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Abstract

A recently developed simulated neuron called a Sequential Associative
Memory was used to construct a set of neural networks in order to
determine if it is possible to create a trainable network that is capable
of recognizing and acting upon temporal or frequency dependent
events in a signal that is continuous in space and discrete in time.
The specific test involved attempts at emulating a simple second
order (two term) linear difference equation with constant coefficients.

A comparative study was performed on three groups of networks. The
first group was the baseline composed networks that did not utilize
any type of feedback connections and therefore should exhibit no
short term memory. The second group, the Sequential Associative
Memory group, utilized internal feedback connections within the
neural network. The third group used a variant architecture that
utilized external feedback connections, but had no feedback
connections internal to the network.

Each group of networks was tested using different topologies with
regard to number of neurons and the number of connections. These
networks were trained to emulate a two term linear difference
equation. The performance of each topology was measured by the
mean and maximum errors observed after the networks' weight matrix
had achieved near steady-state behavior. These performance results
were compared to judge relative performance for each general group
and for the specific topologies.

It was found that the SAM networks exhibited much better
performance than any of the baseline networks, demonstrating that
feedback connection could indeed create a mechanism for short-term
memory. It was also found that only a small number of the most
complicated SAM networks could approach the performance of the
variant networks, which were generally simpler in topology.

It was also shown that SAM networks are sensitive to the ratio of the
coefficients in the linear difference equation and perform poorly when
the [k-1]th term is greater in magnitude than the [k]th term. The
variant architecture was found to be insensitive to this issue.

Thesis Supervisor: Dr. David Akin
Title: Asst. Professor of Aeronautics and Astronautics
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Introduction

In 1988, Robert Sanner of MITs Space Systems Lab published a
Master's thesis that described his work on the synthesis of
neuromorphic control systems. In this work Sanner demonstrated
that a neural system with no prior knowledge of a second order
dynamic system was capable of learning how to control the system.
[Sanner, 1989]

Sanner's networks worked well and helped open a new approach to
controlling dynamic systems. These networks had a drawback: they
had no sense of prior state, and hence were incapable of emulating
anything more complicated than a proportional feedback control
system. Admittedly, these proportional control systems were non-
linear and adaptive, but the networks were still incapable of emulating
something as simple as a lead-lag compensator.

To address this limitation, this research considers the application of
feedback connections within a neural network to achieve some type of
short-term memory and thus to provide a mechanism for
remembering a previous state. The inspiration for this work came
from recognizing the similarities between neural networks and
combinational logic circuits. It should be possible to emulate a finite
state machine in a neural network, based on the fact that a finite state
machine implemented with digital electronics is simply a
combinational logic circuit attached to a bank of flip-flops. Since a
flip-flop can be constructed using a pair of logic gates wired with
feedback, it was reasoned that applying feedback to a neural network
would result in a behavior similar to that of a finite state machine.

In 1989, Stephen Gallant and Donna King of Northeastern University,
published a paper describing a variant artificial neural cell called a
Sequential Associative Memory (SAM) cell. In their paper Gallant and
King describe how several neural networks were trained to exhibit
finite state machine behavior. [Gallant and King, 1989] This work was
limited to the analysis of networks with binary inputs and binary
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outputs and did not address the viability of training networks with
continuous inputs and continuous outputs as would be required for a
linear feedback control system.

The approach taken in this research was to create an artificial neural
network that would attempt to emulate a multiple term finite
difference equation. The first question that needed to be resolved was
what form the artificial network would take, either an analog or digital
hardware implementation or a software simulation. The goal was to
emulate a finite difference equation that was discrete in time and
continuous in space. A truly continuous system would require the
construction of an artificial neural network from analog components.
Due to cost and experience issues, digital simulation was chosen as a
more desirable approach. The continuous nature of the system was
maintained in the simulation by selecting digital representations with
high enough resolution that the discretization error would be
negligible.

Minor modifications were made to the structure of the binary SAM
cells to accommodate higher resolution signals. Modifications were
also made to the standard back propagation learning algorithm that
facilitated training of the feedback connections. An attempt was made
to see if these new networks could emulate a second order finite
difference equation. This was demonstrated as reported in the body of
this thesis.
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Chapter 1
Application of Artificial Neural Networks to Adaptive Control

Chapter Summary

* Neural networks provide a relatively simple mechanism for
creating an adaptive control system.

* Neuromorphic control systems have been found to be very
effective in cases where the behavior (transfer function) of
the controlled plant is largely unknown.

* Adaptive control systems constructed using linear digital
filters usually require some knowledge of the controlled
plant.

* Digital filters higher than first order exhibit some sense of
past state.

* Unidirectional sequential neural networks do not exhibit
behavior based upon past state.

1.1 Artificial Neural Networks

The term artificial neural network applies to a wide range of systems.
For the purpose of this investigation the discussion will be limited to
the sequential simulation of a neural network on a digital computer.
Despite the limited scope of this investigation, the discussion and
results presented here should be generally applicable to other types of
artificial neural networks including those implemented as massively
parallel digital or analog electronic devices.

Pellegrini 
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One of the primary characteristics of an artificial neural network is its
ability to adapt. As time progresses the relationship between a neural
network's input and output will change. Under ideal conditions this
change follows a course that produces a desired behavior.

This adaptive behavior is so universal and so powerful that many
researchers prefer to classify the behavior as learning. The perceived
ability of a neural network to learn is consistent with other
characteristics that provide a base of commonality between artificial
neural networks and their biological counterparts.

Artificial neural networks derive their overall decision power from the
parallel action of many simple elements. Human beings derive their
complex and powerful deductive powers from several billion neurons
acting in unison. [Crick and Asanuma, 1986] The current theories
imply that this type of massive parallelism may lead to computational
power which is not bound by the limitations of current artificial
systems.

Artificial neural networks are fault tolerant. Aberrant behavior in a
small number of elements does not cause large changes in the nominal
behavior of the network. This characteristic is derived from the large
number of elements and their vast interconnectivity. In a biological
system, aberrant behavior of individual elements is unavoidable as
oxygen and nutrient supplies are not perfectly uniform.

Artificial neural networks are also failure tolerant. Destruction or
disconnection of a small number of elements does not cause large
changes in the nominal behavior of the network. It is known that
humans can lose millions of brain cells without a noticeable change in
behavior or ability. An artificial neural network can be retrained in
real-time to work around substantial failures.

Artificial neural networks are capable of extracting relevant
information from a noisy signal. This is crucial in many applications
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since all signals have some level of noise. Neural networks can reject
noise without explicit knowledge of the type of noise they are dealing
with. This is quite different from a simple filter that requires
information about the spectral character of the noise. A neural
network's noise rejection capability is inherent in the adaptive
(learning) properties of the network.

The elements in an artificial neural network are massively connected
to each other. A single element can be connected to any number of
other elements. The complexity of the connections in a network are
largely responsible for its behavior. The greater the number of
connections, the more unusual (or unpredictable) the behavior may be.
Since the possible number of connections increases exponentially with
the number of neurons, a neural network's behavior can quickly
become very intricate and complex. This complexity is best
exemplified in animal (particularly human) behavior.

In an artificial neural network, the structures of all the elements are
essentially identical. Even in a biological system different types of
neural cells appear to operate in a similar fashion. These elements are
also simple in their operation. A single element has very little
computational power when it is considered by itself, but a network of
elements working together can produce vast computational power.
This characteristic is important because it make the simulation and
construction of artificial networks very simple. It is much easier to
create thousands of simple things than it is to make hundreds of
complicated things.

The synthesis of an artificial neural network usually follows one of two
popular courses. The first course is to construct a device whose
elements and structure imitate natural neural systems. These systems
are usually electronic in nature and can be entirely analog, entirely
digital, or a hybrid of both. Hardware implementations of this type
have one very large benefit: the parallel nature of neural computation
is preserved, leading the way to great computational power. On the
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negative side, hardware implementations are difficult to reconfigure:
once an overall structure for a neural system has been determined and
implemented in hardware, it is difficult to make major changes in the
topology of a network since connections are implemented physically.

The second class of artificial neural networks are implemented as
sequential simulation. These simulations are usually performed on a
digital computer with a single processing element. In a sequential
simulation, the neural network elements and topology are represented
purely through software. Since there is only one processing element,
the benefit of massively parallel computation is lost. However,
sequential simulations are relatively easy to reconfigure; not only can
the topology be changed, but also the characteristics of the neural
elements can be modified. This level of flexibility makes sequential
simulation the natural choice for research applications.

Recently a hybrid mechanism for creating artificial neural networks
has emerged. Sequential simulations are implemented on computers
that utilize multiple parallel processing elements. Unlike the pure
hardware implementation, the ratio of processing elements to neural
elements in the hybrid implementation is not one-to-one. As a matter
of fact, the number of processing elements is usually much smaller
than the number of neural elements. The result is a system that takes
advantage of the parallel nature of neural systems, but is still bounded
in computational power. The hybrid system retains the flexibility
found in the purely sequential solution, since the neural elements and
neural topology are defined entirely in software. The drawback of the
hybrid system is cost. At the time of this writing a typical system
utilizing four parallel processors would cost approximately $15,000.
The increased performance (roughly proportional to the number of
processors) usually does not justify the cost when a personal computer
costs around one tenth as much. The experiments described in this
paper were carried out using a sequential simulation on a computer
with a single processor.
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1.2 Artificial Neural Elements

Artificial neural elements or neurons can be divided into four sections:

* Dendrites (input connections and weighting values)

* Left body (summation function)

* Right body (activation function)

* Axon (output connections)

Inout

Dendr n

Figure 1.1 - A Neural Element

A given neuron can have any number of dendrites, receiving signals
from the axons of other neurons. Each dendrite connects to the axon
of one other cell. In addition to accepting the raw input signals, each
dendrite has its own weighting value. These weights vary with time
and are partially responsible for the behavior of a neural network's
input/output relationship. It is common to represent the dendrite
weights as a matrix. The following notation will be used henceforth:

wj
(the weight of dendrite i of neuron j)

Pellegrini 
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The inputs, transmitted from the axons of other neurons, can also be
represented as a matrix.

