Top Physics at the LHC

Simona Rolli
Tufts University
The Top Quark in the Standard Model

Discovered in 1995 at the TeVatron, flurry of measurements
We still don’t know all about it

- Mass
- Top width ~1.5 GeV
- Electric charge $\frac{2}{3}$
- Spin $\frac{1}{2}$
- BR(t→Wb) ~ 100%
- Production mechanisms

Precision <2%
?
-4/3 excluded @ 94% C.L. (preliminary)
Not really tested – spin correlations
At 20% level in 3 generations case
FCNC: probed at the 10% level
Single Top: not yet observed

The LHC offers opportunity for further testing and precision measurements

9/11/06
Simona Rolli, PASCOS06
Talk Outlook

- Strong pair production
 - Standard top physics
 - Early top physics
- Top Properties
 - Mass, Charge, W polarization, top polarization
- Electroweak single top production
 - Analysis strategies
 - V_{tb} measurements
- Using top for calibration purposes
 - Jet energy corrections, b-jets, missing energy
- A window to new physics
- Conclusions

Most of the results presented are based on ATLAS studies.
Strong Pair production at the LHC

Production: $\sigma_{tt}(\text{LHC}) \sim 830 \pm 100$ pb

Cross section LHC = 100 x Tevatron
Background LHC = 10 x Tevatron

$t+t$ production at the LHC

$q^+q^- (l=e, \mu)$ is the Golden channel

\Rightarrow 2.5 million events/year

Decay
Top quark physics with b-tag

LHC is a top factory Seeing top is easy

Selection: High P_T Lepton
Large Missing E_T
4 high-P_T jets (2 b-jets)

\rightarrow signal efficiency few %
\rightarrow very small SM background

- ‘Standard’ Top physics at the LHC:
 - b-tag is important in selection
 - Most measurements limited by systematic uncertainties

- ‘Early’ top physics at the LHC:
 - Cross-section measurement (\sim 20%)
 - Decay properties
Top quark physics without b-tag (early phase)

Selection

- **semileptonic top**: p_T(lepton)$>20\text{ GeV}/c$, missing $E_T>20\text{ GeV}$
 - no b-tagging required
- **hadronic top**: $N_{\text{jet}}>4$, p_T(jet)$>40\text{ GeV}/c$ (0.4 cone algorithm)
- **3 jets with highest vector-sum** p_T identified as top
 - of these, 2 leading jets in 3-jet rest frame identified as W

A top peak can be seen without b-tag requirement
Top Properties: Mass

Lepton+jets
- isolated lepton (e,\(\mu\)): \(p_T>20\text{GeV}/c, \mid\eta\mid<2.5\)
- missing \(E_T>20\text{GeV}\)
- at least 4 jets: \(p_T>20\text{GeV}/c\) (corrected), \(\mid\eta\mid<2.5\)
 - at least 2 light jets to reconstruct hadronic \(W\)
 - 2 b-tagged jets to select the bjj system with highest \(P_T\)
- very effective in background rejection (\(S/B=10^{-4}\rightarrow30\))
 - mainly from \(bb, W/Z+jets\) and \(Wbb\)

Dileptons:
- two opposite-signed leptons: \(p_T(\text{lepton})>20\text{GeV}/c, \mid\eta\mid<2.5\)
- missing \(E_T>40\text{GeV}\)
- 2 b-jets: \(p_T>25\text{GeV}/c\) (corrected), \(\mid\eta\mid<2.5\)
- Final state reconstruction
- 6 unknowns (neutrinos’ momenta), \(M_t\) hypothesis
 - conservation of transverse momentum
 - mass-constrain each l–\(\nu\) pair to \(M_W\)
 - mass-constrain each l–\(\nu\)–b-jet system to \(M_t\)
- weight assigned to each solution
 - based on comparison with MC
 - average weight over whole event sample
- \(M_t\) from solution with highest mean weight

Fast simulation
- \(L=10\text{fb}^{-1}\)
- \(\delta M_t(\text{stat})=0.04 \text{GeV}/c^2\)
- \(\delta M_t(\text{sys})=1.7 \text{GeV}/c^2\)

