
Network Coding for Delay Challenged
MASSACH

Environments OF1

by JU

Daniel Enrique Lucani LIE

B.S., E.E., (Summa cum Laude) Universidad Sim6n Bolivar (2005)
M.S., E.E., (Honors) Universidad Sim6n Bolivar (2006)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARCHNES

June 2010

© Massachusetts Institute of Technology 2010. All rights reserved.

Author ........ . . -.............. .................-- -

Department of Electrical Engineering and Computer Science
April 5, 2010

Certified by.....
Muriel M dard

Professor
Thesis Supervisor

Certified by. ......

Associaterrofessor,

Milica Stojanovic
Northeastern University

Thesis Supervisor

Accepted by . . . --.. ......................

Terry P. Orlando

Chairman, Department Committee on Graduate Students

USETTS INSTITUTE
TECHNOLOGY

L1 22010

RARIES



2



Network Coding for Delay Challenged Environments

by

Daniel Enrique Lucani

Submitted to the Department of Electrical Engineering and Computer Science
on April 5, 2010, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Electrical Engineering

Abstract

Delay is a fundamental problem of data communication and networks, a problem that

is not usually addressed in classical coding, information or networking theory. We

focus on the general problem of delay challenged networks. This delay challenge may
be related to different reasons, for example, 1) large latency, which can affect the

performance of the system in delay, throughput or energy efficiency, 2) half-duplex
constraints on the nodes, which precludes a node to receive and transmit at the
same time, and/or 3) application-level requirements for reliable, fast and efficient

dissemination of information.
We consider three main problems of study and the role of network coding on solv-

ing these problems. The first is related to the problem of reliable communication in

time-division duplexing channels, also known as half-duplex channels, in the presence
of large latency. In large latency channels, feedback about received packets may lag

considerably the transmission of the original packets, limiting the feedback's useful-
ness. Moreover, the time duplex constraints may entail that receiving feedback may
be costly. In this work, we consider tailoring feedback and (network) coding jointly
in such settings to reduce the mean delay for successful in order reception of packets.
We find that, in certain applications, judicious choices provide results that are close
to those that would be obtained with a full-duplex system.

The second part of this thesis studies the problem of data dissemination in arbi-
trary networks. In particular, we study the problem of minimizing the delay incurred
in disseminating a finite number of data packets. We show that the optimal solution
to the problem can be thought of as a scheduling problem, which is hard to solve.
Thus, we consider the use of a greedy linear network coding algorithm that only takes
into account the current state of the system to make a decision. The proposed algo-
rithm tries to maximize the impact on the network at each slot, i.e., maximize the
number of nodes that will benefit from the coded packet sent by each active transmit-
ter. We show that our scheme is considerably better, in terms of the number of slots
to complete transmission, than schemes that choose the node with more information
as the transmitter

The third part of this work studies the case of underwater acoustic networks as an



example of delay challenged networks. We consider the use of network coding under
two different lights. First, as a means to obtain a lower bound on the transmission
power of multicast connections in underwater networks. Second, to develop practical
schemes useful in such networks. Finally, we study upper bounds on the transport
capacity of underwater acoustic networks under unicast connections. We show that
the amount of information that can be exchanged by each source-destination pair in
underwater acoustic networks goes to zero as the number of nodes n goes to infinity.
This occurs at least at a rate n-1/Qe-Wo(O(n-k)) where Wo represents the branch
zero of the Lambert W function, and a path loss exponent of a. Note that typical
values of the path loss exponent are a E [1, 2] for underwater acoustic networks. This
is significantly different to the a > 2 of radio wireless applications.

Thesis Supervisor: Muriel Medard
Title: Professor

Thesis Supervisor: Milica Stojanovic
Title: Associate Professor, Northeastern University
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Chapter 1

Introduction

Delay is a fundamental problem of data communication and networks, a problem

that is not usually addressed in classical coding, information or networking theory.

Typically, the design of codes and networks has been grounded on the search of

improving throughput in order to come closer to the capacity of the system. However,

an improvement in throughput does not necessarily translate into improving delay

performance: one can always have good throughput by delivering one truck with

a large memory storage once a year. In fact, the random codebook design used

by Shannon to determine the achievability result for channel capacity assumes that

arbitrarily large codewords. Since decoding the information is not possible until the

entire codeword is received, the delay to recover the information is also arbitrarily

large.

A change of paradigm is then warranted for some applications. For instance,

if an application requires a prompt delivery of a message to some or all the nodes

in the network, the design objective or criteria should be to reduce transmission or

dissemination delay. If this happens in unreliable transmission channels, e.g., channels

in which data packets can be lost, coding should be aimed to minimize delay rather

than using codes designed for improving throughput and hoping for a good delay

performance.

We are particularly interested in studying environments that are delay challenged.

The term delay challenged is not meant only to characterize networks in which delay



is the main design criteria, for instance, when the application requires a relatively

low delay. We also use it to characterize networks in which the transmission channel

imposes an important propagation delay, which can affect the performance of the

system in delay, throughput or energy efficiency.

This work focuses in the general problem of data transmission in networks that

are delay challenged. In particular, we are interested in studying the role of network

coding in these scenarios from both a practical perspective, e.g., to propose schemes

that combine coding and feedback to provide reliable communications, and as a means

to derive fundamental limits in special cases, e.g., using network coding techniques

to derive a lower bound on the transmission power of underwater acoustic networks.

Although our study of network coding in delay challenged environments is developed

under assumptions that are valid for a wide variety of channels, ranging from satellite

to terrestrial radio to underwater acoustic channels, we analize in greater detail the

case of underwater acoustic networks as an important example of delay challenged

networks.

We begin by presenting previous results on network coding and underwater acous-

tic networks to motivate our work and contributions to the field in Sections 1.1 and

1.2, respectively. Section 1.3 summarizes the different scenarios of delay challenged

networks studied in this work and our contributions.

1.1 Previous Results in Network Coding

Network coding was introduced by Ahlswede et al [1]. Network coding considers the

nodes to have a set of functions that operate upon received or generated data packets

[24]. Today's networks would represent a subset of the coded packet networks, in

which each node has two main functions: forwarding and replicating a packet. A

classical network's task is to transport packets provided by the source nodes unmod-

ified. In contrast, network coding considers information as an algebraic entity, on

which one can operate.

Network coding research originally studied throughput performance without delay



considerations for the transmitted information. The seminal work by Ahlswede et al

[1] considers a channel with no erasures and, therefore, no need for feedback. Work

in [2] and [3] showed that linear codes over a network are sufficient to implement any

feasible multicast connection, again considering a channel with no erasures. Also,

[3] provides an algebraic framework for studying this subset of coded networks. In

both of these cases, the nodes are considered to transmit a linear combination of

the packets previously received. Work in [4] presents the idea of using linear codes

generated randomly in a network.

For networks with packet erasures, two approaches have been used. The first ap-

proach relies on rateless codes, i.e., transmitting coded data packets until the receiver

sends an acknowledgement stating that all data packets have been decoded success-

fully. Reference [5] studies random linear network coding in lossy networks showing

that it can achieve packet-level capacity for both single unicast and single multicast

connections in wireline and wireless networks. Reference [6] presents network codes

that preserve the communication efficiency of a random linear code, while achiev-

ing better computational efficiency. Reference [7] presented a random linear coding

scheme for packet streams considering nodes with a fixed, finite memory, establishing

a trade-off between memory usage and achievable rate. In terms of practical issues

and implementation, work in [54] presents MORE, a MAC-independent opportunistic

protocol for wireless networks, and provides experimental results with some emphasis

on the throughput gains provided by network coding.

The work in [10] and [11] has studied delay performance gains and their scaling

laws for network coding with and without channel side information, respectively.

They focus on transmission of large files in a rateless fashion. In [12] the delay

performance of network coding for a tree-based multicast problem is studied and

compared to various Automatic Repeat reQuest (ARQ) and Forward Error Correcting

(FEC) techniques. For network coding, it assumes reliable and instantaneous feedback

to acknowledge a correct decoding of all data packets. Note that the focus of these

references has been on either throughput or delay performance, usually considering

minimal feedback.



Finally, the work in [13] couples the benefit of network coding and ARQ by ac-

knowledging degrees of freedom (dofs), defined as linearly independent combinations

of the data packets, instead of original data packets to show that queue size in a node

follows degrees of freedom.

The second approach uses block transmissions. Reference [14] studies the problem

in wireless networks and shows that linear codes achieve capacity in the network.

In [15] a queueing model for random linear coding is presented, which codes data

packets in a block-by-block fashion using acknowledgements to indicate successful

transmission of each block. Interestingly, the coding block size depends on the number

of packets available in the queue, up to some maximum block size.

The general problem of data transmission using network coding under half-duplex

constraints on the nodes has not been considered for network coding before our work.

In particular, we are interested in the problem of minimizing the time to completely

transmit a block of data packet to one or several nodes in the network. The key

questions that we are interested in answering are 1) how much should a node transmit

before it stops to listen for an acknowledgement or other node's transmission, and 2)

which nodes should transmit in order to reduce the time to complete the transmission

of a block of data.

1.2 Previous Results in Underwater Acoustic Net-

works

With recent advances in acoustic communication technology, the interest in study and

experimental deployment of underwater networks has been growing [46]. References

[51] and [52] present studies of the characteristics and design challenges of underwater

acoustic networks.

Underwater acoustic channels impose many constraints that affect the design of

wireless networks. They are characterized by a path loss that depends on both trans-

mission distance and signal frequency, in a far more pronounced way than a terrestrial



radio system. Thus, not only the transmission power, but also the useful bandwidth

depend strongly on transmission distance [47]. Specifically, signals transmitted over

a distance 1 are subject to a power loss of laa(f)-'. Although a terrestrial radio

channel can be modeled similarly, the underwater acoustic channel has important

differences. The spreading factor a, related to the geometry of propagation, has val-

ues in the range 1 < a < 2, where a = 1 corresponds to cylindrical spreading and

a = 2 to spherical spreading. Also, the absorption coefficient a(f) is a rapidly in-

creasing function of frequency, e.g., it is three orders of magnitude greater at 100 kHz

than at a few Hz [47]. Finally, the background noise is not white, but has a power

spectral density that is highly dependent on frequency.

In general, studies on underwater acoustic networks have focused on practical

schemes. Over the years, a series of routing schemes have been proposed for under-

water networks. References [51], [52] and [53] present surveys of different routing

schemes used in underwater networks. In [48] two distributed routing algorithms

are introduced for delay-insensitive and delay-sensitive applications. Reference [49]

presents a modification of the dynamic source routing protocol that adds location

awareness and link quality metrics. In [50] a routing protocol based on local depth

of the nodes is studied.

However, the study of fundamental limits in underwater networks has been limited.

For example, there was no lower bound for the transmission power prior to our work

that could be used as a comparison point for different practical network layer schemes.

Another interesting fundamental limit that had not been analyzed is the problem

of capacity scaling laws for underwater networks. The seminal work by Gupta and

Kumar [66] studied wireless networks, modeled as a set of n nodes that exchange in-

formation, with the aim of determining what amount of information the source nodes

can send to the destination as the number n grows. The original results obtained for

nodes deployed in a disk of unit area motivated the study of capacity scaling laws

in different scenarios, ranging from achievability results in random deployments us-

ing percolation theory [67] or cooperation between nodes [68], to the impact of node

mobility on the capacity of the network, e.g., [69]. Reference [70] provides a good



overview of the different assumptions and scaling laws for radio wireless networks.

However, existing capacity scaling laws for wireless radio networks correspond to

scenarios for which a(f) = 1, or a constant greater than one, and a > 2, e.g., [66],
[67]. These results cannot be directly applied to underwater acoustic networks in

which the attenuation varies over the system bandwidth and a < 2.

1.3 Thesis Contributions

This thesis studies several cases of networks with delay challenges. However, we

have focused on three main areas of study. Hereafter, we provide an overview of the

challenges and results in these areas.

1.3.1 Network Coding for Large Latency Time Division Du-

plexing Channels

We have studied channels in which time division duplexing is necessary, i.e., when

a node can only transmit or receive, but not both at the same time. This problem

has not been considered in any of the previous network coding references or, to the

best of our knowledge, for network coding before our work. This type of channel

is usually called half-duplex in the literature, but we use the term time division

duplexing (TDD) to emphasize that the transmitter and receiver do not use the

channel half of the time each or in any pre-determined fashion. As mentioned before,
important examples of time division duplexing channels are infrared devices (IrDA),

which have motivated many TDD ARQ schemes [17] [18], and underwater acoustic

communications [19]. Other important applications are found in channels with very

high latency, e.g., in satellite [20][21], and deep space [22] communications.

Originally, we focused on the problem of transmitting M data packets through a

link using random linear network coding (Section 2.1) and we have extended these

results to more complex network scenarios, namely, 1) a node broadcasting informa-

tion to several receivers (Section 2.2), and 2) an all-to-all broadcast network, where



every node has some information to be transmitted to all other nodes in the network,

all nodes are within range of each other but possibly with different probabilities of

packet loss (Section 2.3).

Let us explain the simple link case, which provides the insight that was used

in more complex network scenarios. For a link, we considered that the sender can

transmit random linear coded packets back-to-back before stopping to wait for an

acknowledgement (ACK) packet. This ACK packet conveys the remaining number

of degrees of freedon (dofs) required at the receiver to decode all M data packets.

Each dofs is defined as an independent linear combination of the original packets.

We consider that the number of coded packets Ni to be transmitted before waiting

for a new ACK packet depends on the number of dofs i needed at the receiver, as

indicated by the last ACK packet received successfully. If it is the first transmission,

we consider that the required dofs is M. The system transmits Ni coded packets (CP),

and waits to receive an ACK packet that updates the value of i to j, at which point

it will transmit Nj coded packets. The system will keep transmitting and stopping

to update i, until i = 0. When i = 0, the transmitter can start with M new data

packets, or simply stop.

There is a natural trade off in the choice of the Ni's. Every time the system stops to

wait for an ACK, it incurs in an additional delay, which can be large in high latency

channels. In general, the system requires at least one stop to get confirmation of

complete transmission. However, we want to minimize the number of stops required to

complete transmission of the M packets. Note that if the Ni's are too small given the

channel conditions, the system will have to transmit more ACK packets to complete

transmission of the block of M data packets, which will cause a larger delay. On the

other hand, if the Ni's are too large, the receiver will have decoded the M packets, for

example, before the transmitter stops sending the first NM coded packets. Since the

block of M original packets is considered to be completely transmitted when the ACK

requests no more dofs, the system causes unnecessary delay by transmitting too many

coded packets by delaying transmission of the ACK by the receiver. In other words,

the transmitter could have sent a smaller number of coded packets before stopping



and still transmit the M packets successfully.

We showed that there exists an optimal number of coded data packets to be

transmitted back-to-back before stopping to wait for an ACK packet from the receiver,

in terms of mean completion time, i.e., mean time to decode the M original data

packets at the receiver and get an ACK at the transmitter. In fact, the optimal

number of coded data packets Ni depends on the number of dofs i that the receiver

requires to decode the information, and also on the packet erasure probability (Pe)

and the latency, i.e., the number of packets in flight. Thus, we showed that there is

an optimal time for stop transmitting coded packets and start listening to an ACK

packet from the receiver.

Our objective was then to minimize the expected time to complete transmission

of a block, i.e., the delay in block transmissions, using feedback. This delay to decode

a block is different from the usual packet delay measure. Since coding is carried out

on blocks of packets, the delay to decode a block successfully determines the delay

of each of the packets in that block. We also showed that minimizing the expected

time to complete transmission of a block of M packets with a fixed packet size also

maximizes the throughput performance. However, we show that a correct choice of M

and number of bits in the data packet can further improve throughput performance.

Although both standard ARQ techniques and our scheme achieve reliability by

detecting errors in received packets or packet erasures, and recover the information

using a retransmission scheme, there are some important differences. First, we rely

on transmission of coded packets, i.e., there is no need to specify a particular data

packet to retransmit as in ARQ, but only a random linear combination. The ACK

packet of our scheme thus differs from common ARQ techniques [23] in that it does

not give acknowledgement to particular data packets [23], but to degrees of freedom

needed at the receiver to decode the M original packets. Second, the number of

coded packets transmitted in our scheme is not fixed by design of the algorithm, but

chosen given channel characteristics and information in the ACK packet. In fact, the

information in the ACK packet of our algorithm can be used to update an estimate

of the probability of packet error and improve the overall performance.



As mentioned before, we extend this idea to more complex scenarios, such as,

broadcast from one node to all other nodes in a network, and all-to-all broadcast

where every node has some information to transmit to all other nodes in the network.

We also study the energy characteristics of our schemes, the effect of the choice of

field size for the Galois Field operations used in the (network) coding, and queueing

analysis and characteristics under a model of Poisson arrivals. We also study the use

of systematic network coding, which consists in transmitting the original M packets

first followed by random linear coded packets for the rest of the communication,

as a means to reduce average computation requirements, use a small field size for

operations (e.g., only use XORs), and maintain completion time performance.

1.3.2 Network Coding For Data Dissemination in Arbitrary

Time Division Duplexing Networks

The problem of data dissemination has been widely studied for routing scenarios,

focusing on theoretical analysis, e.g., [26], and protocol design, e.g., [32]. More re-

cently, Reference [27] studied the effect of using network coding showing significant

improvement over routing in terms of completion time. Reference [28] provides a

wireless medium access control combined with network coding for multi-hop content

distribution. The authors focus on a protocol that uses a content-directed medium

access control (MAC), through which transmission priority is given to those nodes

based on the rank of the coefficient matrix associated with the coded content the

node holds, i.e., nodes with more information are given higher priority.

In Chapter 3, we advocate for the combination of network coding and medium

access strategies, similar to the idea in Reference [28]. However, we show that giving

priority to the nodes with the most information in the network is not necessarily

going to promote a faster dissemination of the data. We determine some key ideas

and insights to help in the development of ad-hoc protocols that combine network

coding and MAC considerations.

In particular, we focus on the problem of minimizing the completion time to dis-



seminate a finite number of data packets in arbitrary networks assuming a time slot-

ted system, and that nodes cannot transmit and receive information simultaneously

(Half-Duplex constraint). The dissemination process is completed when all terminals

can decode the original data packets. This problem can be stated as a scheduling

problem which is hard to solve in general. We use a greedy linear network coding

scheme to solving the problem, in which the nodes with the greatest impact on the

network at each time slot should transmit, instead of choosing the node with the most

information.

We show that our scheme is considerably better, in terms of the number of slots

to complete transmission, than schemes that choose the node with more information

as the transmitter at every time slot. We show that an order of magnitude reduction

in the completion time is possible in networks with a small fixed number of nodes

and a large number of packets to be disseminated (e.g., 1000 data packets to be

disseminated to 20 nodes), or large networks that require dissemination of a small

number of data packets (e.g., 20 data packets to be disseminated to 1000 nodes). The

improvement is more dramatic if we increase the number of nodes in the network and

the number packets to be disseminated.

1.3.3 Underwater Acoustic Networks: Fundamental Limits

and Practical Schemes

This area of work focuses on the case of underwater acoustic networks. In order

to better understand the problem and be able to derive relevant fundamental limits

for it, we start by studying the exact relationship among power, transmission band,

distance and capacity for the underwater acoustic channel under a Gaussian noise

assumption. Since this complete model is a complicated one, we provide a closed-

form approximate model for 1) transmission power and 2) optimal frequency band to

use, as functions of distance and capacity. The model is obtained through numerical

evaluation of analytical results that take into account physical models of acoustic

propagation loss and ambient noise.



We show that the complete model that relates transmission power, transmission

band, distance, and link capacity is convex. However, since we are interested in

tractable models that could be used in network optimization problems, the present

work shows the operating conditions under which the approximate model is convex.

We then assess the minimum transmission power required for an underwater acous-

tic network. A lower bound for transmission power is obtained by neglecting interfer-

ence between the nodes and using subgraph selection [24] to establish minimum-cost

multicast connections with network coding. The convex cost function for the network

optimization is given by the transmission power which depends on the distance and

a desired data rate via the approximate model for each active link. We show that the

no-interference assumption in an underwater scenario is justified for low multicast

rates, and randomly placed nodes with inter-node distances less than 10 km.

Finally, the network coding based lower bound for transmission power is used to

compare different routing and network coding schemes.

We also study upper bounds on the transport capacity of underwater acoustic

networks for three cases of interest: an arbitrarily chosen narrow transmission band;

the case of power limited nodes which transmit in disjoint narrow bands; and the

case of nodes with high power capabilities that use of a wide transmission band. The

choice of transmission band in the last two cases depends on the transmission distance

and the physical characteristics of the channel, and is made in accordance with the

waterfilling principle.

We show that the amount of information that can be exchanged by each source-

destination pair in underwater acoustic networks goes to zero as the number of nodes

n goes to infinity. This occurs at least at a rate n-1/"e-Wo(O(n1 /')), where WO rep-

resents the branch zero of the Lambert function. We illustrate that this throughput

per source-destination pair has two different regions. For small n, the throughput

decreases very slowly as n increases. For large n, it decreases almost as n-'/'. Thus

for large enough n, the throughput decreases more rapidly in underwater networks

than in typical radio channels, because of the difference in the path loss exponent a.

In wireless radio channels, a > 2 while in underwater acoustic networks a E [1, 2]



typically. We study this in more detail in Chapter 5. This rule is valid for the different

scenarios in general, requiring only changes in the scaling constants.



Chapter 2

Network Coding for Large Latency

Time Division Duplexing Channels

This chapter studies networks that operate in time division duplexing channels, i.e.,

when a node can only transmit or receive, but not both at the same time. This

problem has not been considered in any of the previous network coding references or,

to the best of our knowledge, for network coding before our work. This type of channel

is usually called half-duplex in the literature, but we use the term time division

duplexing (TDD) to emphasize that the transmitter and receiver do not use the

channel half of the time each or in any pre-determined fashion. Important examples

of time division duplexing channels are infrared devices (IrDA), which have motivated

many TDD ARQ schemes [17] [18], and underwater acoustic communications [19].

Other important applications may be found in channels with very high latency, e.g.,

in satellite [20] [21], and deep space [22] communications.

The key question to ask for the problem of achieving reliable communication TDD

channels, and the one that initiated this work, is quite simple and natural: how much

should a node talk before stopping to listen to others? Answering this question is

particularly relevant in scenarios in which latency, i.e., the number of bits/packets in

flight, is large because the penalty for not transmitting (talking) the correct amount

of time before stopping is very high. We consider that packets can be lost/erased,

i.e., they are not successfully received. The simplest case of this problem is that of a



link. Let us provide some intuition about this case before mathematically analyzing

the problem and extending it to more complex scenarios.

The case of a link corresponds to the problem of a node transmitting M data

packets through a link using random linear network coding. We consider that the

sender can transmit random linear coded packets back-to-back before stopping to wait

for an acknowledgement (ACK) packet. This ACK packet conveys the remaining dofs

required at the receiver to decode all M data packets. This will be a key feature of

the different cases discussed in this chapter. We consider that the number of coded

packets Ni to be transmitted before waiting for a new ACK packet depends on the

number of dofs i needed at the receiver, as indicated by the last ACK packet received

successfully. This number of coded packets is directly mapped to the time of talking

before stopping to listen.

There is a natural trade off in the choice of the Ni's. Every time the system stops to

wait for an ACK, it incurs in an additional delay, which can be large in large latency

channels. In general, the system requires at least one stop to get confirmation of

complete transmission, in order to ensure reliable transmission of the data. However,

we want to minimize the time to complete a transmission, which is related to reducing

the number of stops required to complete transmission of the M packets. Note that if

the Ni's are too small given the channel conditions, the system will have to transmit

more ACK packets to complete transmission of the block of M data packets, which

will cause a larger delay. On the other hand, if the Ni's are too large, the receiver

will have decoded the M packets, for example, before the transmitter stops sending

the first NM coded packets. Since the block of M original packets is considered to

be completely transmitted when the ACK requests no more dofs, the system causes

unnecessary delay by transmitting too many coded packets by delaying transmission

of the ACK by the receiver. In other words, the transmitter could have sent a smaller

number of coded packets before stopping and still transmit the M packets successfully.

We show that there exists an optimal number of coded data packets to be trans-

mitted back-to-back before stopping to wait for an ACK packet from the receiver, in

terms of mean completion time, i.e., mean time to decode the M original data packets



at the receiver and get an ACK at the transmitter. In fact, the optimal number of

coded data packets Ni depends on the number of dofs i that the receiver requires to

decode the information, and also on the packet erasure probability and the latency.

Thus, we show that there is an optimal time for stop transmitting coded packets and

start listening to an ACK packet from the receiver.

Thus, our objective is to find the Ni's that optimize a specific metric. In particular,

we are interested in minimizing the mean time to complete transmission of a block

of data packets, i.e., the delay in block transmissions, using feedback. This delay

to decode a block is different from the usual packet delay measure. Since coding is

carried out on blocks of packets, the delay to decode a block successfully determines

the delay of each of the packets in that block. We also show that minimizing the

expected time to complete transmission of a block of M packets with a fixed packet

size also maximizes the throughput performance. However, we show that a correct

choice of M and number of bits in the data packet can further improve throughput

performance.

Although both standard ARQ techniques and our schemes achieve reliability by

detecting errors in received packets or packet erasures, and recover the information

using a retransmission scheme, there are some important differences. First, we rely

on transmission of coded packets, i.e., there is no need to specify a particular data

packet to retransmit as in ARQ, but only a random linear combination. The ACK

packet of our scheme thus differs from common ARQ techniques [23] in that it does

not give acknowledgement to particular data packets [23], but to degrees of freedom

needed at the receiver to decode the M original packets. Second, the number of

coded packets transmitted in our scheme is not fixed by design of the algorithm, but

chosen given channel characteristics and information in the ACK packet. In fact, the

information in the ACK packet of our algorithm can be used to update an estimate

of the probability of packet error and improve the overall performance.

Note that this scheme is rateless in nature. However, the feedback mechanism is

different to that of typical rateless schemes, which assume an independent feedback

channel through which the transmitter can receive an ACK indicating full decoding



of the data. Our schemes assume that there is only one channel for both data and

ACK. Other rateless codes, e.g., LT codes [40], Raptor Codes [41], will face a similar

challenge under the TDD channel, namely how many coded packets to send before

stopping to listen for an ACK. The advantage of random linear network coding is

that we can extend these ideas to general networks with no modifications from the

coding perspective. That is, our results can be extended to the case of a network,

in which each node performs a random linear combination of packets received from

different nodes. In this extension, each node transmitting through a link, or, more

generally, a hyperarc (using the terminology in [24]) will have an optimal number of

coded packets to transmit back-to-back before stopping to listen. Fountain codes,

e.g., [40] [41], do not share this trait: intermediate nodes have to either relay packets

with no modifications or completely decode the information before transmitting to

other nodes in order to preserve the structure of the code.

We begin by studying the case of a link in Section 2.1 analyzing different aspects

of this problem. We then proceed to extend our result to the case of one node

broadcasting information to several receivers (one-to-all broadcast) in Section 2.2.

Finally, Section 2.3 studies the case of a network in which every node has information

to transmit to all other nodes (all-to-all broadcast).

2.1 Random Linear Network Coding for TDD chan-

nels: Link Case

Let us consider the simplest case of transmission of information: a node that transmits

information to another node in a single hop.

2.1.1 Model

We consider a sender in a link wants to transmit M data packets at a given link data

rate R. The channel is modeled as a packet erasure channel. Nodes can only transmit

or receive, but not both at the same time. The sender uses random linear network
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Figure 2-1: Structure of coded data packet

coding [4] to generate coded data packets. Each coded data packet contains a linear

combination of the M data packets of n bits each, as well as the random encoding

coefficients used in the linear combination. Each coefficient is represented by g bits.

For encoding over a field size q, we have that g =log 2 q bits. Also consider an

information header of size h. Thus, the total number of bits per packet is h + n + gM.

Figure 2-1 shows the structure of each coded packet consider in our scheme.

The sender can transmit coded packets back-to-back before stopping to wait for

the ACK packet. The ACK packet feeds back the number of degrees of freedom, that

are still required to decode successfully the M data packets. Since random linear cod-

ing is used, there is some probability of choosing encoding vectors that are all zero for

one coded packet or encoding vectors that are linearly dependent on vectors of previ-

ously received packets. Thus, using arguments similar to [10], the expected number

of successfully received packets before having M linearly independent combinations,

is
1S1

M 1 < M q (2.1)
k=1 (/q(k) - q- 1

In the following analysis, we assume that the field size q is large enough so that the

expected number of successfully received packets at the receiver, in order to decode

the original data packets, is approximately M. This is not a necessary assumption for

our analysis. In fact, in the Practical Considerations chapter we show how to include

the effect of the field size into our models. We prove that the performance degradation

is very small, specially if M is moderately large. However, making the large field size

assumption simplifies the expressions and provides a good approximation for large

enough q. Also, all the techniques discussed in this chapter are directly applicable,

with minor or no modifications, if we take into account the effect of field size.
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2.1.2 Description of Scheme

We are interested in determining the optimal number of coded packets that should

be sent back-to-back before waiting for an ACK packet from the receiver in order

to minimize the time for successfully transmitting the M data packets over the link.

Note that if M packets are in the queue, at least M degrees of freedom have to be

sent in the initial transmission, i.e., NM > M coded packets. We are interested not

only in the number of dofs that are required at the first transmission, but also at

subsequent stages.

