
Testing of a First-Generation

Dynamically Programmable Gate Array

by

Edward F. Tau

Bachelors of Science in Electrical Engineering and Computer Science

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Masters of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1996

@ Edward F. Tau, MCMXCVI. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis document in whole or in part, and to grant

others the right to do so.

A uthor
Department of Electrical Engineering and Computer Science

May 28, 1996

-7771

Certified by
Dr. oma ellige night, Jr.

Senior Research Scientist, MIT Artificial Intelligence Laboratory
Thesis Supervisor

Accepted by...
Frederic R. Morgenthaler

Chairman, Department Committee on Graduate Students

Lng.

OF TECHNOLOGNY

JUN 11 1996
LIBRARIES

Testing of a First-Generation

Dynamically Programmable Gate Array

by

Edward F. Tau

Submitted to the Department of Electrical Engineering and Computer Science
on May 28, 1996, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Electrical Engineering and Computer Science

Abstract

The research community of reconfigurable computing is extending the role of programmable logic
devices from that of simply being a convenient way of implementing the system "glue logic" to an
increasing ability to implement mainstream system functions. The prototype for a first-generation
Dynamically Programmable Gate Array (DPGA) is the first programmable logic device to feature
multiple contexts and a high bandwidth for rapid reconfiguration, characteristics that appear to be
essential in reconfigurable computing. This prototype, a 250K-transistor custom IC, is designed to
demonstrate these unique features to further the research of reconfigurable computing. The DPGA
prototype also explores the issues and benefits of resource utilization the means of adding memory
with slight incremental silicon real estate.

This thesis summarizes the design and implementation of a custom printed circuit board for
testing the first generation Dynamically Programmable Gate Array. A custom printed circuit board
was built as the testing platform for the DPGA which interfaces to a Sun Workstation using the SBUS
protocol. The SBUS-DPGA test board supports single-word transfers from the host workstation to
the DPGA via two sets of FIFO's. An on-board variable-clock generator allows the test board and
DPGA to operate at a variety of clock frequencies, asynchronous to the SBUS's fixed 25 MHz.

Thesis Supervisor: Dr. Thomas F. Knight, Jr.
Title: Senior Research Scientist, MIT Artificial Intelligence Laboratory

Acknowledgments

The DPGA testing effort was led by Andr6 DeHon, project manager of Reinventing Computing.

His extensive knowledge and experience were crucial to the completion of the testing process. A

great deal of the MBTA infrastructure [DSCM92] lended to this development, both hardware and

software. Additionally, Ian Eslick and Derrick Chen contributed to the debugging effort. The entire

DPGA development team consists of Andr6 DeHon, Derrick Chen, Ian Eslick, Ethan Mirsky, Jeremy

Brown, and myself.

There many valuable lessons I've learned personally from this project. Some are academic, some

are intangible. Besides the research that came out of the chip-building effort, there were other

"intangible" growing up lessons. As it is commonly known, VLSI work is often quite challenging as

well as emotionally demanding. In a large project such the DPGA, this is definitely true. There

were plenty of exciting and depressing moments that made this entire experience quite an emotional

roller coaster ride. From this experience, I am learning to roll with the emotional ups and downs

of successes and failures. Recovering from temporary setbacks, now I realize, is just as crucial to

engineering as it is to anything else in life. Andr6 once encouraged me with a memorable quote:

"We all make mistakes. We always will. We get up. We dust ourselves off. We learn from them.

And We try again, a little wiser."

Whether or not one practices engineering, MIT teaches you how to think, how to reason, how

to be disciplined. The MIT education improves one's ability to think clearly, seek out the root of

problems, and attack them there. These are effective means in any discipline.

The MIT education is not limited to merely pursuing technical knowledge. More importantly, it

has been the "other things" that has made profound impact on my life. The learning not only comes

from the course work, the people, the city of Boston, the entrepreneurial spirit, and most importantly,

learning about oneself. These are things that round up my college education. I look around and find

many of my peers whom I look up to with envy. Besides their heightened intelligence, MIT students

excel in many different ways. Some have vast learning capacity, some artistic gifts, some creative

ideologies, and some athletic prowess. Then there ones who are just downright brilliant. These are

people who I probably won't get the opportunity to meet with such high frequency anywhere else.

It is no surprise that I graduate a lot more humbler than when I first came here from high school.

There are many people whom I would like thank for my MIT experience. To start off, my

advisors, Dr. Thomas Knight, Jr. and Andr6 Dehon (soon to be Dr.), are two brilliant people

who contribute to MIT's venerable name. My office mate, Derrick Chen, with whom I have greatly

enjoyed as well as learned from our all-night philosophizing and speculation on technologies, stocks,

society, and life. Numerous other people have also made my MIT stay worthwhile and they will

always have a special place in my memory as well as my heart.

As always, I want to recognize my parents for their never-ending support and faith during all of

my life. I feel leaving home for college has brought me closer to my family and made me appreciate

the love and support that ties a family together, near or apart. In an indirect way, MIT has helped

me realized the important things in life too.

I can honestly say my MIT experience has shaped me in more ways than one. It has led me to

take a closer look at things in my life and evaluate them in more than one dimension. I am grateful

to MIT and its people for this invaluable opportunity.

This research is sponsored in part by the Advanced Research Projects Agency of the Department

of Defense under Rome Labs contract number F30602-94-C-0252.

Contents

1 Overview 13

1.1 DPGA Review 13

1.2 DPGA Prototype 14

1.3 Prototype Testing 14

1.4 Thesis Organization 16

2 Hardware 17

2.1 Development Tools 17

2.2 Architecture 17

2.2.1 Synchronization 19

2.2.2 Memory Operations 19

2.3 Board and Components 19

2.4 Functionalities 21

2.4.1 F-Code PROM 21

2.4.2 Clock 21

2.4.3 Context Configuration 23

2.4.4 Input/Output FIFO 24

2.4.5 DPGA Control and FSM 24

2.4.6 DPGA Pinout 26

2.4.7 Debugging Pods 26

3 Software 31

3.1 Optimization 31

3.2 Clock 31

3.3 FIFO.. 32

3.3.1 Single Push/Pop 32

3.3.2 Comprehensive Test 32

3.4 M em ory 32

3.4.1 Single Read/Write .

3.4.2 Memory Lossage Report 32

4 Results 35

4.1 Board Assembly 35

4.2 Pads 35

4.3 Memory 38

4.3.1 Refresh Logic 38

4.3.2 Board Capacitance 38

4.3.3 PAL Internal Pull-Ups 40

4.3.4 Timing Problems 40

4.4 DPGA Control Logic 40

4.4.1 Read/Write Signal 40

4.4.2 Context Strobe Signal 41

5 Conclusion 43

5.1 DPGA Offsprings 43

5.1.1 Time-Switched FPGA 43

5.1.2 Matrix 44

5.1.3 Future Projects 44

5.2 Technology Trends 44

5.3 Industry Trends 45

A Implementation Files 47

B Printed Circuit Board Artwork 49

List of Figures

1-1 High-Level Architecture of DPGA 14

1-2 Die Photo of the DPGA Prototype 15

2-1 Architecture of SBUS-DPGA Interface 18

2-2 Top-view of SBUS-DPGA Board 20

2-3 Bottom-view (mirrored) of SBUS-DPGA Board 21

2-4 Composite-view of SBUS-DPGA Board 22

2-5 Input and Output FIFO of SBUS-DPGA Interface 25

4-1 Photo of assembled SBUS-DPGA PC board (top view) 36

4-2 Photo of assembled SBUS-DPGA PC board (bottom view) 37

4-3 Memory of DPGA 39

B-1 SBUS-DPGA PC board (top) 50

B-2 SBUS-DPGA PC board (intermediate top) 51

B-3 SBUS-DPGA PC board (intermediate bottom) 52

B-4 SBUS-DPGA PC board (bottom) 53

B-5 SBUS-DPGA PC board (top solder mask) 54

B-6 SBUS-DPGA PC board (bottom solder mask) 55

List of Tables

2.1 SBUS-DPGA Board Components 20

2.2 SBUS-DPGA Physical Memory Address Partition 23

2.3 Chrontel CH9007 Clock Frequency Table (in MHz) 23

2.4 DPGA Control PAL opcodes 26

2.5 DPGA Pinout List 1-66 (first half) 27

2.6 DPGA Pinout List 67-132 (second half) 28

2.7 Debugging Pods for the HP Logic Analyzer 29

3.1 Test Software Summary 33

5.1 DPGA Projects 45

Chapter 1

Overview

1.1 DPGA Review

The Dynamically Programmable Gate Array (DPGA) is a multi-context programmable gate array

that supports rapid reconfiguration [BDK93]. Similiar to conventional FPGAs, the DPGA has

reprogrammable memory to hold configurations and a lookup table-based logic blocks. Since memory

only occupies a small percentage of the overall silicon real estate on a programmable gate array,