Full simulation
- \(L=10\text{fb}^{-1}\)
- \(\delta M_t(\text{stat})=0.05 \text{GeV}/c^2\)
- \(\delta M_t(\text{sys})=1.3 \text{GeV}/c^2\)
Top Properties: W Polarization

Top decays before hadronization

- spin information passed directly onto Wb
- SM predicts 70% longitudinal W and 30% left-handed W
 - depending on M_t and M_W only

- parametrize in terms of angle between
 - direction of W in top rest frame
 - direction of lepton in W rest frame

- Precision in measurements of the fractions F_0 (longitudinal) and F_R
- Unfold selection and detector effects

<table>
<thead>
<tr>
<th>Stat</th>
<th>Fast Simulation $L=10\text{fb}^{-1}$</th>
<th>F_0</th>
<th>F_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS (SL)</td>
<td>±0.023</td>
<td>±0.015</td>
<td></td>
</tr>
<tr>
<td>ATLAS (SL+DL)</td>
<td>±0.004</td>
<td>±0.003</td>
<td></td>
</tr>
<tr>
<td>CMS (SL)</td>
<td>±0.022</td>
<td>±0.053</td>
<td></td>
</tr>
<tr>
<td>ATLAS (SL+DL)</td>
<td>±0.016</td>
<td>±0.012</td>
<td></td>
</tr>
</tbody>
</table>
Top Properties: Charge

- Aimed at confirming $Q_t = 2/3$ SM hypothesis
 - non standard value $Q_t = -4/3$ not yet excluded
 - can arise from wrong W-b association
- Two procedures for direct measurement
 - Top e.m. coupling through photon radiation in tt events
 - gg initial state dominance at LHC reduces ISR
 - radiative tt production & (interfering) decay: x-section
 - radiative tt decay: reduced by requiring high $M(bj\gamma)$ or $M_T(lb\gamma)$
 - reconstruct charge of decay products (lepton/dilepton+jets)
 - easy for W boson (Q_l)
 - challenging for b-jets

$$Q_{jet} = \frac{\sum |Q_l| \vec{p}_jet \cdot \vec{p}_l}{\sum |\vec{p}_jet \cdot \vec{p}_l|^2}$$

- l-b association: $M_{lb} < M_t$
- Systematics underway

- Fast simulation
 - $Q_t = -4/3$
 - Systematics underway
 - $Q(b) = -0.109 \pm 0.007$
 - $Q(b) = 0.112 \pm 0.007$
Single Top at LHC

- All 3 contributing mechanisms in SM:
 - $W-g$ (t-channel)
 - $W+t$
 - W^* (s-channel)

- Computation at NLO available for W^* and $W-g$:
 - Increase of $\sigma(W^*)$ by $\sim 30\%$
 - Affect $p_T(jet)$ distribution, H_T etc...

Decay modes:
- $W^* : W^* \rightarrow t\ b\bar{b} \rightarrow (l^+\nu_l)\ b\bar{b}$
- $Wg: q'g \rightarrow t\ q\ b\bar{b} \rightarrow (l^+\nu_l)\ q\ b\bar{b}$
- $W+t: bg \rightarrow t\ W \rightarrow (l^+\nu_l)\ qq'$

Common selection for all 3 single-top samples:
- 1 High p_T Lepton + mET
- reduce non-W events
- At least two high-p_T jets
- reduce $W+jets$ events

Channel summary

<table>
<thead>
<tr>
<th>Channel</th>
<th>$\sigma \times BR$(pb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W-g$</td>
<td>54.2</td>
</tr>
<tr>
<td>$W+t$</td>
<td>17.8</td>
</tr>
<tr>
<td>W^*</td>
<td>2.2</td>
</tr>
<tr>
<td>$tt\bar{t}$</td>
<td>246</td>
</tr>
<tr>
<td>Wbb</td>
<td>66.7</td>
</tr>
<tr>
<td>$W+jets$</td>
<td>3,850</td>
</tr>
</tbody>
</table>

- Single-top $\sim 22\%-26\%$
- $tt\bar{t}$ $\sim 38\%$
- $WQQ \sim 1.5\%$, $W+njets < 1/1000$
Why Single Top?