El
(the input to dendrite i of neuron j)

The summation function is used to derive a value for the neuron that is
commonly referred to as the NET value.

k

Nj= W Ej
i=1

In the above expression, k is the number of dendrites on neuron j.

The activation function is used to determine the output value for the
neuron using the value computed in the summation function. The
output of a neuron is fed through the axon and becomes the input to
other neurons. There are three common types of activation functions:
threshold, linear activation, and sigmoidal activation.

Threshold functions compare the value of Nj to some threshold value
and produces one of two possible outputs depending on whether Nj is
greater than or less than the threshold. The following is an example
of a threshold function.

S+1 if Nj > 0

-1 ifNj < 0

In a neuron of this type the threshold value can be predetermined and
fixed, or it can be randomly set and time varying. The discrete output
values are usually predetermined and fixed. Obviously a neuron with
this type of output function would have a non-linear input/output
relationship. It would also follow that a network containing neurons of
this type would also have a non-linear input/output relationship.
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Networks containing threshold units are suitable for tasks where the
desired output behavior is discrete; that is, where the number of
possible outputs is limited. This type of behavior is usually associated
with the act of making decisions or picking a selection from a limited
number of choices.

A linear activation function simply takes the value of Nj and multiplies
it by some constant, Mj.

Oj = F(Nj) = Mj Nj

It has been shown that a network made up solely of linear neurons will
itself be linear. It has also been shown that linear networks are
incapable of solving some relatively simple problems [Minsky and
Papert, 1969]. On the other hand, as will be shown later in more
detail, linear networks are well suited for the task of emulating linear
digital filters.

The third common type of output function is the sigmoidal activation
function. The sigmoidal function has several interesting
characteristics. Unlike the linear function, the sigmoidal function is
bounded; even if the magnitude of the Nj value approaches infinity,
the output of a sigmoid neuron will remain within a defined bound.
Unlike the threshold function, the sigmoidal function is continuous.
This provides access to a training algorithm (known as the Modified
Delta Rule or Back Propagation) that requires knowledge of the slope
of the activation function. Finally, the sigmoidal function can
approximately mimic either the linear function or the threshold
function, depending on how the dendrites of a given neuron are
weighted. The sigmoidal output function takes the following form:

Oj = F(Nj) = 1
(1 + e-Nj)
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During previous investigations into neuromorphic control of dynamic
systems [Sanner, 1989], neurons with sigmoidal activation functions

were placed on the final output stage. It was decided in Sanner's work

that the bounded output of a sigmoid matched well with the physical
limitations of the system's actuators.

1.3 Generation of Artificial Neural Networks

The way in which a neural network is connected -- its topology -- is

also an important factor in the behavior of the network. Conceptually,
most artificial neural networks are arranged in layers. Each layer
contains some number of neurons. The outputs of the lower layers
feed into the inputs of the higher layers. The information flow during
neural operation is unidirectional: moving from the input layer through
to the output layer.

Input
Layer

Hidden
Layer

Output
Layer

Figure 1.2 - A Unidirectional Network
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In a typical operation an input vector is applied to the first layer of
neurons. This layer is referred to as the input layer. The input layer's
axons are excited in reaction to the input signals and these axons
supply input signals into the dendrites of the higher levels. The
signals propagate forward through higher and higher levels until every
level has been reached. The output of the network is taken as a vector
composed of the outputs of the neurons in the highest level. These
output neurons are classified as belonging to the output layer.

Neurons that are neither classified as input neurons nor as output
neurons are simply called hidden neurons (or neurons that exist in
hidden layers). In several papers [Sanner, 1989; Grossberg, 1976,
1982, 1987; Kohonen, 1984] neural researchers have theorized that
the hidden layers in a neural network create a complicated internal
representation of the outside world. Creating a system to trace and
comprehend these internal representations has been a desire of
neural researchers for quite some time. The fact that one cannot
understand why a particular neural network correctly performs its job
prevents the researcher from guaranteeing that such a network will
continue to do so for all cases. This characteristic has in many cases
disqualified neural networks from being implemented in applications
where such a guarantee is critical.

The connections between axons and dendrites are responsible for
defining the topology of the network. Each dendrite is connected to
the axon of a single neuron. If a unique identification number is
assigned to every neuron in a network, the topology of that network
can be described using a connectivity matrix D.

i

(the identification number of the axon
connected to dendrite i of neuron j)

Pellegrini 
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The dendrites that receive the input signals to the network can be
connected to a layer of linear input neurons whose outputs are set
(rather than evaluated) to correspond to the input vector.

When the signals in a neural network progress unidirectionally
through increasing layers with synaptic and neural evaluations
proceeding under a fixed natural sequence, that neural network is
classified as a sequential unidirectional network. In a sequential
unidirectional neural network there are no feedback paths for synaptic
signals.

If it is assumed that the identification numbers of the neurons
increases monotonically with level and the order of firing progresses
naturally, the lack of feedback can be described with the following
rule:

D. <j (V ij)

In a sequential network the dendrites of any given neuron are only
connected to axons that have already had an opportunity to fire. This
"no feedback rule" is implemented because the typical learning
algorithms are not designed to coherently train feedback connection.
One of the purposes of this thesis is to examine how this "no feedback
rule" can be successfully violated.

It is important to recognize the fact that sequential networks and
unidirectionally propagating signals are constructs unique to artificial
sequential simulations of neural networks. In natural neural networks
the flow of information is not necessarily unidirectional, but instead
tends to create complicated closed paths, where signals may follow
intricate loops. In addition, most artificial sequential networks
evaluate the neuron activations synchronously: this is opposed to the
character of natural neural systems and hardware mimics that are
essentially asynchronous. In a natural neural network each individual
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neuron works completely independent from the other neurons; there
is no necessary pattern to the firing order.

The asynchronous character of natural neural networks is a curious
and promising thing. It is because of this asynchronous nature that
one can hope to obtain maximum benefit from massive parallelism
without the crippling effects of having to synchronize the
computational nodes (the neurons).

The ultimate purpose of this investigation is to take a sequential
simulation of a neural network and violate the classical restriction
against feedback paths for information, while retaining the
synchronous evaluation sequence. By doing this a neural network with
a workable and trainable short-term memory capable of emulating
second and higher order digital filters was created.

1.4 Training of Artificial Neural Networks

The primary appeal of neural networks is that the global application of
relatively simple rules can easily cause a network to converge to a
desirable behavior. This behavior adaption is achieved by making
modifications in the weight matrix associated with the network's
dendrites.

The adaptive process is usually referred to as training, since it utilizes
a course of action analogous to a training routine:

* Apply a set of sample input vectors
* Allow the network to produce an output
* Compare the actual output vector with the desired output

vector for that set of inputs

* Apply an algorithm that adjusts the weight matrix based upon
the difference between the output vectors, the input vector,
and the current weight matrix.
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Since the adaptive process is driven by the error in the output vector,
the change in the weight matrix can be loosely associated with a
punish/reward system. Larger changes are made to weights of
neurons whose output is perceived as being incorrect and smaller
changes are made to neurons whose output is correct. Theoretically,
the system will eventually settle to a point where the input/output
mapping is optimal and the weight matrix will remain relatively fixed.

There are two strategies for the application of training:

Strategy #1 -- TRAIN and LEAVE

1. Setup the artificial neural network into the proper topology
2. Initialize the weight matrix to a series of small random values
3. Present a series of training sets and adjust weights according to

some algorithm.

4. When desired behavior is apparent, cease training and fix
weights

5. Utilize the neural network with the fixed weights

Strategy #2 -- CONTINUOUS TRAINING

1. Setup the artificial neural network into the proper topology
2. Initialize the weight matrix to a series of small random values
3. Present a series of training sets and adjust weights according to

some algorithm.

4. When desired behavior is apparent, set the neural network to
work on the real problem.

5. Continue to evaluate, train, and adjust weights using the
spontaneous (real world) inputs and outputs.

The first strategy takes advantage of the neural network's learning
ability, but foregoes the capability of continuous adaptation. This is
common in real-time applications where there is not sufficient
computational power to operate and train in real-time. In this case
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the training will occur off-line by using a simulator that also may not be
real-time.

There are many different algorithms for implementing the
punish/reward mechanism. Most utilize a formula that causes the
system to follow the gradient of the output error to some minimum.
There are also other training algorithms that rely on more than simple
punish/reward rules and utilize other mechanisms, such as simulated
annealing. These Boltzman machines, as they are called, overcome
some problems that simple error gradient following algorithms
encounter, most notably the potential to get caught in local error
minima. However, these Boltzman machines have some negative
behaviors of their own, particularly unpredictable behavior during
training and potential network paralysis [Hinton and Sejnowski, 1986].

