Robert B. Heimann

Plasma Spray Coating

Principles and Applications

Second, Completely Revised and Enlarged Edition
Contents

3.1.2.2 Medium Density Plasmas 30
3.1.2.3 High Density Plasmas 32
3.1.3 Equilibrium and Nonequilibrium Plasmas 32
3.1.4 Maxwellian Distribution of Plasma Energies 33
3.1.5 Equilibrium Composition of Plasma Gases (Phase Diagrams) 34
3.2 Plasma Generation 37
3.2.1 Plasma Generation by Application of Heat 37
3.2.2 Plasma Generation by Compression 39
3.2.2.1 \(\Omega \)-Pinch 39
3.2.2.2 Plasma Focus 39
3.2.3 Plasma Generation by Radiation 39
3.2.4 Plasma Generation by Electric Currents (Gas Discharges) 40
3.2.4.1 Glow Discharges 41
3.2.4.2 Arc Discharges 43
3.2.5 Structure of the Arc Column 44
3.2.5.1 Positive Column 44
3.2.5.2 The Cathode Fall Region 44
3.2.5.3 The Anode Region 47
3.3 Design of Plasmatrons 48
3.3.1 Arc Discharge Generators and their Applications 50
3.3.1.1 Electrode-supported Plasmas 50
3.3.1.2 Electrode-less Plasmas 54
3.3.1.3 Hybrid Devices 57
3.3.2 Stabilization of Plasma Arcs 57
3.3.2.1 Wall-stabilized Arcs 59
3.3.2.2 Convection-stabilized Arcs 59
3.3.2.3 Electrode-stabilized Arcs 60
3.3.2.4 Other Stabilization Methods 60
3.3.3 Temperature and Velocity Distributions in a Plasma Jet 61
3.3.3.1 Turbulent Jets 61
3.3.3.2 Quasi-laminar Jets 63
3.4 Plasma Diagnostics: Temperature, Enthalpy and Velocity Measurements 65
3.4.1 Temperature Measurements 66
3.4.1.1 Spectroscopic Methods 66
3.4.1.2 Two-wavelengths Pyrometry 68
3.4.1.3 Chromatic Monitoring 69
3.4.2 Velocity Measurements 70
3.4.2.1 Enthalpy Probe and Pitot Tube Techniques 70
3.4.2.2 Laser Doppler Anemometry (LDA) 72
3.4.2.3 Other Methods 75
References 76
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4.1</td>
<td>Injection of Powders</td>
<td>79</td>
</tr>
<tr>
<td>4</td>
<td>4.2</td>
<td>Characteristics of Feed Materials</td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>4.2.1</td>
<td>Solid Wires, Rods and Filled Wires</td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>4.2.2</td>
<td>Powders</td>
<td>81</td>
</tr>
<tr>
<td>4</td>
<td>4.2.2.1</td>
<td>Atomization</td>
<td>84</td>
</tr>
<tr>
<td>4</td>
<td>4.2.2.2</td>
<td>Fusion and Crushing</td>
<td>84</td>
</tr>
<tr>
<td>4</td>
<td>4.2.3</td>
<td>Compositing</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>4.2.4</td>
<td>Agglomeration</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>4.3</td>
<td>Momentum Transfer</td>
<td>86</td>
</tr>
<tr>
<td>4</td>
<td>4.3.1</td>
<td>Connected Energy Transmission</td>
<td>86</td>
</tr>
<tr>
<td>4</td>
<td>4.3.2</td>
<td>Transfer of Plasma Velocity to Particles</td>
<td>86</td>
</tr>
<tr>
<td>4</td>
<td>4.3.3</td>
<td>Surface Ablation of Particles</td>
<td>87</td>
</tr>
<tr>
<td>4</td>
<td>4.4</td>
<td>Heat Transfer</td>
<td>87</td>
</tr>
<tr>
<td>4</td>
<td>4.4.1</td>
<td>Heat Transfer under Low Loading Conditions</td>
<td>87</td>
</tr>
<tr>
<td>4</td>
<td>4.4.2</td>
<td>Exact Solution of Heat Transfer Equations</td>
<td>93</td>
</tr>
<tr>
<td>4</td>
<td>4.4.2.1</td>
<td>Particle Heating without Evaporation</td>
<td>93</td>
</tr>
<tr>
<td>4</td>
<td>4.4.2.2</td>
<td>Particle Heating with Evaporation</td>
<td>94</td>
</tr>
<tr>
<td>4</td>
<td>4.4.2.3</td>
<td>Evaporation Time of a Particle</td>
<td>97</td>
</tr>
<tr>
<td>4</td>
<td>4.4.3</td>
<td>Heat Transfer under Dense Loading Conditions</td>
<td>99</td>
</tr>
<tr>
<td>4</td>
<td>4.4.4</td>
<td>Heat Transfer Catastrophy</td>
<td>99</td>
</tr>
<tr>
<td>4</td>
<td>4.4.5</td>
<td>Energy Economy</td>
<td>102</td>
</tr>
<tr>
<td>4</td>
<td>4.5</td>
<td>Particle Diagnostics: Velocity, Temperature and Number Densities</td>
<td>103</td>
</tr>
<tr>
<td>5</td>
<td>5.1</td>
<td>Basic Considerations</td>
<td>111</td>
</tr>
<tr>
<td>5</td>
<td>5.2</td>
<td>Estimation of Particle Number Density</td>
<td>114</td>
</tr>
<tr>
<td>5</td>
<td>5.3</td>
<td>Momentum Transfer from Particles to Substrate</td>
<td>116</td>
</tr>
<tr>
<td>5</td>
<td>5.4</td>
<td>Heat Transfer from Particles to Substrate</td>
<td>126</td>
</tr>
<tr>
<td>5</td>
<td>5.4.1</td>
<td>Generalized Heat Transfer Equation</td>
<td>126</td>
</tr>
<tr>
<td>5</td>
<td>5.4.2</td>
<td>Heat Transfer from Coating to Substrate</td>
<td>128</td>
</tr>
<tr>
<td>5</td>
<td>5.5</td>
<td>Crystallinity of Coatings</td>
<td>132</td>
</tr>
<tr>
<td>5</td>
<td>5.6</td>
<td>Fractal Properties of Surfaces</td>
<td>135</td>
</tr>
<tr>
<td>5</td>
<td>5.6.1</td>
<td>Box Counting Method</td>
<td>137</td>
</tr>
<tr>
<td>5</td>
<td>5.6.2</td>
<td>Density Correlation Function</td>
<td>138</td>
</tr>
<tr>
<td>5</td>
<td>5.6.3</td>
<td>Mass Correlation Function</td>
<td>139</td>
</tr>
<tr>
<td>5</td>
<td>5.6.4</td>
<td>Slit Island Analysis (SIA)</td>
<td>139</td>
</tr>
<tr>
<td>5</td>
<td>5.6.5</td>
<td>Fracture Profile Analysis (FPA)</td>
<td>139</td>
</tr>
<tr>
<td>5</td>
<td>5.6.6</td>
<td>Scale-sensitive Fractal Analysis</td>
<td>140</td>
</tr>
</tbody>
</table>
5.7 Residual Stresses 143
5.7.1 Blind Hole Test 145
5.7.2 X-ray Diffraction Measurements (sin²θ-technique) 145
5.7.3 Curvature Monitoring Technique (Almen-type test) 151
5.7.4 Photoluminescence Piezospectroscopy 155
5.7.5 Neutron Diffraction 157
References 159

