Early Physics Measurements at the LHC with ATLAS

Karsten Köneke
DESY
for the ATLAS Collaboration
Outline

Introduction:
- Why was the LHC built?
- What is the mission of ATLAS?

Standard Model measurements
- First, try to measure known processes to understand the detector!

Possible early discoveries:
- If we are lucky, we will see something unexpected…
Outline

Introduction:
• Why was the LHC built?
• What is the mission of ATLAS?

Standard Model measurements
• First, try to measure known processes to understand the detector!

Possible early discoveries:
• If we are lucky, we will see something unexpected…

“Prediction is very difficult, especially if it is about the future.”
Niels Bohr
The 4 Forces in Nature

Gravity

Graviton?
Solar systems
Galaxies

Gravity Force
The 4 Forces in Nature

Gravity
- Graviton?
- Solar systems
- Galaxies

Gravity Force

Electromagnetic force
- Hydrogen atom
- Water molecule
- Oxygen atom
- Protons and Neutrons
- Electron
- Oxygen atom
- Atoms
- Light
- Chemistry
- Electronics
The 4 Forces in Nature

Gravity

Strong

Electromagnetic
The 4 Forces in Nature

Gravity

Strong

Electromagnetic

Weak
The 4 Forces in Nature

Gravity

Electromagnetic

Strong

Weak

Standard Model
Probably the best tested theory:

- Describes 3 out of 4 known forces in nature.
- Tested in numerous experiments and sometimes incredible precision!
What is the LHC and ATLAS build for?

Standard Model is very successful,…
Standard Model is very successful, …

…but incomplete! Some of the open questions are:
Standard Model is very successful, …

… but incomplete! Some of the open questions are:

• What is the origin of particle masses?
Standard Model is very successful, …

…but incomplete! Some of the open questions are:

• What is the origin of particle masses?

• What is the nature of the dark matter in the Universe?
Standard Model is very successful, …

…but incomplete! Some of the open questions are:

• What is the origin of particle masses?

• What is the nature of the dark matter in the Universe?

• What is the origin of matter – antimatter asymmetry?
Standard Model is very successful, …

…but incomplete! Some of the open questions are:

• What is the origin of particle masses?

• What is the nature of the dark matter in the Universe?

• What is the origin of matter – antimatter asymmetry?

• What are the constituents of the primordial plasma in the early Universe?
Standard Model is very successful, …
…but incomplete! Some of the open questions are:

• What is the origin of particle masses?

• What is the nature of the dark matter in the Universe?

• What is the origin of matter – antimatter asymmetry?

• What are the constituents of the primordial plasma in the early Universe?

• What happened in the first moments of the Universe after the Big-Bang?
Standard Model is very successful, …

…but incomplete! Some of the open questions are:

• What is the origin of particle masses?

• What is the nature of the dark matter in the Universe?

• What is the origin of matter – antimatter asymmetry?

• What are the constituents of the primordial plasma in the early Universe?

• What happened in the first moments of the Universe after the Big-Bang?
Finding new physics at the energy frontier!

\[E = mc^2, \text{ or better (as it was in Einstein’s original paper): } m = E/c^2 \]
Finding new physics at the energy frontier!

\[E = mc^2, \text{ or better (as it was in Einstein’s original paper)}: m = \frac{E}{c^2} \]

But in order to find new physics:

New physics = measurement – known backgrounds
What is the LHC and ATLAS build for?

Finding new physics at the energy frontier!

\[E = mc^2, \text{ or better (as it was in Einstein’s original paper)} : m = \frac{E}{c^2} \]

But in order to find new physics:

New physics = measurement – known backgrounds

Or in other words:

Yesterday’s signal is today’s control sample and tomorrow’s background
What does the proton look like?

The proton is composed of three quarks: two up quarks (u) and one down quark (d).
What does the proton look like?

Partons =
- Quarks
- and Gluons
Figure 1: MSTW 2008 NLO PDFs at $Q^2 = 10 \text{ GeV}^2$ and $Q^2 = 10^4 \text{ GeV}^2$.
How do pp collisions actually look like?

M. Wobisch
Louisiana Tech University

proton

two high-energetic hadrons

proton
How do pp collisions actually look like?