Motivations

- Properties of the Wtb vertex:
 - Determination of $\sigma(pp \rightarrow tX)$, $\Gamma(t \rightarrow Wb)$
 - Direct determination of $|V_{tb}|$
 - Top polarization

- Precision measurements \rightarrow probe to new physics
 - Anomalous couplings
 - FCNC
 - Extra gauge-bosons W' (GUT, KK)
 - Extra Higgs boson (2HDM)

- Single-top is one of the main background to ...

 ... Higgs physics...

<table>
<thead>
<tr>
<th>M(top) = 175 GeV/c²</th>
<th>s-channel</th>
<th>t-channel</th>
<th>Associated tW</th>
<th>Combined (s+t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TeVatron σ_{NLO}</td>
<td>0.88 ± 0.11 pb</td>
<td>1.98 ± 0.25 pb</td>
<td>0.1 pb</td>
<td></td>
</tr>
<tr>
<td>LHC σ_{NLO}</td>
<td>10.6 ± 1.1 pb</td>
<td>247 ± 25 pb</td>
<td>62 ±17.4 pb</td>
<td></td>
</tr>
<tr>
<td>Run II 95% CL</td>
<td>CDF <3.2 pb</td>
<td>< 3.1 pb</td>
<td>NA</td>
<td>< 3.5</td>
</tr>
<tr>
<td>D0 < 5 pb</td>
<td>< 4.4 pb</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

$\sigma_{t+s} = 2.9$ pb for m(top) = 175 GeV/c²
ATLAS analysis strategies

In the late ‘90 several studies were conducted to produce a physics TDR. Current studies are meant to devise analysis strategies for early data taking and the full statistics, using the latest software tools.

<table>
<thead>
<tr>
<th>Description of cuts</th>
<th>Cumulative Selection Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W-g fusion</td>
</tr>
<tr>
<td>Pre-selection cuts</td>
<td>20.0</td>
</tr>
<tr>
<td>njets = 2, p_T > 30 GeV</td>
<td>13.2</td>
</tr>
<tr>
<td>Forward jet; p_T > 50,</td>
<td>4.3</td>
</tr>
<tr>
<td>m_{jj} > 900 GeV</td>
<td>3.58</td>
</tr>
<tr>
<td>H_T > 200 GeV</td>
<td>2.08</td>
</tr>
<tr>
<td>150 < m_{jj} < 200 GeV veto</td>
<td>1.64</td>
</tr>
<tr>
<td>Events/30 fb^{-1}</td>
<td>26 800 ± 1000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description of cuts</th>
<th>Cumulative Selection Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wt</td>
</tr>
<tr>
<td>Pre-selection cuts</td>
<td>25.5</td>
</tr>
<tr>
<td>njets = 3, p_T > 50 GeV</td>
<td>3.41</td>
</tr>
<tr>
<td>nb-jet = 1</td>
<td>3.32</td>
</tr>
<tr>
<td>m_{jj} < 300 GeV</td>
<td>1.43</td>
</tr>
<tr>
<td>65 < m_{jj} < 95 GeV</td>
<td>1.27</td>
</tr>
<tr>
<td>Events/30 fb^{-1}</td>
<td>6828 ± 269</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description of cuts</th>
<th>Cumulative Selection Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wt</td>
</tr>
<tr>
<td>Pre-selection cuts</td>
<td>27.0</td>
</tr>
<tr>
<td>njets = 2, p_T > 30 GeV</td>
<td>15.7</td>
</tr>
<tr>
<td>nb-jet = 2</td>
<td>2.10</td>
</tr>
<tr>
<td>total sum of p_T > 10 GeV</td>
<td>1.92</td>
</tr>
<tr>
<td>m_{jj} > 200 GeV</td>
<td>1.92</td>
</tr>
<tr>
<td>150 < m_{jj} < 200 GeV</td>
<td>1.67</td>
</tr>
<tr>
<td>Events/30 fb^{-1}</td>
<td>1106 ± 40</td>
</tr>
</tbody>
</table>