Transmission begins with M information packets, which are encoded into NM ran-

dom linear coded packets and transmitted (Figure 2-2 (a)). As shown in Figure 2-2

(b), some of the coded packets are lost (suffer an erasure) when going through the

erasure channel. After waiting for the NM-th packet to be received, the receiver sends

an ACK packet to the transmitter. At this point, the receiver has accumulated a cer-

tain number of dofs. The ACK informs the transmitter how many dofs are missing at
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Figure 2-4: View in time of a round of transmission followed by an ACK packet in
our network coding TDD scheme in a link, where CP(k, d) represents the k-th coded
packet transmitted when we start transmission with d dofs needed at the receiver to
decode the information.

the receiver, say i, in order to decode the information (Figure 2-2 (c)). After the ACK

packet is received, the transmitter updates its knowledge of the requirements of the

receiver. If all M packets are decoded successfully (i = 0), the process is completed.

Otherwise, the transmitter sends Ni coded packets (Figure 2-2 (d)) and stops to listen

for an ACK, and so on, until all M packets have been decoded successfully. We are

interested in the optimal number Ni of coded packets to be transmitted back-to-back

in the next transmission to complete the remaining i dofs. Figure 2-3 shows the

communication process as a system transmits NM coded packets initially and awaits

reception of an ACK packet that updates the value of i, at which point it will transmit

Ni coded packets. The system will keep transmitting and stopping to update i, until

i = 0. When i = 0, the transmitter can start with M new data packets or simply stop.

In Figure 2-4 we show the process in time of a round of communication, starting by

transmission of Ni coded packets and ending with the reception of an ACK packet.

In Figure 2-4, CP(k, d) represents the k-th coded packet transmitted when we start

transmission with d dofs needed at the receiver to decode the information.

The process can be modelled as a Markov Chain (Figure 2-5). The states are

defined as the number of dofs required at the receiver to decode successfully the M

packets. Thus, these states range from M to 0. This is a Markov Chain with M

transient states and one recurrent state (state 0). Let us define Ni as the number of

coded packets that are sent when i dofs are required at the receiver in order to decode

the information. Note that the time spent in each state depends on the state itself,

because Ni # Nj, Vi # j in general.

The transition probabilities from state i to state j (Pi-j) have the following ex-
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Figure 2-5: Markov chain representation of the scheme. State i represents that the

receiver requires i more successfully received coded packets to decode the information

pression for 0 < j < i and Ni > i:

Pij = (1 - Peack) (z Pe)i3 PeNi-i+j

where Pe and Peack represents the erasure probability of a coded packet and of an

ACK packet, respectively.

More generally, the transition probability can be defined for any value of Ni > 1

as follows:

Pi_. = (1 - Peack)f(i,j)(l - Pe)iPeNi-i+j (2.3)

where

) Nj

0

if Ni > i,

otherwise.
(2.4)

For j = i > 0 the expression for the transition probability reduces to:

P_. = (1 - Peack)PeNi + Peack.

(2.2)

(I - Peack)Pe6N + Peack

(2.5)



Note that for P (0 -4 0) = 1. Finally, for j = 0 we have that

i

P (i -+ 0) = 1 - P (i - j'). (2.6)
j'=1

2.1.3 Moment Generating Function of Completion Time and

Completion Energy

In this subsection we provide a full characterization to the problem of completion

time and completion energy via a moment generating function. This result is general

for finite state absorbing Markov chains, where the states are represented by positive

integers ranging from 0 to M, and 0 being the absorbing state.

Let us define the moment generating function of the completion time when the

Markov chain starts at state n E {0, 1, ..., M} as

MT,(s) = Zexp(st) PT(T = t) (2.7)
t

where PT(T = t) is the probability of the completion time T being t. Note that

MT,, (s) is the moment generating function of the completion time when n data pack-

ets are taken by the source to be transmitted reliably to the receiver.

The following lemma states the expression for the moment generating function of

the completion time.

Lemma 1. The moment generating function MT,n(s) of the completion time when n

linearly independent coded packets are needed to decode is given by

exp(sT") n-
MT,n(s) = Ps n- MT,'(s) (2.8)1 - Pn-n exp(sT )

with MT,o(s) = 1.

Proof. Using the Markov Chain structure of the problem, it can be shown that



MTfn(s) can be re-stated as

n

MT,n (s) = -- exp s mjT) CnAn (2.9)
mn1 mn-1>0 m120 i

where T' is the deterministic time required to send Ni coded packets and wait for

an ACK when the Markov chain is in state i, e.g., T' = NjTp + T., where T, is the

transmission time of a coded packet, and T is the waiting time to receive an ACK

packet, as shown in Figure 2-4. The constant Cn captures the effect of returning to

the same state repeatedly, while An captures the different paths that can be traversed

without repetition of a state.

The expression for Cn is
n

Cn =( J p 3-.
j=1

The coefficient for A, can be shown to obey a recursive expression of the form

n-1 n-1

An = 1{mn>O} E Pn-*,j ( Pti-+lm,= 0 ) Aj
-j=0 (i=j+1

with A1 = P1_,01{m1>o}. The indicator function 1{sES} is 1 when s E S and zero

otherwise.

Substituting expression (2.10) into (2.9) we obtain the recursive equation for the

moment generating function. E

Finally, note that the same structure is valid for computing the energy needed

to complete transmission. To do so, one would substitute T by E, and MT,n(s) by

ME,n(s), which leads to

MEn(S exp(sE) - iME,i(s) (2.10)ME,~(; n=
w it- Pn exp(sE) 1

with ME,0(s) -1



2.1.4 Mean Completion Time and Energy

The mean time for completing the transmission of the M data packets constitutes

the mean time of absorption, i.e., the time to reach state 0 for the first time, given

that the initial state is M. This can be expressed in terms of the expected time

for completing the transmission given that the Markov chain is in state is i, Ti ,
Vi = 0, 1,..M - 1. Let us denote the transmission time of a coded packet as Tp, and

the waiting time to receive an ACK packet as T. For our scheme, T = R+n+gM and

T. = Trt + Tack, where Tack - nack/R, nack is the number of bits in the ACK packet,

R is the link data rate, and Trt is the round trip time. Note that To = 0. Then, for

i> 1

NiT+T. (1 - Pe)iPeNi-i 1ijf(ilj)( Pe

(1 - Peack)(1 - PeN) _ PeN

For example, for i = 1 we have that:

(N1Tp + Tw)
Ti = - (2.12)(1 - Peack)(1 - PeN1) (

As it can be seen, the mean time for each state i depends on all the expected times for

the previous states. Because of the Markov property, we can optimize the values of all

Ni's in a recursive fashion, i.e., starting by N 1, then N 2 and so on, until NM, in order

to minimize the expected transmission time. We do so in the following subsection.

Now, our objective is to minimize the value of the mean completion time when

M dofs are required in order to decode M data packets, TM. Under the assumption

that Ni > i, we have:

mn TM = mi NMTp+TW (1-Pe)MPeNM-M M-1 (NM)( 3Pe)T

NM,..,Nl NM,..,N1 (1-Peack)(1-PeNM) 1_ PeNM

mm ~ ~ ± (1Pe)Mpe NMM M-1 (NM rPe)' 1
N 1 Tmin NMTp+TW -M 1 PeNM 3 minNj,,N1 T

NM (1-Peack )(1-Pe NM ) 1-peNM



Without this assumption, we have that

NM~y-Tw_p,!M peNM-MEM-1 f(Mej)j minNj ,..,N1 Tj
min TM = min IVT± + - _ NM

NM ,..,N 1  
M (1-Peack)(1-PeNM)

Hence, regardless of the assumption on Ni, the problem of minimizing TM in terms of

the variables NM, .., N1 can be solved iteratively. First, we compute minN1 T1, then

use this results in the computation of minN2,N1 T2 , and so on.

One approach to computing the optimal values of Ni is to ignore the constraint

to integer values and take the derivative of T with respect to Ni and look for the

value that sets it equal to zero. For our particular problem, this approach leads to

solutions without a closed form, i.e., expressed as an implicit function. For M = 1,

the optimal value of N1 can be expressed using a known implicit function (Lambert

W function), and it is given by

1 + W exp (-I + ln(Pe)T T
Nn* = " -- (2.13)

In Pe T,

where W(.) is the Lambert W function [25], defined as W(z)eW(z) = z. The positive

values are found for the branch W_1, as denoted in reference [25].

The case of M = 1 can be thought as an optimized version of the uncoded Stop-

and-Wait ARQ, which is similar to the idea presented in [20]. Instead of transmitting

one packet and waiting for the ACK, our analysis suggests that there is an optimal

number of back-to-back repetitions of the same data packet that should be transmit-

ted before stopping to listen for an ACK packet.

Instead of using the previous approach, we perform a search for the optimal values

NI, Vi E {1, ...M}, using integer values. Thus, the optimal Ni's can be computed

numerically for given Pe, Peack, T and Tp. In particular, the search method for the

optimal value can be made much simpler by exploiting the recursive characteristic

of the problem, i.e., instead of making a M-dimensional search, we can perform M

one-dimensional searches. Finally, these Ni's do not need to be computed in real

time. They can be pre-computed for different channel conditions (e.g., Pe, Tt) or



system settings (e.g., n, M, g, data rate), and stored in the receiver as look-up tables.

This procedure makes the computational load on the nodes to be negligible at the

time of determining the optimal number of coded packets in terms of the completion

time, especially for dynamic environments.

2.1.5 Variance of Completion Time and Energy

Another figure of importance is the variance of the completion time and energy. We

can use the moment generating function for our problem knowing that

VarT,- a2 MT,n(S) (MT,n(S) 2 (2.14)
aS2 s=O as s=O/

where VarT,n is the variance of T when M = n.

By taking derivatives, it is possible to prove that

8
2
MTn(S) _ 2Tn BMT,n(s) (T" )2

as 2s S=O 1-n n 98 =0 1Pl,.

+ 1-Pn 1 pn-i 92 s= . (2.15)

Again, we can substitute the values of TZ, Vi, and the values of the transition

probabilities in order to compute the variance. As before, the same results apply for

the case of energy making the appropriate substitutions of T' by E', and MT,j by

ME,i-

2.1.6 Throughput

The mean throughput for a block scheme is strictly defined as

Mn
Mean Throughput = E[ ] (2.16)

T

where T is the time to complete transmission of M packets.



If we assume M and n to be constants, which is valid in our scheme, we have that

Mean Throughput = MnE[4]. (2.17)

For the case of M 1, i.e., the extended version of the Stop-and-Wait ARQ scheme

we mentioned before, we can provide a simple expression for the mean throughput in

terms of the transition probabilities P 1_ 1 and P1 _.0 ,

E[j] =  Efp 1 _1 k (2.18)

= Pi-O 00 (1-PO) (2.19)
P 1 -1 (T 1 ) k=1 k

= - 0_1 1 ln(P1_-,o) (2.20)

where T' = N1 Tp + T., and we have used the Mercator series since 11 - P1_o < 1

for all cases of interest.

For M > 1 this expressions are much more complicated. However, expression 2.17

implies that the problem of computing the mean throughput for our scheme is equiv-

alent to that of computing negative moments of the completion time. The problem

of computing negative integer moments has been studied previously in [33] and [34].

In particular, we focus in the result of [34] which states that

E[X-1] = Mx (-s)ds (2.21)

where X > 0 is the random variable, and Mx(s) is the moment generating function

of X.

Again, for M = 1 we can compute E[T 1 ] by using expression (2.21):

E[T-1] = j MT,1(-s)ds (2.22)

P' exp(sT1 ) ds (2.23)
Jo 1 - P1 .1 exp(sT1 )I1- -' In( 1) (2.24)

TIP1_,1 Ji_ p, u P1 .T1 P1_.+O



where we have used the fact that P1.o = 1 - P1 , 1. This result is exactly the same

as the one obtained by direct computation of E[T- 1] using the Mercator series.

As stated before, the expressions for E[T- 1] for the cases of M > 1 are too

complicated for direct computation. However, it is possible to compute them if we

use expression (2.21) and exploit the structure of the moment generating function of

our problem (Expression (2.8)). For the case of M = j we get

E[T- / [0 exp(-sTJ) j

E[T- - exp(-sTj) PyiMTi(-s)ds. (2.25)fo 1 -- P_. exp(-sT) ) P
i=O

Notice that MT,j(-s), Vi have a multiplying term 1_Pi- exp(-sT2) which decreases to

zero exponentially as s --+ oc and goes to 1 as s -> 0. Thus, all terms inside the

integral in (2.26) will go to zero exponentially.

Using this characteristic we can numerically compute E[T-1] using numerical

integration techniques with the following approximation

E[T- 1] jT ~xp(87i) \ P_,jMT,j(-s)ds. (2.26)
fo 1 - Py, exp(-sTj) _9

i=O

where T = max{s- 1 ,...,s} r, r = C/TI, and C is a constant in order to ensure

exp(-TiT') is small enough, e.g., C = 5 ensures exp(-TiT') = exp(-5) ~ 0.0067.

Although this measure is important, we will define a different throughput measure

called q because 1) the mean throughput is computationally demanding, and 2) most

of the analysis of typical ARQ schemes is performed using q.

Let us define our measure of throughput q as the ratio between number of data

bits transmitted (n) and the time it takes to transmit them. For the case of a block-

by-block transmission

Mn
q = (2.27)

where TM is the mean completion time defined previously.

Note that the mean throughput and q are not equal. For the case of M = 1, note



that E["] = l " .) More generally, using Jensen's inequality, MnE[}] > -

for T > 0. Therefore, q constitutes a lower bound to the mean throughput in our

scheme.

Also, note that if M and n are fixed, q is maximized as TM is minimized. Thus,

by minimizing the mean time to complete transmission of a block of M data packets

with n bits each, we are also maximizing q for those values. However, we show that

the maximal q should be obtained using M and n as arguments in our optimization.

This is important for systems in which the data is streamed. In this case, searching

for the optimal values of M and n, in terms of 17, provides a way to optimally divide

data into blocks of M packets with n bits each before starting communication using

our scheme.

2.1.7 Optimal Packet size and packets per block

We have discussed throughput with a pre-determined choice of the number of data

bits n and the number of data packets M in each block. However, expression (2.27)

implies that the throughput q depends on both n and M. Hence, it is possible to

choose these parameters so as to maximize the throughput. We can approach this

problem is several ways. The first approach is to look for the optimal n while keeping

M fixed:

r/o0 t(M) = argmax max } (2.28)
n NM7,...,N1,

The second approach is to look for the optimal M while keeping n fixed:

T/optf(n) = arg max max q (2.29)
M Nm,...,N1

More generally, we could consider the case in which both parameters are variable

and we are interested in maximizing ij:

?lopt = arg max max 1  (2.30)
n, M NM,...-,N1



2.1.8 Performance Evaluation

1)Network coding for TDD optimized for mean completion time (TDD-T):

This is our TDD scheme when we choose the Nis to optimize the mean completion

time given channel characteristics and system parameters.

2)Network coding for TDD optimized for mean completion energy (TDD-

E): This is our TDD scheme when we choose the Nis to optimize the mean completion

energy given channel characteristics and system parameters.

3)Network coding for TDD with fixed maximum window: This scheme

considers that a fixed number of packets M that have to be transmitted to the receiver,

but with a fixed, pre-determined maximal number of coded packets to be transmitted

before stopping to listen. We define this maximal value of coded packets as w. If the

number of degrees of freedom i required at the receiver to decode the information is

i > w, the transmitter will transmit w degrees of freedom. If i < w, the transmitter

will transmit i degrees of freedom.

The model for the Markov Chain is derived from the previous case, by setting

N, = w, Vi > w and Ni = i, Vi < w. For i > w, we have that:

wT, ± T. Zf=1 () (Pew i(1 - Pe)) Ti-
T =T+T (2.31)(1 - Peack)(1 - Pew) 1 - Pe2

and for i < w:

iT_+_T___=1I(Peii(1 - Pe) )Ti-j
T = T Z 1- P+ (2.32)

(1 - Peack)(1 - Pei) + . (.2

4) Network coding in full duplex channel: This scheme assumes that nodes

are capable of receiving and transmitting information simultaneously, and in that

sense it is optimal in light of minimal delay. The sender transmits coded packets back-

to-back until an ACK packet for correct decoding of all information (M information

packets) has been received. This scheme can be modeled as a Markov chain where,
as before, the states represent the number of dofs received. The time spent in each

state is the same (Tp). Once the M packets have been decoded, i.e., M dofs have



been received, the receiver transmits ACK packets back-to-back, each of duration

Tack. One ACK should suffice, but this procedure minimizes the effect of a lost ACK

packet.

The mean time to complete the transmission and get and ACK is:

E[T] = Trt + Tack (2.33)
1 - Pe 1 - Peack

where T is the time to complete transmission of M packets.

The mean energy to complete the transmission and get and ACK is:

E[Energy] =TtEp +T/ak +Ml +_Ea (2.34)

5)Go-Back-N ARQ for TDD: This is an ARQ scheme developed for a TDD

duplex channel studied extensively in [17]. Each transmission contains W data packets

sent back-to-back, where W is the window size of our GBN scheme. Reference [17]

studied this case and proposed the utilization factor for it. In our notation, the

equivalent r/ is given by

n(1 - Pe) (1 - (1 - Pe)W (2.35)
rGBN ~ (WT +TW)Pe

6)Selective repeat ARQ for TDD: This is an ARQ scheme developed for a

TDD duplex channel presented in [17]. Each transmission contains W data packets,

where W is the window size of our SR scheme. Using the utilization factor studied

in Reference [17], we provide the equivalent q for this problem:

Wn(1 - Pe)
r/SR - (2'36)

WT,+-TW

2.1.9 Numerical Examples

This section provides numerical examples that compare the performance of the dif-

ferent network coding schemes we have discussed so far in the case of a link in TDD
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Figure 2-6: Mean time for transmitting M data packets successfully versus Pe in
a satellite example. The parameters used are M = 10, Tt = 250 ms, data rate
1.5 Mbps, nack = 100 bits, n = 10000 bits, g = 100 bits, h = 80 bits, Peack = 0.001

channels. The comparison is carried out in terms of the mean time to complete a

transmission of M data packets through TDD channel under different block error

probabilities. We also present results in terms of the measure of throughput r to

illustrate its dependence on the values of M and n for varying channel characteristics

(erasure probabilities). We use the case of satellite communications as an example of

high latency channels.

Figure 2-6 studies the expected time to complete transmission of M = 10 data

packets of size n = 10000 bits, with different packet error probabilities in a GEO

satellite link with a propagation delay of 125 ms. We assume a link with parameters

specified in the figure. Note that our network coding scheme (TDD optimal) and the

network coding full duplex optimal scheme have similar performance over a wide range

of block error probabilities. In fact, for the worst case (Pe = 0.8) presented in this

figure, our scheme has an expected time of completion only 29 % above the full duplex

scheme. This is surprising considering that the transmitter in the full duplex scheme

sends coded packets non-stop until an ACK packet is received. The explanation for
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Figure 2-7: Mean Energy and Time to complete transmission. Parameters used:
M = 10, packet size n = 10, 000 bits, R = 1.5 Mbps, h = 80 bits, g = 20 bits,

nack = 100 bits.

this behavior is that our scheme is sending enough coded packets, given the channel

conditions, so that the number of stops to listen (which are very costly) is minimized.

Thus, our scheme can have similar performance to that of full duplex optimal scheme,

in the sense of expected time to completion. Most importantly, our scheme is very

likely to have a much better performance in terms of energy consumption due to the

long periods in which the transmitter stops to listen for the ACK packets.

Figure 2-6 also shows the performance of the comparison scheme 3 of Section

2.1.8. Note that when w = 10, i.e., the transmitter sends at most 10 coded pack-

ets before stopping to listen, the performance is comparable to our optimal scheme

when the block error probability is low. This fact confirms that, for low block era-

sure probabilities, the optimal choice of coded packets to transmit when i dofs are

required at the receiver (Ni) is simply i. In other words, if M = 10 and the block

error probability is low, the first transmission contains 10 coded packets. Note that

using w = 9 already suffers from a considerable degradation in performance even

for low Pe because the transmitter cannot transmit the minimum number of coded
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it must transmit at least one more coded packet after the first ACK. Note that the

performance of w = 5 and w = 9 is similar for low block error probability because

both of them require at least two stops to listen for ACK packets in order to relay

all the information, and it is the stopping time that affects delay the most on a high

latency channel. For the case of w > 10 we would see a degradation for low Fe, with

respect to optimum, because more packets than necessary are transmitted.

Finally, note that for the worst data error probability in Figure 2-6, all fixed

schemes (TDD with fixed w) take at least 5 times more time to complete transmission

than the network coding full duplex optimal scheme. The case of w = 1 can be

interpreted as the performance of the Stop-and-Wait ARQ scheme under the same

channel conditions, which is considerably worse than the other schemes.

Figure 2-7 studies the mean energy and time to complete transmission of M = 10

data packets of size ni = 10,000 bits, with different packet erasure probabilities in a

GEO satellite link with a propagation delay of 125 ins, i.e., Trt = 250 ins. In the fol-

lowing results, we have considered that coded packets and ACK are transmitted with

the same power, and that this value is normalized, i.e., P = 1. The link parameters

are specified in the Figure.

The first thing to notice in Figure 2-7 is that both TDD schemes have much
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2.10-5.

better performance with respect to the full duplex scheme, i.e., energy consumption

of the full duplex scheme is considerably higher than the TDD schemes given the high

latency characteristic of this channel.

Figure 2-7 shows that the gap between our network coding scheme optimized

for energy and for completion time. Their performance stays similar over a wide

range of packet erasure probabilities. When the packet erasure probability is low,

the performance is the same for the two approaches, both in the sense of energy and

delay. For high packet erasure probability the performance of both TDD versions

is similar in terms of energy, although we observe a clear advantage of TDD-T over

TDD-E in mean completion time.

Figure 2-7 also illustrates that our network coding scheme optimized for comple-

tion time (TDD-T) and the network coding full duplex optimal scheme have similar

performance over a wide range of packet erasure probabilities. In fact, for the worst

case (Pe = 0.8) presented in this Figure, our scheme has an expected time of com-
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g = 20 bits, nack = 100 bits, h = 80 bits, data rate 1.5 Mbps, Trt = 250 ms,
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pletion only 30 % above the full duplex scheme. Thus, TDD-T can have similar

performance to that of full duplex optimal scheme, in the sense of expected time to

completion, while showing similar performance to TDD-E, the version optimized for

energy consumption. This means that the TDD-T provides a good trade-off between

energy and time to complete transmissions.

Figure 2-8 shows the trade-off curve between time and energy to complete trans-

mission given different packet erasure probabilities Pe ( using same parameters as

in Fig. 2-7). The mean completion time changes significantly between TDD-T and

TDD-E as the Pe increases, but the energy difference is small between both schemes.

On the other hand, the mean energy is far greater in the full duplex scheme than

both TDD schemes, while the completion time of the TDD-T scheme is close to the

full duplex scheme.

Figure 2-9 shows the energy required to successfully transmit one bit of informa-

tion, i.e., M. This Figure considers different values of n in a symmetric channel

with parameters in the figure. It also shows the packet erasure probability for the
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different values of n. First, we notice that the energy per bit required to complete a

block transmission is much larger in the full duplex scheme than in both TDD-T and

TDD-E. Second, we note that the energy per bit required for both TDD schemes is

similar for a wide range of n. Finally, the effect of all three schemes having similar

energy per bit consumption when n is large is explained by two factors that reduce

the effect of the long propagation delay: 1) an increased packet erasure probability

which forces more packet transmissions in the TDD schemes, and 2) a larger packet

duration T., which causes the number of coded packets in flight to be reduced. Fi-

nally, Figure 2-9 shows that the full duplex network coding scheme has a value of n

that optimizes the energy per data bit required to transmit the entire information.

Let us study the variance of the TDD-T scheme under different erasure proba-

bilities. Figure 2-12 shows that the variance is very small but it is not a continuous

function, showing discontinuities for certain values of Pe. Figure 2-13 shows that

these discontinuities are related to a change in the number of coded packets sent in

the first transmission of each M blocks, i.e., NM. The variance decreases when NM
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Figure 2-12: Variance and Mean of completion time for TDD-T versus packet erasure
probability Pe, with parameters g = 20 bits, nack = 100 bits, h = 80 bits, data
rate 1.5 Mbps, Trt = 250 ms, Peak = 0.001, M = 10, and n = 10, 000 bits.

increases because we are increasing the probability of decoding all M packets after the

first transmission. In practice, the Pe is an estimate of the packet erasure probability

and these discontinuities can be misleading in terms of expected system performance.

Thus, having bounds on the variance for each Pe, as shown in Figure 2-12, is more

meaningful from a system's perspective.

Let us compare the mean throughput MnE[1/T] and - = Mn/E[T]. Figure 2-

10 shows that both E[1/T] and 1/E[T] are very close when we optimize the Nis in

terms of the mean completion time. Thus, choosing the parameters of our scheme

to optimize the mean throughput or q will provide very similar results. However,

this is not necessarily the case for other choices of Ni, e.g., when we choose them to

minimize the mean completion energy as Figure 2-11 shows.

Let us turn our attention now to the problem of maximizing the parameter r/,

i.e., our mean throughput lower bound. Recall that for this setting we are streaming

data which is subdivided into blocks that are transmitted them using our scheme.

Considering again a satellite link, given a fixed bit error probability (Peit = 0.0001)

-

Mean Completion Time (s)

Variance (s2)

Upper Bound on Variance (s?2

Lower Bound on Variance (W2

- ' - - -
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Figure 2-13: Variance of completion time and NM for TDD-T versus packet erasure

probability Pe, with parameters g = 20 bits, nack = 100 bits, h = 80 bits, data

rate 1.5 Mbps, Trt = 250 ms, Peck 0.001, M = 10, and n = 10, 000 bits.

let us study the problem of computing the optimal number of bits n per packet

given some value of M. In these examples, for the case of a symmetric channel with

independent bits Pe = 1 - (1 - Peoit)h+n+gM and Peak = 1 - (1 - Pebit)"ack.

Figure 2-14 illustrates the values of q in Mbps given different choices of M and

n. First, note that for each value of M there exists an optimal value of n. Thus,

an arbitrary choice of n can produce a considerable degradation in performance in

terms of throughput. Secondly, there is a (M, n) pair that maximizes the value of

,q. Finally, the performance of the full duplex network coding and our TDD optimal

scheme is comparable for different values of n and M.

Figure 2-15 shows 17 in Mbps when we change the round-trip time Tt. As expected,

a lower T, allows more throughput in TDD. Again, we observe that our TDD optimal

scheme has comparable performance to the full duplex scheme.

Let us know compare the performance in terms of throughput to other TDD ARQ

schemes. Figure 2-16 shows 17 for the satellite communications setting with a fixed

packet size of n = 10000 bits, nack = 100 bits, Trt = 250 ms, PeACK = 0 for all
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nack = 100 bits, h = 80 bits, data rate 100 Mbps, Tt = 250 ms, Peit = 0.0001

schemes, a window size of W = 10 for the ARQ schemes, and g = 20 bits and

M = 10 for our network coding scheme. We use different data rates to illustrate

different latency scenarios, where higher data rate is related to higher latency. Note

that the performance of our scheme is the same as both GBN and SR at low data

packet error probability, which is expected because the window size W is equal to the

block size of our scheme M and we expect very few errors. Our scheme has a slightly

lower r for low Pe because each coded data packet includes gM additional bits that

carry the random encoding vectors. This effect is less evident as latency increases.

In general, our scheme has better performance than GBN.

Figure 2-16 shows that for low latency (0.1 Mbps) r of our scheme is very close

to that of the SR ARQ scheme for all values of Pe, and better than the GBN scheme

for high Pe. These results are surprising, because our scheme constitutes a block-by-

block transmission scheme which will not start transmission of a new set of M data

packets until the previous ones have been received and acknowledged. Note also that,

as latency increases, our scheme shows much better performance than the SR scheme
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Figure 2-15: Throughput 17 versus n in a symmetrical channel considering different
values of round-trip time Trt with parameters g = 100 bits, nack = 100 bits,
h = 80 bits, data rate 1.5 Mbps, M = 10, Peit = 0.0001

for high Pe. The case of 10 Mbps and Pe = 0.8 shows that 1a of our scheme is more

than three (3) times greater than that of SR.

Figure 2-17 shows y for a fixed data rate of 10 Mbps and different Trt. We use

a fixed packet size of ni = 10000 bits, nack = 100 bits, PeACK = 0 for all schemes,

a window size of W = 10 for the ARQ schemes, and g = 20 bits and M = 10 for

our network coding scheme. Note that the overhead of transmitting M coefficients

of g bits per coded packet is only 2%. Thus, this effect cannot be appreciated in

the figures. Again, the performance of our scheme is the same as both GBN and SR

at low data packet error probability. Since the data rate is kept fixed, at higher Tt

we get higher latency. The throughput performance is similar to that observed in

Figure 2-16 if we carry our comparison in terms of latency.

Another advantage of our scheme with respect to SR ARQ is that our scheme relies

on transmitting successfully one block of M data packets before transmitting a new

one. In fact, our scheme minimizes the delay of every block. In contrast, the SR ARQ

does not provide any guarantee of delay for any data packet, e.g., the first packet of a
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Figure 2-16: r versus data packet error probability with two TDD non-network coding
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n = 10000 bits, h = 80 bits, Tt = 0.25 s

file to be transmitted could be the last one to be successfully received. In this sense,

our comparison is not completely fair, as it favors the standard schemes. Nonetheless,

our scheme is providing similar or better performance than SR but guaranteeing low

transmission delays in individual data packets.