DPGA offers improved functional diversity by adding only a small incremental cost. The incremental

cost is further reduced by switching to DRAM technology since DRAM offers higher bit/area density

because the cost of refresh logic is amortized over more memory bits. The DPGA has the following

unconventional features:

* multiple on-chip memory blocks for different configurations (4 contexts)

* dynamic RAM implementation (3-transistor cell)

* high programming bandwidth (32-bit programming bus)

* cycle-time reconfiguration

The Delta architecture is organized into three logic hierarchies. The core element of the DPGA is

a simple lookup table (LUT) backed by a multi-context memory block. Sixteen (4 x4) array elements

are composed into subarrays with dense programmable local interconnect. At the chip level, nine

(3 x 3) subarrays are connected by crossbars. Communication at the edge of the subarrays goes

off chip via programmable I/O pins. Each hierarchy is designed to fully exploit the high level of

symmetry in each of its sub-component hierarchies, by replicating to form larger homogeneous logic

blocks. Figure 1-1 shows the three top-level hierarchies of DPGA's architecture. Full implementation

details of DELTA are described in Transit Note 112 [BCE+94] [Tau95].

Figure 1-1: High-Level Architecture of DPGA

1.2 DPGA Prototype

The first generation prototype of the DPGA [TEC+95] [BCE+94] features DRAM-based memory in

multiple banks. This prototype, fabricated in HP26 (1.0 pm process) and packaged in MOSIS 132-

pin PGA, contains approximately a quarter million transistors in a 6.8mm x 7.1mm die (Figure 1-2).

The DPGA prototype is aimed at proving the concept of rapidly reconfigurable logic in the field

reconfigurable computing.

1.3 Prototype Testing

Once the DPGA prototype is fabricated, the final step is testing for speed, power, and correctness.

This testing process requires some interface to perform simple reads and writes between the DPGA

and a host workstation.

The testing platform is a custom printed circuit board, targetted for the SBUS-based worksta-

tions. Existing SBUS board design infrastructure [DP93] provided faster development cycle of the

SBUS-DPGA testing interface. This SBUS-DPGA interface is a plug-in slave card that supports

simple, single-word (32 bits) asynchronous read/write operations between the SBUS and the DPGA.

Other features include user-defined clock frequencies, 512-word input FIFO, 512-word output FIFO,

and PAL-defined subroutines of DPGA programming. In order to test the DPGA at various fre-

quencies, the board is equipped with a variable clock generator which operates asynchronously to

Context< > configuration bits

Context<2> configuration bits Hierarchy 3

Context<3> configuration bits

Context<4> configuration bits

Array Element SubArray Full DPGA
4-Input Lookup Table 4x4 composition of Array Element 3x3 Composition of SubArrays

with Programmable CrossBar

Hierarchy 2

Aray AraeAra:-~
lAmen Eleent ElmnEeet

:Array Array Ara Ara

_ :Aen ElemetElmntEemn

ArrayA ra Arra Array

04 ~~i Al *,

I

I

I
;I

I

I

I1

Figure 1-2: Die Photo of the DPGA Prototype

the SBUS.

1.4 Thesis Organization

This thesis summarizes the entire testing and debugging process of the DPGA prototype. It first

characterizes the hardware built, describes the software written for interfacing test vectors, reports

the results from the DPGA silicon, and finally concludes with the lessons learned from the overall

DPGA development as well speculations on current technology and commercial trends.

Chapter 2

Hardware

The main purpose of the SBUS-DPGA interface board is to transfer data between the host (user)

and the DPGA. To simplify design and implementation, the board is implemented as a slave device

supporting only single word transfers. All board functions are controlled by a finite state machine.

Useful documentation for SBUS application may be found in [Sun90O] and [Lyle92].

2.1 Development Tools

The development of the SBUS-DPGA printed circuit board was done on the existing Transit Canon-

ical Form (TCF) infrastructure [SD93]. TCF is a LISP-like front-end language which facilitates logic

synthesis and simulation through a variety of tools. Logic simulation was done using Verilog (Ca-

dence's Verilog-XL) with Logic Modeling (Synopsis's Logic Simulation library). The SBUS Verilog

simulation model, provided by Sun, greatly facilitated the design and verification processes. The

printed circuit board was placed and routed using the Allegro tools. The PCB was fabricated by

Multek through MOSIS with six layers of metal in 6-mil pitch. These six layers of metal are: top,

intermediate top, power, ground, intermediate bottom, and bottom.

2.2 Architecture

The SBUS-DPGA interface consists of four modules: the transceiver I/O latch, finite state machine

(FSM), variable clock generator, input/output DPGA FIFO, and DPGA control logic. In order

to minimize hardware complexity, all reads and writes are kept to single-word operations. Neither

extended nor burst-mode operations are supported. Figure 2-1 describes the high-level architecture

and data-flow.

Figure 2-1: Architecture of SBUS-DPGA Interface

18

2.2.1 Synchronization

To test the DPGA at various clock frequencies, the SBUS-DPGA board must provide its own

variable clock generator for the DPGA since it can't rely on SBUS's fixed clock of 25 MHz. Having

this variable clock feature requires additional mechanism to support asynchronous transfer protocols

between the SBUS and the DPGA. The board uses one of the most straight-forward asynchronous

protocols, the READY/ACKNOWLEDGE handshaking.

The asynchronous handshaking mechanism uses four cascaded registers to buffer signals between

producer (SBUS) and consumer (DPGA). When the SBUS has data for the DPGA, it asserts the

signal DATA AVAILABLE until the receipt is acknowledged (DATA ACKNOWLEDGED) by the DPGA.

This DATA AVAILABLE signal is registered twice in consecutive DPGA clock cycles to ensure a non-

glitching signal by the end of the two DPGA cycles. Once synchronized to the DPGA clock, the

latched assertion can be fed cleanly into the DPGA. The DPGA then acknowledges the receipt of

the data by registering it in two consecutive SBUS clock cycles. This causes the original DATA

AVAILABLE to deassert.

2.2.2 Memory Operations

A write operation into DPGA's context memory could be accomplished in one DPGA cycle, as

long as the SBUS keeps the data asserted during that DPGA cycle. This is easily satisfied as

multiple SBUS cycles are always longer than the one DPGA cycle. However, a read operation is less

straightforward. The SBUS read operation requires the data be written out to the bus in exactly one

cycle. Furthermore, SBUS demands all data and control signals must be tri-stated in the subsequent

cycle.