In this investigation the simplest and most well known punish/reward
training algorithm is used. It is known as the modified delta-rule or
the back propagation algorithm. This algorithm was chosen for this
study for the following reasons:

1. It is a relatively simple algorithm to implement.

2. It is a well known algorithm that has become a yardstick against
which other training algorithms are measured.

3. While no neural network training algorithm is perfectly
repeatable, back propagation is more repeatable than algorithms
that use simulated annealing or other stochastic methods.

4. The back propagation algorithm was easily modified to work
with the variant neural network topologies that are the central
focus of this thesis.

The back propagation algorithm was originally reported by Werbos
(1974), but it wasn't until 1986 when Rumelhart, Hinton, and Williams
rediscovered the process that it achieved widespread recognition and
use.
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The back propagation training algorithm is often referred to as the
generalized delta-rule. The original delta rule is a training algorithm
developed in 1960 by Widrow and Hoff. The delta rule was developed

to train networks of perceptrons. Perceptron networks were simple
single layer networks composed of linear discriminant neurons. It was
shown [Rosenblatt, 1962] that a network of perceptrons trained using
the delta-rule could eventually learn any function that it could
represent.

The original delta-rule is applicable only to single layer networks.
The training sequence and algorithm are as follows.

Pellegrini 
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1. Apply a training input pattern and allow the network to calculate

the output vector, O , of the network.

2. For each output neuron, compute a delta value which is the
difference between the desired output, T , and the actual output.

Sj(n) = [T (n) - Oj(n)

3. For each dendrite of a given output neuron, the weight is
adjusted by a product of the neuron's delta value, the activation
level of the neuron, and a learning rate.

A j(n)=TI 8j(n) E (n)

W J(n+1)= W J(n)+ Aj(n)

A training "momentum" term is often appended to the above
equation. The momentum is modulated by a constant
momentum rate, a.

W j(n+1)= W j(n)+ AJ(n) + aAo(n-1)

4. Repeat step (3) for each output neuron.
5. Repeat steps (1-4) until satisfactory behavior is observed.

In 1969, Minsky and Papert demonstrated the fundamental limitation
of simple perceptron networks trained by the original delta-rule by
showing that single layer networks could only represent linearly
separable functions. This eliminated the potential for single layer
perceptron networks to represent an entire class of functions,
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including functions as simple as the binary "exclusive or" (XOR)
function.

Since the original delta-rule was limited to training single layer
networks, an extension to the algorithm was developed to handle
multiple layer networks, and the back propagation algorithm was
created.

The problem with the original delta-rule was that it did not provide a
mechanism for training internal or "hidden" neurons. The original
delta-rule equations required that each neuron have a target or
training value (Tj) for comparison to its output. Since these training
values only applied to the output neurons, there was nothing that
could be presented to the hidden neurons.

The back propagation algorithm is aptly named, since it solves the
above problem by propagating the delta values for the neurons
backwards through the network. This mechanism provides effective
training of the hidden neurons in a multiple layer network.

The back propagation training sequence and algorithm are as follows.

Pellegrini 
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1. Apply a training input pattern and allow the network to calculate
the output vector, 0, of the network.

2. For each output neuron, compute a delta value which is the
difference between the desired output and the actual output.

Bj(n) = [Tj(n) - Oj(n)

3. For each dendrite of a given output neuron, the weight is
adjusted by a product of the neuron's delta value, the activation
level of the neuron, and a learning rate.

A (n)=il 6~(n) E (n)

W J(n+1)= W j(n)+ Aj(n) + aA (n-1)

4. Repeat step (3) for each output neuron. Once all of the output
neurons have been evaluated, continue to step (5) and evaluate
the hidden neurons.

5. For each hidden neuron, compute a delta value that is a
weighted sum of the delta values of the neurons attached via the
axons of the hidden neuron.

ao08i(n) = o(n) [8q(n)]*[Wj(n)]

For a sigmoidal neuron the partial derivative of the output is
given by the following -

ao
j(n) = Oj(n)*[1l - Oj(n)]

6. For each dendrite of a given hidden neuron, the weight is
adjusted the same as with the output neurons.

A J(n)=q 8j(n) Ej(n)

W j(n+l)= W j(n)+ Aj(n) + oA (n-1)

7. Repeat steps (5-6) until the input layer is reached.

8. Repeat steps (1-7) until satisfactory behavior is observed.

/
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1.5 Information in Neural Networks

Neural networks are information engines: they absorb information
about their environment both through signals received at their input
neurons, and through feedback provided by training algorithms.
Neural networks take the information they collect and manipulate it
producing information that is (hopefully) in a more useful form than
that which was collected. Neural networks do not simply manipulate
information; they also store it internally for future use.

In the type of artificial neural networks described in this thesis there
are two mechanisms for information storage. The first place where
information can be stored is in the excitation signals produced by the
axons of each neuron in a network. At any point in time, the axons are
at some excitation level. This excitation level can change as often as
every evaluation cycle in the case of sequentially simulated networks.

The information stored in the axon excitations is often referred to as
short term memory. This label is applied since in the most common
networks -- sequentially simulated networks with unidirectional signal
flow -- the information contained within these excitations is flushed
and replaced every evaluation cycle. In a SUD (Sequential
UniDirectional) network there is no direct relationship between the
information contained in the axon excitations at time t and the
information contained in the same excitations at time t + At where At
is some an increment of time equal to one evaluation period.'

The second mechanism for information storage in an artificial neural
network is in the weight matrix associated with the network's

1 While there is no direct relation between the axonic information across evaluation
periods, there can be a rather tenuous relationship in cases where the SUD network is
undergoing training. In this case changes to the weight matrix are indirectly dependent
upon axonic excitation at time t and these changes are relevant to the axonic excitations
at time t+At. This relationship is so tenuous and insignificant that it is hardly worth
mentioning. It is very difficult to imagine coherent information being transmitted in
this way.



dendrites. 1 It is this weight information that determines the static

input/output relationship of the network. Unlike the axonic

excitations, the information in the weight matrix is relatively long
lived. In the extreme, a well trained network's weights may be held

constant or may only change by an infinitesimal amount depending on
whether or not training is still active.

The information contained in the weight matrix is usually classified as

long term memory due to its longer lifetime with respect to axonic

excitations.

It is not difficult to calculate the total information content of both the

long term and short term memory in a digitally simulated neural
network. Usually, the information pertaining to axonic excitation and
dendrite weights are digitally stored in static resolution variables; the
number of bits used to represent each quantity is fixed during all

operation. The total short term information storage can be calculated
by multiplying the number of bits used to represent the axonic
excitation and multiplying it by the number of axons in the network.
The total long term information storage can be calculated by

multiplying the number of bits used to represent each element in the
weight matrix and multiplying by the number of dendrites in the
network.

While computing the information content of a neural network, it is
important to remember that only a small fraction of the capacity of the
network is actually used. Neural networks (artificial and natural) are
notoriously inefficient at packing information tightly. Therefore, one
would find that it will usually take many more neurons and synaptic
connections than would be minimally necessary to solve a problem.

1 It can also be argued that there is information stored in connectivity matrix, but for
simplicity this information can be grouped collectively with the information contained
in the weight matrix.
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Chapter 2
Sequential Associative Memory

Chapter Summary

* Sequential Associative Memory (SAM) cells have been shown
to provide state-like behavior in networks of linear
discriminant neurons.

* SAM networks utilize feedback connections to implement
short term memory.

* SAM networks using linear neurons can emulate second and
higher order linear finite difference equations.

* Simple modifications to the standard back-propagation
algorithm provide a mechanism for training the feedback
connections in a SAM network.

2.1 What is Sequential Associative Memory?

In 1988 Stephen Gallant and Donna King of Northeastern University's
College of Computer Science, published several papers on a type of
neural network construction referred to as a Sequential Associative
Memory [Gallant & King, 1988]. The object of their research was to
improve the short term memory capability of artificial sequential
neural networks to the point where their networks could emulate the
types of behavior common to digital electronic finite state machines.

Gallant and King succeeded in producing networks with interesting
finite state type behavior. One network solved the sequential parity
problem. This network received a sequence of bits (inputs of 0 or 1)
and produced an output (0 or 1) that reported whether the current
sum (sequentially added in time) was even or odd. Another of their
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networks was able to add an arbitrarily long sequence of digits,
represented as binary numbers, that were presented over a period of
time. They also performed experiments in robot action, where a short
signal triggered a long series (in time) of network outputs.

Gallant and King's networks achieved "finite state machine" behavior
through the action of feedback paths in the neural topology of the
network and in an adjustment to the evaluation rules applied to the
calculation and firing of axonic signals. These rules [Gallant and King,
1988] are reproduced here:

1. Initialize SAM cell activations and output cells activations to 0.

2. Set the activations of inputs cells to the {first/next) set of inputs.

3. For each SAM cell, compute its activation value, but do not
change that activation until all other SAM cells have computed
their new values. After computing the new activation values for
all SAM cells, modify all activations accordingly.

4. For each output cell, compute its new activation value and
immediately change its activation to that value. These
activations are the {first/next) network outputs for the inputs
previously applied in 2.

5. Go to step 2.
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It was observed by this researcher that the following characteristics
were typical of Gallant and King's SAM networks:

1. The neurons were all threshold discriminant; their input and
output signals were essentially binary.

2. The networks were composed of three layers: an input layer, one
hidden layer, and an output layer.

3. All feedback connections led to the cells in the hidden layer; it
is these hidden layer cells that Gallant and King refer to as SAM
cells.