2.1.10 Queueing Analysis

The assumption up to this point is that the source had M data packets in its buffer

before starting transmission. In a more realistic network setting, this buffer may

sometimes empty or contain fewer than M packets awaiting transmission. Then,

the source node must choose to either wait for additional packets to arrive, or take

those packets in the buffer and start performing random linear coding. Thus, we are

interested in studying the performance of our network coding scheme when random

packet arrivals occur.

The problem of queueing for network coding systems has been considered pre-
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coding schemes (Go-Back-N and Selective Repeat) and our optimal TDD network
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viously to account for burstiness or losses. Some of this work considered the case

in which feedback is available, e.g., [8]. References [16] and [15] studied a system

with random linear coding, slotted time, and a Bernoulli arrival process. However,

previous work has not considered timing or TDD constraints. Our work considers

the problem in which the channel is TDD, where the time is not slotted and, more

importantly, the service time depends on the size of the bulk.

Furthermore, the analysis in [15] showed to have a general problem: the transition

probability matrix proposed is not independent on previous transitions. In our case,

we do not claim a fixed transition probability matrix, which depends on the previous

transmission. Instead, we study the problem through a hidden Markov chain model

in which the transition probability presented constitutes a mean behavior of the

system and is useful in determining the stationary probability and the mean delay of

a packet entering the system. This problem was solved in [35] prior to our work, and

is consistent with other results in the area, e.g., [37].
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We study our random linear network coding (RLNC) scheme for TDD channels

when the data packets arrive randomly at the source node according to a Poisson

process. This problem can be modeled as a bulk service queue with a general service

process. Bulk or batch service queues have been studied widely, e.g., [36]. However,

the service time for RLNC TDD will depend on the transmission time of both the

coded packets and ACK packets, on the number of coded packets that are sent, and

on the propagation time. This means that we have a bulk queue with a general

service time, where the service time depends on the size of the bulk, which is not

common in the existing studies. Reference [35] recently studied this problem with

Poisson arrivals, calling it the M/G( K) /1 queue, where the size of the bulk can

range between m and K. We build on this work to develop the queueing model of

RLNC TDD.

Queueing Model

We consider each data packet to be of fixed-length, arriving to a source node through

a Poisson process with rate A packets/s. Upon arrival, the data packet is placed in

a buffer to await encoding and transmission to the receiver, as in Figure 2-18. The

buffer forms a first-in-first-out (FIFO) queue. The service time of the queue is given

by the time it takes to transmit a group of M packets taken from the queue using

random linear network coding for TDD channels. The size of the group of packets

is variable, where m < M < K. The pair (m, K) constitutes the range of the bulk

size or number of packets taken to perform random linear network coding [4]. If the

buffer has fewer than m data packets, the system will wait until m packets arrive

before providing service. If the buffer contains more than K packets, the system will

service exactly K packets. Finally, if the buffer has M packets with mn < M < K,

then the system will service M packets. The service time depends on the number of

data packets taken from the queue at any time, i.e., the service time distribution is

general but it depends on the size of the batch being transmitted. Thus, we can use

the bulk queueing model M/G(mK) 1 developed in [35] to study the problem.

This bulk queueing model considers Poisson arrivals and a general service time
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Figure 2-18: Queue model studied in this work.

that depends on the bulk size. The transition probability of the number of packets

in the queue is given by [35]

(m) (m)

a0  a1

(m) (m)

a0  a1

(m+1) (m+1)
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(K) (K)
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(K) (K)
-- aK- aK

where aj is the probability of k arrivals during a service of type j.

Let us define

A(j)(z) = a zk.
k=0

We can use a similar analysis as that of Reference [35] to prove that

A(')(z) = MT,j (A(z - 1))

and that

(2.37)

(2.38)

() 1 &k
ak - 7k MT,j (A(z - 1)) . (2.39)

k! azk z=0

The system is stable if and only if A < KpK, where 1/pK is the mean service time

when the bulk size is M = K, where 1/p = MT,(z) .

Let us denote by II(z) = _' wriz' the corresponding generating function of the



stationary probabilities. Reference [35] showed that H(z) can be expressed as

A(K) (Z) E 0 7Fi K (m-2 0 K0 L m+1 7jiA(')(Z)A(K) (z) =0  A~z -K(m) (z) Z2m0 'ij _ Ei A~ z (2.40)
1(z) =A(K)(z) - zK A(K)(Z) - ZK

which provides an expression for H (z) in terms of its first K + 1 coefficients r0, ... , WK-

Determining these K + 1 coefficients provides a full characterization of the station-

ary probabilities [35]. Reference [35] proves that A(K) (Z) - ZK has exactly K zeros

satisfying z| < 1 assuming that A(K) (z) has a radius of convergence greater than

one. Denoting the roots as 1, z1 , ... , ZK-1 and assuming that they are different, note

that the numerator of (2.40) has to vanish for z1 , ... , ZK-1 which gives us K - 1 linear

equations

K m K

A(K)(Zk )Zi ~ zKA(m)(Zk)Z1ri - iA(.zk) =E0 (2.41)
i=O i=0 i=m+1

for k = 1, ...K - 1. Also, the numerator vanishes trivially for z = 1 for both the

numerator and the denominator in (2.40). We thus need one more linear equation.

To obtain this we use l'H6spital's rule to exploit the fact that 11(1) = 1. This

translates to

1 = 1 + r + KK + i ~ 17Ki
1= Li A/K -K El [A/LK-iAJK

i=- i=m+1

where we have used the fact that aA (z) A/pi. Since, A/pK # K in general,

the denominator will not become zero as z -> 1. In fact, if the system is stable this

condition will be satisfied. The final linear equation to fully characterize H(z) given

in Reference [35] is

(a" - 1)7ro + a"7r1 + -+ a7r.m + am +17rm+1 + aK7rK = 0 (2.42)



Queue of Finite Capacity

The general solution requires the calculation of the roots of A(K) (Z) - ZK, which can

result in numerical inaccuracies in practice because A(K) has exponential terms. Also,

calculating the roots is increasingly difficult when the decision variable K assumes a

larger value. For these reasons, we simplify the problem considering that the system

has a capacity of B packets waiting to be serviced, i.e., without considering those

that are being transmitted. The transition probability for this case is

a(M) a(M) -.. a _ R(B - 1, m)

a(M) aiM) in) a _ R(B - 1, m)

a0  a1  aB-1~ B1m

(m+ a m+ -.-. a(_+) R(B - 1, m + 1)

(K) (K) - (K)a0  al1  . aB-1 R(B - 1,K)

0 aoK) ... aB 2  R(B - 2, K)

aoK) (K) R(B - K, K)

where R(k, 1) =1 - a

In order to compute the stationary distribution, it suffices to solve r = Pr, with

0= [17o, .r, .. , 7B] , under the constraint that Eio Iri = 1.

Performance Analysis

We will consider two metrics in order to study performance of the system. First, the

mean queue size defined as
B

E[Q] = i7i (2.43)
i=O

for the case in which the queue capacity is B. If there is no constraint on the capacity,

we simply let B -- oc.

The second metric is the mean batch size in steady state, which can take values
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Figure 2-19: Stationary distribution wi, i = 0,1, ... , B for A = 30 packets/s, K = 5,
B = 30, and different values of m.

{m, m + 1, ..., K}. Defining Z(m,K) as the batch size for a choice of (m, K), then

m K-1 B

E[Z(m,K)] = + ii -+ KS E i, (2.44)
i=O i=m+1 i=K

where ZK wi - 1 - 17i. If there is no constraint on capacity, we let B -- oo.

Numerical Results

This section provides numerical examples that show the performance of our network

coding scheme for different settings of (m, K) and arrival rate A. We use the mean

queue size defined in the previous section as our metric of interest. We use a high la-

tency channel with packet erasure probability Pe = 0.2, propagation time of 12.5 ms,

data packets of 10, 000 bits, g = 20 bits, a rate R = 1.5 Mbps, a header of h = 80 bits,

and the ACK packet has 100 bits. We assume that the number of coded packets to

be sent back-to-back (Ni) are chosen to minimize the mean completion time.

Figure 2-19 shows the stationary distribution for A = 30 packets/s, K = 5, B =

30 and different values of m. This figure shows that the high probability states

correspond to small number of packets in the queue. The probability of large queue

sizes when the system operates in steady state is very low. Figure 2-19 also shows that

.. .............



for low values of m, the stationary distribution is concentrated in the lower values

of the queue size i. As m increases, the stationary distribution spreads over larger

values of the queue size i.

Table 2.1 shows the mean queue size when A = 1 packet/s under different con-

figurations of the pair (m, K), with m < K. We observe that the mean queue size

shows greater dependence on the value of m than on the value of K. For example,

increasing the value of K when m = 1 shows little variation in the mean queue size,

while increasing m with any value of K > 1 increases the mean queue size. In terms of

minimizing the mean queue size for low values of A, this means that we should allow

transmission of bulks of size 1. This is the case because waiting for additional packets

before transmitting is costly, considering that the time between packet arrivals might

be larger than the mean service time for a single data packet. For the case of bulks of

size 1, our scheme transmits several copies of the packet back-to-back before stopping

for an ACK, which is similar to the idea presented in [20].

Table 2.2 shows the mean queue size when A = 30 packet/s under different config-

urations of the pair (m, K), with m < K. For this A, we do not consider the setting

m = K = 1 because it is not stable for the infinite capacity case (B -+ o) and

will present very high packet drops when the capacity B is finite. Again, there is an

advantage of allowing m = 1 for the studied cases, in terms of reducing the mean

queue size.

Tables 2.1 and 2.2 also show the mean batch size for A = 1 packet/s and A =

30 packet/s, respectively. The mean batch size is biased by the value of m and K.

However, it gives us some intuition about the operation of the system. For example,

Table 2.1 shows that when m is too large with respect to the arrival rate, the mean

batch size is close to m. This means that on average the system services the batches

much faster than the time it takes the queue to fill with m new packets. Thus,

the system will be idle for long periods of time just waiting for the queue to fill to

the required m. Only with small probability the batches will contain more than m

packets. Of course, if m = K the batch size will always be m as seen in the tables.

Let us consider the case of a fixed batch size, i.e., m = K. Tables 2.1, 2.2 and



Table 2.1: Mean Queue Size for
are A = 1 packet/s, B = 30

different (m, K) configurations. The parameters used

MeanQueueSize K=1 K=2 K:=3 K=4 K = 5
M = 1 0.0408 0.0398 0.0397 0.0397 0.0397
m = 2 - 0.0495 0.0495 0.0495 0.0495
m = 3 - - 0.0595 0.0595 0.0595

m = 4 - - - 0.0696 0.0696

m = 5 - - - - 0.07844

MeanBatchSize K=1 K=2 K =3 K = 4 K = 5
m = 1 1.0000 1.0009 1.0009 1.0009 1.0009
m, = 2 - 2.0000 2.0000 2.0000 2.0000
m = 3 - - 3.0000 3.0000 3.0000

m = 4 - - - 4.0000 4.0000

m = 5 - - - - 5.0000

Table 2.2: Mean Queue Size and Mean Batch
with A = 30 packet/s, B = 30

size for different (in, K) configurations,

Mean Queue Size K=2 K=3 K=4 K=5
M = 1 2.2972 1.5904 1.4499 1.4085
m = 2 2.5720 1.8114 1.6542 1.6092
n = 3 - 2.1548 1.9433 1.8766

m = 4 - - 2.2397 2.1575

m = 5 - - - 2.4345

Mean Batch Size K =2 K = 3 K = 4 K = 5
m = 1 1.5504 1.6442 1.6664 1.6710
m = 2 2.0000 2.2645 2.3301 2.3468
m = 3 - 3.0000 3.1455 3.1893
m = 4 - - 4.0000 4.0769

m = 5 - - - 5.0000

Figure 2-20 show that the optimal choices are m = K = 1, m = K = 2, and

m = K = 3 for A = 1 packet/s, A = 10 packet/s, and A = 30 packet/s, respectively.

However, we notice that the mean queue size is larger than other configurations

of (m, K) without the fixed batch size restriction. For example, the optimal fixed

batch size configuration for A = 30 packet/s is 53 % larger than the (m, K) = (1, 5)

configuration presented in the table. Thus, we observe that having a fixed batch size

is not the optimal configuration in general.
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2.2 Random Linear Network Coding for One-to-all

Broadcast in Time Division Duplexing Chan-

nels

We now analyze the problem of one-to-all broadcast under the TDD constrain and

using a similar random linear network coding scheme to that of the link case, i.e., we

provide an extension of the scheme for the case of several receivers. In particular,

this section studies the mean completion time and energy of the one-to-all broadcast

scheme. We provide simple and useful heuristics to determine the number of coded

data packets to be transmitted, with a considerable reduction in the computation

time. We compare the proposed schemes to optimal scheduling policies and find

considerable improvement in terms of completion time.

2.2.1 Model

A sender wants to broadcast M data packets at a given data rate R [bps] to N

receivers as in Figure 2-21. We assume an independent packet erasure channel for

each of the receivers, for simplicity. However, this is a valid assumption in a satellite

scenario, in which a satellite is transmitting information to several geographically



Figure 2-21: Broadcast network.

separated receivers. We also assume that the receivers cannot cooperate or share

information. Nodes can transmit and receive, but not both at the same time. The

sender uses random linear network coding [4] to generate coded data packets. Each

coded data packet contains a linear combination of the M data packets of n bits each,

as well as the random coding coefficients used in the linear combination as in the case

of a link.

As in previous results, we assume that the field size q is large enough so that the

expected number of successfully received packets at the receiver, in order to decode

the original data packets, is approximately M.

2.2.2 Description of Scheme

The sender can transmit coded packets back-to-back before stopping to wait for an

ACK packet from each receiver. Each ACK packet feeds back the number of degrees

of freedom (dofs), that are still required to decode successfully the M data packets

to a particular receiver.

Transmission begins with M information packets, which are encoded into a number

of random linear coded packets, and transmitted. If all M packets are decoded

successfully by all receivers, the process is completed. Otherwise, each ACK informs

the transmitter how many dofs are missing, say i1 , i 2 , ... , iN for receivers 1, 2, ... , N,

respectively.

As in the case of the link, the process is modelled as a Markov chain. The states
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Figure 2-22: Optimal selection of coded packets in our network coding TDD scheme
for one-to-all broadcast. (a) The transmitter initially generates N(M.M) coded pack-
ets from the M packets in its queue and sends them to the receivers before stopping
to wait for the ACK packets. (b) The receivers have some dofs useful to decoding
the original packets, but some dofs are still missing. Each receiver k send an ACK
packet indicating that ik dofs are needed to decode. (c) Upon reception of the ACK
packet, the transmitter updates its knowledge of the receiver and generates N(i1 ,. iN)

coded packets and sends them to the receivers.

(sl, S2 1 ... ,i SN) are defined by the number of dofs required Sk at receiver k to decode

successfully the M packets. Thus, the states range from (M, M, ..., M) to (0, 0, ..., 0).

This is a Markov chain with (M + 1 )N - 1 transient states and one recurrent state

(state (0, 0, ..., 0)).

The optimal scheme would require us to allow for a variable, e.g., N(s 1 ,S2,...,SN) rep-

resenting the number of coded packets to be transmitted given state (Si, S2, ... , SN),

for each transient states in our Markov chain. The communication process is illus-

trated in Figure 2-22. At the beginning, each receiver requires M dofs to decode the

information. The transmitter starts by sending N(M,...,M) coded packets before stop-
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Figure 2-23: Suboptimal selection of coded packets in our network coding TDD
scheme for one-to-all broadcast. (a) The transmitter initially generates NM coded
packets from the M packets in its queue and sends them to the receivers before stop-
ping to wait for the ACK packets. (b) The receivers have some dofs useful to decoding
the original packets, but some dofs are still missing. Each receiver k send an ACK
packet indicating that ik dofs are needed to decode. (c) Upon reception of the ACK
packet, the transmitter updates its knowledge of the receiver and generates Ni coded
packets, where i = maXk=1,2,...,N Zk, and sends them to the receivers.

ping to listen for ACKs (Figure 2-22 (a)). Each receiver then sends an ACK packet

indicating how many dofs it requires to decode, say il, i2 , ... , zN for receivers 1, 2, ... , N,

respectively. (Figure 2-22(b)). Then, the transmitter sends N(,i 2 ,...4N) coded packets

before stopping (Figure 2-22(c)), and the process is repeated until all receivers have

decoded all the information.

Since this optimal scheme implies an exponentially growing number of variables

as we increase the number of receivers, we propose a suboptimal scheme that requires

only M variables to be optimized.

This suboptimal scheme considers that the transmitter sends Ni coded packets,

where i = maXj= 1,2,...,N ij. If an ACK is lost, the transmitter assumes the previ-
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Figure 2-24: Network coding TDD scheme in one-to-all broadcast.

ous state for the corresponding receiver. The communication process is illustrated

in Figure 2-23. At the beginning, each receiver requires M dofs to decode the in-

formation. The transmitter starts by sending NM coded packets before stopping to

listen for ACKs (Figure 2-23 (a)). Each receiver then sends an ACK packet indi-

cating how many dofs it requires to decode, say i1 , i 2 , ... , iN for receivers 1, 2, ..., N,

respectively. (Figure 2-23(b)). Then, the transmitter sends Ni coded packets before

stopping (Figure 2-23(c)). This process is repeated until all M packets have been

decoded successfully by all receivers. We are interested in the optimal number Ni of

coded packets to be transmitted back-to-back. Note that Ni > i.

Figure 2-25 provides an example for 2 receivers and a block size of 3 packets.

We have highlighted in this figure the states in which at least one receiver requires

3 coded packets in order to decode. Note that not all possible transitions from one

state to the others have been included in this figure.

Figure 2-24, illustrates the time window allocated to the system to transmit Ni

coded packets. Each coded packet CP(1, i), CP(2, i), etc. is of duration T,. The

waiting time T is chosen so as to accommodate the propagation delay and time to

receive the ACKs from each receiver. We discuss this in more detail when we study

the mean completion time.

The transition probabilities from state (s1 , s2, ... , SN) to state (si, s2, ... , sN) are

i,-s)_(s, ) P (X1(n)=s'1 ,...,XN(n)=s'NIX1(n-1)=si,..,XN(n-1)=sN) (2.45)

where Xj(n) is the number of dofs required at receiver i at the end of transmission n.

For simplicity of notation, let us say P (X1(n)=st,...,XN(n)=s'jX(n-1)=si,..,XN(n-1)=SN) =

P(3,...,3'1S1,...,sN). Similarly we consider that P (Xi(n)=s'IX1(n-1)=si,...,XN(n-1)=SN) =
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Figure 2-25: Markov chain for the case of N = 2 receivers and a block size of M = 3.

P (s;Isi,,SN) and P (Xi(n)=s;IXi(n-1)=si,maj=, 2 . N sj) = P (s;isi,maj=1,2,...,N s

If we consider independent packet erasure channels for each of the receivers,

P( S1,---,SN)--*( s ),---,s s S1,---,SN ...P (s'N1sli,.SN) - (2.46)

The dependence on the previous state (si, S2, ... , SN) can be translated into a de-

pendence on the state with maximum dofs required to transmit, i.e., i = maxj=1 ,2,...,N Sj,

because i determines Ni, the number of coded data packets sent by the transmitter.

Thus,

P(s1,s2...,SN)-*(S,S N ...,S

P (s'1i,maxj=1,2...,N Sj) -P (s'sN,maxj=1,2,...,N Sj = P (s Isi,Ni) ... P (s'N SN,Ni) . (2.47)

where P (s'|sj,Ni) has a similar structure to the transition probabilities studied for the

case of a link. The main difference is that the value of Ni is no longer associated

with the starting state of a particular receiver, but with a value determined from all

starting states. For 0 < s < sj, this can be translated into

P (s;sj,Ni) = (1 - Peackj)f (sj, s')(1 - Pej)S-SE PeNis+s (2.48)



where

(si _i ) if Ni ;> s4,
f(s4, s') = (2.49)

0 otherwise

and Pe. and Peack-j represents the erasure probability of a coded packet and of an

ACK packet for the erasure channel of receiver j, respectively.

For si = s' > 0 the expression for the transition probability reduces to:

P (sjIsj,Ni) = (1 - Peack-j)PeNi + Peack-j. (2.50)

Note that for P (oo,Ni) = 1. Finally, for s' = 0 P (s;.=0sj,Nj) = 1- 1 P (s;.sj,Ni).

We can define P as the transition probability for our system. The speed of con-

vergence from state (M, ..., M) to state (0, ..., 0) can be summarized in the following

Lemma.

Lemma 2. Let A2 be the second largest eigenvalue of P, and assume that there is

only one eigenvalue with this magnitude. Then, the number of stops to wait for

ACKs preceeded by transmissions of back-to-back coded packets N to transit from

state (M, ..., M) to state (0, ..., 0) with probability at least 1 - e is

ln -In 

where G is a constant.

Proof. We use a similar method to the proof of Lemma 2 in [38]. Let us assume,

without loss of generality, that our transition probability P has the following structure

P(MM) P(M,0)

[0 -- 0 1J



and

al(./V) a 1 2 (K) ... ain(N)

pNl

0 -- 0 1

where aj (K) is the probability of transitioning from the i-th state in the matrix to

the j-th state in the matrix in K iterations (transmissions followed by stop to receive

ACKs), and r; are the number of columns in the matrix.

We are interested in determining the number of stops to wait for ACKs K so that

ai,(M) - 1 < e with E > 0. In general, we could write this as IqoPN - 111 < T, where

qo is the starting state, 11 is the steady state probability, and T is our performance

target. In our case, qO = [1, 0, ..., 0] since we are interested in studying convergence

when we start in state (M, ..., M), H = [0, ..., 0, 1] because state (0, ..., 0) is the only

absorbing state, and T = [T1...T,_1 E] where E is our target performance, i.e., we have

not imposed conditions for convergence from state (M, ..., M) to the other states

(T1,I ...,I Tq-1).

By the Cayley-Hamilton theorem, for K ; r, P = PA 4(K)P for some

constants # (K). Denoting the eigenvalues by 1, A2 , ... , A, and using Lagrange's in-

terpolation formula as in [38], we can write

PN = EFA(P)k (2.52)
i=1

where
/J 4 (P - Aj I)

Fj(P) - Ag -'I (2.53)
Al TU1,i Ai(Aj - Aj)

where I is the identity matrix, and A, = 1.

Since P is a stochastic matrix, JAj < 1 for i > 1. Since qoPA - 1, as K -+ oc,



we have that qoF1 (P) = qoFlo (P) = qoF1(P) = H. Thus,

|qoPN - Lfl < IA21[1, 0, ... , )1 0 =2 -2Fi (P)1 (2.54)

= IA2  [g1 1 , 9 1 2 , ... , gi ] (2.55)

where F (P) = F? (P), IF (P) denotes a matrix whose elements are the magnitudes

of the elements of F(P), and

g[ ... 1 i
Z F%(P) =i=2

Since we are interested in lai,(N) - 11 < e, this translates to

|A2|gin < E (2.56)

which concludes the proof.

2.2.3 Mean Completion Time

The mean time for completing the transmission of the M data packets constitutes the

mean time of absorption, i.e., the time to reach state (0, ..., 0) for the first time, given

that the initial state is (M, ..., M). This can be expressed in terms of the mean time

for completing the transmission given that the Markov chain is in state is (Si, ... , SN),

T(S1,---,SN) , Vsi = 0, 1, ..M - 1, Vi = 1, ... , N. Let us denote the transmission time of

a coded packet as Tp, and the waiting time to receive an ACK packet as T". For

our scheme, T, = h+n+gM as in the case of a link, but the expression of T, changes

slightly to consider the transmission of multiple ACK packets from the receivers to

the transmitter.

Let us define di as the distance between the transmitter and node i, as in Fig-

ure 2-21. We assume that the nodes have been numbered so that di < d2  ... < dN-

Let us define t'tA as the time node i has to wait before starting to transmit after



he has received the last coded packet from the transmitter. The choice of tbtA de-

pends on characteristics of the link between the receivers and the transmitter and

interference that a receiver could generate in other receivers at the time of trans-

mitting its ACK. If the nodes do not generate interference over other nodes, e.g.,

a satellite link which typically has a highly directional antenna, then we could use

tUtA = max (t*i- + Tack - Trti + Trt_(i1), 0), where Tack = nack /R, nack is the num-

ber of bits in the ACK packet, R is the link data rate, and Trti is the round trip

time for node i. Thus, T. = Trt-N + A +Tack and tbtA = 0. If the transmission of

the ACK packets can create interference in transmissions to other receivers, the first

ACK could be sent after all data packets have been correctly received. In this case,

tUtA = (Trt-N - Trt-1) /2 and we can use the previous recursive formula for tibtA and

the expression for T.

We can define T as the time it takes to transmit Ni coded data packets and

receive the ACK packets from the different receivers. It is easy to show that T =

NiTp + Trt-N +tbA + Tack-

The mean completion time when the system is in state (si, ... , SN) iS given by

81..SN) TV+ P(SN(S(.S.N)T(,I.-S (2.57)

where i = maxj=1,...,N sj. We can express this in vector form as

T = [I - P] 'p (2.58)

where T = [T(S1,---,SN)], ft = [Ti] and P is the corresponding transition probability.

Since we are interested in the mean completion time when we start at state

(M, ..., M), we can use Cramer's rule to determine

T(M'. M) = det (F -(M,...,M) (2.59)
det (F)

where F = I - P, and the notation F -(M,...,M) [t represents a matrix that has all

columns as the F matrix except the column corresponding to state (M, ..., M) which



is substituted by the vector p. Due to characteristics of the Markov chain, F is a

triangular matrix. Thus, computing det (F) reduces to multiplying the elements in

the main diagonal of the F matrix.

The mean time for each state depends on all the mean times for the previous

states. However, optimizing the values of all Ni is not as straight forward as the

recursive method used in the case of a link.

Also, note that there are (M + 1 )N states in our Markov chain. This implies that

we have to compute ((M + 1 )N - 1) X ((M + 1 )N - 1) transition probabilities to

fill the P matrix and then solve the determinants of matrices of the same dimensions

for each iteration of a search algorithm. Thus, the computational demands increases

significantly, specially when we increase the number of receivers.

2.2.4 Heuristic for the Number of Coded Packets to Trans-

mit

Given this limitation, let us consider some heuristics to estimate the values of Ni, Vi =

1, ..., M, either to use them directly as an approximate solution or as an initial point

of a search algorithm. These heuristics rely on solving the link case considering as

packet erasure probability of the link a function of the packet erasure probabilities of

the different channels in broadcast.

1) Worst Link Channel: In this heuristic we approximate the system as a link

to the receiver with the worst channel, i.e., Pe = maxj Pej. Then, we compute

Ni, Vi = 1, ..., M to minimize the mean completion time with the network coding

scheme studied for a link using the current values of Tp, T", and Peack = maxj Peack-j.

2) Combined Erasure Effect: In this heuristic we approximate the system as a

link to a receiver with Pe = 1 - 7j7(1 - Pej), i.e., assuming that a coded packet

suffers an erasure in the link when it is seen as an erasure by at least one receiver.

Then, we compute Ni, Vi = 1, ... , M to minimize the mean completion time with the

network coding scheme studied for a link using the current values of Tp, T", and

Peack = 1 - 7j (1 - Peack-j).



Determining P for a link requires computing 0 (M2 ) transition probabilities, while

solving the same problem for broadcast requires a computation of 0 ((N(M + 1))2N)

equivalent transition probabilities. This does not include the savings provided by

inverting considerably smaller matrices.

Also, note the first heuristic is optimistic, disregarding the effect of nodes with

better channels, while the second heuristic is pessimistic, concentrating the effect of

all losses in one link. Since the Ni's increase as the probability of erasure increases,

the 'Worst Link Channel' and 'Combined Erasure Effect' heuristics provide a lower

and upper bound on the optimal values of Ni, Vi, respectively.

Finally, it is important to emphasize that the Ni's do not need to be computed in

real time. As in the case of a link, they can be pre-computed and stored in the receiver

as look-up tables to reduce the computational load on the nodes. The nodes only

have to choose the appropriate Ni's from the tables, considering channel conditions

at the time of transmission.

2.2.5 Performance Evaluation

In this section, we extend the work in [39] to determine the mean completion time

for optimal scheduling policies for broadcast. These policies consider no coding of

the data packets, no channel state information, and nodes that only ACK when they

have received all M data packets. As in [39], we restrict the analysis to indepen-

dent symmetric channels, i.e., Pei = ... = PeN, and no erasures in the ACKs for

tractability. Note that we had no such restrictions in our network coding scheme.

Our contribution includes 1) considering the effect of Tt, Tp, and Tack, and 2) the

characterization for full duplex and TDD channels.

1) Broadcast with Round Robin in Full Duplex Channel (RR Full Duplex): The

objective is to transmit M data packets to all users. Since the channels are indepen-

dent and identically distributed over time and users, one of the optimal policies is

Round Robin (RR). Thus, packet k in the block is transmitted every (mM + k)T,

time units for m = 0, 1, 2, ... until all the receivers get all M packets [39]. Using a



similar analysis as in [391,

E[T] = T + TM + E[maxX]) (2.60)

where 1 + X' is the number of transmissions of packet k needed to reach node i,

- E (1/2, 1), and

E[maxX] = - (1 - Pe)MN(2.61)
ikt=1

where Pe = Pei = ... = PeN. Note that y = 1 and y = 1/2 give us an upper and

lower bound on the mean completion time, respectively.