2.3 Board and Components

The SBUS-DPGA board has a relatively large number of logic components for its size. A total of ten

56-pin, shrink small-outline 300-mil packages (DL), five PLCC28 PALs, four HP debugging pods,

one PGA132 SOIC, along with others parts including clock, PROM, and SBUS connector. Table 2.1

lists the board components and Figures 2-2 and 2-3 show the board placements.

The dimension specification of the SBUS Single-Width card is 83.82 mm x 146.7 mm. Given this

dimension, the board doesn't have enough real estate to host all the aforementioned components on

only one side. The board design takes advantage of the fact that the majority of the components

used are surface-mounts, which made dual-side assembly a logical solution. This approach practically

doubles the board packing density for surface-mount devices. More importantly, the 48-bit bus of the

two sets of FIFOs line up when placed one on the opposite side of the one another. They efficiently

share input/output buses and significantly reduce the wires needed for routing.

Table 2.1: SBUS-DPGA Board Components

-0(0
() F::

(- '<

7O1
Qi

0

S00 **C,00 0 0- oooo

0< ý ,< CA, 0 : 0 : 0 : 0 0 l,4A,;

0i 0 0 Ci0 0 00 , 0 0 0 001

ft
000000000000000:
01 000000 000000001
o00©000000 o 000 0 o 0 o

0::0 0 0 © 0 0 0 © 0 © 0 <0 0 C"
i
dioooooaoooooooooi

o~ooooooaoooooooo
aiaaa EQ MEoCoo

C E E E E F-'00
(½)) F-C EEO CE CE OOOO

Ci Q F- OOOO

ooLn0
0
tI

i •O0

- HP PO

i) I,'-

(''Cl

] -

0 0<>

00±
00
00

Figure 2-2: Top-view of SBUS-DPGA Board

Component Device Package QTY
Transceiver ABT116501 SOIC56 4
18-bit FIFO ACT7803 SOIC56 6

Debugging Pods HP PODS HEADER10X2HP 4
F-Code ROM 27256 PLCC32 1

FSM PAL 22v10 PLCC28 5
DPGA DPGA PGA255 1

EQ000 i
0

D00

o O0
0<o>oc3

0±<0S0 o0 C0o <1000
C

0,.00 C00

oOc00.0 ,0

[iLI ii*nf
B]I

OOLS00

o0000
I 0
@o0[8_(I

o [;1

oo00 0

00

on

lp Pk,

10 1I! I1
ea

- il_,lW
°U=:

000 ooo o0 00 00 0
0 0

o o
0 0o o

0 0
o oO o0 0
0 0

0 0
0 0o 0

OO0000 •.0.0

0o 0000
000

0 0 0 00 000

G 0C77 ""M '"O "" .• -

L D00b000I .

c. 00,00000 00000C" co ýo -cooocoCoo

0 1 00000 00000000 C
©00000000000Q0

000e00000000000
a ©.0 0 Q000000000 00 10

i I: a 000' OOOO00 0000

00000~Q0000000
-0 0000 QOOO O0000

0000000000 t

L 00Boor .j L 0000000 .flffll F flllifff
= f~r=, 3~·

= a 1= =
=~ = =3T~iSC

Jrffllll i. nnnnoZ i

Figure 2-3: Bottom-view (mirrored) of SBUS-DPGA Board

2.4 Functionalities

The main functionalities supported by the SBUS-DPGA are: FCode PROM Read, clock frequency

select, DPGA Programming (write and read back), Push/Pop Fifo, and DPGA control. These func-

tions are encoded in the top three SBUS address bits (PA <24:22>). The functionalities according

memory address partition is listed in Table 2.2.

2.4.1 F-Code PROM

Information concerning the SBUS-DPGA card is stored in the F-Code PROM and read during

power up by the host workstation. The PROM contains data structures including the device name,

interrupts used, and other attributes. This is a read-only operation.

2.4.2 Clock

The board uses the Chrontel CH9007 variable clock generator [Chron93] which has sixteen selectable

frequencies defined by its ROM. The allowed frequencies are listed in Table 2.3. The CH9007 requires

a 14.318 MHz crystal as reference frequency. The frequency selection is programmed and stored in a

dedicated clock PAL. During the clock frequency control mode (PA<24:22>=001), this PAL latches

0 C
r iO©

©•i~

-

FIi
IL]

.

"~~""'~""'"~ ~ ~'~''''~"""'~~'~~'~'"""""'~~"'~~`~

r u 00

o ,.,.'." 0 co

noS008000= =
00

F o

S,-. OE= o,.-- ,.l, _ © ©
rrr %,$a.•

jBOO

9VO

a

C4 Q 6 20 ;Q;
A DU

tie i t

Ul~lll S1 b1 "

ii iiii or to 01 Op 0111'ý.fl i

I!'

I 'M' SSPý I WJSJIIN "1111 --- 01I~A I f.'~tP -1.-H 1l. k I
...-

R tlffl 2j.®R rILLI;.-M Itlý` I- - AWPW\ý I !, ION -ýi' 'M MEWMP L I I JSVU LCZ7 M: M I I T N_P16 W"AW AIP WIMP,W till 'FM Ailrli;1111W'Qt"ý

N i

i'

2 II
.. " • ~ ~ ~.. } ' i iii ii • ij

U ! El C -----I <

Figure 2-4: Composite-view of SBUS-DPGA Board

(N

LC:
(C~

C.

ir
.....H0 UU1H Ut Il~~r(F I-------------z=t;

i n

I N li..Igo, trotii i i inii H--- ---- ----- --- -- --- -- --- --...-- ------ ------------ ----- ------ -------.-------
rigiJ. S ii ... --A........

KO-El
......