6 Modeling and Numerical Simulation 163
6.1 Principal Aspects of Modeling 163
6.2 Modeling of Plasma Properties 164
6.3 Modeling of the Plasma–Particle Interaction 166
6.3.1 Modeling of Heat Transfer 166
6.3.1.1 Conservation Equations 166
6.3.1.2 Experimental Validation of Modeling under Dense Loading Conditions 167
6.3.1.3 Modeling of Heat Transfer in Two-fluid Interfacial Flow 169
6.3.2 Modeling of Momentum Transfer 169
6.3.2.1 Modeling of the Drag Coefficient 170
6.3.3 Modeling of Particle Dispersion 172
6.4 Modeling of Particle–Substrate Interaction 172
6.4.1 3D Simulation of Coating Microstructure 173
6.4.2 Modeling of Splat Shapes 177
6.4.3 Modeling of Residual Coating Stresses 180
6.4.4 Modeling of Thermal Conductivity 185
References 188

7 Solutions to Industrial Problems I: Structural Coatings 191
7.1 Carbide Coatings 192
7.1.1 Pure Carbides 192
7.1.2 Cemented Carbides 193
7.1.2.1 Tungsten Carbide-based Coatings 194
7.1.2.2 Titanium Carbide-based Coatings 205
7.1.2.3 Chromium Carbide-based Coatings 209
7.1.2.4 Other Hard Carbide Coatings 212
7.2 Nitride Coatings 213
7.2.1 Titanium Nitride-based Coatings 214
7.2.2 Silicon Nitride-based Coatings 214
7.3 Oxide Coatings 216
7.3.1 Alumina-based Coatings 217
7.3.2 Chromium Oxide-based Coatings 220
7.3.3 Other Oxide Coatings 221
7.4 Metallic Coatings 221
7.4.1 Refractory Metal Coatings 221
7.4.2 Superalloy Coatings 223
A.3 Mass Transfer 408
A.4 Materials Constants 408

Appendix B: Calculation of Temperature Profiles of Coatings 409
B.1 Heat Conduction Equations 409
B.2 Solutions of the Equations 410
B.2.1 Substrate Temperature Profile 410
B.2.2 Deposit Temperature Profile 410
B.3 Real Temperature Profiles 412
References 412

Appendix C: Calculation of Factor Effects for a Fractional Factorial Design 2^8-4 413
References 416

Index 417