2) Broadcast with Round Robin in TDD (RR TDD): This scheme assumes limited

feedback due to the TDD constraint. We assume that the transmitter broadcasts all

M packets back-to-back, then stops to receive ACK packets that indicate completion

of the entire file. If there are nodes that have not acknowledged the block of packets,

the transmitter repeats the process, i.e., sends all M packets and stops to listen for

ACKs. We can express the mean completion time of this scheme as

E[T] = (Tw + TM) E[max X). (2.62)
i,k k

2.2.6 Numerical Results

This Section provides numerical examples that compare the performance of our net-

work coding scheme for broadcast in TDD channels, considering a satellite example.

In particular, we compare the performance of the scheme when the Ni's are 1) chosen

to minimize the mean completion time, 2) chosen using the 'Worst Link Channel'

heuristics, and 3) chosen using the 'Combined Erasure Effect' heuristics. The com-

parison is carried out in terms of the mean completion time of M data packets under

different packet erasure probabilities. We show that the 'Worst Link Channel' pro-

vides close-to-optimal performance with the advantage of reducing the computational

load on the search algorithm. For simplicity, we consider that there are no erasures

of ACK packets and that the distance between the transmitter and each receiver is
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Figure 2-26: (a)Mean completion time and (b) number of coded packets N5 and N1,
for the optimal choice of Ni's and two heuristics, for N = 2 receivers at the same
distance from the transmitter, M = 5, packet erasure probability is the value for the
two independent channels, R = 1.5 Mbps, h = 80 bits, g = 20 bits, nack = 50 bits

the same. The latter is a good approximation in many satellite scenarios. Finally, we

compare our broadcast scheme with RR TDD and RR Full Duplex.

Figure 2-26 shows (a) the mean completion time and (b) number of coded packets

N5 and N1, for the optimal choice of Ni 's and our two heuristics when we have

independent channels with a common packet erasure probability, i.e., Pei = Pe2 .

We consider data packets of size n = 10, 000 bits in a GEO satellite link with a

propagation delay of 125 ins, and the parameters specified in the figure.

Figure 2-26(a) illustrates that choosing Ni's using the 'Worst Link Channel' heuris-

tics provides close-to-optimal performance in terms of mean completion time for a

wide range of packet erasure probabilities. Although, the 'Combined Erasure Effect'

heuristics provides a better estimate for low packet erasure probabilities in this case,

its choice of Ni 's for high packet erasures produces considerably higher completion

times. This fact is explained because the 'Combined Erasure Effect' heuristic is pes-

simistic in terms of the amount of coded packets that are successfully received.
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Figure 2-27: Mean completion time for the optimal choice of Ni's, 'Worst Link Chan-
nel' heuristic, and Round Robin Broadcast schemes with Full duplex and TDD chan-
nels. We use as parameters N = 2 receivers at the same distance from the transmit-
ter, M P 5, packet erasure probability is the value for the two independent channels,
R = 1.5 Mbps, h = 80 bits, g = 20 bits, nack = 50 bits

Figure 2-26(b) shows that the optimal choice of Ni's is bounded by the choices

of Ni's using our two heuristics. As explained in Section III, this is not surprising

because one of the heuristics is optimistic in its approximation ('Worst Link Channel')

and the other is pessimistic ('Combined Erasure Effect'). This result is interesting

at the time of developing an algorithm to search for the optimal value, because we

could limit the search to the values given by the heuristics.

Since the choice of Ni's using the 'Worst Link Channel' heuristics provides a per-

formance that is close to the optimal, we could use it as an initial choice of the Ni's so

that a search algorithm finds the optimal Ni's, or we could use them directly. How-

ever, for large values of N and M a full search procedure might become exceedingly

expensive in terms of computation time. Computing the Ni's using the 'Worst Link

Channel' heuristics is easily performed even for large values of M, because it approx-

imates the system as a link. We have shown some examples for cases of M = 90 and
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Figure 2-28: Nodes with disjoint information. Node i has Mi disjoint data packets
(or independent random linear combinations of packets). Both nodes want to have
all the information at the end of the exchange.

M = 130 in Section 2.1.9. In practice, using the heuristics provides a good trade-off

between complexity and accuracy.

Figure 2-27 compares the performance of our Broadcast TDD scheme with Ni's

computed optimally and with the 'Worst Link Channel' heuristics, and compares it

to the performance of RR TDD and RR Full Duplex. First, note that for the range

of packet erasures considered, our coding scheme performs at least as good as the

RR TDD, and considerably better at high erasures. Second, the performance of our

scheme is very close to that of the RR Full Duplex for low erasures. However, our

coding scheme performs better at high packet erasures (Pei = Pe 2 > 0.3), e.g., at

Pe1 = Pe 2 = 0.8 the RR Full Duplex scheme takes 20% more time to complete

transmissions. Thus, we can perform better than a scheduling full duplex scheme,
even with a single channel for data and feedback, i.e., half of the resources, by tailoring

coding and feedback appropriately.

2.3 Random Linear Network Coding for All-to-all

Broadcast in TDD channels

Previous sections have considered the case in which only one node has information to

transmit, i.e., without considering that more than one node might need to transmit

or share its information with others. We now analyze the problem of networks of N

nodes in which all nodes want to share disjoint information under the TDD constrain.

In a sense, we present an extension to the random linear network coding scheme. In

fact, the problem studied so far constitutes a subset of the work presented in this

Section.



We begin by studying the performance of a simple network with two nodes, in

terms of the mean completion time. This is the simplest case of data sharing with more

than one node transmitting information. This case provides useful insight to assess

the general case of N nodes sharing information. We provide a simple algorithm to

determine the number of coded data packets to be transmitted back-to-back before

stopping for the case of two nodes. Finally, we extend the analysis and algorithm

presented for the general case of N nodes.

2.3.1 The Case of Two Nodes

Model

Two nodes want to share information through a TDD channel, i.e., a channel in which

nodes can transmit and receive, but not both at the same time. Each node i has Mi

data packets or disjoint random linear combinations that he wants to share with the

other node, as in Figure 2-28. A node i can transmit information at a given data rate

Ri [bps] to the other node. We assume independent erasure channels for the data

packets, where Pej represents the erasure probability of a coded packet sent from

node j to the other node. Also, there is a propagation time Tp,,,p associated to the

time that elapses beteween a packet being transmitted and it being received at the

other node.

Each node will act as both sender and receiver of information. When a node

operates as the sender, it uses random linear network coding [4] to generate coded

data packets. Each coded data packet contains a linear combination of the M data

packets of n bits each, as well as the random coding coefficients used in the linear

combination. Each coefficient is represented by g bits. For encoding over a field size

q, we have that g = log 2 q bits. A coded packet is preceded by an information header

of size h. Thus, the total number of bits per packet is h + n + gM. Figure 2-1 shows

the structure of each coded packet considered in our scheme.

The node acting as a sender at some point can transmit coded packets back-to-

back before stopping to wait for the other node to transmit its own packets and



acknowledge how many degrees of freedom (dofs) it still requires to have all the

information. In general, there is no explicit ACK packet. The acknowledgement to

node i comes piggybacked in the header of each coded packet sent from node j, unless

no coded packet has to be sent. We assume that the acknowledgement suffers no

erasures. We assume that the field size q is large enough so that the expected number

of successfully received packets at the receiver, in order to decode the original data

packets, is approximately M for transmissions from node i.

Description of Scheme

Transmission begins at one of the nodes, say node 1 with M1 information packets,

which are encoded into N(M,,M2,o) > M1 random linear coded packets, and trans-

mitted as in Figure 2-29 (a). After receiving the coded packets, node 2 which has

M 2 information packets, generates N(i1,M2,1) _ M2 random linear coded packets and

transmits them, as in Figure 2-29 (b). The state (ii, i2 , t) represents the i1 dofs re-

quired by node 2 to decode the information of node 1, the i 2 dofs required by node

1 to decode the information of node 2, and the node that is acting as transmitter t,

with t = 0, 1 for nodes 1 and 2, respectively. Node 2 includes in the header of each

coded packet an ACK of the dofs needed by 2 to decode the information that 1 is

trying to send, i.e., ii. If all M1 packets are decoded successfully by node 2 (i1 = 0),

node 1 becomes a receiver and will send only an explicit ACK packet in the following

rounds stating how many dofs it requires to decode, because node 1 does not need to

send any more data. Otherwise, node 1 sends N(gi,i 2,O) coded packets and piggybacks

an ACK in each header informing node 2 about how many dofs are missing at node

1, i.e., i2 , as in Figure 2-29 (c). This process is repeated until all packets have been

shared successfully by both nodes. We also assume that if node i has completed

its transmission to another another j, and i gets enough information to decode the

data from j, then node i can stop the transmission process, unless new information is

available for transmission. These is a consequence of the ACKs suffering no erasures.

We are interested in the optimal number N(gi,i,,t) of coded packets to be transmitted

back-to-back.
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Figure 2-29: Network coding TDD scheme for sharing packets between two nodes.
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Figure 2-30: Network coding TDD scheme for sharing packets between two nodes.
Note that the feedback comes piggybacked in the coded packets CP, and that CP(., i)
corresponds to a coded packet sent from node i.

Figure 2-30 illustrates the time window allocated to the system to transmit N(ii,i 2,1)
coded packets. Each coded packet CP(1, 1), CP(2, 1), etc. is of duration T1 and

each coded packet CP(1, 2), CP(2, 2) is of duration Tp-2, for packets sent from nodes

1 and 2, respectively. The waiting time T is equivalent to the propagation time Tp,,p
in this problem.

The process is modelled as a Markov chain. The states (s1, s2, t) are defined by the

number of dofs required, Sk at receiver k, to successfully decode all packets, and the

node t that acts as transmitter in this state. Thus, the states range from (M1 , M2 , 1)

to (0, 0, 0). This is a Markov chain with (Mi + 1)(M 2 + 1) - 2 transient states and

two recurrent states (state (0, 0, 0) and (0, 0, 1)). Finally, note that a transition occurs

every time that a batch of back-to-back coded packets is received at one receiver.

Figure 2-31 provides an example for a block size of 2 packets at each node. We have

highlighted in this figure the absorbing states. Note that not all possible transitions

from one state to the others have been included in this figure. However, any transient

state (s1 , s2, 0) can only have transitions to a state (s', s', 1). Similarly, any transient

state (s1 , S2, 1) can only have transitions to a state (s'i, s', 0). In Figure 2-31, this

translates into no transitions from transient dashed states to other dashed states, or

from transient solid-line states to other solid-line states. This observation is crucial

in the development of an algorithm to compute the values of N(s1,,2 ,t).

The transition probabilities from state (si, S2, t) to state (si, s', t') are

P(i,,,t)-W~t, )= P (x1 (n)=i',X2(n)=j',T(n)=t'lx1(n-1)=i,X 2(n-1)=j,T(n-1)=t)

where X (n) is the number of dofs required at receiver i at the end of transmission



Figure 2-31: Example of the Markov chain for a block size of M1 = M2= 2.

n, and T(n) is the designated transmitter at time n.

Given the characteristics of the Markov chain, we have that

P (sssN(i, 2 ,) if S2 = Sl2 t = 0, t 1

P(S1,S2,t)-(st,s',t') = P (sIs2,N(8 1 i2 t) f 1s=s t= 1=0 (2.63)

0 otherwise

where N(,1 2,t) represents the number of coded packets sent to produce the transi-

tion. Note that P (;issj,N(si,sS)) have a similar structure to the transition probabilities

studied in the link case. The main difference is that the value of the number of coded

packets sent back-to-back is no longer associated with the starting state of a partic-

ular node, but with a value determined from the state of the system, i.e., N(si,sj,t),

which is redolent of the one-to-all broadcast case.

For 0 < s' < sj, we use

N(8is2,0)) if N(si,52,t) > Sj,
f(sy, s ) = (2.64)

0 otherwise



to determine the transition probability

P (s|syN(1l,32 ,t)) = f(sj, s-)(1 - Pej)"sjs PegjN(1,s2 ,t)-Sj+Sj. (2.65)

For si = s' > 0 the expression for the transition probability reduces to

P (sjI sj,N(s1,8 2 , )) = Pej N(s,s2,t). (2.66)

Note that for P (o-o,N(S1 , 2,)) = 1. Finally, for s = 0

P (s;=olsjN(S, 2 ,)) = 1 - P (SN(S 1 ,s2,t)) ' (2.67)
S /=1

Mean Time for Completing Transmission

The mean time for completing the sharing process of all data packets between the

nodes constitutes the mean time of absorption, i.e., the time to reach states (0, 0, 0)

or (0, 0, 1) for the first time, given that the initial state is either (M1 , M 2 , 0) or

(Ml1 , M 2 , 1), depending on which node starts transmitting. This can be expressed

in terms of the mean time for completing the transmission given that the Markov

Chain is in state (si, , s2, t) is T(,i,52 ,t , Vs1 = 0,1, ..M 1 , Vs2 = 0,1, ..M 2 , Vt = 0,1.

For our scheme, T h+n+gMi, and the waiting time T, shown in Figure 2-30 is

Tw = Tprop.

Let us define T(i',,t) as the time it takes to transmit N,j,t) coded data packets and

reach the other node. It is easy to show that T(ijt) = N(ij,t)T,_t + T,. The mean

completion time when the system is in state (i, j, t) is given by

Tgi,j,t) = T(',j't) + Psi'j't)-(i1,P'X)T(g1'y1't). (2.68)
(i',j',t')

We can express this in vector form as T = p + PT, where T = [T,j,t)], ft =

[T((i, j, t))] and P is the corresponding transition probability. Thus, the mean com-

pletion time starting as every state is given by T = [I - P) 1 fp. Since we are interested



in the mean completion time when we start at states (M1 , M2 , 0) or (M1, M2 , 1), we

can use Cramer's rule as

Tdet (F +(M1,M 2 ,t) (2.69)
(M1,M2 ,t) (F)

where F = I - P, and the notation F <-(M1,M2 ,t) p represents a matrix that has all

columns as the F matrix except the column corresponding to state (M1 , M 2, t) which

is substituted by the vector P, t can take value 0 or 1.

Minimizing The Mean Completion Time

The expected time for each state depends on all the expected times for the previous

states. However, optimizing the values of all N,j,t) is not as straightforward as the re-

cursive method used in the case of a link. Also, note that there are 2(M 1 + 1) (M 2 + 1)

states in our Markov chain, and that we have 2(Mi + 1)(M 2 + 1) -2 integer variables

that we need to optimize.

Let us consider exploiting the structure of the problem to determine an algorithm

to estimate the values of N(,j,t), Vi = 1, ..., M1, Vj = 1, ..., M2 , Vt = 0, 1. Let us express

the mean completion time for states with t = 0 as

Tsij,o) = T(',j'0 + E Psj,o)i',,)T(g,2,1) (2.70)

i'

and the mean completion time for states with t = 1 as

T =,,1) = T('j') + E P(i,j,1-(ijf,o)T(i,j',o). (2.71)

Notice that the mean completion time for any state of the form (i, j, 0) depends

on the mean completion time of states of the form (i, j, 1) but not on states of the

form (i, j, 0). Thus, we can substitute equation (2.71) into (2.70), and use the fact



that T(j,t) = N(ij,t)Tp-t + Trop to obtain

T =igjo) N(2g,o)TO + 2Trop + T_-1 N(/,1,l)P(j,o()_.(e,,1) (2.72)

+ E (',fo) P(ijO)-(',j,1) P(i',j,1) - ,o) - (2.73)

A similar expression can be found for Tri,1).

Note that these expressions are redolent of the mean completion time for a link.

In fact, we have shown that the cost for transitioning from the current state to other

states was of the form NiT + 2Tprop+ Tack. In expression (2.73), we have a similar cost

with some changes, namely there is no cost for transmitting an ACK packet because

the ACKs are piggybacked in the coded packets. Also, we have an additional term,

i.e., T,_1 [2 , N(',,i)P(j,,o)_(ij,1)], which represents the mean additional waiting time

for one transmitter due to the transmission of the other node.

Let us define N(ijt)(n) as the estimate for N(,j,t) at step n of the algorithm,

and P(,j,o)_(/,j1) (n) and P(,j,o_(,(j,,1) (n) are the transition probabilities based on the

estimates N(i,jt)(n) for the n-th step.

Algorithm 1. Search algorithm for case of two nodes

* STEP 1: INITIALIZE

-Set N(i,'1)(0) = j and N(j,,o)(0) = i.

-Set n = 1.

" STEP 2: TRANSMISSION FROM NODE 1 TO NODE 2:

FOR j' = 1, 2, ..., M2

Compute N(,yj,o)(n), Vi = 1, ..., M1 to minimize the completion time of a TDD

link, with transition cost

N(i,/O) (n)T,-o + 2Trop + T 1 N( 2 ,I,1)(n - 1)P(,/,oy_(gy,1)(n) (2.74)

END FOR



e STEP 3: TRANSMISSION FROM NODE 2 TO NODE 1:

FOR i' = 1, 2, ... , M1

Compute N(i,,1) (n), Vj = 1,..., M 1 to minimize the completion time of a TDD

link, with transition cost

N(i,,)1(n)Tpo + 2Trop + T-, [z$(,,o)(n)P(i,,j,0)-(iP,)(n) (2.75)

END FOR

* STOPPING CRITERIA:

IF N(j,t)(n) = N(ij,t)(n - 1), Vi, j, t

Stop

ELSE

n = n+1, and go to Step 2.

END IF

The proposed algorithm computes the N(jj,t) by using the search algorithm for a

link with the appropriate costs. The algorithm is iterative and has two phases. The

first one tries to solve the problem of a link for the case in which the first transmitter

is operating. This means that we are looking to optimize the variables N(jj,o), Vi

assuming the variables N(g,,) to be fixed and j also fixed. We repeat the process

for every value of j. After finding the optimal values for N(j,,o), Vi, j, the algorithm

proceeds to the second phase, which is to compute the optimal values of N(,j,,1) given

the new values of N(jj,o), keeping these last values fixed. The algorithm stops when

N(ij,t) becomes stable, i.e., when the current iteration provides the same result as the

previous iteration.

Let us emphasize that the N(i,j,t)'s do not need to be computed in real time.

Again, they can be pre-computed and stored in the receiver as look-up tables. Thus,

the computational load on the nodes is minimal, because they only have to choose



the appropriate N(i,t)'s from the tables considering channel conditions at the time of

transmission.

2.3.2 The Case of N nodes

The problem for N nodes constitutes a natural and simple extension from the case

of two nodes. Let us formalize the model and notation before starting our analysis.

Model

Let us assume that each node i has Mi data packets or disjoint random linear combina-

tions that it wants to share with the other node. We assume that the nodes transmit

following a round robin assignment, where the order of transmission has been pre-

defined. Each node i can transmit information at a given data rate Ri [bps] to the

other nodes. We assume a memoryless packet erasure channel Pei, for transmissions

from node i to node j, and that the channels are independent. We also assume that

each transmission from a node can be received by each of the other nodes. Finally, we

assume that the next transmitter node will wait for all nodes to receive the previous

information. For later analysis, let us define Tp,,,-i as the propagation time from

node i to the node that is farthest from it.

Again, the process is modelled as a Markov chain. We consider that the states of

the Markov chain are given by ((S 1 ,2, .. , S1,N), (S2,1, S2,3, -- , S2,N), --, (SNJ, -- , SN,N-1), t),

where Sa,b constitutes the number of dofs required by node b to successfully decode

all packets from node a, and the node t that acts as transmitter in this state. Note

that (Sa,1, ... , Sa,N) represents the degrees of freedom that other nodes require from

node a in order to decode his information. In order to simplify notation, let us define

S = ((S1,2, --, S1,N), (S2,1, S2,3, --, S2,N), --, (SN,1, --, SN,N-1)), so that (S, t) represents a

state of the Markov chain, and Sa =(Sa,, Sa,2, .. , Sa,N) being the state of the receivers

of node a. This is a Markov chain with N(Mi + 1 )N-1(M 2 + 1 )N-1..(MN + 1 )N-1 - N

transient states and N recurrent states. Finally, note that a transition occurs every

time that a batch of back-to-back coded packets is received at one receiver.



The number of variables to be optimized in order to provide an optimal solution

increases exponentially with the number of nodes N, because we would have to con-

sider a variable per state, i.e., N((S1 ,S2, . .,SN),t), VSi, t. However, we can use a similar

approach to the case of one-to-all broadcast to reduce the number of variables, i.e.,

consider only the maximun degrees of freedom sa = maxb sa,b that the receivers of

a need in order to completely decode the information. This reduces the number of

variables to optimize to N(Mi + 1)(M 2 + 1)...(MN + 1) - N and we will rename them

N((S1,S2,---.SN),t), which represent the number of coded packets to send. Given the char-

acteristics of the Markov chain, the transition probabilities from state (S, t) to state

(S', t') are

P (S'ISa,N((s1 . SN), ifSb = SVb a

P(S,ty-+(S',t') = I t = a, t' = tnext(a), Va

0 otherwise

where tnext(a) represents the next node that should transmit after node a has trans-

mitted, and P (SiISa,,N((si,---,sN),t)) is the probability of transitioning from Sa to S'

when node a has transmitted N((1 . .--- SN),t) coded packets. Assuming that a transmis-

sion from any node to the other N - 1 nodes goes through independent channels, we

have that

P (S I Sa,N((si ,sN),t= P (S',jIaj,N((s1.SN),t~a)) (2.76)

where P (s'a,,N((si,.--sN),t)) has the same distribution studied for the case of two

nodes, and represents the transition probability related to the knowledge of node j

with respect to the data node a has, when node a sends N(( 1,--,SN),t) coded packets.

For ease of notation, we will substitute N((S1,---,SN),t) for Nt. For 0 < saj < sa,j, this

can be translated into

P (s.j |Sa,j,Nt) f (Saj, Sa,j') (1 - Peaj) Pajt (2.77)



For the case of sa,j = sa,j, > 0 the expression for the transition probability re-

duces to P (sa,ls,j,Nt) = Pea,jNt. Note that for P (0|0,Nt) = 1. Finally, for s' = 0

P (sa, j=O|s,j,Nt) = 1 -- 1i P (sa,jI s ,j,Nt)

We can define P as the transition probability for our system.

Mean Time for Completing Transmission

Similar to previous cases, the mean time for completing the sharing process of all

data packets between the nodes constitutes the mean time of absorption, i.e., the

time to reach any state ((0, ...0), ..., (0, ...0), t) for some t for the first time, given that

the initial state is ((M1 , ... , M1 ), ... , (MN, ---, MN), t) for some t, depending on which

node starts transmitting. This can be expressed in terms of the expected time for

completing the transmission given that the Markov chain is in state (S, t), T(s,t) ,

VSVt. For our scheme, we consider that the transmission time of a packet from node

i is given by T,- =h+n+gMi

Let us define T(s,t) as the time it takes to transmit N(s1 . --SN,t) coded data packets

and reach the node that is farthest away from t. It is easy to show that T(s,t)

N(s1,---,sN,t) P-t + Tprop-t-

The mean completion time when the system is in state (S, t) is given by

T(s,t) = T(s,t) + E P(S,t)-(s',t')T(s',t') (2.78)
(S',t')

which can be expressed in vector form as T = [I - P]-1p, where T = [T(s,t)], p =

[T(st)], and P is the corresponding transition probability. Since we are interested in

the mean completion time when we start at states ((M 1 , ... , M1,..., (MN, ... , MN), t)

for some t, we can use Cramer's rule.

Minimizing the Mean Completion Time

Note that even after reducing the number of variables to optimize, the optimization

becomes computationally prohibitive because the number of states in the Markov

chain increases exponentially with the number of nodes. However, we can compute



the variables of interest by using a slightly modified version of the algorithm for two

nodes. This new algorithm uses heuristics to obtain good estimates of the variables

while reducing computation. Since we have assumed that only one node transmits at

each time and that this transmitter will broadcast the information to all other nodes,

we can use similar heuristics to those presented for the case of broadcast. These

heuristics rely on computing the number of coded packets to be transmitted from a

particular node by reducing the problem of broadcast from one node to all other nodes

to that of a link. The equivalent packet erasure probability of the link constitutes

a function of the packet erasure probabilities of the different channels in broadcast.

This approximation will allow us to use a similar algorithm to that proposed for the

case of two nodes, with only slight modifications.

The heuristic that showed best performance in the case of one-to-all broadcast was

the 'Worst Link Channel' heuristic. This heuristic approximates the system as a link

to the receiver with the worst channel, i.e., the worst packet erasure probability. Then,

we compute N(Sl, . --,SN),t, for any si and for any t to minimize the mean completion

time as in the case of a link with similar modifications to that in the algorithm for

two nodes, namely using as round trip time that depends on both the physical round

trip time and the transmissions of other nodes in the system.

Note that using a similar procedure to that of subsection 2.3.1, we can obtain that

N

T(s,ti) = N(S1,.--SNyt1)Jptl + 1 (Tprop-tb)

b=1

+ T,-t, Et2,..,tn [N(i1,..,iNt) I SI t)

n=2,..,N

+ 1: T(S1,ti)P(S,ti)-(S',ti)
S',S(2),..,S(N)

where

P(S,ti)-(S',ti) J (S,ti),(S(2) ,t2) P(S(2) ,t2) (S( 3) ,t3 )' .P(S(N) ,tN)-(St1) (2.79)



and

SS(2)..'S(n)
(2.80)

where

(S,ti)--+(S(n),t) P(S,ti)->(S(2),t 2 ) ... '(S(n-1),t_1)->(S(n),tn). (2.81)

Let us define N(i,12,...,SNtk)(n) as the estimate for N(81 ,8 2,..SN,tk) at step n of the

algorithm. Then, our algorithm can be written as follows

Algorithm 2. Search Algorithm for N nodes

* STEP 0: INITIALIZE

-Set N( 1 ,,2,...,SN,tk)(0) =ki Vk.

-Set n = 1.

* STEP 1: TRANSMISSION FROM NODE 1:

-Set NV(S1,2,...SNtk)(n) = N(SS 2 ,...SNtk)(n - 1), Vk.

FOR s' =1,2,...,M 2

FOR s'N 1, MN

Compute N( 1 . .SNti) (n), Vs 1 = 1, ... , Mi to minimize the completion time of

a TDD link with Pe = maxb Pel,b, and with transition cost

N

N(1S1.s, t,(n)Jp~+j5 (Tprop-tb)+ 5 TP-tVEt2 .--t, 11I~Y()(,t)
b=1 y=2,...,N

(2.82)
where S = (si, s' ... , sN'

END FOR
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END FOR

e STEP k (=2,... , N): TRANSMISSION FROM NODE k TO NEXT NODE:

FOR s' =1, 2, ... , M1

FOR s'N= 1, 2,...,MN

Compute N( . .. S,.,tk(n),VSk = 1,..., Mk to minimize the completion time

of a TDD link with Pe = maxb Pek,b, and with transition cost

N(8' .. si,tk )(n)Tp-k + Zb=l (Tprop-tb)

+ Zy=k+,..,N,1,..k-1 TP-tYEtk,.,ty, [Av~j,..,t)(l) I S, tk)]

where S = (s', .. , ... , S'N) -

END FOR

END FOR

. STEP N+1: STOPPING CRITERIA

IF N(s1-. ,SN,t)(n) (1,---,SN,t)(n)(n - 1), Vs 1 , --- , sN, t

Stop

ELSE

n = n + 1, and go to Step 1.

END IF

2.3.3 Performance Evaluation

In this Section, we present two full duplex schemes as a basis for comparison for

the case of two nodes. First, we consider a full duplex network coding scheme that

minimizes the mean completion time of the sharing process. Secondly, we extend the
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work of [39], which deals with broadcast, to determine the mean completion time

for a round robin scheduling policy for sharing information between two nodes. This

policy considers no coding of the data packets, no channel state information, and

nodes that only ACK when they have received all information.

We consider that both schemes send the ACK in the header of the coded data

packets that each node sends. As in [39], we restrict the analysis to independent

symmetric channels, i.e., Pei = Pe 2 and T,_0 = Tp_1 = Tp, and no erasures in the

ACKs for tractability. Note that we had no such restrictions in our TDD network

coding scheme and will not have it for the full duplex network coding scheme. Our

contribution to the work of broadcast scheduling policies in [39] includes 1) considering

the effect of T,,,p, T,, 2) the characterization of a full duplex channel, and 3) resetting

the analysis to match the problem of sharing information between two nodes.

1) Data Sharing with Network Coding in Full Duplex Channel (DSNC Full Du-

plex): Each node generates random linear combinations of its original Mi data pack-

ets, and sends those coded packets back-to-back through the channel to the other

node. We assume that both nodes start transmitting at the same time to reduce the

completion time of the sharing process. This problem can be modelled through a

Markov chain with states (i, j), where i and j represent the dofs required by the to

decode at node 1 and 2, respectively. Since both nodes start transmitting at the same

time, and we assume the packets to take the same time to be transmitted T,, then

transitions occur every arrival of a coded packet. The transition probabilities are

modeled as P(j,(i,,) = Pi_ gP-j where we assume independence of the channels.