--------- ---
...... r

ay
..... ii~tii# ~ Is

; 6M

L.-..-\M·--·-- ··- ·····

~~~hYEi Hl 7%~fh~ 7
ii ii av vii~
a ~n~Bh\~n~arn ~



Memory Partition
PA<24:22> DPGA Function

000 F-Code PROM
001 Clock Frequency Control
010 Programming Lines
011
100 FIFO <31:0>
101 FIFO <47:32>
110 DPGA Control
111

Table 2.2: SBUS-DPGA Physical Memory Address Partition

D<3:0> Frequency D<3:0> Frequency
0000 16.0 1000 8.0
0001 40.0 1001 20.0
0010 50.0 1010 25.0
0011 80.0 1011 40.0
0100 66.6 1100 33.3
0101 100.0 1101 50.0
0110 80.0 1110 4.0
0111 4.0 1111 2.0

Table 2.3: Chrontel CH9007 Clock Frequency Table (in MHz)

in the 4 LSB from the data bus. At all other time, the PAL asserts those 4 LSB as latched previously.

2.4.3 Context Configuration

The configuration memory of the DPGA is programmed via a dedicated 32-bit programming bus.

The the memory bits could also be read back for debugging purposes. This context memory read

back functionality proves to be essential in the actual debugging process.

The read and write operations of the DPGA require somewhat different implementations. For

the write operation, the SBUS asserts both the address and data buses for the entire duration

of the write. The DATA AVAILABLE signal is propagated to the DPGA. Subsequently, the DPGA

PROGRAM OPERATION (ProgOp) is asserted for exactly one DPGA cycle. This is when the data is

actually written to the DPGA. The acknowledgment follows and the SBUS address and data lines

are released. For the read operation, the SBUS asserts the address bus for the DPGA. Signaled

by DATA AVAILABLE, the DPGA PROGRAM OPERATION stays asserted until the acknowledgment is

propagated back to the SBUS. The ProgOp signal is combinational (rather than DPGA-registered)

because the data bus needs to be released immediately after the SBUS acknowledgment in order

prevent contention with the subsequent SBUS operation.



2.4.4 Input/Output FIFO

One of the board's design goal is to allow the DPGA to operate at various clock frequencies. Since

the SBUS is running at a fixed rate of 25 MHz, it must transfer data to the DPGA asynchronously.

The DATA READY/ACKNOWLEDGE handshaking mechanism is a straight forward protocol for asyn-

chronous transfer. This protocol, used by DPGA context configuration, takes several cycles to

complete one single transfer due to propagation of the ready and acknowledge signals. However, high-

bandwidth data-flow for the DPGA is desired, meaning the DPGA should be able to input/output

word in consecutive clock cycles (burst transfers). To achieve this design goal, FIFOs are used to

buffer input and output data.

The asynchronous FIFOs (7803) are the ideal choice because they have dedicated 18-bit wide

buses for input and output. Synchronization between the two clocks is handled internally by the

7803. With 48-bit wide data I/O, the DPGA transfers data using three FIFOs parallel as input

buffer and three FIFOs as output buffer. Two bits from all six FIFOs are not used.

Pushing data on the DPGA's 48-bit input FIFO requires only one write cycle. It combines both

the 32-bit of the data bus and 16-LSB of the physical address bits into a single 48-bit write operation.

Popping data off the DPGA's output FIFO requires two operations, one pop for the bits <31:0>

and another for the bits <47:32>.

The FIFOs are controlled by the DPGA Control PAL. The PAL could independently assert three

READ ENABLE (pop) signals on the input FIFOs as well as two WRITE ENABLE (push) signals on

the output FIFOs. The other control signals include DPGA context bits and CONTEXT STROBE.

The inputs of the PAL include a ready bit of input FIFO, 6 bits of SBUS data, and 4 bits of feedback

bits from DPGA's programmable IO. This gives the PAL-implemented FSM full control of run-time

context-switching independent of the SBUS as well as a maximum I/O bandwidth of 48 bits per

DPGA cycle. Since 4 bits of DPGA programmable IO are fed back to the PAL, the DPGA could

control the FSM with its own internal configurable logic. Figure 2-5 shows the interface between

the DPGA and its input and output FIFOs.

2.4.5 DPGA Control and FSM

A 22v10 PAL is dedicated to implement externally the control/FSM for DPGA. This allows on-board

control of the DPGA without the overhead of going through the SBUS. Such is especially desirable

in situations requiring rapid context switching on a cycle-time basis as well as high data bandwidth

(burst mode) between the DPGA and the Input/Output FIFOs.

The DPGA control PAL takes 3-bit opcodes as program select input from the SBUS. The PAL

could be programmed to assert DPGA signals (CTX_STROBE, CTXADDR) as well as FIFO signals

(RDEN (input), WREN (output). The PAL output also includes 4 I/O bits to the DPGA which



512x

512x

512x

In

8 FIFO (7803)

8 FIFO (7803)

8 FIFO (7803)

)ut Fifos

Figure 2-5: Input and Output FIFO of SBUS-DPGA Interface

A A
AA

-~~- V V V

00) L L _

CD: 0 0 0

DPGA



Table 2.4: DPGA Control PAL opcodes

enables DPGA's programmable logic to be part of the data control. These four bits also serve as

state bits or counters which allow each opcode to have up to 16 states.

2.4.6 DPGA Pinout

The DPGA is in a PGA132 package, hosted by a ZIF225 (zero-insertion force) socket. The pinout

is listed in Tables 2.5 and 2.6.

2.4.7 Debugging Pods

To facilitate debugging of the test board, four HP Pods make bus and control signals accessible to

the HP logic analyzer. Pod 1 is connected to exclusively DPGA control signals and its input/output

FIFO controls. Pod 2 is connected to SBUS control signals which include the lower-order address

byte as SBUS Address Strobe (SBAS), SBUS Select (SB.SEL), SBUS Read (SBRD), SBUS

Acknowledge (SB_ACK<0>), and transceiver enable signals. Pods 3 and 4 are connected to the

32-bit data bus of the SBUS.

OpCode State Remark
000 Idle All outputs are de-asserted
001 Unused User-programmable
010 Unused User-programmable
011 Unused User-programmable
100 Unused User-programmable
101 Run FSM Start FSM counter
110 Context Strobe Strobe the context given by SBUS
111 Fifo Test Performs a FIFO Write-Through Test

(Pops a value off input FIFO and pushes
it onto the output FIFO)



Pin Bonding DPGA Pin Bonding DPGA
No. Pad Pin No. Pad Pin

1 topl.2 prog-io<46> 34 gnd gnd
2 top l.1 progio<47> 35 bot3.4 progio<12>
3 gnd gnd 36 bot3.3 prog_io<13>
4 wr-rd DPGA_RDWR 37 bot3.2 prog-io<14>
5 wctx<1> A<9> 38 vcc vcC
6 wctx<0> A<8> 39 bot3.1 prog-io<15>
7 vcc vcc 40 bot2.4 prog-io<16>
8 col<3> A<7> 41 bot2.3 progio<17>
9 col<2> A<6> 42 gnd gnd
10 col<1> A<5> 43 bot2.2 prog-io<18>
11 gnd gnd 44 bot2.1 prog-io<19>
12 col<0> A<4> 45 botl.4 progio<20>
13 row<3> A<3> 46 progctx progop_dpga
14 row<2> A<2> 47 loopout loopout
15 vcc vcc 48 loopin loopin
16 row<1> A<1> 49 vcc vcc
17 row<0> A<0> 50 clkin dpga_clk_2_
18 left3.4 prog-io<0> 51 gnd gnd
19 gnd gnd 52 reset bufsb.reset
20 left3.3 prog.io<l> 53 clock_out dummy
21 left3.2 progio<2> 54 clock-strobe ctxstrobe'dpga
22 left3.1 progio<3> 55 vcc vcc
23 vcc vcc 56 ctx<0> ctx_0_
24 left2.4 progio<4> 57 ctx<1> ctx_l_
25 left2.3 progio<5> 58 bot 1l.3 prog-io<21>
26 left2.2 prog-io<6> 59 gnd gnd
27 gnd gnd 60 botl.2 prog.io<22>
28 left2.1 prog-io<7> 61 botl.1 prog-io<23>
29 leftl.4 prog_io<8> 62 right3.4 progio<24>
30 leftl.3 progio<9> 63 vcc vcc
31 vcc vcc 64 right3.3 progio<25>
32 leftl.2 prog-io<10> 65 right3.2 progio<26>
33 leftl.1 prog-io<11> 66 right3.1 progio<27>

Table 2.5: DPGA Pinout List 1-66 (first half)



rin I INo.

Pin
No.
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

Bonding
Pad

right2.4
right2.3

gnd
right2.2
right2.1