$m = E/c^2$

two high-energetic hadrons

M. Wobisch
Louisiana Tech University
How do pp collisions actually look like?

partons inside the hadrons:
parton density functions (PDFs)

Universal = process independent

two high-energetic hadrons

M. Wobisch
Louisiana Tech University
How do pp collisions actually look like?

Standard Model or New Physics??

proton

high p_T

hard interaction

outgoing parton(s) (quark, gluon, γ, Z^0, W^\pm)

proton

outgoing parton(s)

inclusive jets (p_T, y)
dijets (M_{jj}, y')
γ, di-γ, $\gamma +$ jet
(Z^0, W^\pm) + jet
top + anti-top

M. Wobisch
Louisiana Tech University
How do pp collisions actually look like?

M. Wobisch
Louisiana Tech University
How do pp collisions actually look like?

M. Wobisch
Louisiana Tech University
How do pp collisions actually look like?

M. Wobisch
Louisiana Tech University
How do pp collisions actually look like?

M. Wobisch
Louisiana Tech University
How do pp collisions actually look like?

M. Wobisch
Louisiana Tech University

hadron-hadron physics

proton

outgoing parton(s)

hard process (2 or more partons)
ISR/FSR
hadronization / fragmentation
underlying event
How do pp collisions actually look like?

It is really a big mess!!
LHC schedule for 2009/2010

First beam:
- Mid/end of November 2009

First collisions:
- At injection energy, i.e., 900 GeV center-of-mass energy
- For a short time (few days?)

First high-energy collisions:
- 7 TeV center-of-mass energy, i.e., 3.5 TeV per beam
- For a few months, to take a good amount of data for

First high-energy collisions:
- 10 TeV center-of-mass energy, i.e., 5 TeV per beam
- For another few months.
- Total integrated luminosity is planned to be around 200 pb⁻¹

1 Month of heavy ion running towards the end of the running period (November 2010)
Examples of cross section suppression in going from 14 TeV to 7 TeV:

- $W, Z \sim 45\%$
- $H (120 \text{ GeV}) \sim 30\%$
- $Z' (1 \text{ TeV}) \sim 18\%$
What we will do with the first collisions

Understanding the detector and reconstruction algorithms:
- Beyond the current understanding based on simulations, test beam, and cosmics data

Rediscovery of the Standard Model
- Establish how pp collisions at the LHC really look like
- Later on: precision measurements

Search for new physics:
- And determine what new model can actually describe the data

few pb\(^{-1}\) → ~10 pb\(^{-1}\) → ~100 pb\(^{-1}\)
Expected data samples

<table>
<thead>
<tr>
<th>Channel (example)</th>
<th>Expected event in ATLAS after cuts ($\sqrt{s} = 10$ TeV, 100 pb$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J/\psi \rightarrow \mu\mu$</td>
<td>$\sim 10^6$</td>
</tr>
<tr>
<td>$Y \rightarrow \mu\mu$</td>
<td>$\sim 5 \times 10^4$</td>
</tr>
<tr>
<td>$W \rightarrow \mu\nu$</td>
<td>$\sim 3 \times 10^5$</td>
</tr>
<tr>
<td>$Z \rightarrow \mu\mu$</td>
<td>$\sim 3 \times 10^4$</td>
</tr>
<tr>
<td>$tt \rightarrow Wb\ Wb \rightarrow \mu\nu + X$</td>
<td>~ 350</td>
</tr>
<tr>
<td>QCD jets $p_T > 1$ TeV</td>
<td>~ 500</td>
</tr>
<tr>
<td>Gluino, squark $m \sim 1$ TeV</td>
<td>~ 5</td>
</tr>
</tbody>
</table>

Commission and calibrate detector

- $J/\psi, Z \rightarrow ee, \mu\mu; \ tt \rightarrow blv \ bjj$

Rediscover Standard Model

Early discoveries?

- $Z',$ SUSY,\ldots or???
Jet measurements

What is actually a jet?

- Different jet algorithms give somewhat different results

Challenge:

- Jet energy scale determination and resolution.