Simona Rolli, PASCOS06
Wg channel

Selection criteria

- Number of jets: \(N(\text{jet}) = 2 \)
- Presence of a high-\(p_T \) b-tagged jets (\(p_T > 40 \text{ GeV/c} \))
 - Wg events have 1 b-jet escaping the acceptance
 - requires **only** 1 b-tagged jet
- Presence of a high-\(p_T \) forward jet
 - 1 jet with \(|\eta| > 2.5 \) and \(p_T > 50 \text{ GeV/c} \)
- Reconstruct \(M_{lb} \) within \(\pm 25 \text{ GeV/c}^2 \)
- Window in \(H_T \)

<table>
<thead>
<tr>
<th></th>
<th>(W^+)</th>
<th>Wg</th>
<th>W+t</th>
<th>tt</th>
<th>WQQ</th>
<th>W+jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Selection (%)</td>
<td>26.2</td>
<td>23.7</td>
<td>22.4</td>
<td>38.3</td>
<td>1.46</td>
<td>0.05</td>
</tr>
<tr>
<td>Selection (\varepsilon) (%)</td>
<td>0.22</td>
<td>0.44</td>
<td>0.023</td>
<td>0.007</td>
<td>0.006</td>
<td>0.0013</td>
</tr>
<tr>
<td>(N_{\text{event}}(30 \text{ fb}^{-1}))</td>
<td>150</td>
<td>7,080</td>
<td>125</td>
<td>500</td>
<td>130</td>
<td>1,500</td>
</tr>
<tr>
<td>(\pm) MC stat.</td>
<td>(\pm 6)</td>
<td>(\pm 160)</td>
<td>(\pm 13)</td>
<td>(\pm 150)</td>
<td>(\pm 40)</td>
<td>(\pm 750)</td>
</tr>
</tbody>
</table>

- \(N(\text{jet}) = 2 \) \(\rightarrow \) reduces \(tt \) by \(\sim 6 \) vs Wg
- 1 high-\(p_T \) fwd jet \(\rightarrow \) reduce \(tt \) (by \(\sim 5 \)), Wt(\(\sim 10 \)), Wjj(\(\sim 2 \))
- Great uncertainty on WQQ / W+jets backgrounds
s-channel

Selection criteria
- Number of jets: $N(\text{jet}) = 2$
- Presence of two high p_T jets
- Presence of two central, high-p_T b-tagged jets
 $\rightarrow Wq$ usually have 1 b-jet escaping the acceptance
- Reconstruct M_{lvb} within $m_{top} \pm 25$ GeV/c2
- Window in H_T

<table>
<thead>
<tr>
<th>Channel</th>
<th>W^*</th>
<th>Wg</th>
<th>W+t</th>
<th>tt</th>
<th>WQQ</th>
<th>W+jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Selection $\varepsilon(%)$</td>
<td>26.2</td>
<td>23.7</td>
<td>22.4</td>
<td>38.3</td>
<td>1.46</td>
<td>0.05</td>
</tr>
<tr>
<td>Selection $\varepsilon(%)$</td>
<td>1.73</td>
<td>0.105</td>
<td>0.002</td>
<td>0.035</td>
<td>0.059</td>
<td>0.0001</td>
</tr>
<tr>
<td>$N_{\text{event}}(30$ fb$^{-1}$)</td>
<td>1,141</td>
<td>1,680</td>
<td>10</td>
<td>2,580</td>
<td>1,148</td>
<td>170</td>
</tr>
<tr>
<td>\pm MC stat.</td>
<td>$\pm 7</td>
<td>\pm 48</td>
<td>\pm 3</td>
<td>\pm 150</td>
<td>\pm 38</td>
<td>\pm 85</td>
</tr>
</tbody>
</table>

- $N(\text{jet}) = 2$ \rightarrow reduces tt by a factor ~ 20 vs W^*
- 2 high-p_T b-jets \rightarrow reduces WQQ by ~2 and Wg by ~8
- M_{lvb} and H_T \rightarrow reduce non-top by ~2
Wt channel

Selection of a specific topology

- Number of high-p_T jets $N_{jet}) = 3$
- Presence of a high-p_T b-tagged jets
 \rightarrow Only **one** b-jet in $W+t$ events
- Presence of a W-boson mass peak
 \rightarrow requires $60 < M(j,j) < 90$ GeV/c^2
- Reconstruct M_{jvD} within ± 25 GeV/c^2
- Window in H_T or Invariant Mass