4. The weights of the dendrites involved in feedback connections
were randomly set and permanently fixed at the time of network
initialization. In other words the feedback connections were not
affected by the training procedure.

5. The random initialization of the feedback weights included a
gain factor that increased the average initial magnitude of the
feedback weights with respect to the other non-feedback
weights. This gain factor was typically set to about 10.

6. According to Gallant's evaluation rules, the SAM cells can be
evaluated and updated in parallel. This characteristic makes the
SAM architecture attractive for parallel processing hardware
implementation.

In this investigation two changes were made to the Gallant-King
model. The first change was related to observation number 1. Where
Gallant and King used discriminant functions with binary signals, the
SAM networks examined in this research utilize linear activation
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functions and sigmoidal activation functions producing high resolution
(almost continuous) signals1 .

The second deviation from the Gallant-King model was to modify the
back propagation training algorithm so that coherent training of the
feedback weights could occur. The details of these changes are
discussed in detail later in this chapter.

Despite the fact that feedback weights were allowed to adapt, the gain
factor mentioned in rule 5 was maintained. Experimentally, this
seemed to increase the speed and success of convergence for the SAM
networks.

1 The output signals in these SAM networks were encoded as 8 byte (64 bit) floating
point number. This provided the equivalent to an analog signal with a signal-to-noise
ratio of approximately 1015
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2.2 Example of a SAM Network Exhibiting Short Term Memory

The following diagram shows a
sequential parity function.

Ir

SAM network that will implement the

(THRESHOLDS)

Figure 2.1 - A SAM Network Implementing Sequential Parity

The sequential parity function is described as follows, where E(n) is a
sequence of binary inputs and O(n) is a sequence of binary output.

O(n) =

n

0 if I E(n) is even
k=O

n

1 if Z E(n) is odd
k=O

This summations in the above function seem to imply that a record of
all previous inputs needs to be kept in order to compute the correct
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output. However, it is only necessary to remember one previous
output.

O(n) = 0 if [O(n-1) + E(n)] is even
1 if [O(n-1) + E(n)] is odd

The memory of the previous output, O(n-1), is an indication of internal

state storage. This state is represented in the above network through
the feedback connection that leads from the output neuron back into
the middle neurons.

The sequential parity function can also be written in binary logic
notation as follows:

On = XOR(En, On-1) = En ® On-i

Breaking down this function, one can analyze the structure of the
neural network shown in the figure 2.1.

On = En ® O n-1 = [En U On-1] n [En U On-i]

Neuron A simply passes the input, E(n) to neurons B and C. Neuron B

implements the logical function [En U On-1]. Neuron C implements

the logical function [En u O n-i]. Neuron D, performs an AND function

to complete the computation of O(n).

Although it can be shown that such a simple network as the one given
above will implement desired behavior, as with all neural networks it
is generally necessary to implement a solution in a network that is
larger than the minimum size required. The reason for this need lies
in the nature of the training mechanisms. Back-propagation can really
be described as a very inefficient error gradient following algorithm.
Due to its inefficient nature, it is unlikely that training will cause a
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minimally connected network to converge in an acceptable period of
time.

Therefore, in practice, many more neurons and connections are
typically used than would be minimally necessary to implement a
desired function.

2.3 Short Term Memory and Second Order Linear Digital Filters

The ultimate goal of this thesis is to show that it is possible to train a
neural network to emulate the behavior of a linear second order digital
filter. From a functional standpoint, the goal is to develop a network
that will reproduce the effects of a two term difference equation, such
as:

u(k) = co e(k) + c e(k- 1)

or

u(k) = co e(k) + cl u(k-l)

The first equation describes a filter whose output is dependent on a
weighted sum of the current input and the input from the previous
time step. The following neural network, composed entirely of linear
neurons, will reproduce this function exactly. The feedback path
shown in the diagram produces a one time step delay that allows the
system to produce the behavior linked to the second term in the
equation.
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Figure 2.2- A SAM Network Implementing a Finite Difference Equation

The second equation describes a filter whose output is dependent on a

weighted sum of the current input and the output from the previous
time step. The following neural network, composed entirely of linear
neurons, will reproduce this function exactly. Once again, the
feedback path shown in the diagram produces a one time step delay
that allows the system to produce the behavior linked to the second
term in the equation.

Ir

Figure 2.3- Another SAM Net Implementing a Finite Difference
Equation

Unfortunately, observations made in this thesis indicate that it may not
be possible to train the above networks. Application of the back-
propagation training algorithm (the original and as modified for this
thesis) produces diverging training sessions whenever there is a
closed loop of connections that does not include at least one neuron
with a bound output. In other words, it may not be possible to train a
SAM network composed entirely of linear neurons.
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This leads to a very important point about the characteristics of neural
networks:

Just because it can be shown that a particular neural architecture can
emulate a certain behavior does not mean that such a network can be
trained, starting at a random state, to emulate such behavior.

It also appears that the requirement for having neurons with bounded
outputs in all closed feedback paths makes it impossible to perfectly
emulate second (or higher) order linear difference equations. There
will always be some limit to how well a non-linear network can
emulate a linear function. Theoretically, it should be possible to create
an arbitrarily large and complex non-linear network where this limit is
so close to perfection that it is of the same order as the signal-to-noise
ratio of the signals (or the discretization error for the case of digital
signals). In the cases examined later in this thesis, this limit to
performance was measured and explicitly noted.

2.4 Short Term Memory and Higher-Order Linear Digital Filters

It is also possible to cascade the feedback loops to obtain an arbitrarily
long time delay. For example, the following network reproduces the
behavior of the equation

u(k) = co e(k) + c3 u(k-3)
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Figure 2.4 - A SAM Net Implementing a 3-Step Time Delay

Unfortunately, observations made in chapter 4 of this thesis indicate
that although it is possible to train a network to emulate higher order
equations (and time delays), it may take an unacceptably long training
time to achieve a satisfactory behavior. This brings up a second
important point about the nature of neural networks:

Just because it can be shown that a particular neural network can be
trained, starting at a random state, to emulate a desired behavior does
not mean that such a network can be trained in an acceptable period
of time.
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2.5 Modification to the Back Propagation Algorithm for SAM
Networks

Earlier in this chapter, it was discussed how Gallant and King's
original concept for SAM networks assumed that the weights on the
feedback connections would remain fixed. Their presumption was
that the other weights in the network would reorganize and scale
themselves to work within the bounds set by the fixed feedback
weights.

While these presumptions provided satisfactory results, a decision was
made by this researcher to attempt a modification of the back-
propagation algorithm to allow training of the feedback weights as well
as the feedforward weights.

The problem with applying standard back propagation to a feedback
path is that the equations in the typical implementation of the back
propagation algorithm require information that is either unavailable or
not appropriate for the training of feedback connections. To fix these
problems, two changes to the back propagation algorithm were
required.

The first change to the back propagation algorithm is applied to the
computation of a delta value for hidden neurons. The unmodified
equation is:

8j(n)= I(n) [8q(n)]*[W (n)]

This equation computes the delta value for each hidden neuron by
computing a weighted sum of the delta values of the neurons attached
to the axons of the hidden neuron. The assumption made in the
original algorithm is that axons only connect to cells in higher levels.
In the case of a feedback path, the axon might be connected to a
neuron whose current delta value has not yet been computed. The
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current modification to this part of the algorithm is to simply ignore
such feedback paths in the computation of the hidden delta values.
This changes the above equation to

O= n) [8q(n)]*[Wq;(n)] if (level of q) > (level of j)
aNj q 0 if (level of q) < (level of j)

The second change to the back propagation algorithm applies to the
formula that calculates the change to each dendrite weight. The
unmodified formula is presented as

A (n)=,q 8j(n) E (n)

This equation computes the change in each weight by multiplying the
delta value of the neuron by the current excitation level of the
dendrite and a constant learning rate. This equation, taken by itself, is
perfectly satisfactory for application to feedback connections. It is
only on application that this formula may corrupt the algorithm. The
reason for this lies in the mechanism typically used implement the
above formula in software code. In order to eliminate the need for
redundant storage, the following assumption is typically made:

Ej(n) = Oj(n)

Usually, it is assumed that the excitation level of a dendrite is equal to
the current excitation level of the axon it is connected to. In a
discrete time digital simulation, this assumption only applies to
feedforward connections. For feedback connections the above
equation does not hold. The correct equation for a feedback
connection would be

Ej(n) = Oj(n-1)
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In the simulation used in this investigation, the integrity of the
algorithm was maintained at the expense of some additional memory
by eliminating the above assumption and having each dendrite
"remember" its own excitation state.
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Chapter 3
Convergence Properties of Sample SAM Architectures

Chapter Summary

* Closed feedback paths containing only linear neurons will
cause instability during training when using the modified
back-propagation algorithm.

* A network attempting to emulate a linear equation utilizing a
sigmoidal output neuron will always have some inherent error
induced by the non-linear nature of the sigmoid.

* A sequential unidirectional network without feedback cannot
emulate a second order digital filter.

* SAM networks are capable of producing relatively low errors
when trying to emulate some second order linear difference
equations.

* Variant networks utilizing a unidirectional network and
external feedback connections through a FIFO buffer can
emulate second order difference equations as well or better
than most SAM networks.