rightl.4

vcc

right1.3
rightl.2
right1.1

gnd
prog<31>
prog<30>
prog<29>

vcc
prog<28>
prog<27>
prog<26>

gnd
prog<25>
prog<24>
prog<23>

vcc
prog<22>
prog<21>
prog<20>

gnd
prog<19>
prog<18>
prog<17>

vcc
prog<16>

progio<28>
prog-io<29>

gnd
prog-io<30>
prog-io<31>
progio<32>

vcc

progio<33>
prog-io<34>
progio<35>

gnd

d<1>
d<l>
d<2>

vcc
d<3>
d<4>
d<5>

gnd
d<6>
d<7>
d<8>

vcc
d<9>

d<10>
d<ll>

gnd
d<12>
d<13>
d<14>

vcc
d<15>

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

Table 2.6: DPGA Pinout List 67-132 (second half)

DPGA Pin Bonding DPGA
P'ad

prog<14>
gnd

prog<13>
prog<12>
prog<11>
prog<10>

vcc

prog<9>
prog<8>
prog<7>

gnd
prog<6>
prog<5>
prog<4>

vcc
prog<3>
prog<2>
prog< 1>

gnd
prog<0>

top3.4
top3.3

vcc
top3.2
top3.1
top2.4

gnd
top2.3
top2.2
top2.1

vcc
topl.4
topl.3

I __IL[f 1

prog<15> d<16>

Pin
d<17>
d<18>

gnd
d<19>
d<20>
d<21>

vcc
d<22>
d<23>
d<24>

gnd
d<25>
d<26>
d<27>

vcc
d<28>
d<29>
d<30>

gnd
d<31>

prog-io<36>
prog-io<37>

vcc
prog-io<38>
prog-io<39>
progio<40>

gnd
progio<41>
progio<42>
progio<43>

vcc
prog-io<44>
progio<45>



HP Pod Clock Pin Signal Remark
1 DPGA 0 PROGOP Program Operation (SBUS)

1 PROGOP_DPGA Program Operation (DPGA)
2 SYNCH_WRITE
3 SYNCHSBUS
4 CTRL_STROBE Control Strobe
5 CTRLSTROBEDPGA
6 CTXSTROBEDPGA Context Strobe
7 FIFO_RDY Input FIFO Ready Signal
8 RUNSTATE Running State

9:11 FIFOCTRL<2:0> FIFO Control
12:15 PROGIO<47:44> DPGA Programmable I/O

2 SBUS 0:2 A<24:22> Function Select
3:10 A<7:0> Lower byte of address bus

11 SBAS SBUS Address Strobe
12 SBSEL SBUS Select
13 SBREAD SBUS Read/Write
14 SB_AcK<0> SBUS Acknowledge
15 WREN Transceiver WriteEnable

3 SBUS 0:15 D<31:16> Higher half-word data bus
4 SBUS 0:15 D<15:0> Lower half-word of data bus

Table 2.7: Debugging Pods for the HP Logic Analyzer





Chapter 3

Software

The testing software used for the SBUS-DPGA interface is built upon the Transit infrastructure.

The low-level device drivers to read and writes on the SBUS interface were already implemented

from a previous project which used similar read/write operations.

3.1 Optimization

A few modifications were made to improve performance operations requiring multiple SBUS reads/writes.

The software communicates with the SBUS through a memory map (mmap) operation. Each mmap call

is an operating system function that establishes a mapping between the process's physical address

space to the virtual address. This is a relatively expensive function call in terms of computational

cycles. Invoking mmap call during initialization rather than during each read/write operation sig-

nificantly cuts down the unnecessary overhead of repeated memory maps. Consequently, this small

optimization greatly accelerates functions with successive SBUS reads or writes.

3.2 Clock

Using the Chrontel CH9007b part, the board can clock the DPGA at one of the sixteen pre-defined

frequencies listed in Table 2.3. The 4 LSB of a simple write within the physical address partition at

PA <24:22>= 001 will be latched in the clock control PAL which changes DPGA's clock frequency.

The corresponding clock frequencies are listed in Table 2.3 according to their frequency code.

Usage: setclk frequency-code where frequency-code is in hexadecimal



3.3 FIFO

3.3.1 Single Push/Pop

The following commands could be used at shell-prompt to manually test the basic FIFO functions.

The three input FIFOs could receive a 48-bit value from a single push off the SBUS (32-bit data and

16-bit address). The three output FIFOs has to output two values separately (32-bit and 16-bit).

A useful test for the two sets of FIFOs is write_thrufifo which pops a 48-bit value from (A) and

pushes it into (B). Consult Figure 2-5 for the interface of the FIFOs.

Usage: pushIifo value where value is 48-bit hexadecimal

Usage: popifo returns 32-bit value from FIFOs 1 and 2

Usage: pop_.ifo2 returns 16-bit values from FIFO 3

Usage: writethrufifo pops a value from the input FIFO and pushes it to the output FIFO

3.3.2 Comprehensive Test

To fully test the FIFOs, a utility, fifotest automated a sequence of 512 consecutive pushes into

the input FIFOs, followed by 512 writethru.fifo, and a sequence of 512 pops from the output

FIFOs. If all these 512 output values correspond to those written in, the FIFO test succeeds. It

should be noted that this test will work only if the DPGA has its programmable I/O in tristate

mode. In the case where the I/O's are not tristatable, the DPGA should be removed from the socket

in order to run this test. Should contention occur, DPGA dominates and overwrites the values of

the input FIFO.

Usage: fifo_test

3.4 Memory

3.4.1 Single Read/Write

Values of the DPGA memory could be accessed through individual read/write.

Usage: memwrite row column context value where row and column are 4-bit, context is 2-bit,

and value is 32-bit hexadecimal

Usage: memread row column context returns 32-bit value from specified row, column, and context

3.4.2 Memory Lossage Report

The program map.memory. c generated a semi-comprehensive report of how memory retains its values

over time. To account for possible values illegitimately read due to capacitance, the test executes

a sequence of two writes and a read. First, it writes the value of the test vector, followed by the



Function Command Parameter(s) Note
Clock set_clk freq-code freq-code (0-F) correspond

to those shown in Table 2.3
FIFO pushfifo value value is 48-bit hex

pop.fifo return value is 32-bit hex
pop-.ifo2 return value is 16-bit hex

write-thru.fifo
Memory mem_write row column context value value is 32-bit hex

mem.read row column context return value is 32-bit hex
mscrub3

Table 3.1: Test Software Summary

inverse of the test vector (to overwrite the previous value retained by mere board capacitance),

followed by a read back. If read back succeeds in that sequence, then it is classified as "All OK"

(both read/write pass over a period of 10's milliseconds). It then repeats reading sequences over

a specified period of time intervals and checks for decay. It dumps out the bit difference between

each successive rounds. The number of rounds and delta time interval can all be specified in the

definition of mscrub2. c. If no bits decay in a single memory block over all the rounds, the block

column and row will be reported as "perfect" in the last stage. The variables are easily adjustable

to perform more comprehensive tests over a variety of time intervals, clock frequencies, and etc.





Chapter 4

Results

4.1 Board Assembly

Once fabricated, the printed circuit board was assembled and soldered by hand. Sockets (PLCC28)

were installed to facilitate the removal and re-insertion of the five PALs.

The PLCC28 sockets were responsible for much of the earlier board flakiness. Made of plastic,

the surface-mount sockets were somewhat difficult to installed with a heat gun because they were

easy to melt. If heated for too long, the plastic frame will start to deform. If not heated long enough,

the solder glue won't melt and make robust solder pin connections. The: dilemma is that the optimal

lengths in time for heat exposure don't converge for both. Flaky connections were made early as

a consequence of very tentative soldering. Experience proves soldering guns with direct contact, as

opposed to air-heated guns, were much more effective and robust in plastic PLCC28 socket assembly.

Photos of the assembled printed circuit board is shown in Figures 4-1 (top side) and Figure 4-2

(bottom side).

4.2 Pads

The pads used by the DPGA were taken from another project, Abacus, in which the pads have been