Jet measurements

\[\frac{d^2\sigma}{d p_T d y} \]

QCD-LO, $\mu = E_T/2$

- CTEQ4M
- CTEQ4HJ
- MRST

LHC

10 events with 100 pb$^{-1}$

$\sqrt{s} = 1.8$ TeV

Tevatron

$\sqrt{s} = 14$ TeV
Estimated number of events after cuts per pb$^{-1}$:

- At 10 TeV:
 - $\sim 10000 \ J/\psi \rightarrow \mu\mu$
 - $\sim 500 \ Upsilon \rightarrow \mu\mu$
 - $\sim 2000 \ J/\psi \rightarrow \text{ee}$
 - $\sim 400 \ Upsilon \rightarrow \text{ee}$

- At 7 TeV:
 - $\sim 7000 \ J/\psi \rightarrow \mu\mu$

Besides the cross-section measurement, this is useful for:

- Muon spectrometer and inner detector alignment, ECAL calibration, energy/momentum scale of full detector, lepton trigger and reconstruction efficiencies,…
Z boson measurement

Selection:
• 2 electrons with $E_T > 15$ GeV
• Loose identification criteria

Accuracy on inclusive cross section (no lumi):
• 2-4% (stat.) and 2-4% (syst.)

Measure e and μ efficiencies:
• In data: Tag&Probe with Z events
Measure differential $pp \rightarrow Z$ cross-section:

- As a function of Z rapidity and of $Z\ p_T$
- More data needed. $\sim 200\ \text{pb}^{-1}$
- Interesting for constraining the parton density functions

$Z \rightarrow \text{ee}, 200\ \text{pb}^{-1}, 14\ \text{TeV}$
W boson measurements

Measure missing E_T efficiency:

- Not easy to determine, lots of event cleaning needed (e.g. cosmic muons, hot cells in calorimeters,…)
- Use Z events and replace one lepton to measure missing E_T with data
Selections:
- Single isolated lepton with $|\eta| < 2.5$ and $p_T > 25$ GeV
- Missing $E_T > 25$ GeV
- Transverse mass $m_T^W = \sqrt{2p_T^l p_T^\nu (1 - \cos \Delta \phi)} > 40$ GeV

W → ev, 50 pb$^{-1}$, 14 TeV

W → μν, 50 pb$^{-1}$, 14 TeV

<table>
<thead>
<tr>
<th>Process</th>
<th>$N \times 10^4$</th>
<th>$B \times 10^4$</th>
<th>$A \times \epsilon$</th>
<th>$\delta A/A$</th>
<th>$\delta \epsilon/\epsilon$</th>
<th>σ (pb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W \rightarrow e\nu$</td>
<td>22.67 ± 0.04</td>
<td>0.61 ± 0.92</td>
<td>0.215</td>
<td>0.023</td>
<td>0.02</td>
<td>$20520 \pm 40 \pm 1060$</td>
</tr>
<tr>
<td>$W \rightarrow \mu\nu$</td>
<td>30.04 ± 0.05</td>
<td>2.01 ± 0.12</td>
<td>0.273</td>
<td>0.023</td>
<td>0.02</td>
<td>$20530 \pm 40 \pm 630$</td>
</tr>
<tr>
<td>$Z \rightarrow ee$</td>
<td>2.71 ± 0.02</td>
<td>0.23 ± 0.04</td>
<td>0.246</td>
<td>0.023</td>
<td>0.03</td>
<td>$2016 \pm 16 \pm 83$</td>
</tr>
<tr>
<td>$Z \rightarrow \mu\mu$</td>
<td>2.57 ± 0.02</td>
<td>0.010 ± 0.002</td>
<td>0.254</td>
<td>0.023</td>
<td>0.03</td>
<td>$2016 \pm 16 \pm 76$</td>
</tr>
</tbody>
</table>
W boson measurement – mass

Two methods:

1. Lepton p_T measurement
 - $M_W \pm 120$ (stat.) ± 117 (syst.)
 - Energy scale dominates

2. Transverse mass measurement
 - $M_W \pm 57$ (stat.) ± 231 (syst.)
 - Recoil modeling dominates

<table>
<thead>
<tr>
<th>Method</th>
<th>$p_T(e)$ [MeV]</th>
<th>$p_T(\mu)$ [MeV]</th>
<th>$M_T(e)$ [MeV]</th>
<th>$M_T(\mu)$ [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>δm_W (stat)</td>
<td>120</td>
<td>106</td>
<td>61</td>
<td>57</td>
</tr>
<tr>
<td>δm_W (α_E)</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>δm_W (σ_E)</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>δm_W (tails)</td>
<td>28</td>
<td>< 28</td>
<td>28</td>
<td>< 28</td>
</tr>
<tr>
<td>δm_W (ε)</td>
<td>14</td>
<td>–</td>
<td>14</td>
<td>–</td>
</tr>
<tr>
<td>δm_W (recoil)</td>
<td>–</td>
<td>–</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>δm_W (bkg)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>δm_W (exp)</td>
<td>114</td>
<td>114</td>
<td>230</td>
<td>230</td>
</tr>
<tr>
<td>δm_W (PDF)</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td>167</td>
<td>158</td>
<td>239</td>
<td>238</td>
</tr>
</tbody>
</table>