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
 & W^* & Wg & W+t & tt & WQQ & W+jets \\
\hline
\text{Pre-Selection } \varepsilon(\%) & 26.2 & 23.7 & 22.4 & 38.3 & 1.46 & 0.05 \\
\text{Selection } \varepsilon(\%) & 0.16 & 0.25 & 0.88 & 0.35 & 0.004 & 0.0003 \\
\text{N_{event}(30 fb^{-1})} & 105 & 4,050 & 4,720 & 26,300 & 90 & xxx \\
\pm \text{MC stat.} & \pm 5 & \pm 80 & \pm 80 & \pm 400 & \pm 20 & \pm 85 \\
\hline
\end{array}
\]

- $N(\text{jet}) = 3$ \rightarrow reduces Wjj & WQQ ~ 3.5 wrt $W+t$
- $M(jj) \sim M_W$ \rightarrow reduces WQQ/jets by ~ 3 wrt $W+t$
\rightarrow Good knowledge of tt background is mandatory

9/11/06
Simona Rolli, PASCOS06
\(V_{tb} \) Measurement

- **Indirect measurement**
 - based on CKM unitarity constraint (3 generations)

\[
\frac{|V_{tb}|^2}{|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2} = \frac{BR(t \rightarrow Wb)}{BR(t \rightarrow Wq)}
\]

- **Direct measurement**
 - based on electroweak single top production (\(\sigma \propto |V_{tb}|^2 \))
 - measure yield of single top production
 - combine with \(BR(t \rightarrow Wb) \) and \(M_t \) (from tt channel)
 - unbiased test of 3-generation structure of SM
 - penalized by poor knowledge of \(W+jets, WQQ \) background
 - no systematic effects taken into account

<table>
<thead>
<tr>
<th>channel</th>
<th>S/B</th>
<th>uncertainties on (\sigma)</th>
<th>(\Delta V_{tb}/V_{tb})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>stat (30fb(^{-1}))</td>
<td>theoretical</td>
</tr>
<tr>
<td>s-channel</td>
<td>0.55</td>
<td>5.6%</td>
<td>7.5%</td>
</tr>
<tr>
<td>t-channel</td>
<td>2.3</td>
<td>0.54%</td>
<td>11%</td>
</tr>
</tbody>
</table>
Top quark pair production as calibration tool

You can use production of top quark pairs to help calibrate LHC detectors in complex event-topologies

Yes No Cancel

→ A candle for complex topologies:
 - Calibrate light jet energy scale
 - Calibrate missing E_T
 - Obtain enriched b-jet sample
 - Leptons and trigger

Note candles: 2 W-bosons
2 top quarks
Calibrating jet energy scale

One of the most relevant systematic effects on M_t

- jet energy: measurement of parton energy
- 1% uncertainty on absolute JES induces $\delta M_t \sim 1 \text{GeV}/c^2$
- sizeable effects also from
 - b-jet energy scale
 - QCD radiation, underlying event, cone algorithm
- at start-up, 5÷10% uncertainty
 - test-beam data
- in-situ correction with Z/γ+jet
 - p_T (jet) correction
 - residual mass shift (2% on M_t)
- $M_{jj} = M_W$ additional constraint on JES
- clean $W \rightarrow jj$ sample needed
 - 80% purity within $t\bar{t} \rightarrow l\nu+jets$

- goal: 2÷3% uncertainty in 1 year (target 1%)
- Alternative method: P_T balance in $Z/\gamma +$ jet events

$M_{jj} = M_W$ additional constraint on JES

P_T (jet) correction

Clean $W \rightarrow jj$ sample needed

80% purity within $t\bar{t} \rightarrow l\nu+jets$

Full simulation

$tt \text{ MC@NLO}$
Calibrating b-jets

- b-tagging techniques rely on:
 - impact parameter of decay tracks
 - primary/secondary vertex separation
 - soft leptons
 - targeting b and c semileptonic decays

- Typical performances:
 - efficiency ~60% on $p_T>40\text{GeV/c}$ jets
 - light flavour rejection $1/\epsilon_u \sim 200$

- Jets from b-quarks need specific corrections:
 - semileptonic decays of heavy-flavoured quark
 - neutrino induces a large shift on the jet energy
 - effect enhanced if lepton is muon (MIP)
 - jet direction affected as well as jet energy
Calibrating the missing energy

- P_μ (neutrino) constrained from kinematics: M_W → known amount of missing energy per event

- Calibration of missing energy **vital** for all (R-parity conserving) SUSY and most exotics!