proven to work. However, the logic control for the pads have been modified for the needs of the

DPGA. Two major flaws with the I/O pads of the DPGA surfaced in the testing process. These

two flaws were due to oversight and the lack of thorough layout verification.

The control logic of the 48-bit programmable I/O includes a "reset" mode that should force the

pads to be in tristate mode. Its purpose is to prevent contention during situations with unpredictable

pad configurations such as power-up. However, in the layout implementation, a transistor within the

pad control has its drain floating instead of connecting to ground. In addition, one of the logic gate



Figure 4-1: Photo of assembled SBUS-DPGA PC board (top view)

36

- I I-- I~ -- "-~ - -~--~-~I~



Figure 4-2: Photo of assembled SBUS-DPGA PC board (bottom view)

I

- ~~I-~~-~~-~~-`~~-`~-~II-~-~-~--- n ~-`-~ ~I--`-`-I-~-~~" ~1~~'-~-"I



of the control was mistakenly implemented as a NAND gate rather than an NOR gate. This forces

the pads to be constantly driving. Consequently, the programmable I/O pads are always output

enabled, even during reset mode. This flaw is isolated to the 48-bit programmable data I/O, so the

32-bit context programming I/O are not affected.

4.3 Memory

Memory of the DPGA is implemented using a 3-transistor DRAM technology (Figure 4-3. The

prototype memory suffers from flaws that appeared at first to resemble leakage. However, this

memory flaw is more subtle than plain leakage. The problem has to do with timing issues on the

memory control logic signals. As the first DRAM-based field programmable gate array, the DPGA

took a calculated risk in building dynamic memory cells.

Though denser, DRAM cells are are less robust than traditional static memory cells because of

their added complexity of refresh logic as well as leakage and timing issues. In addition, the DRAM

choice seems logical because the overhead of the refresh logic is amortized over the multiple banks

of memory. These issues, combined with the lack of VLSI experience, proved to be the ultimate

weakness in the DPGA prototype.

4.3.1 Refresh Logic

There is repeatable evidence that refresh is working properly (for those memory that have been

verified not to leak). This is observed through the context strobe signal (CTX.TOGGLE). When

CTX.STROBE is constantly asserted on context 0 (refreshing exclusively context zero), only the value

of that context remains valid. The three other contexts all decay to zero almost immediately. This

behavior confirms the refresh logic functionality. There is one minor subtlety when conducting this

test. When the CTX.STROBE is asserted during a memory read, the value read out is that of the

context been strobed (CTXADDR), not the context set by the programming context (PROG.CTX).

This reflects the proper behavior as a constant refresh of context 0 also drives out to the programming

lines.

4.3.2 Board Capacitance

One interesting observation was made concerning the data bus and the debugging pods. It appears

that there is enough capacitance on the floating data bus of the board to store values for several

seconds, even if the DPGA chip isn't physically plugged in. However, this observation is true only

when the debugging pods are not plugged in. When they are, the added impedance of the HP Pods

changes the behavior of the floating data bus.



Context<1
Context<2
Context<3
Context<4

32-Column by 4-Context
Memory Block

re<O>

re<1>

re<2>

re<3>

4-m1L iviemory
Column

Figure 4-3: Memory of DPGA



4.3.3 PAL Internal Pull-Ups

The 22v10 PALs used, GAL22v10B 15LJ from Lattice, have internal pull-ups in its inputs. This

should be noted in debugging process because the SBUS data bus, connected to PAL inputs, may

appear to drive out misleading values when the bus is actually in tristate mode.

4.3.4 Timing Problems

The flaw observed in the DPGA memory can be attributed to one theory. This theory claims that

the timing delay due to long wires and large capacitive loads between memory cells and their refresh

logic causes ill-timed assertion of control signals.

All the cells and refresh logic of the DPGA memory are composed with the same design, irre-

spective of the distance between them. This poses a problem when the cell and its refresh logic are

far apart, thereby introducing timing delay in the refresh control signals. From Figure 4-3, it can be

seen that if the signal IWE (internal write enable) is delayed in turning off while a RE signal is starting

to assert, then the stored value will be illegitimately written over by the value of a non-corresponding

DRAM cell. This leads to stored values to be written over with "junk" values, rather than "decaying

away" as in simple leakage. Since the DRAM cells require constant refresh, any untimely assertion

of refresh signals will result in adverse consequences for memory cell's retention. This is the nature

of dynamic memory and is a trade-off for its higher density.

4.4 DPGA Control Logic

4.4.1 Read/Write Signal

To write into the DPGA context memory, one needs to assert the ProgOp (Program Operation)

signal while pulling the Read/Write signal low. To read back the context memory, one does the

same except pulling the Read/Write signal high. This works as documented. However, it should

also be noted that the read/write signal should default read (high). Having a read as default will

avoid overwriting values into DPGA and trashing valid memory bits, particularly in the case when

ProgOp is not asserted. In the early debugging stage when the Read/Write signal defaulted to write,

spurious writes took place and was mistakenly interpreted as memory leakage.

When a read comes along, DPGAR.DWR goes high in the same DPGA cycle that prog_op be-

comes low. If these are both sampled synchronously and timed the same, no problem should occur.

However, if there's any chance that the earlier value of DPGAIRDWR (still asserting write) is seen

as soon as PROGOP is asserted, then a false write during read operations.



4.4.2 Context Strobe Signal

Reads and context strobe should not happen at the same time. If the read and the context strobe

happen to be using the same cell, then things might work - but the charge sharing may leave the

memory charge near threshold so that decay happens quickly. Context strobe is a negative asserted

signal - it forces a refresh of the context specified by CTx<1:0>, then returns to the count. A

"manual" refresh could be achieved using this method.





Chapter 5

Conclusion

The DPGA development and testing efforts have led to many profound observations. One of the

underlying themes of the DPGA was resource re-utilization. By incorporating additional memory

on chip, the DPGA tries to reuse the logic blocks with extra configurations in order to obtain more

functionalities. This resource re-utilization approach is fundamentally sound. However, it turns out

logic blocks occupy only a small portion of the silicon real estate when compared relative to the

interconnect. This observation leads to applying the same approach to other resources.

5.1 DPGA Offsprings

Two second-generation projects have evolved from the original DPGA development. One is Time-

Switched FPGA (TSFPGA) [Chen96a] and the other is MATRIX [MD96]. The TSFPGA takes

resource utilization one step further by multiplexing the interconnect resources over time (thereby

time-switched FPGA). Thesis work on the TSFPGA is done by Derrick Chen in in [Chen96b].

Matrix is a coarse-grain programmable logic which supports configurable instruction distribution