With 15 pb$^{-1}$:
- Use of template fits
- Shown is a W mass change of 2%
W/Z + jets

Z → µµ + jets

- Background for many processes:
 - Top measurements, SUSY searches, …

W → eν + jets

- Diagrams showing Feynman diagrams for W→eν and Z→µµ + jets
- Graphs showing event distribution for Z→µµ + jets and W→eν + jets
- Cross section ratio uncertainty for Z→ee + jets

Karsten Köneke
August 24th 2009

HEP-MAD 2009 - Antananarivo
Top pair events

Top Pair Branching Fractions

- "alljets" 46%
- τ+jets 15%
- μ+jets 15%
- e+jets 15%
- "dileptons"
- "lepton+jets"

After cuts in μ-channel:
- 10 TeV: ~1600 events
- 7 TeV: ~600 events
- Uncertainty on cross section < 20% (+lumi)

Contains most physics objects:
- Leptons, jets, b-jets, missing E_T
- Background to almost all searches
- **When top is measured, experiment is ready for discovery physics!**

tt → bW bW → blν bjj

- 3 jets p_T > 40 GeV
- 1 jet p_T > 20 GeV
- E_T^{miss} > 20 GeV
First top quarks in Europe

Cross section:
- Semi-leptonic channel
- No b-tagging!
- Precision expected on $\Delta \sigma/\sigma$:
 \[3(\text{stat.}) \oplus 15(\text{syst.}) \oplus 22(\text{lumi})\]

Top mass:
- Semi-leptonic channel
- With b-tagging!
- Precision: $1 - 3.5$ GeV
 for absolute scale knowledge $1 - 5\%$

tt → bW bW → bev bjj

tt → bW bW → blv bjj

ATLAS Preliminary Simulation

- 10 TeV
- 200 pb$^{-1}$

ATLAS

- 14 TeV
- 1 fb$^{-1}$
Ready for discovery…

BSM theory landscape (Murayama)
Searches

To find a deviation is easy…

• To prove that it comes from new physics is much harder!
• Simple-minded recipe:
 • Find variable(s) discriminating between signal and background
 • Cut away most background (maximize signal significance)
 • Estimate remaining background events and look at event yield in data

Need to worry and care about:

• Is the detector behavior really understood?
 • Efficiencies, fake rates, energy and momentum scales, non-gaussian resolutions,…
 • Try to obtain as much information as possible from data
• Is the Standard Model prediction really understood?
 • Cross sections, kinematic distributions, underlying event,…
 • Must know sources of uncertainties on these!
Possible early on: Z’ with mass ~1 TeV

- **Z’ → ee, 14 TeV, 1 fb⁻¹**

New forces or new dimensions of space?

- From angular distribution of leptons can disentangle Z’ (spin=1) from Graviton (spin=2)
- Requires more data…

- **Signal is (narrow) mass peak above small and smooth SM background**
- **Does not require ultimate EM calorimeter performance**
- **Sensitivity beyond Tevatron limits with 200 pb⁻¹ at 7 TeV (100 pb⁻¹ at 10 TeV)**
- **Perhaps sometime in 2010, if we are lucky??**
If it is at TeV scale, it could be found “quickly”… due to:

- Huge production cross section for $\tilde{q}\tilde{q}, \tilde{g}\tilde{q}, \tilde{g}\tilde{g}$
- If $m(\tilde{q}, \tilde{g}) \sim 1$ TeV:
 expect 1 event every 5 days at $L = 10^{31} \text{ cm}^{-2} \text{ s}^{-1}$
- Spectacular final states (many jets, leptons, missing transverse energy)
Supersymmetry

5σ discovery reach, 10 TeV, 200 pb\(^{-1}\)

- Jets + \(E_T^{\text{miss}}\) channel: highest reach
- 1-lepton channel: more robust

\[m(\tilde{q}, \tilde{g}) \sim 410 \text{ GeV} \]