3.1 Experimental Network Architectures and Labeling System

In this chapter a presentation is made of several sample neural
network architectures. The first two architectures are typical
unidirectional sequential networks. These unidirectional networks
are presented as "baseline" cases for judging the success of the
networks with feedback. The focus of this chapter is the development



e(k)

Output
Cell

Figure 3.1 - General Form of the Sequential Unidirectional
Architecture (No Feedback)

of ten feedback architectures utilizing SAM cells to achieve temporal
behavior.

In addition to the baseline cases and the SAM networks, studies were
also performed on a set of networks having internal sequential
unidirectional topology with feedback implemented via an external
(non-neural) memory. This variant architecture is offered as an
alternative to the purely neural SAM architectures.

For each of the architectures, the number of neurons and the number
of connections was varied to determine the sensitivity of training
convergence on network size. The following diagrams describes the
general architectures of the networks examined in this study. Within
each architecture the number of neurons in the hidden layer was
varied which also varied the total number of connections contained in
the network. In the diagrams the arrows describing connection paths
indicate multiple connections to and from every neuron in the
connected layers:

Output
Cell
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Input
Cell

Output
Cell

Figure 3.2 - General Form of the SAM Architecture with Output
Feedback
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Figure 3.3 - General Form of the SAM

Feedback

h Architecture with Global
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Figure 3.4 - General Form of the Hybrid SAM Architectures with

Output Feedback
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Figure 3.5 - General Form of the Hybrid SAM Architectures with
Global Feedback
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Figure 3.6 - General Form of the Variant Architectures with External
Feedback

Pellegrini 
-44- 4/22/91

Pellegrini - 44- 4/22/91



In all of the networks, two types of neural cells were utilized in the
hidden layer: neurons with linear activation functions and neurons
with sigmoidal activation functions. For record keeping purposes,
each network architecture was assigned a unique label. This label is
composed of four parts: the type of neural cells in the hidden layer
(SAM layer), the base topology, the number of cells in the hidden
layer, and a bias flag.

The following label: LIN-OUT-20

indicates a network with twenty (20) neurons in the hidden layer, the
hidden neurons all utilize linear activation functions, and the output is
fed back into each of the SAM cells in the hidden layer.

Another example: SIG-GL-20-(B)

indicates a network with twenty (20) neurons in the hidden layer and
the hidden neurons utilize sigmoidal activation functions. The 'GL'
label stands for GLOBAL feedback and indicates that signals from all
neurons (output and hidden) are fed back into each of the SAM cells in
the hidden layer. The '(B)' at the end of the label indicates that every
hidden cell in the network is connected to a bias cell whose output is
always one (1.00).

The activation function for the neurons defined as LINEAR have a
slope of +1/2. The activation function for the neurons defined as
SIGMOID have a range from 0 to +1 with a maximum slope (at OUT =
+1/2) of +1. The sigmoidal output function takes the following form:

Oj = F(Nj) 1
(1 + e-Nj)

The inputs [e(k)] have a range of 0 to +1. With the coefficients for the
difference equation shown above, the range of the training outputs will
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be between 0 and +1, equivalent to the output range of the sigmoidal
neurons.

The output layer of each network was comprised of a single neuron
with a sigmoidal activation function. The sigmoidal output neuron was
used for two reasons:

1. Networks with linear output neurons would usually diverge
during training. The sigmoid output neuron allowed an
architecture to have a linear hidden layer when output feedback
was used.

2. The bounded output of a sigmoid matched well with the
limitations placed on the output of a control system with respect
to the limitations of a typical actuator like a servo-motor.

The following table describes the set of unidirectional and SAM
architectures that were simulated. The network types were defined
based upon the relative mix of sigmoid and linear neurons in the
hidden layer(s) and the number of feedforward and feedback
connections. The input layer was always composed of a single linear
neuron and the output layer was always composed of a single sigmoid
neuron. For each network type two or three networks of varying size
were generated and tested. The table below also contains the steady-
state average error which concisely describes the relative performance
of the particular network; the lower the number, the better the
performance.
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I ------------ Size of Network------------ I

Network
Type Small Medium Large

LIN-NONE 5 linear neurons 20 linear neurons NOT GENERATED

No bias 10 connections 40 connections

No feedback Avg. Err: 0.16522 Avg. Err: 0.16974

SIG-NONE 5 sigmoid neurons 20 sigmoid neurons NOT GENERATED

No bias 10 connections 40 connections

No feedback Avg. Err: 0.07840 Avg. Err: 0.16970

LIN-OUT 5 linear neurons 20 linear neurons 40 linear neurons

No bias 15 connections 60 connections 120 connections

Output feedback Avg. Err: 0.13476 Avg. Err: 0.13392 Avg. Err: 0.13231

LIN-OUT-(B) 5 linear neurons 20 linear neurons 40 linear neurons

With bias 20 connections 80 connections 160 connections

Output feedback Avg. Err: 0.03167 Avg. Err: 0.03151 Avg. Err: 0.03113

SIG-OUT 5 sigmoid neurons 20 sigmoid neurons 40 sigmoid neurons

No bias 15 connections 60 connections 120 connections

Output feedback Avg. Err: 0.0363 Avg. Err: 0.0357 Avg. Err: 0.0369

SIG-OUT-(B) 5 sigmoid neurons 20 sigmoid neurons 40 sigmoid neurons

With bias 20 connections 80 connections 160 connections

Output feedback Avg. Err: 0.0278 Avg. Err: 0.0270 Avg. Err: 0.0268

SIG-GL 5 sigmoid neurons 20 sigmoid neurons NOT GENERATED

No bias 40 connections 460 connections

Global feedback Avg. Err: 0.02626 Avg. Err: 0.01405

SIG-GL-(B) 5 sigmoid neurons 20 sigmoid neurons NOT GENERATED

With bias 45 connections 480 connections

Global feedback Avg. Err: 0.02097 Avg. Err: 0.00779

HYB-OUT 3 sigmoid neurons 10 sigmoid neurons 20 sigmoid neurons

No bias 3 linear neurons 10 linear neurons 20 linear neurons

Output feedback 18 connections 60 connections 120 connections

Avg. Err: 0.0329 Avg. Err: 0.0328 Avg. Err: 0.0346

Table 3.1 - Unidirectional and SAM Networks Generated
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Network

Type Small Medium Large

HYB-OUT-(B) 3 sigmoid neurons 10 sigmoid neurons 20 sigmoid neurons

With bias 3 linear neurons 10 linear neurons 20 linear neurons

Output feedback 24 connections 80 connections 160 connections

Avg. Err: 0.0327 Avg. Err: 0.0284 Avg. Err: 0.0358

HYB-GL 3 sigmoid neurons 10 sigmoid neurons NOT GENERATED

No bias 3 linear neurons 10 linear neurons

Global feedback 27 connections 160 connections

Avg. Err: 0.0157 Avg. Err: 0.0174

HYB-GL-(B) 3 sigmoid neurons 10 sigmoid neurons NOT GENERATED

With bias 3 linear neurons 10 linear neurons

Global feedback 30 connections 180 connections

Avg. Err: 0.0167 Avg. Err: 0.0166

Table 3.1 (cont'd) - Unidirectional and SAM Networks Generated
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3.2 Parameters of the Neural Simulation and Learning Algorithm

The task at hand is to emulate the behavior exhibited by the following

second order linear difference equation:

u(k) = coe(k) + cle(k-1)

where co = 0.7

cl = 0.3

The above coefficients were arbitrarily chosen with the following
constraints in mind:

1) The desired output range of the network should match the output
range attainable by the network. In this case, that range is from 0
to 1.

2) The coefficient of the (k-1)th term should be significant with
respect to the coefficient of the kth term in order to guarantee
that temporal errors could be distinguished from the relatively
small convergence errors and the inherent sigmoidal errors.

It should be noted that since the sigmoidal function is non-linear the
output of these networks will never be perfect; there will be some
discrepancy caused by the non-linear nature of the output neuron's
sigmoid attempting to match the linear character of the difference
equation. Therefore, it is important in viewing the results of the
following experiments to examine the relative behavior of the different
networks.

The input sequence used in training is generated using a pseudo
random number generator'. Each network is presented with several
hundred thousand inputs in a training sequence. The performance of
each network is judged by two criterion. The first is the average

1 Specifically, the rand() function supplied with MS-DOS Microsoft C version 5.1.
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magnitude of its output error. This average is taken at each point

using the 100 previous presentations. Therefore, the error at k=100

is the average of the magnitudes of the errors for presentations 1
through 100. The second criterion was the maximum error

magnitude in the previous 100 presentations.

Evaluations can be based upon three standards:

1) Accuracy of the network (average error, maximum error)

2) Number of presentations required to achieve steady-state
behavior

3) Number of connections in the network

The first two standards judge the ability of each network to learn a

function when given a certain number of training samples. The third
standard provides an adjustment that takes into account the relative
training times required under a sequential simulation1 .

All dendrites were initialized with random weights between -0.05 and
+0.05. The SAM connections were adjusted with a gain bias2 of 10.
For all simulations the training rate, Ti , was set at 0.5 and the
momentum term, a, was set to 0.9.

In some cases the networks with linear nodes diverged from a
satisfactory solution and caused floating point overflow errors on the
simulation system3 . This behavior was also observed in [Sanner, 1989].
In these cases, it was observed that the divergence was coupled with
closed feedback loops composed entirely of neurons with linear output
functions. It was further observed that placing neurons with bounded

1 If the artificial network was implemented with parallel processing, the computational
penalty for many connections is lessened since training of these connections can occur
simultaneously.
2 See chapter 2 for a definition of gain bias.
3 These usually occur when an operation produces a floating point number with too great
a magnitude. This is usually taken as an indication that the back-propagation algorithm
has become unstable.
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output functions (sigmoids) into all closed feedback loops prevented

divergence during training.
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3.3 Analysis of Error Induced by Sigmoidal Output Neuron

As discussed previously, the sigmoidal output neuron will introduce

some small discrepancy between the desired output and the actual

output when one is attempting to emulate a linear function, even in

cases where the neural weights have been adjusted to optimal values.