Note that

Pe if i = i' # 0,

P, = 1 if i = i' = 0, (2.84)
1 - Pe if i = i' + 1,

0 otherwise

where M > i, i' > 0.
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Using a similar procedure as in previous sections, we can express the mean number

of coded packets from each node to complete the sharing process in vector form as

T = I + PT, where T = [T(i,)] is the vector of mean completion times starting at

each state (i, j), 1 = [1] is a vector of all ones, and P is the corresponding transition

probability. Thus, the mean completion time for the sharing process is

E[T] = Tw + Ty ' (2.85)
det (F)

where T = 2Tprop + Tdeay , Tdelay = Th + Tp (1 - R (Tprop, Tp)), Th = h/fR. Note that

Tdelay represents the delay to send the ACK because it is piggybacked to the header

of the coded packets. Note that the function R(x, y) returns the remainder of x/y.

2) Round Robin Data Sharing in Full Duplex Channel (DSRR Full Duplex): The

objective is to transmit M1 data packets from node 1 to node 2, and M2 data packets

from node 2 to node 1. We consider the simpler problem when M1 = M2 = M. We

assume that both nodes start transmitting at the same time. Note that packet k in

the block of each node is transmitted every (mM + k)Ty time units for m = 0, 1, 2, ...

until the other nodes gets all M packets. The sharing process is completed when both

nodes have received all information. Note that this problem is very similar to that in

[39]. Using a similar analysis,

E[T] = T + TpM - + E[maxX'] (2.86)

where 1 + X' is the number of transmissions of packet k needed to reach node i from

the other node, y E (1/2, 1), Tw = 2Trop + Tdelay ,Tdelay =Th + Tp (1 - R (Tprop, lp)),

Th = h/R, and
oo

E[maxXkl = [1 - (1 - Pe)2M (2.87)
ikt=1

Note that y = 1 and -y = 1/2 give us an upper and lower bound on the mean

completion time, respectively.

3) Round Robin Data Sharing in TDD Channel: This approach is similar to DSRR

Full Duplex but considering a TDD channel. Again, the objective is to transmit M1
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data packets from node 1 to node 2, and M2 data packets from node 2 to node 1. We

consider the simpler problem when M1 = M2= M and that each transmitter sends

all M packets before stopping to listen for a transmission of the other. The data

packets also contain feedback indicating if the node should keep transmitting or if all

packets have been received successfully at the other node. Using a similar analysis,

the mean completion time E[T] is bounded by

E[T] < (Tw + 2TpM) i + E[max Xi] (2.88)
i,k k

and

E[T ;> (Tw+ TpM) i+ E[maxXu] + TM (2.89)

using the same definitions as in DSRR Full Duplex.

2.3.4 Numerical Results

This section provides numerical results that compare the performance of our network

coding scheme for sharing disjoint information between two nodes in TDD channels.

We consider a GEO satellite example where the propagation time Tp,,,p = 125 ms,

and data packets of size n = 10, 000 bits. We assume symmetric uplink and downlink

channels, i.e., Pei = Pe 2  Pe and R1 = R2 = R = 1.5 Mbps. We compare the

performance of the scheme in terms of mean completion time when the N,j,t)'s are

chosen to minimize the mean completion time using the proposed search algorithm

under different packet erasure probabilities Pe. We consider that both nodes have he

same number of packets at the start of the process, which means that M1 = M2 = M

data packets. We show that our TDD scheme can outperform a full duplex round

robin scheduling scheme for large Pe. Also, our TDD scheme performs at most

3 dB above that of a full duplex network coding scheme. For small Pe, the difference

between our scheme and the full duplex network coding is much less than 3 dB. Finally,

we show that the number of iterations required for our algorithm to convergence is

very small for a wide range of Pe.
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Figure 2-32: Mean completion time for the TDD scheme choosing the N(i,j,t)'s through
the search algorithm proposed in Section 2.3.1, two full duplex schemes, and a TDD
scheme with no coding. We use the following parameters R = 1.5 Mbps, h = 80 bits,
g = 20 bits, a block size per node of M = 15.

Figure 2-32 shows the mean completion time for the TDD scheme choosing the

N(i,j,t)'s through the search algorithm proposed in Section 2.3.1, two full duplex

schemes, and a TDD scheme with no coding.

Figure 2-32 illustrates that choosing N(i,j,t)'s using the search algorithm provides

very good performance in terms of mean completion time for a wide range of packet

erasure probabilities, when compared to full duplex schemes and the TDD scheme

with no coding. In general, our scheme outperforms the TDD with no coding. This

difference is most noticeable at large Pe, but even at moderate schemes there is a

clear advantage of our scheme. Also, note that at low packet erasure probabilities,

our TDD scheme is only 1 dB away from the performance of the DSNC full duplex

scheme, which is the optimal scheme in terms of mean completion time. Since we have

packets to be transmitted from both nodes, we expected the difference between these

two schemes to be around 3 dB, i.e., twice the completion time for the TDD scheme

because it has half of the channels that the network coding full duplex scheme has.
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Figure 2-33: Number of iterations of the algorithm to reach a stable solution under
different packet erasure probabilities. We use the following parameters R = 1.5 Mbps,
h = 80 bits, g = 20 bits.

The main reason for this improvement is related to the relatively small number of

coded packets that are being transmitted. Thus, the main cost in the completion time

is the Tp,,o of the packets. For very high packet erasure probabilities, our TDD scheme

is closer to the expected 3 dB. In this case, the number of coded packets transmitted

in order to decode the information is the dominant cost to the completion time.

Figure 2-32 also shows that for high packet erasures, Pe > 0.4, our TDD scheme

using the proposed search algorithm to choose the Nyt)'s, outperforms a full duplex

scheduling scheme (SDRR full duplex). This is clear because the lower bound on the

mean completion time of the SDRR full duplex exceeds the mean completion time

of our scheme at around Pe > 0.4. It is possible that we could outperform SDRR

full duplex with our TDD scheme even for Pe > 0.2, which is the point at which the

upper bound of SDRR full duplex intersects with the mean completion time of our

scheme. Note that for Pe = 0.8 our TDD scheme outperforms SDRR full duplex by

about 1.1 dB. Thus, even with a single channel for data and feedback, i.e., half of the

resources, we can perform better than scheduling by tailoring coding and feedback
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appropriately.

Figure 2-32 shows that if we have a full duplex system for two nodes to share data

they clearly should do so using network coding, specially for high packet erasures.

Note that for Pe = 0.8 SDNC full duplex more than 4 dB better in terms of the

completion time performance than the scheduling scheme SDRR full duplex. It is

important to point out that for low packet erasures the lower bound on the mean

completion time of SDRR full duplex is loose while the upper bound is tight. In

fact, the performance of SDRR full duplex is always equal or worse to that of the full

duplex network coding scheme.

Finally, Figure 2-33 illustrates the number of iterations that the search algorithm

proposed in this work before it reaches a stable solution. We observe that for different

values M and a wide range of Pe, the number of iterations is very low, always lower

or equal to 5 iterations in the example. Thus, the algorithm converges very fast,

especially if the Pe is low. Thus, we have an algorithm that converges fast in a search

that involves a very large amount of integer variables, e.g., with M = 5 and M = 15

initial packets in each node, we need to optimize 70 and 510 variables, respectively,

for every value of Pe.
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Chapter 3

Network Coding for Data

Dissemination in Arbitrary

Networks

This chapter considers the problem of data dissemination in more complex networks

than those proposed in Chapter 2, namely, networks in which nodes may not directly

communicate with every other node in the network. In fact, we study data dissem-

ination in arbitrary networks with no specific structure, which means that a node

may be at more than one hop away from other nodes in the network. Although we

maintain a time division duplexing or half-duplex constraint on the nodes, we will

restrict our study to cases in which latency is very low.

The problem of data dissemination has been widely studied for routing scenar-

ios, focusing on theoretical analysis, e.g., [26], and protocol design, e.g., [32]. More

recently, reference [27] studied the effect of using network coding showing significant

improvement over routing in terms of completion time.

Reference [28] studied a wireless medium access control combined with network

coding for multi-hop content distribution. The authors focus on a protocol that uses a

content-directed medium access control (MAC), through which transmission priority

is given to those nodes based on the rank of the coefficient matrix associated with

the coded content the node holds, i.e., nodes with more information are given higher
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100% 75% 50%6 25%6

Figure 3-1: Network Example: J mobile devices require M data packets, but not all
of them can obtain them directly from the Base Station. Each node can transmit to
I nodes.

priority.

We advocate for the combination of network coding and medium access strategies,

similar to the idea in Reference [28]. However, we illustrate that giving priority to the

nodes with the most information in the network is not necessarily going to promote

a faster dissemination of the data, specially in multihop networks.

We focus on the problem of minimizing the completion time to disseminate in-

formation assuming a time slotted system as described in Section 3.2. We show in

Section 3.3 that the problem can be stated as a scheduling problem which is in hard

to solve in general. We then propose a greedy algorithm in Section 3.4 to solving

the problem, in which the nodes with the greatest impact on the network at each

time slot should transmit, instead of choosing the node with the most information.

Starting with a toy example for a linear meshed network, i.e., nodes deployed in a

line, different medium access strategies are compared with each other in terms of the

mean completion time in Section 3.5. We show that our scheme can obtain consider-

able gains with respect to choosing transmitters in terms of their knowledge. Even in

small networks and moderate number of data packets to transmit, roughly a twofold

improvement can be obtained. Although the examples and simulation results focus

on linear meshed networks, we emphasize that the description and analysis of our

algorithm is valid for any network and any starting distribution of (coded) packets

of the nodes. In fact, our analysis considers routing as a particular case. Also, the

problem of linear meshed networks is interesting in itself for some applications, e.g.,

underwater acoustic networks [29] [30].
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Figure 3-2: Network Example: J mobile devices require M data packets, but not all
of them can obtain them directly from the Base Station. Each node can transmit to
I nodes.

3.1 Motivating Examples

In order to understand the combination of network coding and medium access strate-

gies, we assume the following scenario: A set of J mobile devices wants to receive

the same number of M packets from the base station. The mobile devices are lined

up with different distances to the base station as shown in Figure 3-1. The cover-

age of the base station is sufficient to reach I < J mobile devices. Furthermore, we

assume that the devices with longer distances to the base station will receive less

information. For illustration we assume that the packet receiving probability, after

the base station is broadcasting a number of coded packets, varies between 25% and

100% in our example with J = 8 and I = 4. The question at this point is how to

continue disseminating the information, as different strategies will have an impact on

the overall number of transmitted packets to satisfy all mobile devices. Let us discuss

some simple possibilities.

* Base Station Centered: The base station continues the transmission of coded

packets until all stations in its coverage range have understood the full infor-

mation (all 100%). Note that nodes closer to the base station will need less

time to gather all information, but the base station needs to continue to sat-

isfy all devices in its coverage range. Once all devices in the coverage of the

base station are satisfied, optimally the device with full knowledge that is far-
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ther downstream (farther away from the base station) will start to relay the

information to the rest. Network coding helps in this example to compensate

for packet erasures, as the base station does not need to know about which

packets have been received so far. It only has to focus on delivering enough

linear combinations to the nodes. Thus, the base station transmits random

linear combinations until all devices have a sufficiently high number to decode

all packets.

Progressive Base Station: The first mobile device that receives the full infor-

mation will start to transmit and the base station will stop automatically. The

mobile deice with full information will act as base station until another device

farther downstream has all information. Obviously this approach has the ad-

vantage that more devices can be reached and that those missing information

are now closer to the source, which in turn will lead to lower packet loss prob-

ability. This scheme will perform as well as or better than the Base Station

Centered scheme.

* Greater Impact at each time slot (Greedy Algorithm): For the last approach,

it is not the node closest to the base that goes first, in general. We look at the

received packets so far by each mobile device to determine which nodes should

transmit. It is important to note that the received packets in the example are

uncorrelated , i.e., the packets marked as 25 % are not necessarily contained in

those marked as 50%. This assumption opens the door for a new strategy. For

the following discussion we introduce the term coding horizon, which is roughly

the number of devices one transmitting device can reach by broadcasting in-

formation. The very first mobile device in the line has the coding horizon of

4, while mobile device i (the last one that received information from the base

station) has a coding horizon of 7 (Figure 3-2). In this simple example, there

is clearly a drift of information from left to right. Note that in this example,

devices with a small coding horizon have collected more packets so far, but de-

vices with fewer packets have a larger coding horizon and will therefore reach
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more neighbors. We observe that node i has more impact on the network in this

time slot because it can benefit more nodes with the transmission of a single

coded data packet. Therefore, each relaying action is divided into a backward

healing and a forward dissemination part. In case mobile device i is sending a

packet, obviously all devices to the right of it are seeing that information for

the first time (forward dissemination). Simultaneously, there might be devices

to the left that are also interested in these packets (backwards healing). This

is the main component of our heuristic scheme.

Note that the Progressive Base Station scheme will perform as well as or better

than the Base Station Centered scheme. For this reason, we will focus on comparing

Progressive Base Station scheme to the Greater Impact scheme.

Before starting with a formal analysis of the problem, let us consider two simple

examples that illustrate the advantage of 1) choosing the transmitter node in order

to provide the greatest impact to the system at each time slot versus choosing the

node that has the most information, and 2) the advantage of breaking ties between

sets of transmitters with the same impact on the network by choosing the one that

includes nodes with the least information.

e Example 1: Let us consider a network with no packet erasures where each node

wants to receive M data packets. Each node can contact 2 neighbors to the left

and 2 to the right, as in Figure 3-3. The leftmost node has all M packets while

a middle node has M/2 linear combinations. Figure 3-3 (a) shows the data

dissemination process in time if we choose the node with the most information

and that is further downstream (Progressive Base Station scheme). This scheme

takes 5 time slots to complete the dissemination. Figure 3-3 (b) shows the2

same procedure when the node with the highest impact is chosen at the begin-

ning. We break ties without considering parallel transmissions and trying to

keep as close a behavior to the first approach. This is a simplified version of

the Greater Impact scheme. Note that this very naive scheme requires only 2M

time slots to disseminate all information to the nodes, just by choosing node
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Time Slot
M 0 0 M/2 0 0 0

(a) Node that knows the most

M M M M/2 0 0 M

M M M M M/2 0 3M/2

M M M M M M/2 2M

M M M M M M 5M/2

(b) Node with the most impact

M M/2 M/2 M/2 M/2 M/2 M/2

M M M M/2 M/2 M/2 I M

M M M M M M/2 I 3M/2

M M M M M M 2M

Figure 3-3: Motivating Example 1: Data dissemination when choosing (a) node with
the most knowledge, and (b) node with the most impact

4 as the first transmitter. Thus, choosing the node with the most information

requires 25% more time to complete transmission in this simple example, even

with a vanilla version of our scheme. If we performed the dissemination with

a scheme similar to 1 of the introduction, 3M time slots would be required to

complete the transmission, i.e., 50% more time than choosing the middle node,

which has greater impact to the network, at the beginning.

e Example 2: We consider a similar setup as the previous example. However,

we study the case of a network with K nodes in which only one node has all

the information. Assuming no packet erasures, choosing the node with the

most knowledge at every time slot will transmit all of its information to its

N nodes further downstream. At this point, the node further downstream

starts transmitting to its N neighbors until those neighbors have all information.

This process is repeated until all nodes have all data. The time to complete
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1 2 3 4 5 6 7 8

Time Slot

M 0 0 0 0 0 0 0 0

M 1 1 0 0 0 0 0 1

M 1 1 1 1 0 0 0 2

M 1 1 1 1 1 1 0 3

M 2 2 1 1 1 1 1 4

M 2 2 2 2 1 1 115

Figure 3-4: Motivating Example 2: Data dissemination exploiting parallel transmis-
sion

transmission TP) under this scheme is

T(1 = M .1 (3.1)C I N

However, if we use a scheme that chooses the node with the greatest impact

to the network but that breaks ties in favor of sets of transmitters that will

benefit nodes with the least information, there will be a considerable reduction

in the completion time. This happens because the system will be able to take

advantage of parallel non-interfering transmissions. Figure 3-4 illustrates the

effect of such a scheme when N = 2 and K = 8. We observe that, every 3 time

slots, the same sequence of transmitting events occurs. This is valid for larger

K. Using this insight, the time to complete transmission T under this scheme

is

T -2 = 3(M - 1) + . (3.2)C N

It is simple to show that T <; T< c for every value of K, N and M of impor-

tance. However, Tc2 ) is strictly less than Tc41) for K > 4N. Let us define the

gain G in this case as

T_) M [K-1]
G = -" - = N (3-3)T( 2 ) 3(M - 1) + [K(]
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Figure 3-5: Gain G when M is fixed and the size of the network is increased. Param-
eters used are M = 20 and N = 1

which represents how much more time it takes to complete the dissemination

when we use a scheme that chooses the node with greater knowledge instead of

trying to take advantage of the spatial diversity. We can show that G can be

made arbitrarily large. For example,

1 K - 1
lim G- I (3.4)

M-*oo 3 N

for a fixed value of K. This is related to the case of a fixed network and a large

number of packets that need to be disseminated. On the other hand, if we have

a fixed number of packets but our network is large with respect to the number

of packets

lim G = M. (3.5)
K--+o

Figure 3-5 illustrates the gain for a fixed value of M when we increase the size of

the network. For this example, M = 20 and N = 1. Figure 3-6 illustrates the gain

for a fixed network size K when we vary the number of packets to be transmitted.
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Figure 3-6: Gain G when K is fixed and we change the number of transmitted packets

M. Parameters used are K = 20 and N = 1

3.2 Model

Let us formalize our problem. In particular, we focus in networks where each of the

nodes has some information but it wants all M data packets present in the network. In

our previous examples, we generally considered a single node, e.g., node 1 in Figure 3-

7, that wanted to transmit M data packets to all other K - 1 nodes in the network.

Let us assume that time is slotted. A data packet or coded packet is transmitted in a

single slot. Each node i has a vector space Vi(t) at time t. If we used no coding, each

vector space would be spanned by a subset of individual packets Pa, Va = 1, ..., M

where M is the total number of packets to disseminate. If we use coding, each vector

space is spanned by a set of linear combinations of Pa, Va = 1, ..., M.

We consider the network to be modeled as a hypergraph G = (N, A), where N

is the set of nodes and A is the set of hyperarcs. This is an extension of the graph,

in which we are capturing the broadcast nature of the channel. A hyperarc (i, J)

represents a connection between a node i (the transmitter) and a set of nodes J (the

receivers).
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Figure 3-7: Network of interest. Each node i has at the beginning a vector space V.
If we used no coding, each vector space would be spanned by a subset of individual
packets Pa, Va = 1, ..., M where M is the total number of packets to disseminate.
If we use coding, each vector space is spanned by a set of linear combinations of
Pa, Va = 1, ..., M.

We also assume a perfect knowledge of the information of the nodes and that we

can operate under different channel conditions, and have different knowledge about

the transmission channel. We assume a centralized controlled that decides which

hyperarcs should be active at each slot, i.e., which nodes should transmit and to

what set of receiver nodes, and what information should be transmitted through each

hyperarc.

3.3 Description of Optimal Scheme

In general, the decision made in a time slot will affect decisions in the following slots.

Let us consider the case of no erasures first. We can think about this problem as a

scheduling problem, where we have a set of schedules S from which we can choose

s(t)at time t. Each schedule s E S is a set of hyperarcs that are active in that schedule,

e.g., s = {(ii, J()), (i 2 , J(2 )), ... , (im, J(m))}. In general, each schedule should only

include hyperarcs with different transmitters, i.e., i'a = ib, Va # b. However, we

impose no conditions on the set of receivers ja of each node a. This allows us to

cause collisions in one node during a time slot if this means a higher benefit for the

system overall.

Let us define B8i(i). (t) as the benefit that node j gets from node i when i uses

hyperarc (i, J(i)) at time t. This benefit B'ij(i.(t) will depend on what coded packet

node i transmits at time t, say qi,() (t) E V(t). Let us define Ws(t),(t) at time t as

the weight for a schedule s(t) given that q(t) = [qi,j() (t)] coded packets are being
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transmitted by the active transmitters of that schedule. This weight represents the

impact of that schedule over the system in that time slot, i.e., how many nodes are

seeing an increase in dimension of their vector space if that schedule is chosen. We

can define W,(t),(t) as

WS(t),g(ty= Bs (3.6)
i=1f(i)j

where m(s(t)) is the number of hyperarcs in schedule s(t). The objective is to find

the sequence U(1), U(2), ..., that minimizes the time to disseminate all data packets

to all nodes of the network, where U(t) = (s(t), (t)).

If we assume that the network started with Winr = E_' dim(V) and that at the

end of the process the system should have a total of MK packets, then the problem

can be formulated as

mm n
U(1),U(2),....

subject to

U(t) = (s(t), q(t)), Vt

s(t) E S, Vt

qip)>(t) E Vi (t),I VtI i, I J
D

MK -Wini = Z W(t),q(t), VD > n
t=1

Solving this scheduling problem is hard even in the absence of packet erasures or

perfect knowledge of the channel. Let us focus on a greedy algorithm that tries to

maximize the impact on the network at each time slot.

3.4 Greedy Algorithms

Let us use greedy algorithms that only take into account the current state of the

system to make a decision, i.e., we try to find the set of hyperarcs s that will have the

node with the most information or the set s that has greater impact in the network
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Figure 3-8: Simulation Setup: linear meshed network, with each node with at most
N = 2 neighbors upstream (closer to node 1) and N = 2 downstream. Node 1 has
all M data packets at the beginning. The objective is to disseminate those packets
to every receiver in the least amount of time.

in the current slot for the Progressive Base Station and Greater Impact schemes,

respectively. From its perspective, at any time slot the network can be modelled as a

set of nodes N with a vector space Vi associated to each node i (Figure 3-7).

Let us define vij as the vector selected for transmission in hyperarc (i, J). This

choice is made to maximize the impact of the transmission from i to each of his

receivers in J. One way to state this problem is to choose vij so that we increase as

much as possible the dimensions of the vector spaces of each of the receivers

vii = arg max dim ({Vj, qij}). (3.7)
qiJ EV e

Note that this is valid for network coding. The simplest way of generating vii is to

create a random linear coded packet over a large enough field size. This coded packet

is generated from the packets or linear combinations that span the vector space of

node V. If no coding is allowed, we have to impose the additional constrain on qij to

be a single packet, i.e., the vector qij will have a very specific structure. At any time

slot we choose a schedule depending on the scheme we use.

The Greater Impact greedy algorithm will choose as schedule

s = arg max W, (3.8)
e W tSES

where W, is the weight for each schedule given the choice of qij.
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Similar to the full problem, Ws represents the impact of a schedule s over the

system in that slot. Thus,

m(s)
WS B (3.9)

i= jE J(') _

where m(s) is the number of hyperarcs in schedule s, B'ig is the benefit that node

j gets from node i when i uses hyperarc (i, J(i)).

In the case of no erasures,

B j)= 1 if Z s (3.10)
0 otherwise

where Zigj) = dim(V) < dim ({V, vi>}), j g J(k)Vk # i, j # iaVa

If we had perfect Channel State Information (CSI),

B{i, Com if Zug (3.11)
0 otherwise

where Coi is the channel state of the channel from i to j when i transmits through

hyperarc iJ(i). C j = 1 if the channel will cause no erasure, and Cij(i)j = 0

otherwise.

As a contrast, the Progressive Base Station scheme will choose the schedule such

that

sPBS = arg max max Vii (3-12)
sES \(iJ)Es

and we break ties in favor of nodes that have more neighbors with incomplete infor-

mation. This approach is similar in its essence to the work in [28], because it gives

nodes with the most information a priority to access the channel.

If we have no CSI but we have knowledge (or estimates) of the packet erasure

probability, the Progressive Base Station scheme remains the same. For the Greater
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Impact scheme, we can define

Bsj~i = 1 - Pi (J)j if Zisig,
0 otherwise

where Pijut is the packet erasure probability

transmits through hyperarc iJ(i).

Note that this last approach is equivalent to

mizes the average weight of the schedule, i.e., s*

rn(s)F

E[W] = E
i= jEJ()

of the channel from i to j when i

choosing the schedule s* that maxi-

= arg maxsEs E[W,]. Note that

FBsi&l (3.14)
4~j

when

{ CiJ(L)J
0

if Zig~e,

otherwise
(3.15)

and E [Ci2 (oi)] =1 - Pisteg.

3.5 Numerical Results

This section provides numerical examples that compare the performance of two differ-

ent network coding schemes we have discussed so far. Namely, our proposed scheme

which chooses at each time slot the schedule that will provide the greatest impact on

the network ('Greater Impact'), and the scheme that chooses a schedule based on the

node that has the most knowledge in the network ('Progressive Base Station'). We

assume that the available schedules are the same for both schemes. Also, we simplify

the problem by only allowing schedules that do not generate interference in some

nodes, which could be beneficial in some cases. Note that this is not a restriction of

the analysis but a means to simplify the simulation. The comparison between the
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Figure 3-9: Completion time of schemes on a linear meshed network of 10 nodes with
different number of data packets to be disseminated. Each node can only contact
one neighbor upstream and one downstream but with no packets being erased, i.e.,
Pe 1 = 0, Pe 2 = 1.

schemes is carried out in terms of average time to complete transmission of M data

packets under different packet erasure probability scenarios.

Our results focus on linear meshed networks with one or two neighbors upstream

and downstream. The packet erasure probability to the closest two neighbors is Pei,

while Pe 2 corresponds to the packet erasure probability for the two neighbors farther

away. Finally, we assume that one node at the edge of the network has all information

at the beginning and that all other nodes have no information (See Figure 3-8).

Figure 3-9 shows that the results obtained in Section II for Motivating Example

2 match the simulation results. In particular, we observe that our 'Greater Impact'

scheme has the same completion time to that in T(2 ) for N = 1 neighbor upstream

and 1 neighbor downstream, K = 10 nodes in the network, and a range of data

packets M. The 'Progressive Base Station' approach shows similar performance to

Tc . Figure 3-9 shows that a considerable reduction in completion time can be found

by choosing the schedule with the greatest impact to the network and by breaking
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Figure 3-10: Completion time of schemes on a linear meshed network of 10 nodes
with different number of data packets to be disseminated. Each node can contact
N = 2 neighbors upstream and 2 downstream.

ties in favor of schedules that benefit nodes with the least information. This is related

to the opportunistic overhearing idea presented in [31] for routing, i.e., if we allow

overhearing of the data packets the dissemination time can be considerably reduced,

because each transmission will be useful for more than one node. The figure shows

the degradation in performance we would get if we performed routing of the coded

packets from one node to its neighbor without exploiting the broadcast nature of

wireless channels.

Figure 3-10 shows the performance of the two schemes when coded packets can

suffer erasures. Each node has N = 2 neighbors upstream and downstream, except

nodes at the edges of the linear meshed network. This figure shows that for different

scenarios our 'Greater Impact' scheme shows much better performance. Note that

both schemes are allowed the same schedules. The main difference is the way each

scheme chooses amongst the different schedules.

Figure 3-11 illustrates the gain in completion time for different pairs (Pei, Pe 2) of

packet erasure probabilities. This figure illustrates the gains for a network of K = 10
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nodes. We expect larger gains if we increase M or the number of nodes K present in

the network. However, it is clear that there is a considerable advantage of our scheme

even for moderate network size and M.

Figure 3-11 shows that the gain from using the Greater Impact scheme instead of

the Progressive Base Station scheme increases with packet erasures for our example

with N = 2. We observe this by comparing the result for (Pei = 0, Pe 2 = 0) to those

with non-zero packet erasures, except the case (Pei = 0, Pe 2 = 1) which corresponds

to N = 1. The gain for the case of (Pei = 0, Pe 2 = 0) is a propagation gain, i.e.,

the Greater Impact scheme propagates coded packets faster to other nodes, allowing

parallel transmissions. The same applies for (Pei = 0, Pe 2 = 1). For the cases of

random erasures, the gain is in part due to the propagation gain and in part because

the Greater Impact scheme chooses schedules based on their impact to the network

without focusing the decision on a single node. Figure 3-11 shows that for K = 10

nodes and M = 12 packets with different packet erasure pairs (Pei, Pe 2) we observe

a gain of about 1.8. This means that Progressive Base Station takes 80% more time

to complete the data dissemination process than what it would take if we used the

Greater Impact scheme.

Figure 3-11 shows that the case of (Pei = 0, Pe 2 = 1) (in essence N = 1) has a

larger gain than (Pei = 0, Pe 2 = 0) (N = 2), although the former requires more time

complete the transmission for both schemes. This illustrates that allowing overhearing

of the coded packets, which is represented by the ability of the nodes to transmit to

more than one neighbor, reduces the gain of using Greater Impact with respect to

Progressive Base Station, for the same number of nodes in the network K. However,

this gain will increase as we increase the network size or as we increase the number of

packets to transmit. Even for a small network of K = 10 nodes we get a gain of 1.6

when we transmit M = 12 packets with no erasures, which is to say that Progressive

Base Station takes 60% more time to complete the data dissemination process than

what it would take if we used the Greater Impact scheme.
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Figure 3-11: Gain in completion time on a linear meshed network of 10 nodes with
different number of data packets to be disseminated. Each node can contact N = 2
neighbors upstream and 2 downstream.
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Chapter 4

Underwater Acoustic Networks

We have so far dealt with the problem of networks that require a fast, reliable and

efficient dissemination of data through 1) environments that have physical limitations

that can cause considerable delay, e.g., networks with large latency TDD channels

studied in Chapter 2, or 2) network deployments that impose connectivity limitations,

as in Chapter 3.