- With 200 pb\(^{-1}\) at 7 TeV reach beyond Tevatron (~400 GeV)
- Tricky: understanding the background, i.e., missing \(E_T\)
- Ultimate LHC reach: ~ 3 TeV
Summary – Early physics potential at ATLAS

\[\int \mathcal{L} dt \ (\text{pb}^{-1}) \]

- PDF constraint (150 \(\text{pb}^{-1}\))
- \(e^+e^-\) resonance @ 1 TeV (70 \(\text{pb}^{-1}\))
- \(\Delta \sigma/\sigma(W \rightarrow e\nu) \pm 0.05(\text{exp}) \pm 0.1(\text{lumi}) \ (50 \text{ pb}^{-1})\)
- First top in Europe (\(~20 \text{ pb}^{-1}\))
- \(\delta m_{\text{top}} < 10 \text{ GeV}, \delta \sigma_t \sim 20\% \ (100 \text{ pb}^{-1})\)
- \(Z\) peak (10 \(\text{pb}^{-1}\))
- \(J/\psi, \Upsilon\) peaks (1 \(\text{pb}^{-1}\))
Outlook – long term potential

Integrated Luminosity (fb⁻¹)

- 10⁴
- 10³
- 10²
- 10
- 1
- 10⁻¹
- 10⁻²
- 10⁻³
- 10⁻⁴

- H, m_H = 115 GeV
- H → 4l, m_H = 180 GeV
- m = 1 TeV SUSY (g, q)
- Z' → e⁺e⁻, m~1 TeV
- Leptoquarks, m~1.5 TeV
- Compositeness, Λ~30 TeV
- Extra-dimensions G → e⁺e⁻, m~1 TeV
- m = 2.5 TeV SUSY (g, q)
- TeV-scale resonances from WW scattering
- m = 3 TeV SUSY
- Z', m = 6.5 TeV
- Compositeness, Λ = 60 TeV

L = 10³⁵

SLHC

shutdown

Karsten Köneke
August 24th 2009
Outlook – long term potential

- Extra-dimensions $G \rightarrow e^+e^-$, $m \approx 1$ TeV
- $H, m_H = 115$ GeV
- $H \rightarrow 4l, m_H = 180$ GeV
- $m \approx 1$ TeV SUSY (\tilde{g}, \tilde{q})
- $Z' \rightarrow e^+e^-$, $m \approx 1$ TeV
- Leptoquarks, $m \approx 1.5$ TeV
- Compositeness, $\Lambda \approx 30$ TeV
- $m = 2.5$ TeV SUSY (\tilde{g}, \tilde{q})
- TeV-scale resonances from WW scattering
- $m = 3$ TeV SUSY
- $Z', m \approx 6.5$ TeV
- Compositeness, $\Lambda \approx 60$ TeV

$L = 10^{35}$
backup
The ATLAS Detector

- Muon Detectors
- Tile Calorimeter
- Liquid Argon Calorimeter
- Toroid Magnets
- Solenoid Magnet
- SCT Tracker
- Pixel Detector
- TRT Tracker
The ATLAS Inner Detector Tracking

Karsten Köneke
August 24th 2009

HEP-MAD 2009 - Antananarivo
Interaction of different particles in ATLAS
First ATLAS “beam splash event” recorded

September 10th, 10:19 am:
~ 100 TeV in the detector!

Beam bunches (2x10^9 protons at 450 GeV) stopped by (closed) collimators upstream of experiment “splash” events in the detector (debris are mainly muons)
First top quarks in Europe

\[\text{tt} \rightarrow bW \ bW \rightarrow blv \ bjj \]

Tri-jet mass
- 10 TeV, 200 pb\(^{-1}\), \(\mu\)-channel
- No b-tagging!

1 lepton \(p_T > 20\) GeV

- 3 jets \(p_T > 40\) GeV
- 1 jet \(p_T > 20\) GeV

\(E_T\text{miss} > 20\) GeV

Contains most physics objects:
- Leptons, jes, b-jets, missing \(E_T\)
- Background to almost all searches

After cuts in \(\mu\)-channel:
- 10 TeV: \(~1600\) events
- 7 TeV: \(~600\) events
- Uncertainty on cross section < 20% (+lumi)

When top is measured, experiment is ready for discovery physics!
Early Physics Measurements at the LHC with ATLAS

Karsten Köneke
DESY
for the ATLAS Collaboration