For a given network with a sigmoidal output, the average magnitude of

this error should be dependent on the distribution of output values.

When expected output values fall close to (or beyond) the limits of the

sigmoid's possible output range, a neuron with a sigmoidal output

function would be hard pressed to accurately produce the full range of

expected values in a linear fashion. This is due to the fact that the

sigmoid function is highly non-linear near its boundaries. While it is

almost linear in the middle of its range, the slight non-linearity will

cause errors there as well. To quantify the magnitude of this sigmoidal

error, several tests were run using the following two layer network.
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Figure 3.1- Network Used to Measure Inherent Sigmoid Induced
Error

The above network was trained to recognize the following finite
difference equation:

u(k) = e(k) ; Output equals input

The same learning algorithm and neural parameters documented
earlier in this section were here as well. Five simulations were
executed with the range of possible inputs being varied between runs.
The input range was centered about 0.5 such that the input range
could be described with a single parameter x:

(0.5 - x) < e(k) < (0.5 + x)
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The network was trained with sequences of x=0.1, x=0.2, x=0.3,

x=0.4, x=0.5. These correspond to the following input ranges:

0.1 e (k)

0.2 0.4 <--> 0.6

0.2 0.3 <--> 0.7

0.3 0.2 <--> 0.8

0.4 0.1 <--> 0.9

0.5 0.0 <--> 1.0

Within a given range the presentation inputs were generated

randomly. For each of the five ranges the network was trained for

50,000 presentations. The average error magnitude and the

maximum error magnitude for each case were recorded after training
was completed. The following chart conveys the relationship between

the inherent sigmoidal errors and the parameter x. Data is given for

both average observed error and maximum observed error.

Inherent Sigmoidal Error
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For purposes of comparison with the test results in the remainder of

this chapter, one should consider the error value at x=0.5 as being

most significant, since the networks to be demonstrated were all
trained using presentation sets where the range of output conformed

to x being 0.5.

At x=0.5 the following errors were observed:

Average Error .0265

Maximum Error .0967

The above numbers are considered nominal expected behavior for
networks with sigmoidal output neurons. These results are used for
comparison to results in the rest of this chapter. Any network whose
steady-state errors were comparable or better than the nominal
expected behavior could be considered successful at converging on the
desired behavior. Since the network used to determine the nominal
errors had only five neurons and ten connections, it is possible for a
network with more neurons or more connections to achieve better
than "nominal" results.
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3.4 Convergence Results of Target Neural Architectures

The sequential unidirectional networks and the SAM networks listed

in table 3.1 were tested as described in sections 3.1 through 3.3. The

convergence history and the steady-state errors were recorded for

each network as a basis judging both absolute and relative success of

the various architectures and network sizes. Tables and charts

detailing the convergence histories of the various architectures can be

found in Appendix A.

The results can be summarized as follows:

1) All the sequential unidirectional networks, with one noted

exception, performed poorly in attempting to emulate the finite

difference equation. This result was expected since these
networks had no mechanism for representing past state.

2) Many of the SAM networks produced clearly positive results in
their attempts at emulating the difference equation. Most notably,
the networks using sigmoid neurons in the hidden layer and global
feedback connections (the SIG-GL group) performed well, with the

performance improving as network size increased.

3) The networks utilizing linear neurons in the hidden layer without
bias connections performed remarkably poorly. However, the
addition of bias connections to this architecture produced positive
results.

4) No benefit was discovered in using a hybrid architecture (mixed
linear and sigmoid neurons in the hidden layer) when output
feedback alone is used. Empirical data indicates that in these
cases the hybrid architecture does not offer any benefit over a
purely sigmoidal architecture with an equal number of neurons and
connections.
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5) Utilizing a hybrid architecture with global feedback did provide

some benefit over a global architecture with only sigmoid neurons
in the hidden layer.

The following pages contain more specific commentary on the
individual architecture groups that were tested:

Linear with no feedback (LIN-NONE):

The large values observed for steady-state average error and steady-
state maximum error agree with what was expected for this
architecture. Without any kind of feedback connections, these
networks were unable to form an impression of the second term in
the difference equation. Comparing these results with those for the
networks with feedback connections, it is clear that the existence of
feedback has a significant positive effect on the behavior of the
networks.

Sigmoid with no feedback (SIG-NONE):

As with the linear case, the observed errors are large and agree with
what is expected of a network with no feedback.

The results for SIG-NONE-5 represent a significant anomaly.
Somehow, this network performed noticeably better than the other
non-feedback networks. While the results for this network are still
rather poor, they are significantly better than the results for the other
non-feedback networks. The SIG-NONE-5 network was reexamined
with greater scrutiny. This examination indicated that the observed
behavior is consistent and was not a random aberration. Despite the
careful verification, this researcher believes that the most likely
explanation is an error somewhere in the setup of the simulation. It is
also possible that this architecture somehow "learned" to predict the
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random number sequence in such a way that it was able to achieve the
observed behavior.

Linear with output feedback (LIN-OUT and LIN-OUT-(B)):

Three things are clear when one examines the steady-state results for
networks with linear hidden neurons and simple output feedback:

1) Networks of this type without bias produced results that were
close to the theoretically worst results possible regardless of
network size. This indicates an overall failure for this particular
architecture.

2) Networks of this type that included bias connections produced
results that were relatively close to the nominal values
established by the test on inherent sigmoidal error. This
indicates a general success for this particular architecture.

3) Network size (above 5 hidden neurons) appears to have no effect
on the behavior of any of the architectures utilizing linear
hidden neurons and simple output feedback.

In the chart showing the effect of network size on training
convergence, it is apparent that the training paths were almost
identical. It was hypothesized that the limited feedback (output only)
is responsible for this architecture's reduced sensitivity to hidden
layer size. There simply is not enough information coming back to the
hidden layer that would require processing.
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From the training histories, it also apparent that the convergence of
the LIN-OUT-n-(B) architectures are rather quick. They all converged
to within a few percent of their steady-state behavior in less than 2000

presentations.
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Sigmoid with output feedback (SIG-OUT and SIG-OUT-(B)):

As with the LIN-OUT architecture, the bias connections had a greater
effect on the performance of the SIG-OUT architecture than the
network size. Unlike the LIN-OUT architecture, both the biased and
unbiased networks achieved reasonably good behaviors.

1. For the networks with bias connections, the steady-state
average and maximum errors were around (0.027/0.095), which
were almost exactly the nominal expected errors (0.027/0.097).

2. For the networks without bias connections, the steady-state
average and maximum errors were around (0.036/0.160), which
were near the nominal expected errors (0.027/0.097).

3. For both bias and non-bias networks, the SIG-OUT architecture
did noticeably better than the LIN-OUT architecture.

Sigmoid with global feedback (SIG-GL and SIG-GL-(B)):

The results for the SIG-GL architectures are very positive. All of the
networks based on these architectures performed better than
nominally expected. The SIG-GL-20-(B) produced steady-state average
and maximum errors of (0.008/0.059), which are only a fraction of
the nominally expected values of (0.027/0.097). This indicates that
this particular network would do an exceptional job of emulating the
finite difference equation in question.

This superior performance is achieved at a very high computational
cost. The SIG-GL architecture requires (n2 + 3n) connections vs.
(3n) connections for the comparable SIG-OUT or LIN-OUT
architectures. The SIG-GL-(B) architecture requires (n2 + 4n)
connections vs. (4n) connections for the comparable SIG-OUT or LIN-
OUT architectures. The following table of connections illustrates this
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point. The sequential computational requirement is approximately
proportional to the number of connections in the network.

Size and

Type of

Hidden Layer

5

5-(B)
20
20-(B)

40
40- (B)

# Connections

(Output Feedback)

15

20

60

80

120

160

# Connections

(Global Feedback)

40
45

460

480
1720

1760

Intuitively, these results make sense. As a network becomes more
complicated (indicated by the number of connections) its ability to
reduce steady-state error increases, but the computational cost does
not scale linearly with the benefit. If one compares the SIG-OUT-20-
(B) network with the SIG-GL-20-(B) architecture, one will find the
ratio of steady-state average errors to be about 3:1 versus a ratio of 6:1
for the number of connections. While there was no recognizable
pattern to these ratios for other comparative cases, it was clear in all
cases that within a given network architecture a doubling of accuracy
required greater than a doubling of the number of connections.
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Hybrid with output feedback (HYB-OUT and HYB-OUT-(B)):

The purpose of the hybrid architectures was to mix linear and sigmoid

neurons in the hidden layers with the hope that such a mix would

cause complementary performance. In the case of the hybrid
architecture utilizing output feedback there did not appear to be any

such performance improvement. Overall, the performance for the
HYB-OUT networks was relatively positive with all the tested variations
coming reasonably close to the nominal expected steady-state average
and maximum errors (0.027/0.097), but no significant performance

breakthroughs observed were observed. The hybrid networks with

bias and output feedback performed nearly equal to the linear and

sigmoid networks with bias and output feedback. Overall, the hybrid
networks with output feedback did not have any remarkable or unique

performance characteristics.