This chapter deals with a specific application of delay challenged environment,

that of underwater acoustic networks. This particular application suffers from large

latency and, in many cases, nodes are considered to have TDD constraints. In this

sense, the techniques studied in Chapter 2 can be applied in order to improve delay

performance, reliability and efficiency of data transmissions underwater.

Also, many underwater network deployments require information to traverse mul-

tiple nodes, that is, it requires transmission over multiple hops, in order to reach an

intended destination. Thus, the insights provided in Chapter 3 could considered and

adapted for underwater networks, taking into account that a decentralized controller

and large latency would be key factors to be considered in a modified dissemination

scheme.

However, we focus in this chapter in studying in more detail the underwater

channel model in order to 1) derive a lower bound on the transmission power for

multicast transmissions, 2) propose and test practical transmission schemes, and 3)

determine the gap between the lower bound and the practical schemes.
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4.1 Underwater Channel Model

An underwater acoustic channel is characterized by an attenuation that depends on

the distance I and the signal frequency f as

A(1, f) = (jI a(f)-f (4.1)
r~ef)

where 1ref is a reference distance (typically 1 m). Note that this model generalizes the

free-space model. In practical applications, typically I >> iref so that I - Iref ~ 1.

A common empirical model used for the absorption a(f) is Thorp's formula [47]

[56] which captures the dependence on the frequency in dB/km. This absorption

a(f) is an strictly increasing function of f measured in kHz. The spreading factor

describes the geometry of propagation and is typically 1 < a < 2, e.g., a = 1 and

a = 2 correspond to cylindrical and spherical spreading, respectively. A cylindrical

spreading (Figure 4-1(a)) corresponds to cases in which the transmission distance 1

is much larger than the depth of the ocean. In this case, the ocean bottom and the

interface between the ocean and the air act as boundaries for the spreading of acoustic

waves. This problem can be modelled as a cylindrical wave guide. On the other hand,
spherical spreading (Figure 4-1(b)) is considered when the transmission distance is

smaller than the depth of the ocean. This type of spreading provides a similar a as

the free-space approximation for radio wireless communications.

The noise in an acoustic channel can be modeled through four basic sources:

turbulence Nt(f), shipping N8(f), waves N.(f), and thermal noise Nth(f) [47]. The

power spectral densities (psd) of these noise components in dB re p Pa per Hz as

functions of frequency in kHz are presented in [57]. These psd's have two important

parameters: 1) the shipping activity s ranging from 0 to 1, for low and high activity,

respectively, 2) the wind speed w measured in m/s. Figure 2 in [47] shows N(f) for

different values of s and w, and an approximation 10 log N(f) = N1 - 7 log(f) for

f < 100 kHz, where N1 = 50 dB re p Pa and il = 18 dB/dec.

The complete model for a colored Gaussian underwater link was presented in [71]

where power was allocated through waterfilling. In the absence of multipath and
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Figure 4-1: Spreading Geometries in Underwater Communications: (a) cylindrical,
(b) spherical

channel fading, the relationship among capacity, transmission power, and optimal

transmission band of a point-to-point link is given by [71]

C = log,, ) df (4.2)

where N(f) is the psd of the noise, B(1, C) is the optimum band of operation and

K(l, C) is a constant whose value is determined by the link distance 1 and the desired

capacity C. The transmission power associated with a particular choice of (1, C) is

given by

P(l, C) = JB(1,C) S(l, C, f)df (4.3)

where the psd of the signal is S(l, C, f) = K(l, C) - A(l, f)N(f), f E B(l, C).

The corresponding signal-to-noise ratio is given by:

SNR - fB(l C) S(l, C, f)A- 1(1, f) df (4.4)
fB(jC) N(f) df

We observe that a choice of (1, C) determines implicitly the SNR level. Hence, there is

a one-to-one correspondence between the pair (1, C) and the pair (1, SNR). The latter

parameterization was used in [47] to compute the transmission power and bandwidth
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representation to ensure a preset SNR, which determines the value of C implicitly.

The present analysis focuses on using the former parameterization, i.e., on determin-

ing the power and transmission band that ensure a pre-set link capacity.

4.1.1 Dependence on the spreading factor

The dependence on the spreading factor a is quite simple. Let us assume that a

model for P(l, C) has been developed for a particular value of a, i.e., P(i, C, a). To

determine P(1, C, a') for a' = a, note that a change in a, the product A(1, f)N(f) =

(i/ire f)aa(f)lN(f) constitutes a constant scaling factor with respect to f. Therefore,

for a link of distance 1 the term B(l, C) will remain unchanged. Thus, if the same

capacity C is required for a and a', equation (4.2) shows that the only other term

that can vary is K(l, C), i.e., K(1, C, a). Then, K(1, C, a') = (i/iref) '-K(, C, a).

Finally, let us use the equation (4.3) to determine the relationship between P(1, C, a)

and P(1, C, a').

P(i, C, a') j (K(l, C, a') - ia(f)'N(f)) df (4.5)

Bja' ,C (K(l, C, a) - P a(f)'N(f)) df (4.6)

= "'"P(i,C,a) (4.7)

where 1m = i/iref to shorten the derivation. Thus, any model generated for some

parameter a has a simple extension. Also, note that the transmission band remains

the same for any value of a.

4.1.2 Interference Characteristics

The optimal transmission band of a link was shown to change with the distance,

under the assumption that the channel is Gaussian and that the capacity of a link is

obtained through waterfilling. If the capacity for a link is low, e.g., less than 2 kbps,

and the transmission distance is below 10 km, the transmission bandwidth will also

be low, and its optimal location in the spectrum will change dramatically with the
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Figure 4-2: High and low band edge frequency of the transmission band for C =

0.01kbps, a = 1.5, s = 0.5, and w = Om/s.

dlistance. Figure 4-2 shows this effect for C = 0.01 kbps. In this figure, the high and

low band edge frequencies are plotted. This figure also shows the high and low band

edge frequency if an SNR requirement of -20 dB is set, i.e., using the SNR instead of

the capacity as the fixed parameter. As noted before, the constraint over the capacity

is related to different SNR levels depending upon the distance. It is clear that low

values of C are related to a very low SNR value.

Figure 4-2 shows that if two links with the same C = 0.01 kbps are established, one

with 1 ~ 200 m and the other with T 310 m, the optimal transmission bands for these

links will not overlap; thus, they do not interfere with one another. This characteristic

of the underwater channel suggests that if a network is established in which the

nodes are at different distances from one another, and each node has a limited range

of transmission when the data rate requirement is very low (all valid assumptions

in underwater networks), there will be no interference between transmissions of the

various links. If each link allocates its band optimally, this suggests that a form of

FDMA is the optimal approach in an underwater network, where transmission band
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is determined by both the distance and the required data rate. From a network

optimization view point, the cost function to be minimized is clearly separable under

these assumptions, where the channel model for a link can be used as the cost function

for each of the separable terms.

4.1.3 Transmission Power in power limited scenarios

A distinguishing feature of the underwater acoustic channel is the dependence of the

optimal transmission band on the link distance. Figure 4-6 illustrates the optimal

center frequency fc(l) as a function of distance. The optimal center frequency is

defined as the frequency at which A(l, f)N(f) is minimal. This implies that if the

transmission power for a link is low, the transmission bandwidth will be low and

around the optimal frequency. Thus, the optimal transmission band in the spectrum

changes dramatically with the link distance. Figure 4-6 also illustrates that a node

transmitting over a short range will optimally be assigned a transmission band at

high center frequency, as in case (a), while a node transmitting over a longer distance
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will be assigned a different transmission band at lower center frequency, as in case

(b).

For the case in which the power available for transmission is low, the bandwidth

of the transmission band will also be small. When the bandwidth is low enough

|B(l, C)| = Af, such that the product A(l, f)N(f) does not change much over that

band, one can make a Taylor series approximation around the center frequency fc(1).
This allows us to determine the power P for which the transmission band is narrow

owing to our waterfilling argument. Noting that the first derivative of A(l, f)N(f)

with respect to f is zero at fe, the Taylor series approximation has the form

A(1, f)N(f) ~ A(1, fc)N(fe) + T (_- (4.8)
2

Vf E (fmin, fmax) , where T = J2 (A(l, f)N(f)) fcfr. Substituting this expres-

sion (4.8) into expression (4.3), and using the fact that K(1, C) = A(l, fmax)N(fmax) =

A(l, fmin)N(fmin), where fmax and fmin are the maximum and minimum frequencies
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of the transmission band, we obtain

P(l, C) ~ A(1, fmax)N(fmax)Af - I fmax
fmin ( A(l, fc)N(fe) +

where Af = fmax - fmin. Considering fmax - fa and fc - fmin ~ f, given our

quadratic Taylor series approximation of A(l, f)N(f), the above expression reduces

to

P = TAf3
12 (4.9)

4.1.4 Numerical Evaluation Procedure

A numerical evaluation procedure similar to that of [47] is used to compute the value

of P(l, C), B(l, C) and fend(l, C), for a region of values of (1, C). The procedure starts

by fixing a target value of the capacity C. Then, for each distance 1, the initial value

of K(l, C) is set to the minimum value of the product A(l, f)N(f), i.e., K(l, C) =
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Figure 4-6: Relationship between transmission distance and center frequency in a
narrow band system.

minf A(l, f)N(f). The frequency at which this occurs, i.e., fo = arg minf A(l, f)N(f),

is called the optimal frequency. After this, K(l, C) is increased iteratively by a small

amount, until the target capacity value C is met. Finally, this procedure is repeated

for each value of C in a range of interest. At the n-th step of the procedure, when

K") (1, C) is increased by a small amount, the band BC) (1, C) is determined for

that step. This band is defined as the range of frequencies for which the condition

A(l, f)N(f) < K(") (1, C) holds. Then, the capacity CC") is numerically determined

for the current K(n)(l, C) and B(n)(1, C), using the equation (4.2). If CC") < C, a new

iteration is performed. Otherwise, the procedure stops.

4.1.5 Approximate models

Evidently, the expressions for the complete model are quite complicated to be used in a

computational network analysis. Also, they provide little insight into the relationship

between power consumption, B and fend , in terms of the pair (1, C). This motivates

the need for an approximate model to represent these relations for ranges of C and

I that are of interest to acoustic communication systems. The model should also

provide flexibility to changing other parameters, such as the spreading factor a, wind
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speed w and shipping activity s. As shown in Equation (4.7), any approximate model

for the transmission power generated for some parameter a has a simple extension to

any other value of a. Also, a model for the transmission band remains the same for

any value of a.

By applying the numerical procedure in Subsection 4.1.4 for various 1 and C and

fitting the data, it is possible to obtain approximate models for power consump-

tion (Eq. 4.10), band-edge frequency jend(l, C) (Eq. 4.12), and for the bandwidth

B(l, C) = fend(l, C) - fini(l, C) (Eq. 4.14). Note that some important properties for

these parameters are kept, e.g., P(l, 0) = 0.

= laiC)I 2 (C)

P(l, C) = la1(c)10a with (4.10)

a,(C) = a3 + a 2C + a1C 2  (4.11)

a2 (C) = #3 + /210logioC + ,1(10logio(C + 1))2

fend(l, C) - la1(c)10a with (4.12)

a1(C) = a3 + a2 10log10 C + a1(10logioC)2  (4.13)

a2 (C) = #3 + /3210logioC + #31(1OlogioC) 2

B(l, C) = la1(c)10 with (4.14)

a1 (C) = a4 + a3 10log10 C + a2 (1lOogioC) 2 + a1(10logioC)3  (4.15)

a2(C) = /33 + #210logioC + 01(10logioC)2.

The transmission power, band-edge frequency and bandwidth of transmission band

were computed for a variety of values of s, w and two ranges of interest of the pair

(1, C): I E (0, 10] km, C C [0, 2] kbps, and I E (0, 100] km, C E [0, 100] kbps. The

models proposed fitted these cases quite well. Results are presented for a = 1.5,
w = 0 and s = 0.5, for both cases. For the first case, the a and 3 parameters show

almost no dependence on the shipping activity factor s, especially if the wind speed

136



Table 4.1: a1 and a2 approximation parameter values for P(l, C), fend(l, C) and
B(l, C), with a = 1.5,s = 0.5 and w = 0 m/s for Case 1: 1 E [0, 10] km, C E
[0, 2] kbps, and Case 2: 1 E [0, 100] km, C E [0, 100] kbps.

Case a a2 a3 a4 MSE
1 P(l, C) -0.00235 0.01565 2.1329 0 2.532e-7

1 fjnd(l, C) 4.795e-5 0.00246 -0.44149 0 3.930e-9

1 B (1, C) -5.958e-7 -2.563e-5 -0.000305 -0.30694 6.599e-9

2 P(1, C) -5.617e-5 0.02855 2.9305 0 0.00011

2 fend(1, C) -0.00019 0.01186 -0.55076 0 1.32e-7

2 B(1, C) 1.696e-6 4.252e-5 -0.00249 -0.36397 7.29e-7

#1 #2 03 MSE
1 P(1, C) 0.014798 1.0148 74.175 5.8979e-5

1 fend(l, C) 0.00171 0.07153 13.738 3.4706e-5

1 B (1, C) -5.163e-6 0.33427 9.6752 2.9233e-7

2 P(1, C) 0.04317 0.90597 76.156 0.00010115

2 fend(I, C) 0.0065157 -0.032693 14.739 7.3024e-5

2 B(1, C) -0.0018252 0.34788 10.328 0.00019414

is w > 0. Thus, the approximate model for this case can be simplified to consider w

only as part of the model, instead of the pair (s, w).

Figures 4-3, 4-4 and 4-5 show parameters a1 and a2 for P(l, C), fend(l, C),

and B(l, C), respectively, for the first case with a = 1.5, s = 0.5 and w = 0 m/s.

The values of a's and O's are shown in Table 4.1 as Case 1, for parameters a1

and a2 , respectively. These tables also show the mean square error (MSE) of the

approximation with respect to the actual parameters. A similar result can be found

for the second case with a = 1.5, s = 0.5 and w = 0. The values of a's and O's

are shown as Case 2 in Table 4.1, for parameters ai and a2, respectively. For both

ranges, the proposed models give a very good approximation to the actual numerical

values. Also note that for the a1(C) parameter of P(l, C), it is possible to use a linear

approximation, instead of a quadratic model.

For Case 1, the values for a and # parameters in the approximate P(l, C) model

show very little dependence with respect to s while they show a greater dependency

on w. This is not unexpected, since the transmission band is at a high frequency

(between 5 and 40 KHz) where the noise psd is influenced more by the w (O(f- 2 ))

than s ((f-3 4 )). Therefore, a further approximation is to discard s and consider

parameters a and 0 to be functions of w only. In particular, a simple model is

ai = 73 +7 2 10log10 (w +1) +71(10log 1 (w + 1))2, Vi = 1, 2, 3. A similar relation holds
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for #3j, Vi = 1, 2, 3. Table 4.2 shows y parameters for the different a's and 1's.

4.1.6 Convexity Analysis

In this section we prove the convexity of the complete model of P(l, C) in the entire

region of interest, i.e., positive data rates and 1 > 0. Then we discuss the necessary

conditions that the value of I has to fullfill to ensure convexity of the approximate

model. This is particularly useful if we use these approximate models in network

optimization problems.

Convexity of Complete Model

The convexity of the transmission power of the complete model is stated in the fol-

lowing lemma, which is proven in the Appendix. Lemma 1 assures that P(I, C) is a

convex function with respect to C for the ranges of interest of C and 1 for the case of

non-overlapping finite bands.

Lemma 3. P(l, C) is a convex, increasing function with respect to C, VC > 0 and

1 > 0, if A(l, f)N(f) > 0 and B(l, C) = Ui[fVii(1, C), find(l, C)], with f(,, (,C) <

fend(l, C) < oo, Vi and fini (l, C), ffld(l, C) ( [fifn (l, C), fjd(l, C)], Vi # j, i.e., a

union of non-overlapping finite bands.

Proof. We consider a set E of bands, each band i E E having a fjid(l, C) and fini(l, C)

associated to it. Then,

P(l, C) = ( K(l,C)(feild(l,C) - f lC)) - A(l, f)N(f)df (4.16)

and

C= log2 ( C) df. (4.17)

Using the Leibniz Integral rule, the fact that K(l, C) = A(l, fend(l, C))N(fend(l, C))

and K(l, C) = A(l, fin(l, C))N(fini(l, C)), that A(l, f)N(f) is independent of C, and
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that the derivative of the sum is the sum of the derivatives,

(4.18)aC 5--E (end (1 C) - ini ('I Q-

Taking the second derivative:

DPC - D( 1, ,C (f C) ) f (CK(1,C ) (1,C) (DfflIrn DfC (1C
Dc
2 Z.. DC n niD CD (4.19)

Taking the derivative of C with respect to itself, using Leibniz Integration Rule and

K(1, C) = A(l, fend(l, C))N(fend(l, C)) and K(1, C) = A(l, fini (l, C))IN(fini (l, C)),

then:

1 a K(1,C) ((in (1C
ln(2)K(1,C) DC (ed(,C (4.20)

Since K(1, C) > 0 for any I > 0 and C > 0 by the physics of the channel and

find(1 , C) - fni (l, C) > 0, VC > 0, 1 > 0 , and the i bands are non/overlapping and

ln(2) > 0 this implies that aK C) > 0. Then P(I C)= ln(2)K(l, C) > 0, Vl > 0, C >

0. Taking a second derivative to the C expression with respect to itself:

DK(C)

OC aC
2 KI ) (f (_ C ) --ef (1d C + 6K C) (4.21)

Thus,

a2P(IC) -(K&C) 2
D5C

2 kDC_ E (fend\( C Jzni110
(4.22)

where (fYnd(1, C) - fAin(l, C)) > 0, VC > 0, finite and non-overlapping and BK(1,C) > 0

Thus, a2PQC) > 0 El

Convexity of Approximate Model

The function P(l, z) represents the minimum power required to transmit at a data

rate z over a link of distance 1. The function P(l, z) was proven to be a convex function
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with respect to z, using I as a parameter (Lemma 1). However, the exact model is

complicated from a computational viewpoint. Let us determine the conditions for

which the approximate model P(l, z) in equation (4.10) is convex with respect to z,
and having I as a fixed parameter. We study the case of z < 2 kbps. Since the a

and /3 parameters come from fitting the data, the only variable left to analyze is the

distance 1. Note that ensuring that P(l, z) is increasing and convex translates into

the following inequalities:

ln(l) 9al(z) +'"n ) 9a2(z) > 0 (4.23)

ln(l) 2 
( aalz))2 +'" afz) + (l"(10) a2(z))2 + in(l) (2'"Lo Oa(z) 49a2(z) +__"f);>0

(4.24)

There is both a linear and a quadratic constraint upon 1 to ensure convexity. Since

these constraints are also functions of z, the range of values of this parameter should

be considered. From previous results for the fitting parameters, it is possible to

determine some properties of the model for z < 2 kbps. In terms of the parameters of

interest, c < 0, a 2 > 0, 2c 1 C + a 2 > 0, #13 > 0 and #32 > 0. Thus, for the choices of

ai (z) and a 2 (z), the first and second derivatives of these functions with respect to z

are di(z) > 0, d'1(z) < 0, d2 (z) > 0 Ci2(z) < 0. Using these conditions, the constraints

(4.23) and (4.24) can be simplified to

ln(l) > -'in"0) + max 0,- + "z I"10 Yj z) -d, + " (4.25)

where the term under the square root is positive which ensures real values of 1. Note

that for each value of z there is a minimum value of 1. Let us use the values of Case

1 in Table 4.1 to determine the (1, z) region for which the approximate model is

convex. For these values, if the distance between to nodes 1 is at least 13 m, for any

value of z <2 kbps the model will be convex. The limitation to 1 >13 m is related to

the sampling of the distance used for computing the parameters of the approximate

model. For all practical purposes the approximate model 5(l, z) is convex.
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Table 4.2: Approximation parameters of c and 3 for P(l, C), 1 E [0, 10] km, C C

[0, 2] kbps, a = 1.5,s = 0.5
7l_ 1 Y2 Y3

ai 5.2669e-6 -0.000157 -0.004575
a2 -2.971e-5 0.000865 0.029306
a3 0.000152 0.01809 2.4586
01 9.924e-6 -0.00027 0.012288
#2 7.799e-6 -0.000219 1.0118

03 0.068091 1.3659 73.144

4.2 Lower Bound to Transmission Power in Un-

derwater Networks

The problem of achieving minimum-energy multicast using network coding in a wire-

less network has been studied previously [24]. A wireless network, as presented in

[24] can be represented through a directed hypergraph H = (N, A) where t is the set

of nodes and A is the set of hyperarcs. A hypergraph is a generalization of a graph,

where there are hyperarcs instead of arcs. A hyperarc is a pair (i, J), where i, the

start node, is an element of 1 ,and J is the set of end nodes is a nonempty subset

of A. Each hyperarc (i, J) represents a broadcast link from node i to nodes in the

nonempty set J. Let us denote by zij the rate at which coded packets are injected

into hyperarc (i, J). If the cost function is separable, the optimization problem can

be expressed as follows

min ( Of(zij/6)
(i,J)eA

subject to z E Z

z > Zx , V(i, J) E A, t E T
jEJ

E ij Zd ii-i-
{JJ(i,J)EA} jE J {jl(iJ)EA},iEI

x) > 0, V(i, J) e A, j e J, t E T (4.26)iij -
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with

R if i = s,

= -R ifi=t, (4.27)

0 otherwise

where T is a non-empty set of sink terminals, a source s, a multicast rate R, and a

fixed transmission duty cycle at each link 6. x<9 represents the flow associated with

terminal t, sent through hyperarc (i, J) and received by node j c J.

In the underwater scenario this formulation is used to establish a lower bound

on the transmission power required to achieve a multicast rate R. Assuming no

interference for transmissions in different hyperarcs yields a separable cost function.

Note that if interference was taken into account, the power to reach the desired data

rate would increase. Then, the cost function f(zij) for each particular hyperarc

corresponds to a link transmission power P(l, zij) in order to obtain the minimum

transmission power required to achieve a data rate of zij, where I represents the

distance from i to the farthest node j E J. For the lower bound computation,

continuous transmission (6 = 1) is assumed. A simplification of this problem can be

made under the assumption that transmissions are omnidirectional, and considering

the fact that if a node transmits over a certain range, all nodes in that range will

be able to receive the information. This is proven in Lemma 4. This lemma assures

that if a link between a transmitter i and receiver j at a distance 1 achieves a certain

capacity C, another node k at distance ' < 1 from node i, will be able to decode the

information transmitted from i to j. Note that the transmission band is optimal for

the link of distance 1.

Lemma 4. In an underwater acoustic channel with Gaussian noise, C(l, B(l, C)) <

C(l', B(l, C)) for l' < 1, if A(l, f) = (i/iref)"a(f)l with a > 1 and a(f) > 1, Vf.

Proof. Since A(l, f) = (l/lref)"a(f)' and

&A(l, f) - (a/lref)(l/lref)a1 a(f)' + (i/lref)"ln(a(f))a(f)1 > 0 (4.28)
al
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since a(f) > 1 and 1,ef > 0. Then, A(l, f) > A(l', f), 1 > 1'. Also, K(fC) >

B(l, C) which implies log2(A(') (f)) > 0, Vf E B(l, C). Let us compute the capacity

of a link of distance 1' when we use the optimum band and spectral density for a link

of distance 1 and capacity C, i.e., B(l, C) and S(l, C, f) = K(l, C) - A(l, f)N(f), f E

B(l, C), respectively. Then,

C(1', B(1, C)) = fB(Ic) 109 2 (1 + AK(1)f(f)

> o~(I + K(lf 4 )-A197(f) )df = C (4.30)
> JB(1,C) 1092 1 K )N

Finally, the model for this channel ensures that any value of zij can be achieved

if enough power is used. Thus, the constraint set Z can be dropped.

Although the problem for minimum-cost multicast is well known for wireless ra-

dio networks, the cost function presented here is different because it represents the

minimum transmission power for an hyperarc transmitting at a data rate Z, which

is given by the power needed to transmit at capacity C = Z, without assumption on

technology or, more importantly, a specific transmission band which is usually the

case for wireless radio networks. Thus, we are providing a lower bound valid for any

acoustic underwater network for the case of Gaussian noise.

4.3 Performance Comparison

For this study, five schemes are considered. The first scheme corresponds to the lower

bound to the transmission power using network coding given by solving the problem

in Section 4.2 with 0 = 1. The second scheme corresponds to solving the problem in

Section 4.2 for 0 < 1, in order to study the effect of using a duty cycle for link trans-

missions in underwater networks over interference and transmission power. The third

scheme corresponds to using the paths chosen by the optimal scheme but establishing

a SNR requirement for the transmission links with the objective of studying interfer-

ence when the SNR requirement is increased. The links are considered to transmit
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continuously. The schemes (4) and (5) consider implementations of network coding

in a rateless fashion with the implicit acknowledgment (ACK) [72] and routing with

link-by-link ACK using an ALOHA-like MAC layer. Let us explain in more detail

each of the schemes.

1)Network coding based lower bound to transmission power: Transmis-

sion power is computed by solving the convex optimization problem in 4.2 and it

provides a lower bound on the optimal transmission power for networks operating

at low data rates. For this computation, continuous transmission, i.e., a duty cycle

of 6 = 1 is used. This scheme is used as the gold standard to which the remaining

schemes are compared. The no-interference assumption is assessed by computing the

average percent of the randomly deployed networks that have at least a link which

suffers from severe interference, i.e., a signal-to-interference ratio (SIR) below 3 dB.

2)Network Coding with optimal power consumption for links with fixed

duty cycle: Transmission power is computed by solving the convex optimization

problem in (4.2) for links with a fixed duty cycle, i.e., 0 < 1. This value provides a

lower bound on the optimum power consumption for networks operating at low data

rates when links have a particular duty cycle. By convexity of the cost functions

used, this bound will be higher than for the previous scheme. This scheme is used to

illustrate the effect upon transmission power and interference when the links transmit

at a fixed duty cycle 0 < 1 by comparing this scheme to the previous scheme.

3)Network Coding with SNR requirement on link transmission: This

scheme is a heuristic scheme that imposes an SNR requirement for transmissions.

Using the subgraph selected by solving the problem in (4.2) for 0 = 1, it computes

the SIR on the different links for a variety of SNR constraints using the models

of transmission power and band in [47]. As in scheme (1) and (2), the percent of

randomly deployed networks with at least a link with severe interference is computed.

Results of this scheme suggest that continuous transmission with a moderate SNR

requirement causes severe interference. A solution to this problem is to use of a duty

cycle 0 < 1, similarly as in scheme (2) when there is an SNR requirement.

4)Network coding in rateless fashion with implicit ACK: For a concate-
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Figure 4-7: Medium Access Protocol for schemes (4) and (5)
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Figure 4-8: Subgraph selection for scheme (4). Selected subgraph with values of zij
to provide a unicast rate of 100, where dashed lines represent unused transmission
ranges. Note that hyperarcs include in the same range, e.g., the possible hyperarcs

with node 1 as the staring point are 1{2},1{2, 4},1{2, 3, 4}.

nated relay network as in Figure 4-7, the path between a source node and sink node

is fixed and includes all relay nodes. If a node b is closer than node a to the collecting

node, a is said to be upstream with respect to b, and b is said to be downstream

with respect to a. For the concatenated relay network this ordering is quite natural.

This problem was studied in [72]. For a two-dimensional scenario, subgraph selection

[24] with linear and separable cost functions are used to determine the active links

in the network and the transmission power required for each link. The cost function

of each hyperarc is computed based on the approximate formulas for transmission

power and bandwidth for a fixed SNR level [47]. The weight of each link is given by

DP(l, SNR)/B(l, SNR), where D is a constant common to all links related to the

number of transmitted bits per burst and modulation used. For the performance com-

putation using optimal modulation, i.e., Gaussian signaling, the weight for each link

in the path is DP(l, SNR)/C(l, SNR), where C(l, SNR) is the function of capacity
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related to the pair (1, SNR). We assume that the coding is over very large number of

data packets. This could be extended computing an error probability based on error

exponents [65]. Once the subgraph has been selected, if several links share the same

transmitting node, this node will randomly choose the link to use. The weight of

each link in the random choice is given by the fraction of data rate the optimization

problem assigned to each of these links. Let us consider the network in Figure 4-8

as an example, where dashed lines represent unused hyperarcs. If node 1 transmits

to both node 2 and 4, but we send a rate of 90 units through hyperarc z12 , while we

send 10 units through hyperarc z12,4, then when node 1 transmits it will do so 90 %

of the time to reach node 2 only, and 10 % of time using enough power to reach nodes

2 and 4. Finally, we have to determine which nodes are upstream and downstream to

each node in the subgraph. If the subgraph corresponds to a single path, the choice is

clear. If there are multiple paths, we use the following heuristics: we start by ordering

the nodes starting at the transmitter and looking at the nodes directly connected to

it in the optimal subgraph. These nodes are ordered as follows: the node associated

with the link with higher data rate from the transmitter is considered to be directly

downstream from the source node, the node with the second highest data rate is con-

sidered to be downstream with respect to the previous one, and so on. In Figure 4-8,
2 is directly downstream of 1, and 4 is downstream of 2. Once all nodes connected to

the transmitter (let us call this set of nodes S) are ordered, we proceed to order the

nodes connected to S by a similar procedure as for the case of one node described

before. In the example, S = {2, 4} and the nodes connected to it are {3, 4}. If a

node connected to one of the nodes in S has already been ordered, like node 4 in the

example, the link is discarded keeping the previous order of the nodes. We update S

with the nodes that were connected to S and not previously in it, until we reach the

receiver. For the network example in Figure 4-8 the ordering is 1,2,4,3.