and deployable resources. Thesis work on the Matrix is done by Ethan Mirsky in in [Mir96b].

Building upon the lessons and experience gained from the original DPGA development, these two

second-generation projects explore new programmable device architectures that aim to reap the

most advantage of computational resources through re-utilization.

5.1.1 Time-Switched FPGA

TSFPGA [Chen96b] is a variation of the original DPGA. It too tries to utilize the silicon resources.

However, one of the unexpected conclusions of DPGA's VLSI analysis shows that silicon area is dom-

inated by interconnect, not logic elements nor memory. This implies re-utilization of the interconnect

rather than the logic elements will achieve greater utility of the overall silicon area.



By pipelining the switching operations and adding a modest amount of context memory in the

interconnect, the TSFPGA reuses the limited interconnect switches and wires in time. As a result,

more effective switching capacity is achieved with less physical interconnect. With sufficient context

memory, time switching makes the task of finding a functional route trivial. Consequently, large

parts can be routed in seconds when quick mapping is desirable, while slower mappings can be used

to achieve high performance operation [CD96].

5.1.2 Matrix

MATRIX is coarse-grain, reconfigurable computing architecture which supports configurable in-

struction distribution. Each logic element (BFU: Basic Logic Unit) features an 8-bit ALU with

fully programmable control logic and data-paths. Device resources are allocated to controlling and

describing the computation on a per task basis. Application-specific regularity allows us to com-

press the resources allocated to instruction control and distribution, in many situations yielding

more resources for data-paths and computations. The adaptability is made possible by a multi-level

configuration scheme, a unified configurable network supporting both data-paths and instruction

distribution, and a coarse-grained building block which can serve as an instruction store, a memory

element, or a computational element.

Matrix is an excellent candidate for digital signal processing applications because each logic

element has embedded ALU that excels in multiply-accumulate. Traditional fine-grain architectures

such as FPGAs suffer from low computational density (measured in bit operations per lambda

squared) because multiply-accumulators are costly to implement using fine-grain logic.

5.1.3 Future Projects

A third hybrid architecture combines both TSFPGA and Matrix. This hybrid architecture features

fine-grain logic embedded within coarse-grain logic blocks.

Ultimately, a TSFPGA/Matrix-coupled microprocessor [DeH94] is the computational substrate

of choice that will combine the advantages of fixed-hardware as well as reconfigurable components.

5.2 Technology Trends

The current generation of field programmable gate array expends a large portion of its silicon area

in interconnect. Of the entire die area, only a small fraction of the silicon actually goes into the

logic and memory components as shown in the DPGA [BCE+94]. This observation seems to be

consistent with commercial programmable devices as well. It should also be pointed out that the

current generation of programmable devices are fabricated in processes with a small number of metal

layers (three or less). In order to provide sufficient routing, the interconnect does indeed dominate



Time Fabrication Programming Logic
Project Frame Process Technology Element
DPGA 1995 HP26 (1.0 pm) DRAM 4-LUT

TSFPGA 1996 HP14 (0.5 pm) SRAM 4-LUT
Matrix 1996 HP14 (0.5 pim) SRAM 8-bit ALU (add/multiply)

XOR plane
TSFPGA-Matrix Future ? ?

DPGA-Microprocessor Future ? ?

Table 5.1: DPGA Projects

for most programmable devices using the current generation of fabrication processes. This is largely

due to system interconnect overhead as required by power, ground, and clock distribution.

However, significant fabrication process improvements are imminent. Within a few (3-5) years,

commodity fabrication processes will typically feature 5-8 layers of metal with 10+ layers in the

decade to come. The larger number of metal layers supported by future processes will fundamen-

tally change the design trade-offs of reprogrammable devices. These devices will stand to benefit

significantly from additional layers of metal, facilitating larger fan-ins and fan-outs of the logic block

and improving routability. At the same time, more metal layers incur much less inactive silicon

area. Consequently, interconnect should pose a lesser occupant of silicon area relative to the logic

and memory elements. No longer a limited resource, interconnects will likely to cost less in terms of

silicon real estate.

5.3 Industry Trends

In the year 1996, programmable devices are still relatively confined to the prototyping capacity.

Large programmable devices vendors such as Xilinx and Altera do not anticipate significant com-

mercial potential for reconfigurable computing in the short-term and thus they are making relatively

minor efforts to push for its advancement. Reconfigurable computing will remain a small academic

niche until convincing "killer apps" running on a reconfigurable substrate can demonstrate the

advantage of such architectures. This is what it takes to change the industry's acceptance of fixed-

hardware computing.

While programmable devices vendors are slow to explore/exploit the potentials of reconfigurable

computing, DSP vendors are approaching from the other direction. Newer generations of DSP have

become much more flexible and rapidly reconfigurable. Pilkington Electronics offers DSP with an

architecture resembling closely to that of Matrix in its line of reconfigurable video DSP [C95].





Appendix A

Implementation Files

All data files are served on the fileserver, transit.ai.mit.edu (128.52.38.26), in their appropriate

directories.

* Board Description

1. Source Description: /home/tr/designs/sbdpga/tcf/sbdpga.tcf

2. Final PCB: /home/tr/designs/sbdpga/allegro/sbdpga..Iilms.brd

3. Artwork: /home/tr/designs/sbdpga/allegro/artwork/

- sbdtop. art (top signal)

- sbd itop. art (intermediate top signal)

- sbdvcc . art (power plane)

- sbd.gnd.art (ground plane)

- sbd.ibot. art (intermediate bottom signal)

- sbdbot. art (bottom signal)

- sbdismtop. art (solder mask top)

- sbd smbot. art (solder mask bottom)

* SBus Control PALs

1. Finite State Machine to handle SBUS read/write request and acknowledgement:

- /home/tr/designs/sbdpga/tcf/sbd.ctrll .pal

- /home/tr/designs/sbdpga/tcf/sbd.ctrl2.pal

2. Control for programming variable clock generator

- /home/tr/designs/sbdpga/tcf/clockctrl.pal

3. Control for programming DPGA and FIFO



- /home/tr/designs/sbdpga/tcf/dpga.ctrl.pal

4. Synchronization control for ready and acknowledgement signals

- /home/tr/designs/sbdpga/tcf/rdyack.pal

* Testing Software

1. SBUS-DPGA Board Test: /home/tr/designs/sbdpga/verilog/sbdpga.v

2. DPGA Verilog Model: /home/tr/designs/sbdpga/DPGA/DPGAtop. v

3. DPGA Debugging Software /home/tr/designs/sbdpga/src/

- Set Clock Frequency: set.clock.c

- Push 48-bit value into FIFO (In): push-fifo. c

- Pop LSB 32-bit value from FIFO (Out): pop-fifo. c

- Pop MSB 16-bit value from FIFO (Out): popfifo2. c

- Comprehensive FIFO Test: fifotest. c

- Comprehensive Memory Map Summary: map-memory. c



Appendix B

Printed Circuit Board Artwork



C.
C.
u

Figure B-l: SBUS-DPGA PC board (top)

0

C C