The HYB-OUT architectures didn't display any strong dependence on
either bias connections or network size. The steady-state errors
actually increased slightly going from 20 hidden cells to 40 hidden
cells -- an unusual occurrence.

HYB-GL and HYB-GL-(B): Hybrid with global feedback

Where the hybrid architectures with output feedback proved to be a
disappointment, the ones with global feedback showed extreme
promise. Amongst the networks tested that had internal feedback,
the HYB-GL architectures did consistently well. In particular, the
HYB-GL-6 and the HYB-GL-6-(B) networks displayed the best
performance of all such networks when network size (number of
connections) is taken into account. For example, the HYB-GL-6
network achieved a steady-state average error of 0.0157 using 27
connections, while the SIG-GL-20 network achieved a steady-state
average error of 0.01405 using 460 connections.
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Unfortunately, the performance of the HYB-GL architectures did not

appear to scale with network size; the average steady-state errors

were about the same for all the HYB-GL networks tested independent

of network size or the existence of bias connections. However, there

is significant promise here to warrant further investigation into this

particular architecture. This researcher believes that the HYB-GL

architectures potentially provide superior performance versus
computational cost when compared with any of the purely neural
solutions investigated in this work.
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3.5 Variant Architecture Using Random Access FIFO Buffer and a
Sequential Unidirectional Network

The SAM networks discussed in the previous sections attempted to
achieve desired temporal behavior by providing internal feedback
connections within the network. While the above systems provide a
"purely neural" solution, it seems that for the purpose of emulating
finite difference equations their performance and predictability were

not always satisfactory.

The networks can be given a better sense of past state by providing
them with the exact information they need. It is possible to create an
external memory buffer that "remembers" the previous inputs and
outputs of the network. This buffer can be implemented as a FIFO
(first-in first-out) structure that will automatically cycle values into the
correct inputs of a network. The following is a diagram of neural
network utilizing this variant architecture.
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Figure 3.7- Sequential Unidirectional Network with External Memory

The only drawback to this variant architecture is that the number of
terms in the finite difference equation needs to be known prior to
network setup. Compared to the limitations observed in SAM
architectures attempting to emulate higher order equations
(presented in the next chapter), the setup requirements for the
variant architecture appear to be minor.

Another benefit of the variant architecture is that the number of
connections is kept relatively low, when compared to some of the
SAM networks.
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3.6 Comparison of the Variant Architecture with the SAM
Architectures

Several versions of the variant architecture were generated and tested

in the same manner as the sequential unidirectional and SAM

architectures. The following table shows the high degree of success
that was achieved. Note the extremely low steady-state average errors
for the smaller networks.

I --------------- Size of Network--------------- I
I I

Network

Type Small Medium Large

SIG-VAR 5 sigmoid neurons 20 sigmoid neurons 40 sigmoid neurons

No bias 10 connections 40 connections 80 connections

External feedback Avg. Err: 0.0165 Avg. Err: 0.0160 Avg. Err: 0.0160

SIG-VAR-(B) 5 sigmoid neurons 20 sigmoid neurons 40 sigmoid neurons

With bias 15 connections 60 connections 120 connections

External feedback Avg. Err: 0.0032 Avg. Err: 0.0029 Avg. Err: 0.0090

Table 3.2 - Variant Networks Generated

It is clear from this data that the variant architecture performs much
better than most of the isolated SAM networks. Additional
observations made in chapter 4 of this thesis tend to indicate that the
variant architecture is also far more robust than any of the purely
neural solutions.

It should be noted that with the variant architecture the presence of
bias connections produced significant benefit. In fact, one should
notice that bias connections almost universally produce the most
benefit at the least cost (compared to adding more neurons, more
standard connections, or more SAM connections) in all of the tested
architectures. For this reason, the utilization of bias connections is
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highly recommended in any neural network attempting to emulate a

function like the one presented in this thesis.
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3.7 Comparative Training Convergence Properties of the Tested
Architectures

In summary the following observations were made:

1) The variant architecture with bias connections performed much
better than nominal for all examined architectures. In fact, this
general architecture was judged to be the best overall.

2) The global feedback architecture with all sigmoidal neurons and
bias connections produced the best pure neural solution to the
presented problem. This was done, however, at a high cost in
terms of the number of required connections.

3) The output feedback architectures, with all linear neurons and
no bias connections produced very poor results which were
comparable to those observed with networks having no feedback
connections at all.

4) Almost all of the feedback architectures with the exception of
those mentioned in #3, performed much better than the non-
feedback networks; many performed better than nominally
expected.
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Chapter 4
More Properties of SAM Networks Emulating Higher Order

Linear Digital Filter

Chapter Summary

* Observations indicate that SAM networks may have difficulty

emulating second order finite difference equations where the

magnitude of the [k-11th coefficient is greater than the

magnitude of the [kith coefficient.

* Unidirectional networks utilizing external memory appear to
be insensitive to coefficient ratios.

4.1 Effects of Coefficient Ratios on Convergence

In the experiments carried out in chapter 3, a single finite difference
equation was utilized

u(k) = coe(k) + cle(k-1)

where co = 0.7

cl = 0.3

It was found that for the networks with internal feedback loops, the
ratio of the above coefficients had an effect on the training
convergence of the network. As the ratio cl/co increased, the SAM

networks found it harder and harder to converge on a satisfactory
solution. This behavior was not observed in the variant architectures
where convergence appeared to be independent of coefficient ratios.

These observations were made while carrying out the following tests.
Two sample architectures were selected for testing. They were HYB-
GL-6-(B) and LIN-VAR-5-(B). These networks were trained under the
same parameters used in chapter 3.
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The networks were tested to see how long it took them to converge to
a solution for different finite difference equations. Convergence was
judged as occuring when the maximum observed errors became less
than 0.15. The finite difference equation was structured as before
with

u(k) = coe(k) + cle(k-1)

except the coefficients were presented with various ratios, using the
following constraint equations.

co + ci = 1.0

ratio = Cl
co

As the ratio approaches zero, the finite difference equation begins to
describe a first order equation. As the ratio approaches infinity, the
equation begins to describe a pure time delay.

The following two charts show the convergence properties of the two
architectures with respect to the coefficient ratio of the equation they
are trying to emulate.
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It is apparent from the above evidence that the SAM architecture
found it increasingly more difficult to converge on a solution as the
ratio of the coefficients went over 2.0. As a matter of fact, it failed to
converge after 200,000 presentations on any equation with a ratio
greater than 2.15. On the other hand, the convergence of the variant
architecture demonstrated very little dependence on the ratio of
coefficients. The variant architecture even succeeded in converging
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on a pure time delay given by the following equation with a ratio of
infinity.

u(k) = 1.0 * e(k-1)

These results clearly place a limit on the usefulness of the SAM
architectures with respect to emulating digital filters (finite difference
equations). The modified back-propagation algorithm as applied to
the SAM networks does not provide a robust mechanism for extracting
temporal behavior from neural networks.

Despite this, one must remember that the observed limitation is
purely a function of the chosen training algorithm. It was shown in
chapter 2 that the SAM networks had the ability to represent almost
any finite difference equation; it was the process of learning to
represent an arbitrary function via modified back-propagation that was
flawed. This leaves open the possibility of someone developing a
training algorithm that will be better at training networks with
temporal capabilities.
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Chapter 5
Summary of Conclusions and Suggested Further Research

5.1 Summary of Conclusions

1) It is possible for neural networks to emulate second and higher
order finite difference equations by utilizing internal feedback
connections. This implies a massive potential for the application
of neural networks to an impressive list of problems including
robotics, adaptive/learned control, speech recognition, and
pattern recognition of moving objects.

2) The simple modification to the back propagation algorithm
presented in this thesis was successful in some cases, but was
not sufficiently robust for general application. Specifically, it was
shown that a pure neural network utilizing feedback connections
was capable of emulating arbitrary finite difference equations
including time delays, but the proposed learning algorithm was
only successful with a very limited set of applications.

3) Augmenting sequential unidirectional neural networks with
external memory and external feedback connections apparently
provides a robust platform for emulating second and higher
order finite difference equations. This approach to achieving
temporal behavior from a neural system is highly recommended
despite the fact that it is not a "purely neural" solution.

5.2 Suggestions for Future Research

1) It should be possible to devise a new type of learning algorithm
that is specifically designed to exploit the temporal capabilities
of neural networks. Such an algorithm might take into
consideration the fact that punish/reward information is not

Pellegrini -73- 4/22/91



always available in parallel with the synapse firings that initiated
the result. There should be some way for a punish/reward event
to coherently utilize a short history of synaptic firings instead of
just the most recent firings.

2) There were some unusual results that were observed in this
thesis. Most notably was the behavior of the SIG-NONE-5
architecture. This network should not have exhibited temporal
behavior, but it somehow performed considerably better than all
of the other sequential unidirectional networks. It was
hypothesized in the body of chapter 3 that perhaps this network
had learned to predict the output of the pseudo-random number
generator. Even though this conclusion is not necessarily true in
this particular case (personal error has not been entirely ruled
out), the issue of neural networks predicting pseudo-random
events is a worthwhile topic of investigation. Particularly, such
research may lead to the conclusion that one must be very
particular in choosing a pseudo-random number generator for
the purpose of testing neural networks.