Example from SUSY analysis

- Perfect detector
- SUSY LSP or a mis-calibrated detector?

Range: $50 < P_T < 200$ GeV
A window to new physics?

Structure in M_{tt}

Interference from MSSM Higgses $H,A \rightarrow tt$ (can be up to 6-7% effect)

<table>
<thead>
<tr>
<th>$q = u, c$</th>
<th>$t \rightarrow Zq$</th>
<th>$t \rightarrow \gamma q$</th>
<th>$t \rightarrow gq$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$BR(L=10 fb^{-1})$</td>
<td>$3.4 \cdot 10^{-4}$</td>
<td>$6.6 \cdot 10^{-5}$</td>
<td>$1.4 \cdot 10^{-3}$</td>
</tr>
<tr>
<td>$BR(L=100 fb^{-1})$</td>
<td>$6.5 \cdot 10^{-5}$</td>
<td>$1.8 \cdot 10^{-5}$</td>
<td>$4.3 \cdot 10^{-4}$</td>
</tr>
</tbody>
</table>
Conclusions

1) Top quarks are produced by the millions at the LHC:
 → Almost no background:
 to measure top quark properties will be easy

2) Top quarks are THE calibration signal for complex topologies:
 → Most complex SM candle at the LHC
 → Vital input for detector commissioning/calibration

3) Top quarks pair-like and singly produced......
 as a window to new physics:
 → FCNC, SUSY, MSSM Higgs,
 Resonances, anomalous couplings
 Also important SUSY background
Backup Slides
Top Mass Now

All CDF measurements (last updated 07/26/2006)

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Value (GeV²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run 1 Dilepton (Run 700 pb⁻¹)</td>
<td>167.4 ± 10.3 ± 4.9</td>
</tr>
<tr>
<td>Run 1 Lepton+Jets (Run 150 pb⁻¹)</td>
<td>176.1 ± 5.1 ± 5.3</td>
</tr>
<tr>
<td>Run 1 All-hadronic (Run 300 pb⁻¹)</td>
<td>168.6 ± 10.6 ± 5.7</td>
</tr>
<tr>
<td>Dilepton: Matrix Element b-tag (N=300 pb⁻¹)</td>
<td>167.3 ± 4.6 ± 3.8</td>
</tr>
<tr>
<td>Dilepton: Matrix Element (N=300 pb⁻¹)</td>
<td>164.5 ± 3.9 ± 3.9</td>
</tr>
<tr>
<td>Dilepton: Combined (N=300 pb⁻¹)</td>
<td>167.9 ± 5.2 ± 3.7</td>
</tr>
<tr>
<td>Dilepton: weighting</td>
<td>170.7 ± 6.9 ± 3.7</td>
</tr>
<tr>
<td>Dilepton: σF (σF)</td>
<td>169.5 ± 7.2 ± 4.0</td>
</tr>
<tr>
<td>Dilepton: σF (σF)</td>
<td>169.7 ± 9.0 ± 4.0</td>
</tr>
<tr>
<td>Dilepton: σF (σF)</td>
<td>166.6 ± 7.0 ± 3.2</td>
</tr>
<tr>
<td>Dilepton: σF (σF)</td>
<td>173.2 ± 2.4 ± 3.2</td>
</tr>
<tr>
<td>Dilepton: σF (σF)</td>
<td>183.9 ± 13.5 ± 5.5</td>
</tr>
<tr>
<td>Lepton+Jets: Matrix Element</td>
<td>170.9 ± 1.6 ± 2.0</td>
</tr>
<tr>
<td>Lepton+Jets: Matrix Element</td>
<td>173.4 ± 1.7 ± 2.2</td>
</tr>
<tr>
<td>All hadronic: Matrix Element</td>
<td>174.0 ± 2.2 ± 4.8</td>
</tr>
<tr>
<td>All hadronic: Matrix Element</td>
<td>177.1 ± 4.9 ± 4.7</td>
</tr>
<tr>
<td>CDF Summer 2005</td>
<td>170.9 ± 1.4 ± 1.9</td>
</tr>
<tr>
<td>CDF Summer 2005</td>
<td>171.4 ± 1.2 ± 1.8</td>
</tr>
</tbody>
</table>