For this particular scheme, once a relay node gets its first coded packet, i.e., a

packet formed by a random linear combination of data packets, it will transmit until

the receiving node sends a confirmation that all the information has been received.

The same happens at the source node. However, nodes eavesdrop on other trans-
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missions. If a node receives a coded packet from a node further downstream with

the same, or a greater number of degrees of freedom than what it has, it will stop

transmitting and update its information if necessary. Degrees of freedom in this set-

ting represents the number of packets that were linearly combined to form the coded

packet as in [72]. The node will resume transmitting if an innovative packet, i.e., a

packet with a new random linear combination of data packets useful for decoding the

information, is received from a node upstream. The sink node will retransmit a coded

packet with its degrees of freedom when a coded packet is received. This strategy

assumes that there is a mechanism that informs the collecting node about the number

of degrees of freedom that constitute the total message or that this number is fixed a

przort.

5)Routing using link-by-link acknowledgement: For a concatenated relay

network, the path between the source node and the sink node is fixed and includes all

relay nodes. This problem was studied in [72]. For a two dimensional scenario, the

sink and the source are chosen randomly and the shortest path is computed before

starting data transmission in unicast. The weight of each link is computed based

on the approximate formulas for transmission power and bandwidth for a fixed SNR

level in the same fashion as the cost function per link of scheme (4). In the current

scheme, every time a node receives a packet, it will retransmit the packet and send an

acknowledgement to the previous node. Once a packet has been acknowledged, the

node can start transmitting a new data packet in its queue. If it has no new packets

to transmit, it will only transmit if a node upstream sends new information, or sends

a previous packet, in which case the node will acknowledge this packet.

In terms of the physical layer, schemes (4) and (5) use both PSK modulation,

which implies the use of a data rate in each link that is lower than capacity, and

Gaussian signaling assuming that the encoding is over a large number of bits. In order

to deal with the SNR requirement, we use an approximate model for the transmission

power, high band edge frequency and bandwidth as functions of SNR similar to

the work in [58]. When PSK modulation is used, the probability of packet error

due to noise over the link from node i to j is obtained from the probability of bit
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error by Ppacket Error (i, ) ~ 1 - (1 - Pbit error)" , where n is the number of bits in the

packet, and Pbit error is computed using the standard PSK bit error probability. Note

that nodes farther away from the transmitter have some probability of receiving the

packet correctly. For Gaussian signaling, the probability of packet error due to noise

is considered to be zero for all nodes in range, and 1 for all nodes further away.

In terms of the MAC layer, schemes (4) and (5) use an ALOHA-like MAC layer.

This ALOHA protocol considers a fixed number of bits per data packet and uses the

optimal transmission band for an SNR requirement per link. Thus, the duration of

the transmitted packet depends on the transmission distance [47]. Every node has a

probability to access the medium every T units of time following a Bernoulli process.

Transmission delay is considered using a typical value of sound speed (1500 m/s).

Figure 4-7 shows an example of using this MAC layer for three nodes with Di >> D 2.

In this example, when node 1 transmit a packet to node 2, this packet also reaches

node 3. Note that the duration of the packet transmitted from node 1 to node 2

(Packet A) is large compared to the packet transmitted from node 2 to node 3 because

of the relation of distance to bandwidth/capacity for a fixed SNR value mentioned

above [47]. Once node 1 has transmitted the packet it will try to transmit again, and

it has some probability to start transmission every time slot T. Let us assume that

node 2 has a data packet for node 3. Figure 4-7 shows the case when the data packet

transmitted from node 2 to node 3 suffers a collision at node 3 with a new packet

transmitted from node 1 to node 2. We consider that a collision at any receiver causes

a loss of all packets involved in the collision for that receiver.

Let us study some numerical results that correspond to a network in which nodes

are deployed randomly in a two dimensional space. Unicast connections of rate R

are established, i.e., the network has one transmitter, one receiver chosen randomly,

and, possibly, several relay nodes. The number of nodes ranges from 3 to 8. The

transmission power lower bound, as an average over random deployments, will be

compared with transmission power of schemes for routing and network coding. Also,

a comparison between the schemes (1) and (2) in terms of interference is presented.

Note that the transmission power lower bound is computed assuming that all nodes
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Figure 4-9: Percent of deployments in a fixed square of 5x5 km
2 

with SIR < 3 dB in

at least one link vs number of nodes deployed in that area, for the first three schemes.

For scheme 1 6 = 1, while scheme 2 is shown with different values of 0 to achieve

unicast rate of R = 0.1 kbps. Performance for scheme 3 is shown for different SNR

values.

are within the transmission range of the others, i.e., full connectivity.

Figure 4-9 illustrates the effect of introducing a duty cycle 9 (dashed lines) for link

transmission under a random deployment in a 5 x 5 km
2 

square. For 9 = 1 in Figure 4-

9, which corresponds to scheme 1, note that less than 3 % of the random deployments

cause severe interference (SIR < 3 dB) over at least one link. This corroborates

the no-interference assumption used during the analysis to obtain a lower bound for

transmission power. Furthermore, this percentage seems to have little dependence

on the number of nodes deployed in the network. When a value of 9 < 1 is used,

Figure 4-9 shows that the percentage of deployments with SIR < 3 dB increases for

the initial decrements of 9, but decreases as 9 becomes very small (below 1.5% for

9 = 0.01). Although this may seem counter intuitive, introducing a duty cycle causes

the link to transmit at a higher data rate when it is active which translates to using

more bandwidth and power to achieve that data rate in the underwater channel.

Although duty cycle reduces interference by not using the channel continuously, the
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Figure 4-10: Average transmission power of networks deployed randomly on a lxi km2

square. Network schemes operating at SNR = 10 dB and a lower bound for trans-
mission power (scheme 1) is presented. Model used considers k = 1.5, s = 0.5 and
w = 0 in/s.

combined effect with the increased transmission bandwidth and power causes more

interference for initial decrements on the value of 9. This is a transient effect, and it

has a breaking point for a small value of 0 when the probability of having interference

is small. As the value of 9 decreases the transmission power can be shown to increase.

This is an expected effect since the cost function is convex and the value of 0 is a

constant parameter to all links in this problem.

Figure 4-9 shows the results in continuous lines for the third scheme with differ-

ent SNR requirements. The figure presents the percentage of random deployments

that have at least one link suffering from severe interference. For very low SNR,

the assumption of no-interference is justified. However, even for SNR = -5 dB the

percentage of deployments with severe interference for a unicast connection increases

dramatically, especially when the number of nodes in the network increases. A similar

effect occurs when SNR = 0 dB. One way to reduce interference while having an SNR

requirement is to use a similar approach as is scheme (2), i.e., to have a transmission
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duty cycle in each of the links. Schemes (4) and (5) show an implementation using

an ALOHA MAC protocol, where every link has an associated duty cycle when it has

some data to transmit.

Let us compare the transmission power of scheme (4) and (5) to the lower bound

using both PSK and Gaussian signaling in a 1 x 1 km 2 . Figure 4-10 shows the average

transmission power for different number of nodes in the network, both active and

inactive, i.e., before determining the shortest path or solving the subgraph selection

problem, with a transmission power computed to obtain a burst SNR = 10 dB. The

average data rate for the different schemes is R ~ 1 kbps. This figure shows optimal

signaling (Gaussian signalling) and a PSK modulation, which illustrates that close to

6 dB in the gap between a PSK modulation and the lower bound is due to the choice

of the modulation. Notice that the gap between the average transmission power for

Gaussian signaling and the lower bound of R = 1 kbps in Figure 4-10 is about 11 dB

for scheme (4) and 13 dB for scheme (5). Also, it shows that this gap is maintained

as more nodes are deployed. Some part of the gap is related to the MAC protocol

used. Another is related to the 10 dB SNR requirement which is usually used for a

practical implementation.

Figure 4-11 compares transmission power for different data rates using Gaussian

signaling. The number of transmitted bits was kept constant, while the transmission

probability over each link was increased to achieve the desired rate. Note that trans-

mission power increases by 3 dB for scheme (4) while it increases by almost 5 dB for

scheme (5) when the data rate is increased from 1 kbps to 2 kbps, i.e., the gap be-

tween scheme (4) and (5) increases as data rate increases. This figure shows also that

the gap between schemes (4) and (5) is very low when the data rate is 0.2 kbps. Note

that an increase in data rate is related to an increase in the collision probability in the

ALOHA protocol. For the same setting, Figure 4-12 shows transmission energy for

both schemes. The energy required for transmitting at the chosen data rates remains

constant in the case of network coding, while it increases for routing when high data

rates are attempted. Multiple transmissions of one packet are the main cause of the

increased energy consumption for scheme (5), caused both by packet losses and long
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Figure 4-11: Average transmission power of networks deployed randomly on a lxi km2

square. Network schemes operating at SNR = 10 dB using Gaussian signaling. Model
used considers k = 1.5, s = 0.5 and w = 0 m/s.

delays in transmitting an ACK packet given the ALOHA MAC layer. While scheme

(4) transmits innovative packets at each transmission, scheme (5) tries to retransmit

the same packet if no ACK has been received. Consider the case of a long delay in

transmitting an ACK, i.e., the packet was correctly received but the ACK is trans-

mitted a long time after reception, scheme (5) can generate several transmissions of

the same data packet. This involves an additional energy consumption. For the same

number of transmissions, scheme (4) will transmit several innovative packets, which

are useful in decoding the information at the receiver.

These results illustrate that coding, subgraph selection and the eavesdropping

capabilities associated with network coding allow a better performance when the

collision probability increases. However, notice that when transmission rates are

low the benefits of network coding are less marked. This is explained by the fact

that an implicit ACK might or might not be received by an upstream node. If

it is not received, the node will keep transmiting innovative packets. This effect is

particularly evident when Gaussian signaling since only nodes in range of transmission
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Figure 4-12: Energy for transmission for networks deployed randomly on a 1x1 km 2

square. Network schemes operating at SNR = 10 dB using Gaussian signaling. Model

used considers k = 1.5, S = 0.5 and w = 0 m/s.

will correctly receive a packet. If we use a similar example as in Figure 4-7, node 1

will not receive any implicit ACK from node 2, and it will continue to transmit until

informed that all information was received at the sink node. Thus, an explicit ACK

procedure should be used if node deployments are likely to produce these situations,

especially if only one node is actively generating new data packets.
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Chapter 5

Capacity Scaling Laws for

Underwater Acoustic Networks

This chapter considers the most complex scenario in this study, that of arbitrarily

deployed networks with constantly active unicast connections and its relation to the

number of nodes in the network. In particular, we are interested in determining

the scaling of capacity given the size of the network, in terms of number of nodes

deployed.

The seminal work by Gupta and Kumar [66] studied wireless networks, modeled as

a set of n nodes that exchange information, with the aim of determining what amount

of information the source nodes can send to the destination as the number n grows.

The original results obtained for nodes deployed in a disk of unit area motivated

the study of capacity scaling laws in different scenarios, ranging from achievability

results in random deployments using percolation theory [67] or cooperation between

nodes [68], to the impact of node mobility on the capacity of the network, e.g., [69].

Reference [70] provides a good overview of the different assumptions and scaling laws

for radio wireless networks.

Existing capacity scaling laws for wireless radio networks correspond to scenarios

for which a(f) = 1, or a constant greater than one, and a > 2, e.g., [66], [67].

These results cannot be directly applied to underwater acoustic networks in which

the attenuation varies over the system bandwidth and a < 2. We study the scaling
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laws under a model that considers a water-filling argument to assess the minimal

transmission power and optimal transmission band as functions of the link distance

and desired data rate. In particular, we study the case of arbitrarily deployed networks

in a disk of unit area, and follow a similar procedure as in [66] to derive an upper

bound on the capacity. In this sense, we provide an extension of the work in [66]

under a more complicated power loss model.

We show that the amount of information that can be exchanged by each source-

destination pair in an underwater acoustic network goes to zero as the number of

nodes n goes to infinity. This occurs at least at a rate n-1/ae-wo(o(n-/)), where

WO represents the branch zero of the Lambert function [25]. We illustrate that this

throughput per source-destination pair has two different regions. For small n, the

throughput decreases very slowly as n increases. For large n, it decreases almost as

n-1/'. Thus, for large enough n, the throughput decreases more rapidly in underwater

networks than in typical radio networks, because of the difference in the path loss

exponent a.

5.1 Fixed Narrowband Model

Let us study the physical model of interference to obtain an upper bound on the

transport capacity for transmission in an arbitrarily chosen narrow band in an un-

derwater channel. The narrowband assumption allows us to consider the attenuation

as a constant over that band. Although we use similar assumptions in terms of node

deployment and connection set up to those in [66], the steps to derive the upper

bound change somewhat in order to accomodate a more complex path loss model

with different characteristics, e.g., 1 < a < 2 and a(f) > 1, instead of a > 2 and

a(f) = 1 considered in [66] for radio channels. In fact, we show that the upper bound

is expressed in terms of one of the branches of the Lambert function, which is an

implicit function.

We assume that the nodes are arbitrarily deployed in a disk of unit area, as in

Figure 5-1, that each node has an intended destination node, and that the requirement
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Figure 5-1: Network deployment scenario for the scaling laws of underwater acoustic
networks.

for successful reception at node j of a transmission from node i is

Pi(f)
A(IXi-Xj(i) f> (5.1)

N(f) + ZkETk:i A(IXk-Xj(i)If)

where Xi is the position of node i, X is the position of node j to which i is

transmitting, and T is the set of all nodes transmitting simultaneously in the same

transmission sub-band and time slot. We assume that all sub-bands are in the narrow

band [66], so that the attenuation is only dependent on the central frequency of the

narrow band. The above expression can also be writen as

Pi(f)
A(IXi Xj(i)I'f) > .(5.2)

N(f) + keB PkIf) - /3+1 (.

Note that the parameter f is kept to keep in mind the frequency dependence,

and to allow us to use these results in the following sections where we analyze more

complex settings. We consider that A is the throughput [bits/sec] of each node, the

network transports AnT bits over T seconds, and that the average distance between

source and destination of a bit is L. As in [66], we define the transport capacity as
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AnL bits-meters per second.

Let us define W = Af log2 (1 + 3) to be the transmission rate, where Af is the

bandwidth of the narrow band chosen for transmission. Since |Xk - X -- for

a disk of unit area, and a(f) > 1, Vf, the path loss is

< (
v iref )

a (f) 2/V -zl ref

where ya =

have that

a(f)2/,,. Using a similar procedure as in [66], from eq.

A(IXj - Xjtj) f) < +1 -/a P(f) .
-3 laefa(f)!ref Z Pk(f)

5.2 we

(5.4)

Let us sum over all transmitters i E T and use the definition of the path loss in

expression (4.1):

(5.5)

We define rA(h, b) = l(h, b)"a(f)(h'b), where l(h, b) represents the distance between

receiver and transmitter for the h-th hop of bit b, and H is defined as the number

of hops performed in T seconds, which can be bounded by H < W [66]. Summing

over all sub-bands and time slots and dividing both sides by H, we obtain

1 AnT h(b) 1 TI7~

(5.6)Z r(h, b) _<7 1 
V# H

b=1 h=1 /3 H

where h(b) represents the h-th hop of a bit b. Since the function rA( - l=a(f)' is

increasing and convex for I > 0, a > 1 and a(f) > 1, we have that

S e

1(h b) exp H inaf
AnT h(b)

l(h, b)
b=1 h=1

< (ln a(f))- H+WT
03H'

Let us define @ = (lna(f))"7' -Lii, and note that V) > 0. Noticing that the left
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A( Xk - Xj(i)|, f)
a(f)lref

(5.3)

ln a(f)
H

AnT h(b)

E
b=1 h=1

| Xj - Xj j))|"a(f)| -XM l < 70#+ 1



hand side of the above inequality is a Lambert function of the form W' exp W, which

is an increasing function when W > 0, is one of the key steps in our proof that are

different to the work in [66]. Hence,

In a(f) AnT h(b)

E If 1(h, b)
H

Wo (5.7)

where Wo(-) is the branch zero of the Lambert function, using the nomenclature of

[25]. This fact implies that

AnIL < $b1/a exp
- Tina(f)

Substituting for V@ in (5.8), we obtain

WO .
(5.8)

(5.9)- H 0-(

Since H is an increasing function for a > 1, and constant for a = 1, then H C' <

(Wn) . Another important step of our proof, different to [66], is to note that

Wo(.) is an increasing function. Hence, we have that

(aWo > Wo
a -

2ina(f)a(f)- v- (3+1 1/2l/)

a fi # 3 ni/a

Substituting these inequalities into expression (5.9), we obtain the scaling law:

AniL < DWnK exp -WO
<21na(f)

a

(1
(5.10)

where
21/a ( + 1)

<D = )

Since the zero-branch of the Lambert function satisfies Wo(x) > 0, Vx > 0, the

exponential term exp (-Wo (0 (n-1 /O))) has values between 0 and 1. Note that as

n -+ o, the exponential term in the scaling law goes to 1. This implies that the
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Figure 5-2: Upper bound on AL for an arbitrarily chosen narrow band and different
values of a(f). W= 1 bps, a = 1, /3 = 2, area = 1 km2 .

exponential term influences the scaling for small n, while for large enough n, the

upper bound is O(n

If we consider a(f) = 1, i.e., the same path loss model as in [66], and recall that

Wo(0) = 0, we have that

1 (20+2) 1/a

AnL < }Wna (5.11)

which is the original result of [66]. We have thus proved that the result in [66] is valid

for a > 1.

Figure 5-2 and Figure 5-3 illustrate the upper bound on AL for different values of

a(f) ranging from 1 to 10,000, which are characteristic of an underwater environment

at different frequencies with 1 in [km]. For example, a(f) = 1,000 corresponds to a

frequency of around 100 KHz. We have used a = 1 and a = 2 and the parameters

specified in the figure for Figure 5-2 and Figure 5-3, respectively. We also plot dashed

lines proportional to n-/a. As expected, as n becomes larger, the exponential term of

the upper bound becomes negligible, making the bound scale as O(n-l/a). However,
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Figure 5-3: Upper bound on AL for an arbitrarily chosen narrow band and different
values of a(f). W = 1 bps, ac = 2, 3 = 2, area = 1 km2 .

for small values of n, the bound begins at a common point for the different a(f) values,

and decays very slowly. Figure 5-2 and Figure 5-3 also illustrate that the value of

a(f) determines the transition between these two operating regions: the larger a(f),

the greater n has to be before transitioning. Of course, if we use a transmission

band with high a(f) each node will have to be able to transmit at higher power to

reach its destination. In the underwater channel, this also means that a higher center

frequency is required because a(f) is an increasing function of f.

Finally, Figure 5-2 and Figure 5-3 show that AL remains almost constant for n <

100 nodes, a(f) > 100 and a disk area of 1 km 2 , which corresponds to densities of up to

100 nodes per km 2 . Note that the expected density of nodes in an underwater network

is usually much lower given the current applications for which they are deployed, e.g.,

environmental measurements. Thus, AL is almost constant for all practical purposes.
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5.2 Low power - Narrowband Case

As mentioned in Chapter 4, one of the characteristics of the underwater acoustic

channel is that the optimal transmission band using the waterfilling principle depends

strongly on the distance of a link [47]. In particular, if the transmission power of a

node is very low, then nodes will optimally transmit in different bands corresponding

to different transmission distances. Thus, interference will come only from nodes

transmitting in the same band. We have derived an expression for the power under

these assumptions in Chapter 4. In order to assign disjoint transmission bands,

we divide the total transmission band of the system into non-overlapping bands of

width Af. We use fc(l) as the mapping between the transmission distance and the

corresponding transmission band for a low-power/narrow-band scenario. Thus, if a

node transmits to another node at a distance 1, we assign the transmission band

centered at the frequency fc(l) as in Figure 4-6.

The capacity analysis is similar to Section 5.1 if a(f) is replaced by a(fm) for

each of the bands, where fm is the central frequency of transmission band m. Note

that this analysis is inherently different to that in [66], which does not consider any

frequency dependence of the path loss model. Let us assume that each node is capable

of transmitting at AW bps in each band, where AW = Af log 2 (1+ p3), and Af is

the bandwidth of each non-overlapping band.

5.2.1 Multi-Node Hopping

Note that the definition of H changes slightly when we allow multi-node hopping. In

this case, H < TJF AWn - TWn where F is the set of sub-bands used by the network,2 2'

and W =|FIAW.

For each of the different bands, the analysis is as before up to eq. (5.5). At this

point, we define ya(fm) as -y for band m. Summing over all sub-bands and time

slots, we obtain

S E2E Xi - X "(i) f a(fm)XiXi(i)I < c(fm) (5.12)
sES mEF iEr mer
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where S is the set of time slots. We can use the fact that a(fm) ;> ami, where

amin= minmEr a(fm). In the underwater scenario, amin = a(fmin) because a(f) is an

increasing function of f. Defining rA(h, b, fmin) = l(h, b)aa(fmin)(hb) , and following

similar steps that lead to eq. (5.6) we get

1 AnT h(b) A3 + 1,WT

H Z r(h, b, fm in) < H H
b=1 h=1 mEr

Defining b = (ln a(fmin))" awr r 7mEa"Y(fm), we can use a similar procedure as

in the previous Section to show that

a-1 1/a1/

AnL H< ( #+1Wx Ya(fm)) ep -Wo(. (5.13)
T 13 mEr

Finally, using the inequality H Tn, we obtain

AnLs < a (fm) Wn cC exp (Wo (O (n-/).

Thus, the scaling law now becomes

AnL < GWn 1 exp -Wo (D2lna@fmin)
a n

w h e r e2 1 / a 0 + 1 1 / c 1 2 /

- a (f m)"

The scaling law is similar in structure to the one obtained in Section 5.1. However,

the constant D depends on the average of a function of the absorption coefficients at

fm, Vm E F instead of a particular value. Again, if a(f) = 1, Vf the result reduces to

that of [66].
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5.2.2 Direct Transmissions

If we constrain our system to perform direct transmissions only (single-hop), using

the fact that there is an assignment of frequency bands in terms of the distance, we

can consider that h(b) = 1, Vb, i.e., only one hop. Given the distance-band separation

property mentioned in previous sections, the problem can be thought of as solving for

several networks that lie on top of each other, in different layers with no cross-layer

interference. Membership to the layers is based on the distance of the connection.

In other words, each transmission band m will have nm transmitters, where n =

ZmEr nm constitutes the total number of nodes in the network since each transmitter

has only one intended destination.

These facts cause a different capacity scaling for each of the transmission bands,

i.e., the scaling for each transmission band will have the form of expression (5.10)

with LW instead of W and nm instead of n to obtain the scaling for band m.

5.3 High Power - Wide Band Case

In this scenario, nodes have enough power to transmit in a wide band B, which

implies that the absorption cannot be considered to be constant over the band. The

band B is again chosen using a waterfilling argument. The SINR requirement can

now depend on the frequency, that is

Pi(f)
A(|Xi--Xgi)1,f) PkY > 13(f) . (5.14)

N(f) + ZkeikAi A(IXk-Xj(i)I1f)

We define W as the data rate over the entire band, computed as

W = j log2(1 + #(f))df . (5.15)

If we assign a transmission rate to every sub-band df of dW = log 2 (1 + #(f))df, the

analysis for each frequency is similar as in Section IV. Letting Af - 0, renaming
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Af as df and replacing the sums by integrals, we have that

1 AnT h(b)

H ZZ Wr^(hb,fmin) <
b=1 h=1

= T
H (f)

T f 3( ,(f dW

) log2(1 + 3(f))df (5.16)

where fmin = arg minf a(f) and H can be shown to have the bound H <Tn using

the definition of W (eq. (5.15)). Following the procedure of Section IV, we show that

the scaling law for the high power - wide band case has the form

AniL < eWnO' exp -woE)2ln a(fmin)
-Wo 8

where

1/a

21/a
8 = - J (/3(f) +

B

1) a(f)7N log2 (1 + /(f))
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Chapter 6

Practical Considerations

After discussing different network coding scenarios, we must answer the question

of wether this results are relevant and applicable in practice. There are two main

objections to the use of random linear network coding. The first is the perception

that very large field sizes are necessary in order to achieve good performance. The

use Galois fields with a larger field size requires more complex basic operations, e.g.,

multiplication, in order to code/decode. Other fountain codes typically operate with

binary symbols, i.e., a field size of 2.

The second objection is that the decoding complexity of random network coding,

which is O(M 3 ) for decoding a batch of M data packets, is larger than other foun-

tain codes. For example, Raptor codes requires 0(M log (1/E)) operations to recover

the original data with M(1 + e) packets being received [41], and LT codes require

0(k log (k/)) operations to decode from M + 0(v/Mlog 2 (M/6)) coded packets with

probability 1 - 6 [40].

We try to address these objections in this chapter. We deal first with the problem

of field size, showing that the use of a small field size causes very little degradation

on performance from a receiver's perspective, especially if the number of data packets

M to be combined is moderately large. Even if a GF(2) is used, i.e., a Galois field

of size 2, which only requires XOR operations in orther to code the data packets, a

receiver at most needs M + 2 coded packets in average in order to decode. Note that

at least M coded packets have to be received in order to decode the original M data
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packets.

We then deal with the problem of decoding complexity. In particular, we propose

the use of systematic random linear network coding as an approach that allows us to

reduce decoding complexity and rely on small field sizes, while maintaining almost

the same performance as a random linear network coding approach that uses large

field sizes. Finally, we illustrate these results through an example that adapts the

problem of coding in large latency TDD channels, studied in Chapter 2.

6.1 Effect of Field Size

Let us consider the effect of the field size from a receiver's perspective. This allows us

to model the effect of the field size separately from other effects and to avoid making

many assumptions about the channel or network topology. We simply assume that M

data packets are combined using random linear network coding and that the network

also uses random linear network coding. We also assume that the coded packets

traverse a channel/network in which coded packets can be lost (suffer erasures) before

being received. However, we do not make any other assumptions about the nature of

the channel/network. For example, it is not necessary the event of loosing a packet

is independent from the event of loosing others. In this sense, our modelling of the

effect of the field size is useful to any random linear network coding network in which

packet losses occur.

Using random linear network coding arguments, we can model the process of

decoding M packets from the random linear coded packets received at a node as a

Markov chain, as in Figure 6-1. A transition occurs when a new coded packet is

successfully received at a node, while the states in the Markvo chain represent how

many dofs are needed in order to decode all M data packets. Note that the arrival of

a new coded packet can cause one of two effects: a self-transition, because the coded

packet provides a combination of the original packets that is linearly dependent on the

combinations that have been previously received at the receiver, or a transition to the

next state, when the new coded packet provides an independent linear combination
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Figure 6-1: Markov chain of the degrees of freedom required to decode. Transitions
occur when a new coded packet is successfully received by a node.

(a new dof).

The transition probability matrix for this problem is

P -

q-M _ q-M

0 q-M+l

0

1_-M+l

0

0

0

0

... q -1

-- 0

(6.1)

Let us provide a full characterization of this problem by obtaining the moment

generating function of the number of coded packets that need to be received before

successfully decoding the information. We state this result in the following lemma.

Lemma 5. The moment generating function Mn(s) of the number of coded pack-

ets that need to be received before successfully decoding all the data when n linearly

independent coded packets are needed to decode is given by

es
Ma~) -1 - PF_,ses

with Mo(s) = 1

Proof. It follows the same steps as the proof of Lemma 1.

Now that we have a full characterization of the problem, let us bound the average

number of coded packets that need to be received before successfully decoding the
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M packets in order to gain some insight as to what to expect in terms of average

performance. Clearly, at least M coded packets must be received before being able to

decode. Thus, a trivial lower bound is M. The upper bound is given by the following

lemma.

Lemma 6. If M data packets are encoded using random linear network coding with

a field size q, then the mean number of coded packets that have to be received before

completely decoding the original packets is upper bounded by

min M , M+ 1+ qM+l (6.2)q - q -1

Proof. Let us define the minimum number of coded packets received to decode as Nc.

Then E[Nc] = E M

Since q-k < q for q > 2 and k > 1, then E[Nc] = M q which shows

the first bound, proved in Reference [39].

The second bound comes from

M M-1

E[N] = M + M + Z q (6.3)
k=1 k=O

= M + = M + 1 + (6.4)
q-1 q-1

where we have used the fact that qk - 1 > qk-1 for k> 1 and q 2. E

One important conclusion of this Lemma is that E[Nc] < M + 2, Vq > 2, i.e., on

average the number of coded packets needed to decode the M original packets will

be between M and M + 2 for any field size. Note that, if M >> 2, we expect that a

scheme using q = 2 and one using larger q will have a small difference in performance.

Figure 6-2 illustrates the upper and lower bounds for a wide range of field sizes.