I_~_~_II~~~ ____;i_ ___ _ __~_i~~~___ ____ ~_ _I I _

_I

~



Figure B-2: SBUS-DPGA PC board (intermediate top)

51



Figure B-3: SBUS-DPGA PC board (intermediate bottom)

jlU

C:M O

(,

I·;i·;0 i~: "

i.;

i,

d 3^



/-77-- ,. ..... .... .C

C--'' .. .....• •. ..,. ... ..... ... ... ..... ..., ... .. ............ ..
.... ..- ... ... ... . -. . ,..

toA 0............••.. - . .-- -- ,
k~~~~~~~~~~~j~~.. .... .............,$..• .......--'. •. .a = = . .......: • . • .

• • "•' ...... ........ . . .... : • - . • • ( . ........ "."- :

,-...... _............ ...... ......... = • • ......... i • ••. •'i .i• iJ '-. - - • ....... ..... I ..
_ _.. .. .... .. . ... .... ... .... .... .... ....... :.........

... .......... ...............,............. •"" .. .; .. .. ""\ - "o " ' " , 7 .:• j •--- . -• -- .... --- .! ;:- ... q .- --_• ".; ...i .. .. .. ...... .. .. ...- -... . . . , .

•t,'.i, ~ ~ ~ ~ ~ ~~~~ ~~~~~~ ....W'" .." .= - "-.• ." ,. -- ,,- C :J., . :'.--.----
•i ~ ~ ~ ~ ~ ~ ~ ...... .. ..... .i T; .:.. ...i ._. .. .. . ......... . -.. ......... ...... ....... ". " '- " .....-... .. ._..:.. . .. ., .,. _ .

.....i.. ..... . . ".. ........ ..... ..". ..,- .... .. . ". .. ... , '.. "-. - c s 
,-  

,• ; ! i - I
........... .. .. .. .............. '- ' ' = - •• ;..-• " .'.. I ' ..-IQ

ib.- =: .= =•. ...... -t --J -..7 ..... ... ..7 • -. ..-........ .'{ ........
ii~ ~ ~ ~ ~ ~ ~~0 -0"i n .l ...I'". <.... ..... j 

' 
.. .. ..'.... :. .-.=. ..... ............... ". Oiin0 ]•.'•i l!Jl'•i!, • ;;•; :::-;: ;•:'0 '-' O -::. •o o -•"• ..'.: o .. ...'.- .--... •.•••t• ! ..

"/ • e'• "': •>•='='-'. <" ~ ~~ ~~~~.... ....... - ° -' " , . . .- .- ..• '" D . "

Mc • ........ .-" ....................... .... .-• f 7 -  ........... :' J k ....

..............'• • ' • .. f--• ! - i •;U ii " . , I

0_.... ........ : -....... ---- • ................................ ,-. ...............- "......ifj

.... :,....... . ............................. .-

.. . .. ..•.. . .....,"hi! .. =I, -- ,- .'' C ' , .7. 0 '-• • ' - l "! -: F'!7 "

.... D j 5 , .. j ,. i!) i• --•- i . • •• •@..
./ "\ •"-•S• ' <' -D< e • -"''

,~i -- -\ - -. • ......... .. •,·.

.. ~~C \ .- -. • " , -;,,. ! . .. . .-·::

./" "~~~~3 ">, '.- - ------•;.'- %
¢ _ • • - • . . ._ -; - • ...... ......... . .... .... ..... • , ..- -• x + - .- - " t . " < -• l -• h - i • --

k.."~t• .. t " k . ,. . ". .. , " I " •.'_L. ". t.,, .. ,.1 .. .. ,!.. i

'..•'k-•..' ~ ~ ~ ~ ~ ~ ~ ~ ~r -·4 .',.,. .. ,<_,. ., ,. . ....z :.•;'...,~ ·· ·-·.~~?;, ,:;:: , •J...,,,,. ....
' : , . ..•=••"••' ........ $'.................... .: I "

'

\x. ~7: '• :===.....:.:.• ,c. 0i r·· o ................ ·i' • . . ! io ...

. ............ .... .. ýL,% .... .. ........ ..... .. ....... --·-·· -:~-··· --·· -·-·cd. ...........

O 0 (; O G C rr- ·· ···-····-···· ··---- ·--- ---------··

Figure B-4: SBUS-DPGA PC board (bottom)

53

.................................................................. ................. .............I. .............................. ....... ....... .......... ....... ........ .......... ................ .............. ...

.r O

ji O

~

~Ic:-·

~....!i
'i

-~I"
o I~~"- :::":::;:;'"'iff........ .... .. : ~~-~"-- -" li~-iiiiii .................... -i~ · ;

.. .... ..

i

\D 0·'·



) i1

I~i

"0', 0 (0
(00000

(0 00""

000000

0 c) )©c

0 00
0-, (-,• --" 0 -•(- -,

K>

0O (0O . >
1-' 0 0 0) (

TITFIT [

Ill OI-R llll Ei lEOIE

10 11.. II[li] 1 11
]i.iUHI lli. UIi tfllr, " t IrmIM I

.. "

.. . \,( )

Figure B-5: SBUS-DPGA PC board (top solder mask)

[1 1 Ilillrl Iilil!l

-H -I - W JH7LJ[7HI

cX " "O" ...•_ 0 , ' ,•,'.1 J ...

)OX.O .. C O

M 111111O i. llO



F

"0

CJ ...0O

I uIT IIi H H 1 ITITHfTHTT,'TI T,

0-0

K N
Figure B-6: SBUS-DPGA PC board (bottom solder mask).. C

Figure B-6: SBUS-DPGA PC board (bottom solder mask)

Lii~

.. .....

L."

'""`i

.'-~ r----·i

ji i~~~t

("`:I :

·-·- -- \
i ?iV

1L

L·~ i..·:
·--- ·-- ~

,I

v ·I.

v

"`·
iL~

·- -·-
i : iv

...... ....

LJ . ............
.

.........

j I-:\... I -

J ;

'O 00/` 11 I
i"'i

·-~\.j I......

i ,

n~on~~~,........1
~ n~Lj II
L-!
I~T1 i........i

[j[3[-!iliC!Oi:!

Lj',":j U1I1::[[





Bibliography

[TEC+95] Edward Tau, Ian Eslick, Derrick Chen, Jeremy Brown, and Andr6 DeHon. A First

Generation DPGA Implementation. In Proceedings of the Third Canadian Workshop on

Field-Programmable Devices, pages 138-143, May 1995. Anonymous FTP transit.ai.

mit.edu:papers/dpga-proto-fpd95.ps.Z.

[BDK93] Michael Bolotski, AndrB DeHon, and Thomas F. Knight Jr. Unifying FPGAs and SIMD

Arrays. Transit Note 95, MIT Artificial Intelligence Laboratory, September 1993. Anony-

mous FTP transit.ai.mit.edu:transit-notes/tn95.ps.Z.

[Chen96a] Derrick Chen. An Introduction to the TSFPGA. Transit Note 133, MIT Artificial

Intelligence Laboratory, 1996. Anonymous FTP transit. ai.mit. edu:transit-notes/

tn133.ps.Z.

[CD96] Derrick Chen and Andr6 DeHon. TSFPGA: A Fine-Grain Reconfigurable Architecture

with Time-Switched Interconnect Transit Note 134, MIT Artificial Intelligence Laboratory,

1996. Anonymous FTP transit.ai. mit. edu :transit-notes/tn134. ps. Z.

[MD96] Ethan A. Mirsky and Andre DeHon. MATRIX: A Reconfigurable Computing Architecture

with Configurable Instruction Distribution and Deployable Resources. Transit Note 133,

MIT Artificial Intelligence Laboratory, 1996. Anonymous FTP transit. ai.mit. edu:

transit-notes/tn127.ps. Z.

[BCE+94] Jeremy Brown, Derrick Chen, Ian Eslick, Edward Tau, and Andr6 DeHon. A 1t CMOS

Dynamically Programmable Gate Array. Transit Note 112, MIT Artificial Intelligence

Laboratory, November 1994. Anonymous FTP transit.ai.mit. edu: transit-notes/

tnl2.ps.Z.

[DP93] Andre DeHon and Samuel Peretz. Transit SBUS Interface. Transit Note 67, MIT Arti-

ficial Intelligence Laboratory, November 1993. Anonymous FTP transit. ai.mit. edu:

transit-notes/tn67.ps. Z.



[SD93] Thomas Simon and Andre DeHon. Transit Canonical Form. Transit Note 55, MIT Ar-

tificial Intelligence Laboratory, November 1993. Anonymous FTP transit. ai.mit. edu:

transit-notes/tn5 ps. Z.

[DSCM92] Andre DeHon, Thomas Simon, Nick Carter, Henry Minsky. Charles: Second Revision

MBTA Node. Transit Note 63, MIT Artificial Intelligence Laboratory, January 1992.

Anonymous FTP transit. ai.mit. edu: transit-notes/tn63. ps. Z.

[Sun90O] "SBus Appilication Notes - Eight Bit SBus Slave Interface". Sun Micro Systems, 1990.

[Lyle92] James D. Lyle. SBus - Information, Applications, and Experience. Springer-Verlag, 1992.

[Chron93] CH9007 PC Clock Generator, Rev. 1.3, 09/09/93. Chrontel, Incorporated. 2210 O'Toole

Avenue, San Jose, CA 95131-1326. TEL: (408) 383-9328 FAX: (408) 383-9338.

[Tau95] Edward Tau. Verification and Evaluation of a DELTA: A First-Generation Dynamcially

Programmable Gate Array. Bachelors thesis, Massachusetts Institute of Technology, 1995.

[Chen96b] Derrick Chen. TSFPGA: A Time-Switched Field-Programmable Gate Array. Masters

thesis, Massachusetts Institute of Technology, 1996.

[Mir96b] Ethan A. Mirsky. Coarse-Grain Reconfigurable Computing. Masters thesis, Massachusetts

Institute of Technology, 1996.

[DeH94] Andrd DeHon DPGA-Coupled Microprocessors: Commodity ICs for the Early 21st Cen-

tury. Transit Note 100, MIT Artificial Intelligence Laboratory, January 1994. Anonymous

FTP transit.ai.mit.edu:transit-notes/tnO00.ps.Z.

[DeH96] Andr6 DeHon Reconfigurable Architectures for General-Purpose Computing. PhD thesis,

Massachusetts Institute of Technology, 1996.

[C95] Peter Clark. Pilkington Preps Reconfigurable Video DSP. Electornic Engineering Times,

page 16, August 7 1995. Online briefing http://www.pmel.com/dsp.html.


