RecB-family nuclease domain; domain appears to have a Rossmann-like fold.
csx15	???	-	-	-	TTE2665	TTE2665	~130 aa protein, no prediction; some are fused to AAA ATPase domain
csf4	Type U	csf4	-	-	-	AFE_1037	DinG family helicase
csf3	Type U	csf3	-	-	(RAMP)	AFE_1040	
csf2	Type U	csf2	-	-	(RAMP)	AFE_1039	
csfl	Type U	csfl	-	-	-	AFE_1038	Zn-finger domain

Note:

^a Subsequent to the original publication¹³, Haft et al. introduced a number of new types of the CRISPR system and gene names that are included in the TIGRFAM database ⁴² but mostly fit into previously described gene/protein families. Most of these new names are included in this column.

^b Most of the families correspond to those proposed by Makarova et al.¹⁴ with a few changes and additions.

^c Tentative predictions based on weak sequence similarity, sequence length and gene order in an operon.

^d Unclassified.

Signature genes for CRISPR/Cas system types and subtypes are shown in the second column in bold.

	Genomes analyzed	Cas1	Fraction of genomes with cas1	Type I (Cas7 and Cas3)	Type II (Cas9)	Type III (Cas10)
Archaea	67	54	0.81	50	0	40
Bacteria	639	256	0.40	245	65	99
Crenarchaeota	17	15	0.88	15	0	16
Euryarchaeota	47	37	0.79	33	0	23
2						
Actinobacteria	72	26	0.36	28	15	8
Aquificae	7	5	0.71	7	1	4
Bacteroidetes/	32	16	0.50	14	2	6
Chlorobi group						
Chlamydiae/	10	2	0.20	0	1	1
Verrucomicrobia						
group						
Chloroflexi	10	9	0.90	9	2	7
Cyanobacteria	14	7	0.50	7	1	7
Firmicutes	126	56	0.44	40	17	23
Proteobacteria	318	107	0.34	117	20	22
Spirochaetes	13	3	0.23	2	1	0
Thermotogae	11	10	0.91	10	0	9

Table 2. Taxonomic distribution of three CRISPR system types