It also shows that the upper bound E[Nc] < Mqq 1 becomes the dominant bound

for large q, while the E[Nc] M + 1 + _--M +1 is the dominant bound for small q.q-1

Finally, Lemma 3 shows that the new bound on E[Nc], i.e., E[Nc] < M+ 1+ l q ,
q-1

will be the dominant bound up to a field size q that increases as M increases.
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Figure 6-2: Upper and Lower bounds on the mean number of coded packets needed

at the receiver in order to decode versus the field size q.

Lemma 7. Exists q* for which M q M + 1 + _-q + Vq > q*, M 1. q* scales

as 0(M).

Proof. Since both bounds are decreasing functions and limq,, Mq = M and

limq,oo M + 1 + 1 _-qM  - M + 1 q* exists. Note that M + 1 + _- E
q-1 q-1

[M + 1, M + 2], Vq > 2. Thus, the bounds must cross in this region. Let us con-

sider a E [1, 2] and find q that satisfies M qc, = M + a, i.e., qa = M/a + 1. Thus,

q2 = M/2 + 1 < q* < M + 1 = qi, which concludes the proof. I

6.2 Systematic Network Coding: Benefits in De-

coding Complexity

Systematic network coding consist of sending the original packets initially, and trans-

mitting random linear combinations of the packets in subsequent transmissions. This

is an idea that has been considered in previous work. Reference [42] considers the im-

plementation of systematic and random linear network coding on battery constrained
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mobile devices with low computational capabilities using a field size of 2. Refer-

ence [43] uses systematic network coding as a MAC layer mechanism for WiMAX,

called MAC layer Systematic Network Coding (MSNC), which transmits the packets

once uncoded, and employs random network coding for retransmissions. The authors

showed that it achieves the optimum performance for delay sensitive applications

while achieving the same overhead level as an equivalent MAC layer random network

coding scheme [44]. Reference [45] proposes variants of the systematic network cod-

ing idea for online applications, showing that they are both throughput optimal and

have better decoding delay performance than other online network coding approaches.

However, these references have not fully characterized and modelled the effects on the

decoding complexity of systematic network coding.

We study the gains on average decoding complexity of using systematic network

coding as an alternative to pure random linear network coding. Although we focus

our analysis on the case of an erasure channel in which packets can suffer erasures

independently from other packets (IID Bernoulli with parameter Pe), the results

apply to more general networks which can be translated into an equivalent erasure

channel. Also, the techniques and mechanisms used to derive the average decoding

complexity results can be extended to characterize the case of time-dependent erasure

channels.

6.2.1 Model

Systematic network coding is used to transmit the information reliably. Initially, the

original packets are transmitted. Subsequente transmissions consist of random linear

combinations of the original packets. Random linear coded packets are transmitted

until the receiver has enough independent linear combinations in order to decode

the original packets. We assume a packet erasure channel where erasures are IID

Bernoulli with parameter Pe.

We also assume that the decoder can recognize uncoded packets and use this

knowledge to speed up the decoding process. Note that, in vector form, each packet

CP, coded or not, can be expressed as a linear combination of the original packets
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as CP = [ajlaj 2 ...ajM]P1--PM] T where aji's are the random linear coefficients and

Pi's are the original data packets. Clearly an original packet P can be represented

as [..010..][P1..PjPj j+l..PM T .

It can be shown that if a receiver has D < M uncoded packets, it can decode

the remaining M - D coded packets in O((M - D) 3 ) operations if it uses Gaussian

elimination. The decoding procedure requires performing Gaussian elimination in a

matrix that can be reordered as

1 0 0 0

0 1 0 0

[CP3]= 0 0 1 - 0

a(D+1)1 a(D+1)2 a(D+1)D a(D+1)M

aM1 aM2 aMD aMM

where [CP] constitutes the vector of (coded) packets received, P' is the vector of

original packets in the appropriate order to have the adequate matrix structure.

Note that the uncoded packets will be used to perform a forward elimination only

in the coded packets that are received and not in the other uncoded packets. Further-

more, the operation will be restricted to a single column in the matrix corresponding

to the equivalent uncoded packet, i.e., no operations have to be performed for the

columns that are known to be zero in the uncoded packet. Finally, no backward

substitution step is needed for the uncoded packets.

6.2.2 Decoding Complexity

Let us compute the average decoding complexity of using systematic network coding.

Considering the characteristics of the channel, we can formulate the following Lemma.

Lemma 8. The average number of operations required to decode using Gaussian elim-
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ination on a full rank matrix when systematic network coding is used to transmit M

original data packets where each transmitted coded packet undergoes erasures that are

IID Bernoulli with parameter Pe, grows as O(M 3 Pe3 ).

Proof. Note that the number of uncoded packets D that are received depends only

on the channel and the number of original data packets M that are transmitted,

and it is given by a binomial distribution with probability Pe of a packet being

erased. Thus, E[D] = M(1 - Pe), E[D 2] = (1 - Pe)M + (1 - Pe)2M(M - 1), and

E[D 3 ] - (1 - Pe)M + 3(1 - Pe)2M(M - 1) + (1 - Pe)3M(M - 1)(M - 2) which are

necessary for the computation of the average number of operations.

Assuming that the matrix of coefficients is full rank, and that the total number of

operations of Gaussian elimination is given by An 3 + Bn 2 + Cn, for some constants

A, B, C, for a procedure on an n x n matrix. The number of operations required

to decode the M original data packets is given by two effects: 1) elimination of

contribution of uncoded packets in the linear combinations of coded packets, which

requires A 1 (M - D)D operations, where A1 is a constant, and 2) a full Gaussian

elimination in the remaining (M - D) x (M - D) matrix, which requires A(M - D) 3 +

B(M - D) 2 + C(M - D) operations. Then,

E[A 1 (M - D)D] = (A1Pe(1 - Pe))(M 2 - M) (6.5)

and

E[A(M - D) 3 + B(M - D) 2 + C(M - D)] = A(MPe)3 +

(3A + B - 3APe)(MPe)2 + (A - 3APe + 2APe2 + B - BPe + C)(MPe).(6.6)

The average number of operations comes from adding these two terms, which is

O(Pe3M 3).

This result shows that systematic network coding allows us to reduce computa-

tional complexity by a factor of Pe3 on average with respect to pure random linear

network coding. Note that decoding random linear network coded packets using
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Gaussian elimination on a full rank matrix takes O(M 3 ) operations. This can be a

considerably large value, e.g., in a channel with Pe = 0.1 on average we will require

1000 times fewer operations in order to decode.

Let us consider the case in which Gaussian elimination is used not just to decode

the information but also to determine if a newly received coded packet is useful, i.e.,

linearly independent of the information already at a receiver. As before, we assume

that no decoding operations are performed when uncoded packets are received. If

only D out of M uncoded packets are received, all the remaining packets will be

linear combinations of the original packets. Let us consider the particular case of

multiplication operations, although only small adjustments are necessary to consider

the case of additions. The number of multiplication operations to determine if a

coded packet is linearly independent (and stored) or if it should be discarded is given

by
/3-D

D (1 + K)+ 1{>D} (M - D - u + 1 + K), (6.7)
U=1

where /3 indicates the number of independent linear combinations previously received,

K represents the size of the data in the packet in number of symbols of size log2 q bits,

and 1{ss} is 1 when s E S and zero otherwise. The following Lemma shows that our

previous result holds even when this Gaussian elimination procedure is performed to

determine if coded packets constitute new dofs, regardless of the field size q.

Lemma 9. The average number of operations required to decode, when systematic

network coding is used and Gaussian elimination is performed on every new packet

to determine linear independence, is upper bounded by a function that is O(M 3 Pe3 ),

regardless of the field size q, when the erasures are IID Bernoulli with parameter Pe.

Proof. We shall prove for the case of multiplication operations (# Mult). Only small

changes are necessary for the case of addition operations, and they are related to

finding an equivalent expression to expression (6.7). We can use the Markov Chain

model that considers the effect of field size to solve this problem. The number of

operations required to process a newly received packet depends on whether the packet

is uncoded (no operations) or not, and how many uncoded packets were received, say
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D, and how many coded packets were previously received, say # - D. This number of

operations could be thought of as the time or penaly for a transition when the system

is in a particular state. In order to upper bound the average number of operations,

let us first consider the case in which D uncoded packets are received, i.e.,

E[# Mult|D] =Z
M

D Y+K+sED -1 1--rn

+(-K-1/2) Em-D-1 m-m +(-1/2) E_-D-1 rn2

(6.8)

where K = - (2M - D + 2K + 1) + M 2 /2 + MK + M/2, and the q- m factors come

from a random linear network coding argument.

We have shown in Section 6.1 that Em=1 m 1 X + 2 for any integer X > 0

and q > 2. Using similar manipulations, we can show that EM-1 1 _-m (M -

D - 1)(M - D)/2+4. Finally, EM-D- 1 im 2 1 in2, which is a well known

series.

Let us compute E[# Mult] = Ed E[# MultId]P(D = d), using the fact that

P(D = d) is characterized by a binomial distribution. After some manipulations, it

can be shown that E[# Mult] = M 3 Pes/3 + o(M 3 ). The proof concludes by noting

that the operations related to the backward substitution step in Gaussian elimination

grow as O(M 2pe 2) and are performed only once after enough dofs have been received,

regarless of the field size q.

6.3 An Example of Systematic Network Coding in

TDD channels

We study the case of one node transmitting information to a single receiver as an

example to illustrate the benefits of systematic network coding and the use of the

model for the effect of field size into a previously discussed problem. Then, our main

contribution is to include the effect of systematic network coding and the effect of the

field size into the transition probabilities in the problem of a link discussed in Section
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2. We present an overview of the scheme before starting our study of the transition

probabilities.

Similarly as in Section 2, the sender can transmit packets back-to-back before

stopping to wait for an ACK packet from each receiver. However, in this work we

consider that in the first transmission the system will transmit back-to-back all M

original packets first without coding followed by random linear coded packets. Ev-

ery ACK packet returns the number of degrees of freedom (dof) that a particular

receiver still requires to decode successfully the M original data packets. Note that

the uncoded packets represent a dof with a particular structure.

The transmission process starts with M data packets being encoded into N, > M

packets, M original data packets followed by N, - M random linear coded packets, and

transmitted to the receiver. If all M packets are decoded successfully by the receiver,

the process is completed. Otherwise, the receiver sends an ACK packet that informs

the transmitter how many dofs are missing, say i. At this point, the transmitter sends

Ni coded packets. The process is repeated until the M data packets are successfully

decoded. As in previous work, we are interested in the optimal number Ni of coded

packets to be transmitted back-to-back in order to minimize a specific metric, e.g.,

mean completion time.

The process can be modelled as a Markov Chain where we have an initial 'sys-

tematic' state (State S in Figure 6-3) which is the starting point of the system. This

state is only visited once to represent the fact that uncoded packets are only sent

during the first transmission. The remaining states represent the knowledge of the

sender in terms of the number of dofs that the receiver needs in order to decode.

6.3.1 Transition Probabilities

Let us compute the transition probabilities of the Markov chain in Figure 2-5. The

transition probabilities from state i to state i' of the Markov chain in Figure 2-5 are

given by

= P (x(n)=i'Ix(n-1)=i) (6.9)
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where X(n) is the number of dof required at the receiver at the end of transmission

n. The previous state i determines Ni, the number of coded data packets sent by the

transmitter given that i dofs are required at the receiver. Let us study in detail the

transition probabilities Pii. First, we consider the transitions from the systematic

state S to all other states. Note that there is no self-transition to S. The transition

probability to go from state S to state i is given by the probability of receiving M - i

dofs given that N, coded packets were sent and the first M packets are uncoded, i.e.,

Ps-i = P (M-ils) = E P (M-iij uncoded,S) P (j uncodedjS) (6.10)

where P (M-ils) indicates the probability that M - i dofs are correctly received, given

that the system is in state S,

P (j uncodedIS) =A) (1 - Pe)iPeM- (6.11)

indicates the probability of j uncoded data packets have been received given that the

system is in state S, and

P (M-ilj uncoded,S) = P (M-i-j coded|S)

= P N[-M M-i-j codedlS,I received] P [11s] (6.12)

constitutes the probability that M - i dofs are correctly received, given that the

system is in state S and j uncoded packets have been received, and it is equivalent

to the probability of M - i - j coded packets being received given that the system is

in state S, P (M-i-i codediS). Note that

P [1ls] = (1 (1 - Pe)PeNsM-3)

constitutes the probability of I coded packets being received, but with some proba-

bility of being linearly dependent of the information at the receiver due to the effect

of the field size. Then, P [M-i-j codedlS,l received] can be found by computing P1, using
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Figure 6-3: Makov chain for systematic network coding TDD scheme.

the transition probability matrix Pq computed in Section 6.1, and searching in the

appropriate column and row corresponding to starting state S and end state M - i-j.

Let us now consider the transition probabilities starting from states other than

the systematic state S. We assume that Ni > i, which means that there is some

probability of transitioning from any i to i' = 0. For i > i' we have that

.= (1 -- Pack) max{ii-i'} P [i'lik] P [kli]

where k represents the number of coded packets that have been received, i.e., that

have not been erased when going through the channel.

Note that P [i-li,k] represents the probability of starting at state i in the field size

Markov Chain and transitioning to state i' in k transitions or hops. This can be found

by computing Pk, and searching in the appropriate column and row corresponding

to starting state i and end state i'. For the case of i = i' > 0,

Pi-i = (1 - Peack) [z No P Iili,k] P [kli] + Peack

and that P0 , 0 = 1. Finally, note that

P [kli] = (1 - Pe)PeNi-k (614)

which completes the characterization of the problem.
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6.3.2 Mean Completion Time

The mean time for completing the transmission of the M data packets to the receiver

is again the constitutes the expected time of absorption, i.e., the time to reach state

0 for the first time, given that the initial state is S. If we define T as the mean

completion time when the system is in state i, then we are interested in determining

Ts.

We can define T7 as the time it takes to transmit Ni coded data packets and receive

the ACK packets from the different receivers. It is easy to show that T' = NiTp + T",

where T combines the effect of the propagation delay and the duration of the ACK

packet.

The mean completion time when the system is in state i is given by

T = T ' + is jT

by exploiting the structure of the Markov Chain.

Our objective is to minimize the value of the expected transmission time Ts, that

is

min TM = min(TS+ZM Ps-i minN,,..,N 1 Ts)
NS,NM,..,N1 Ns

where T' = NiTp + T. Similarly to the result in Chapter 2, regardless of the assump-

tion on Ni, the problem of minimizing Ts in terms of the variables N,, NM, .., N1

can be solved iteratively. First, we compute minN1 T1 , then use this results in the

computation of minN2 ,Ni T2, and so on.

As an important remark, note that if we were interested in obtaining the mean

completion time of our random linear network coding of Chapter 2 with the effect of

field size, we could use the analysis as is. We would only need to optimize for the value

TM instead of Ts. Thus, this analysis has solved the problem for both systematic and

purely random linear network coding taking into account the effect of field size.

Finally, note that if the values of NM, .., N were previously computed for the case
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Figure 6-4: Mean completion time for the TDD scheme with different M and field
sizes q = 2 and q = 1048576, for g = 1 and g = 20, respectively. We use the following
parameters R = 1.5 Mbps, h = 80 bits, nack = 100 bits.

of purely random linear network coding with the effect of field size, we could use these

values and only focus on computing N,.

6.4 Numerical Results

This section provides numerical results that compare the performance of our network

coding scheme in TDD channels, considering the effect of different field size. We

consider a GEO satellite setting with a propagation time Tp,,o, = 125 ms, and data

packets of size n = 10, 000 bits.

We compare performance of a random linear network coding scheme in terms of

mean completion time under different packet erasure probabilities. We show that

using q = 2 shows a small degradation in performance with respect to higher field

sizes. Also, the gap in performance between q = 2 and higher q reduces as M

increases, as expected. Finally, if the performance of q = 2 is not sufficiently good

for small M, we can get very close to the performance of high field sizes with small
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Figure 6-5: Mean completion time for the TDD scheme with a single receiver with
different field sizes q = 29. We use the following parameters R = 1.5 Mbps, h =

80 bits, nack = 100 bits, M = 10.

increases of the field size, e.g., q = 4 or q = 8.

Also, we compare performance of our systematic network coding scheme to that

of random linear network coding (RLNC) schemes in order to show that using the

systematic network coding with field size q = 2, i.e., XORs for the coded packets,

has very little or no degradation in performance with respect to RLNC with high

field size. This means that using systematic network coding allows us to reduce the

complexity of the operations (only performing XORs) and reducing the total number

of operations, in average by a factor of Pes, while maintaining close to the same

performance to the high field size RLNC proposed in previous work.

Figure 6-4 shows the mean completion time for the TDD scheme for a single

receiver for q = 2 and q = 220 for various block sizes M and a wide range of packet

erasure probabilities. Figure 6-4 illustrates that the gap between field sizes q = 2 and

q = 220 is very small. For M = 5 the gap is smaller than 0.6 dB for the range of

packet erasure probabilities considered, which ranges from 10-4 to 0.8. This means

that the completion time is increased by at most 15 % on average for M = 5. For
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Figure 6-6: Mean completion time for the TDD scheme with M = 5. We use the
following parameters R = 1.5 Mbps, h = 80 bits, nack = 100 bits, M = 5 packets

M = 20 and M = 30 we observe that the gap reduces to less than 0.4 dB and

0.28 dB, respectively. In other words, the completion time is increased on average

by at most 10 % and 6.6 %, respectively. The importance of this result is two-fold.

First, the degradation in performance due to the use of q = 2 is very small, even for

small values of M where the effect of small field size is more noticeable. Also, the

degradation in performance reduces as M, the number of data packets that are being

randomly combined, increases. This effect was predicted by the result in Lemma 2.

Since we expect to need between M and M + 2 coded packets on average in order

to decode, then the effect of the additional coded packets is clearly reduced if M

increases because proportionally more resources are being used to transmit the first

M coded packets than the additional coded packets needed to finally decode.

Second, we can rely on considerably simpler coders and decoders. Note that for

q = 2, random linear network coding is basically performing an XOR of those packets

that were chosen from the pool of M original packets. Note that each packet has

a probability of 1/2 to be chosen to be XORed in each coded packet that is being
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generated. Also, the overhead on the coded packet is reduced because the coefficient

size g = 1 bit. For large enough M and n fixed, q = 2 could outperform cases where

q is larger than 2 because larger q and larger M involve an increased overhead in the

coded packet, i.e., cases in which we are using more resources sending information

about coefficients than sending the actual information.

Figure 6-5 illustrates that if M is small, e.g., M = 10 in the figure, and the

performance of q = 2 is insufficient, we can get considerable improvements with small

field sizes. Figure 6-5 considers a single receiver and the cases of q = 4 and q = 8,

which correspond to g = 2 and g = 3 bits, and compares it to the performance of

q = 23, i.e., coefficients of g = 30 bits. Note that q = 8 is extremely close to the

performance of q = 230, especially for Pe > 0.01 which is a range of common Pe

values for wireless systems. We observe that for Pe > 0.1, the performance of q = 4

is essentially the same to that of our scheme using a field size of q = 230. Note that for

a GEO satellite example the range of Pe > 0.1 are typical values. Thus, for wireless

systems we could expect similar performance if we use small or large field sizes, even

if M is not too large.

Figure 6-6 shows that the performance of systematic network coding is essentially

the same as RLNC with a high field size for moderate values of Pe and the difference

in performance at high Pe is very small. Figure 6-6 also shows the performance of

RLNC with field size q = 2. The performance in terms of mean completion time for

RLNC with q = 2 constitutes an upper bound to the mean completion time of the

systematic network coding scheme with the same field size q = 2. Since an increase

in M causes a reduction in the performance gap between RLNC with large field size

and with q = 2, the difference in performance between our systematic approach and

RLNC with high field sizes should also decrease as the number of original packets M

increases.
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Chapter 7

Conclusions

This work analyzes different scenarios of networks in delay challenged environments

and the role of network coding as a means to provide viable and meaningful solutions

to these scenarios. Chapter 2 provides a study of random linear network coding

schemes for reliable communications in large latency time-division duplexing channels.

We analyze three main cases of interest: a link, one-to-all broadcast, and all-to-all

broadcast.

For the case of a link we provide a full characterization of the problem by providing

a recursive expression for the moment generating function. This moment generating

function is valid for both the completion time and energy using the appropriate sub-

stitutions. We present an analysis and numerical results that show that transmitting

the optimal number of coded data packets sent before stopping to listen for an ACK

in terms of mean completion time, provides a good trade-off between energy con-

sumption and completion time. In fact, its performance in completion time is close

to the optimal full duplex network coding scheme.

We also provide a queueing model for random linear network coding scheme for

time division duplexing channels with Poisson arrivals. The analysis considers that

the size of the batch that is sent using random linear coding can be in a range of

values, say (m, K). At the time of completing service to a batch, if the queue size

is below the minimum allowable value of the batch m, the system will wait until the

queue size becomes m. If the queue size is in the range of batch sizes, all data packets
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are serviced at that time. Finally, if the queue size is greater than the maximum

allowable batch size K, the first K packets of the queue are serviced. We have used

this analysis to study the mean queue size of the system and to choose the (m, K)

pair that minimizes it under different A. The analysis is useful if we are interested in

choosing the optimal (m, K) given a different objective function.

Numerical results suggest that the mean queue size shows greater dependence on

the value of minimum batch size m than on the value of the maximum batch size

K for low values of A. In general, K determines the maximum serviceable A of the

system, while m should be allowed to have small values. In our examples, m = 1

provided the best performance in terms of minimizing the mean queue size. Also,

numerical results suggests that having a fixed batch size, i.e., m = K, is not the

optimal configuration in general.

Future research should consider extensions of the principles proposed for one link

to the general problem of wireless networks. These extensions are possible within the

framework of random linear network coding. Also, future research should consider a

queueing model for online network coding d la Sundararajan et al [8] in the case of

large latency time-division duplexing channels, e.g., studying the delay for a packet

to be "seen" (in the framework of [8]) and the time between decoding packets after

being "seen".

For the case of one-to-all broadcast, we provide an extension of the principles

studied in a link. Due to the exponentially increasing number of states in our Markov

chain model, which increases the computation time of the optimal number of coded

packets to be transmitted before stopping, we provide simple heuristics to compute

this number of coded packets to be sent before stopping. This heuristic computation

achieves close to optimal performance with the advantage of a considerable reduction

in the search time. Numerical results show that our coding scheme outperforms a

Round Robin broadcast scheme in an TDD channel. More importantly, for high

packet erasures, our coding scheme for TDD outperforms a RR scheme operating in

a full duplex channel.

From a practical implementation perspective, we provided a general model of
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the effect of field size for random linear network coding networks that transmit a

finite number of original data packets and for channels/networks that have packet

losses. We provided bounds on E[Nc], the mean number of coded packets that a re-

ceiver needs to receive successfully in order to decode the information. These bounds

are valid for random linear network coding in general. A trivial lower bound is

that E[N] > M. We prove an insightful upper bound, which states that E[Nc] <

min {MqI, M + 1 + 1-q . This bound implies that E[Ne] can become arbi-

trarily close to M as the field size q increases, but more importantly, we showed that

E[N] < M + 2 for any q > 2. This means that as M increases, the effect of the

additional coded packets that have to be sent due to a "bad" random selection of the

coefficients, will be negligible. A "bad" random selection is a choice of coefficients

that does not provide innovative information.

We present numerical results that illustrate that the gap between using q = 2

and larger values of q is small, specially when M is large. Note that we can rely on

considerably simpler coders and decoders. For q = 2, random linear network coding

is basically performing an XOR of those packets that were chosen from the pool of M

original packets, each packet is chosen to be combined with probability 1/2. Finally,

if the performance of q = 2 is not sufficiently good for small M, we can get very close

to the performance of high field sizes with small increases of the field size, e.g., q = 4

or q = 8.

We have shown that there is a considerable reduction in computational complexity

by using systematic network coding. The average number of operations required to

decode using systematic network coding in an IID Bernoulli packet erasure channel

with parameter Pe is reduced by a factor of Pe3 with respect to using a random linear

network coding approach with the same field size. These results apply not only to the

case of a point-to-point link or broadcast system, but also to any network that uses

systematic network coding. The key problem there will be to identify the equivalent

Pe of such a system. As an example, a daisy chain that preserves the systematic

structure of the code and that shows an erasure probability of Pei in link i, will have

an equivalent Pe = 1 - Il 2 (1 - Pei).
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We present numerical results that illustrate that systematic network coding using

XORs can provide almost the same performance as the random linear network coding

procedure that uses large field sizes. This fact implies that the complexity of the

operations at both encoder and decoder can be considerably reduced with small or

no degradation in performance.

Future research should consider extending the use of systematic network coding

to more general networks, where one of the key design challenges is to determine

what nodes and through which links there should be pure coding and which links can

maintain a systematic structure.

Chapter 3 presents an analysis and numerical results that show that choosing a

schedule based on its impact on the network a each time slot provides considerably

better performance than schemes that choose schedules giving priority to nodes that

know the most information. In fact, even for small networks and moderate number

of packets to transmit we can expect large gains in terms of completion time.

Future research will consider an extension of the principles proposed in this work

to the case of a random arrivals of new packets to the system, e.g., from a base station,

that have to be disseminated to all nodes in the network. One metric of interest is the

throughput performance of our system. More importantly, future work will focus on

using the principles proposed in this paper to provide distributed MAC protocols that

improve performance of practical systems. In particular, we will consider distributed

protocols that provide a higher priority to a node based on the number of neighbors

that require some of the information of that node. One of the main challenges will be

to develop a protocol that can allow nodes to quickly and efficiently gather information

of the degrees of freedom that their neighbors have or require, without incurring into

much overhead.

Chapter 4 presented complete and approximate models of the underwater acoustic

channel under a Gaussian noise assumption and used them to propose a network cod-

ing based lower bound on transmission power for multicast connections in underwater

networks. This lower bound was used to determine the gap of different medium access

protocols and network schemes for some multicast rate in underwater networks. This
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comparison is carried out for several routing and network coding schemes.

Network coding with implicit acknowledgements has better performance than

routing with link-by-link ACK in terms of transmission power, especially when the

probability of collision is increased. The gap between routing with link-by-link ACK

and network coding with implicit ACK in terms of transmission power was shown to

increase as the transmission probability increased, which is closely related to the prob-

ability of packet collision. However, study of a network coding scheme with an explicit

ACK should be considered to improve performance. Also, network coding with im-

plicit acknowledgement compared to common rateless network coding schemes allows

to save resources, e.g., memory required in the nodes, and rate adaptation following

a similar analysis as in [621. Also, there has been previous work on network coding

based Ad-Hoc protocols, such as CODECAST [61], which could be extended to use

implicit acknowledgements, and adapted to the underwater acoustic channel.

Chapter 5, shows that the amount of information that can be exchanged by each

source-destination pair in an underwater acoustic network goes to zero as the number

of nodes n goes to infinity, at least at a rate n-1/ae-wo(O(n-/)). This rule is valid

for the different scenarios in general, requiring only changes in the scaling constants.

The throughput per source-destination pair has two different regions. For small n, the

throughput decreases very slowly as n increases. For large n, it decreases as n-1/a.

Given that 1 < a < 2 in an underwater acoustic channel, the available throughput

for large n decays more rapidly than in typical radio wireless networks. However,

typical node densities in underwater networks correspond to the small n regime. In

a narrowband example with values of a(f) characteristic of an underwater channel,

we showed that the upper bound on the throughput remains almost constant for

densities up to 100 nodes per km2 . Most underwater networks have node densities in

this range owing to the applications for which they are deployed.

Finally, we have identified some important characteristics of the underwater acous-

tic channel useful for future studies. For example, we could allow cooperation between

nodes d la Ozgur et al [68] taking advantage of the distance-band separation property

of the underwater channel. Namely, instead of performing time division between long
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and short transmissions, we could simply transmit in different bands that do not in-

terfere with one another. This is important because acoustic transmissions have long

propagation delays due to the speed of sound underwater (-1500 m/s), which reduces

the usefulness of a time-division scheme. Another important extension is to consider

scaling the frequency of transmission with the number of nodes, i.e., increasing the

carrier frequency as the number of nodes increases, in order to take advantage of the

increasing absorption coefficient a(f).

On a more general note, the problem of coding in delay challenged networks

warrants further study. In this thesis, we have identified several important facets of it,

e.g., high latency, limited feedback, half-duplex constraints on the nodes, application

requirements, in a variety of environments and conditions. However, many other

interesting environments and applications exist where coding for delay can be relevant.

One interesting example is to consider that the packets have deadlines after which

they are no longer useful to the intended receivers, as in real-time voice transmission

applications. In this case, the coding must focus on reducing delay of the packets,

as a means to ensure that packets are not lost unnecessarily, but the transmitter and

relays must also prioritize the coding of packets based on the different deadlines so

that the coding does not impact negatively in the system. A transmitter may choose

to discard or delay the transmission of a packet with an urgent deadline, if this can

avoid other packets to exceed their own deadlines.

Another general comment is that the importance of half-duplex constraints on

the nodes has not been thoroughly studied. In fact, it is not considered in many

theoretical results and applications. A half-duplex constraint is quite natural from

a system design perspective and, although the conclusion for some of our sections is

that a half-duplex constrained system could reach close to or the same performance

as a system operating in full-duplex, we observe that it required a channel-adaptive

coding scheme to achieve this. Any given scheme is not guaranteed to have this trait.

Studying the impact of half-duplex constraints on existing theoretical results and as

a part of practical schemes is an interesting and relevant aspect for future research.
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