CDF Top Mass Uncertainty

- CDF Results
- Run IIa goal (TDR 1996)
- Scale Δ(stat) / Nc
- Fix Δ(syst) (assumes no improvements)

CDF and D0 best (last updated 07/26/2006)

- CDF Dilepton (L=1090 pb⁻¹) | 164.5 ± 3.9 ± 3.9
- D0 Dilepton (L=370 pb⁻¹) | 178.1 ± 6.7 ± 4.3
- CDF Lepton+Jets (L=1090 pb⁻¹) | 170.9 ± 1.6 ± 2.0
- D0 Lepton+Jets (L=370 pb⁻¹) | 170.3 ± 2.5 ± 3.8
- CDF All hadronic (L=1100 pb⁻¹) | 174.0 ± 2.2 ± 4.3
- Tevatron July'06 (CDF-D0 Run (+8 Average)) | 171.4 ± 1.2 ± 1.8

Gif and eps
Top Cross Section Now
Top Properties Now

<table>
<thead>
<tr>
<th>Top quark production and decay properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>lepton+jets</td>
</tr>
<tr>
<td>lepton+jets</td>
</tr>
<tr>
<td>lepton+jets</td>
</tr>
<tr>
<td>dilepton</td>
</tr>
<tr>
<td>lepton+tau</td>
</tr>
<tr>
<td>dilepton, lepton+jets, single and double Vertex b-tags</td>
</tr>
<tr>
<td>dilepton, lepton+tau, lepton+jets single and double Vertex b-tags</td>
</tr>
<tr>
<td>lepton+jets</td>
</tr>
</tbody>
</table>
W Helicity

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Formula</th>
<th>$F_0 = 0.61 \pm 0.12$ (stat) + 0.04 (syst) $F_+ < 0.11$ @ 95% C.L.</th>
<th>$F_+ < 0.09$ @ 95% C.L. $F_0 = 0.59 \pm 0.12$ (stat) + 0.07-0.06 (syst) $F_+ < 0.10$ @ 95% C.L.</th>
<th>$F_0 = 0.74 \pm 0.22$ -0.34 (stat+syst) $F_+ < 0.27$ @ 95% C.L.</th>
<th>$F_+ < 0.18$ @ 95% C.L.</th>
</tr>
</thead>
<tbody>
<tr>
<td>lepton+jets</td>
<td>$\cos \theta^*$</td>
<td></td>
<td>M_{lb}^2</td>
<td></td>
<td>M_{lb}^2</td>
</tr>
<tr>
<td>dilepton, lepton+jets</td>
<td>M_{lb}^2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Run II)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lepton+jets</td>
<td>$\cos \theta^*$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dilepton, lepton+jets</td>
<td>Combined $\cos \theta^*$ and Lepton Pt spectrum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run I</td>
<td>M_{lb}^2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Plain English explanation

- **lepton+jets**: $\cos \theta^*$ with $F_0 = 0.61 \pm 0.12$ (stat) + 0.04 (syst) $F_+ < 0.11$ @ 95% C.L.
- **dilepton, lepton+jets (Run II)**: M_{lb}^2 with $F_+ < 0.09$ @ 95% C.L.
- **lepton+jets** (again): $\cos \theta^*$ with $F_0 = 0.59 \pm 0.12$ (stat) + 0.07-0.06 (syst) $F_+ < 0.10$ @ 95% C.L.
- **lepton+jets** (third): Combined $\cos \theta^*$ and Lepton Pt spectrum with $F_0 = 0.74 \pm 0.22$ -0.34 (stat+syst) $F_+ < 0.27$ @ 95% C.L.
- **dilepton, lepton+jets (Run I)**: M_{lb}^2 with $F_+ < 0.18$ @ 95% C.L.