3) No attempt was made in this thesis to characterize the specific
manner in which information flowed through the feedback paths
in the various architectures. Such an investigation might
provide some insight into the "how" and "why" of the behaviors
observed. For now, this work merely provides a base of
empirical observations that might serve as an initial roadmap for
future researchers in this area.
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Appendix 1
Architecture and Convergence Data for Target Neural Networks

Linear with No Feedback

LIN-NONE-n ; No bias

LIN-NONE-n-(B) ; Bias node attached to all hidden

cells

ARCHITECTURE: 3 Layers, Single Input/Output, n Hidden Cells

Connections:

Cells:

Layer 1 -- > Layer 2

Layer 2 -- > Layer 3

Layer 1 : Linear Input

Layer 2: Linear Hidden

Layer 3: Sigmoid Output

Number of Connections: C(n) = 2n (3n for bias)

STEADY-STATE RESULTS

(errors after 200,000 presentations)

LIN-NONE-5

LIN-NONE-20

Average Error

0.16522

0.16974

Maximum Error

0.48800

0.49106
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Sigmoid with No Feedback

LABEL: SIG-NONE-n

SIG-NONE-n-(B)

cells

; No bias

; Bias attached to hidden

ARCHITECTURE: 3 Layers, Single Input/Output, n Hidden Cells

Connections:

Cells:

Layer 1 -- > Layer 2

Layer 2 -- > Layer 3

Layer 1 : Linear Input

Layer 2: Sigmoid Hidden

Layer 3:

Number of Connections:

Sigmoid Output

C(n) = 2n (3n+l for bias)

STEADY-STATE RESULTS

(errors after 200,000 presentations)

SIG-NONE-5

SIG-NONE-20

Average Error

0.0784

0.1697

Maximum Error

0.2539

0.4910
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Linear with Output Feedback

LABEL: LIN-OUT-n

LIN-OUT-n-(B)

; No bias

; Bias attached to hidden cells

ARCHITECTURE: 3 Layers, Single Input/Output, n Hidden Cells

Connections:

Cells:

Layer 1 -- > Layer 2

Layer 2 -- > Layer 3

Layer 3 -- > Layer 2

Layer 1 : Linear Input

Layer 2: Linear Hidden

Layer 3: Sigmoid Output

Number of Connections: C(n) = 3n (4n for bias)

STEADY-STATE RESULTS

(errors after 200,000 presentations)

LIN-OUT-5

LIN-OUT-5- (B)

LIN-OUT-2 0

LIN-OUT-20-(B)

LIN-OUT-4 0

LIN-OUT-40-(B)

Average Error

0.13476

0.03167

0.13392

0.03151

0.13231

0.03113

Maximum Error

0.40524

0.14998

0.40524

0.14999

0.40524

0.14999
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TRAINING RESULTS (LIN-OUT-n)

Effect of Bias on Average Error

100000

. LIN-OUT-5
" LIN-OUT-5-(B)-- - .--- ----------------

........ ....... .......

P e. . .. . . .. . . .. .. .. . . .. . . .. . . .

...... . .... ..... ..... .. ... ...-...... .. ...

200000

Training Set

Effect of Network Size on Average Errors

100000 200000

Training Set

Pellegrini 
- 78 -

4/22/91

0.20
0.18
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00

0.040

0.035

0.030

0.025

0.020 2

vq evrarrrrrrr----------------- 1ý2mý
1 LIN-OUT-5-(B)
-- LIN-OUT-20-(B)

Pellegrini -78- 4/22/91



Sigmoid with Output Feedback

LABEL: SIG-OUT-n

SIG-OUT-n-(B)

; No bias

; Bias attached to hidden cells

ARCHITECTURE: 3 Layers, Single Input/Output, n Hidden Cells

Connections:

Cells:

Layer 1 -- > Layer 2

Layer 2 -- > Layer 3

Layer 3 -- > Layer 2

Layer 1 : Linear Input

Layer 2: Sigmoid Hidden

Layer 3: Sigmoid Output

Number of Connections: C(n) = 3n (4n for bias)

STEADY-STATE RESULTS

(errors after 200,000 presentations)

SIG-OUT-5

SIG-OUT-5-(B)

SIG-OUT-20

SIG-OUT-20-(B)

SIG-OUT-40

SIG-OUT-40-(B)

Average Error

0.0363

0.0278

0.0357

0.0270

0.0369

0.0268

Maximum Error

0.1429

0.1017

0.1642

0.0929

0.1657

0.0935
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TRAINING RESULTS (SIG-OUT-n)

Effect of Bias Connections on Average Errors

100000

-I SIG-OUT-5
I SIG-OUT-5-(B)

200000

Training Set

Effect of Network Size on Average Errors

100000 200000

Training Set
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Pure Sigmoidal with Global Feedback

LABEL: SIG-GL-n

SIG-GL-n-(B)

; No bias

; Bias attached to hidden cells

ARCHITECTURE: 3 Layers, Single Input/Output, n Hidden Cells

Connections:

Cells:

Layer 1 -- > Layer 2

Layer 2 -- > Layer 3

Layer 2 -- > Layer 2

Layer 3 -- > Layer 2

Layer 1 : Linear Input

Layer 2:

Layer 3:

Sigmoid Hidden

Sigmoid Output

Number of Connections: C(n) = n 2 + 3n; n 2 +4n for bias

STEADY-STATE RESULTS

(errors after 200,000 presentations)

SIG-GL-5

SIG-GL-5-(B)

SIG-GL-20

SIG-GL-20-(B)

Average Error

0.02626

0.02097

0.01405

0.00779

Maximum Error

0.10449

0.08228

0.06281

0.05857
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TRAINING RESULTS (SIG-GL-n)

Effect of Bias Connections on Average Error

100000

L SIG-GL-5
SSIG-GL-5-(B)

200000

Training Set

Effect of Network Size on Average Erros

100000 200000

Training Set
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Lth Output Feedback

HYB-OUT-n

HYB-OUT-n-(B)

; No bias

; Bias attached to hidden cells

:TURE: 4 Layers, Single Input/Output, n Hidden Cells

Lnections:

LIs:

Layer 1 --> Layer 2

Layer 1 --> Layer 3

Layer 2 --> Layer 3

Layer 2 --> Layer 4

Layer 3 --> Layer 4

Layer 4 --> Layer 2

Layer 1 : Linear Input

Layer 2: Sigmoid Hidden (1/2 n cells)

Layer 3: Linear Hidden (1/2 n cells)

Layer 4:

aber of Connections:

Sigmoid Output

C(n) = 3n (4n for bias)

STATE RESULTS

after 200,000 presentations)

Average Error

0.0329

0.0327

0.0328

0.0284

0.0346

0.0358

Maximum Error

0.1089

0.1067

0.1446

0.1011

0.1303

0.1567
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TRAINING RESULTS (HYB-OUT-n)

Effect of Bias Connections on Average Errors

100000

- HYB-OUT-6
SHYB-OUT-6-(B)

200000

Training Set

Effect of Network Size on Average Errors

100000 200000

Training Set
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Hybrid with Global Feedback

LABEL: HYB-GL-n

HYB-GL-n-(B)

; No bias

; Bias attached to hidden cells

ARCHITECTURE: 4 Layers, Single Input/Output, n Hidden Cells

Layer 1 -- > Layer 2

Layer 1 -- > Layer 3

Layer 2 -- > Layer 3

Layer 2 -- > Layer 3

Layer 2 -- > Layer 4

Layer 3 -- > Layer 4

Layer 4 -- > Layer 2

Layer 1 :

Layer 2:

Layer 3:

Layer 4:

Number of Connections:

Linear Input

Sigmoid Hidden (1/2 n cells)

Linear Hidden (1/2 n cells)

Sigmoid Output

C(n) = 0.25n 2 + 3n

C(n) = 0.25n 2 + 4n for bias

STEADY-STATE RESULTS

(errors after 200,000 presentations)

HYB-GL-6

HYB-GL-6-(B)

HYB-GL-20

HYB-GL-20- (B)

Average Error

0.0157

0.0167

0.0174

0.0166

Maximum Error

0.0927

0.0850

0.0917

0.0866
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TRAINING RESULTS (HYB-GL-n)

Effect of Bias Connections on Average Errors

100000

-- HYB-GL-6
- HYB-GL-6-(B)

200000

Training Set

Effect of Network Size on Average Errors

100000 200000

Training Set
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Variant Architecture with Sigmoidal Hidden Neurons

SIG-VAR-n

SIG-VAR-n-(B)

;No bias

; Bias attached to hidden cells

ARCHITECTURE: 3 Layers, 3 Inputs, 1 Output, n Hidden Cells

Connections:

Inputs:

Cells:

Layer 1 -- > Layer 2

Layer 2 -- > Layer 3

e(n), e(n-1), u(n-1)

Layer 1 : Linear Input

Layer 2:

Layer 3:

Sigmoid Hidden

Sigmoid Output

Number of Connections 1 : C(n) = 2n (3n for bias)

STEADY-STATE RESULTS

(errors after 200,000 presentations)

SIG-VAR-5

SIG-VAR-5-(B)

SIG-VAR-20

SIG-VAR-20-(B)

SIG-VAR-40

SIG-VAR-40-(B)

Average Error

0.0165

0.0032

0.0160

0.0029

0.0160

0.0090

Maximum Error

0.0949

0.0346

0.0893

0.0345

0.0897

0.0680

1 In addition to the neural connections, the variant architectures require connections
to/and from the FIFO buffer that will allow storage and retrieval of e(n-1) and u(n-1).
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TRAINING RESULTS

Effect of Bias Connections on Average Errors
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