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Abstract
Network coding is a method of data transmission across a network which involves cod-
ing at intermediate nodes. Network coding is particularly attractive for multicast.
Building on the work done on random linear network codes, we develop a constrained,
simplified code construction suitable for multicast in wireless networks. We analyze
bounds on sufficient code size and code success probability via an algebraic framework
for network coding. We also present simulation results that compare generalized ran-
dom network codes with our code construction. Issues unique to the simplified code
are explored and a relaxation of the code to improve code performance is discussed.
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Chapter 1

Introduction

The purpose of a multicast network is to simultaneously transmit data from one

source to multiple receivers. The multicast connection problem concerns the ability

to transmit data from a specific source node to a set of receiver nodes at a specified

rate. The constraints of the problem are the topology of the network and the capacity

of the links in the network. Conventionally data is transmitted across a network

by routing, where intermediate nodes only receive and forward data towards their

destination. For the multicast problem, [4] showed that higher rates can be achieved

if intermediate nodes are allowed to perform coding. It has also been shown that

linear codes are sufficient for multicast [5]. An example of a network that requires

network coding was first presented by [4], shown in figure 1-1. In this network, we

wish to transmit both bits b and b2 to the two receivers simultaneously. If each link

can only transmit one bit at a time, this is impossible by routing; only one of the

receivers can receive both bits if nodes can only forward them. A solution exists if

network coding is allowed. The interior node sends the sum (modulo 2) of the two

bits, and the two receivers are able to recover the second bit by adding (modulo 2)

their inputs.

The advantages of network coding, however, are not limited to simple networks

such as this one. Reference [1] showed the benefits of randomized coding over routing

on randomly generated networks, and the utility of randomized coding in dynamic

networks. Network coding is particularly attractive for multicast. Multicast rout-

13
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Figure 1-1: A network that requires coding. Using routing, only one receiver can
receive both bits. Both receivers can recover both bits if the internal node sends
bl · b2.

ing requires calculating a Steiner-tree or tree packing (when there are no buffers in

the interior of the network), which are NP-complete problems. On the other hand,

polynomial-time deterministic algorithms for constructing network codes have been

developed [6]. Furthermore, multicast routing is infeasible for networks that require

decentralized coordination (e.g. wireless ad-hoc networks), but randomly generated

network codes can be constructed and operated in a distributed setting. Thus net-

work coding can not only provide higher rates than routing, but can solve the network

connection problem in situations where routing cannot.

In a randomly generated linear network code, nodes send along their output links

a random linear combination of their inputs, by choosing random coefficients. The

network code can be generated in a distributed fashion because each node can generate

its own random code-a mapping of inputs to outputs-independently of other nodes

and without knowledge of the network topology. Data is successfully transmitted

from source to receivers if the collection of individual codes yields a valid solution to

the network connection problem. One disadvantage of randomly generated codes is

that there is a probability of failure to form a successful network code. However, the

probability of failure decays exponentially with increasing code length. Reference [1]

14



explains random network codes in more detail.

We motivate our work by considering networks in a wireless setting, such as sensor

networks. Several issues particular to wireless networks must be addressed. First,

a distributed method for multicast is particularly necessary for such networks, as

a centralized approach is often infeasible. The second issue is the node broadcast

constraint. In a wireless network, nodes are only able to communicate within their

transmitting radius. Nodes with omnidirectional antennas can only broadcast to all

other nodes within their transmitting radius, and not to a selective set of its receivers.

Unlike a point-to-point network where a nodes can send disparate information on each

of its outgoing links, all receiving nodes of a particular transmitting node in a wireless

network must receive the same information. A third issue concerns scalability. Sensor

networks can have hundreds of identical nodes that are mass-produced and must be

preprogrammed before they are deployed. Rather than construct a separate random

code for each node, a more simple approach is to preprogram the same code into all

nodes.

We address these issues by proposing a simplified version of a random network

code. In this code construction, all nodes use the same code involving a single random

coefficient, and send the same output on all outgoing links. In chapter 2 we define

the network model and describe the construction of this code. In chapter 3 we adapt

the analysis on general random codes in [1] to obtain analytical results for this code

construction. Using the algebraic framework presented in [2], we refer to the uncon-

strained random code as a multivariate code and the simplified code construction as

a univariate code. These definitions will become clear in the analysis of the code. In

chapter 4 we provide simulation results for randomly generated networks to compare

the performance of multivariate and univariate codes. The univariate code introduces

some issues not present for multivariate codes, such as the characteristic of the finite

field and the choice of the single coefficient. We discuss these issues and a relaxation

of the univariate code to improve its performance in chapter 5.

15
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Chapter 2

Definitions

2.1 Network Model

We use the network coding model presented in [2]. A network is represented as

a directed acyclic graph, where vertices represent the nodes of the network, and

edges represent communication links. There are r discrete random source processes

X1, X 2 , ... ,Xr that are observable at one or more source nodes. There are d > 1

receiver nodes, and each receiver 3 has output processes denoted Z(/, i). The network

has links, where each link 1 carries the random process Y(l). We assume the

random processes generate binary sequences, which are partitioned into vectors of

bits. All source processes produce one vector per unit time, and all links transmit

one vector per unit time. We wish to construct a network code that enables all the

input processes to be transmitted to every receiver node. Operations in the code

occur over a finite field F by viewing the bit vectors as scalar elements of the field.

In our simulations, we used both finite fields of characteristic 2, i.e. F2m and prime

finite fields Zp, which have characteristic p. The characteristic of a field is the smallest

integer n such that every element added to itself n times equals zero. For the analysis

of bounds in chapter 3, the type of field is irrelevant, but in chapter 5 we show how

the characteristic of the field can affect the code.
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2.2 Code Construction

We describe three different codes: the unconstrained multivariate code, the multivari-

ate broadcast code, and the univariate code. The unconstrained multivariate code is

the most general one applicable to any network. The code is constructed as follows.

For each outgoing link of a non-receiver node v, a random coefficient from F is chosen

for every source process observed at v and for every incoming link of v. Thus every

outgoing link of v carries a random linear combination of the processes observed at

v and the processes on incoming links of v. If the random coefficients are chosen

properly, the process on each outgoing link is different from that of other outgoing

links of the same node. Each receiver node collects the signals on its incoming links

and decodes them by taking the necessary linear combinations to recover the input

signals. The multivariate broadcast code is similar to the unconstrained multivariate

code, but every outgoing link of a given node sends the same linear combination of

the node's inputs. Thus each node needs to choose only one coefficient for each source

process and each incoming link.

Now we describe the univariate code construction. A single coefficient for the

entire network is randomly chosen from F. For each link 1 let v = tail(l). Each

outgoing link carries the sum of all source processes observed at v, and the processes

on incoming links of v multiplied by a. Thus not only does the univariate code meet

the broadcast constraint, but every node uses the same code. The decoding method

at the receiver nodes is the same as for the multivariate code. Figure 2-1 depicts the

various codes for an individual node.

Y(2) 1) Y(3) Y(4)

multivariate al,3X + fl, 3Y(1) + f 2,3Y(2) al,4X + f l .4Y(1) + f2.4Y(2)
x1 multivariate

broadcast aX + flY(1) + f2Y(2) alX1 + fY(l) + f2Y(2)
Y(3) Y(4)

univariate X1 + aY(1) + aY(2) X1 + aY(1) + aY(2)

Figure 2-1: Codes for an individual node. Note that for the multivariate broadcast
code and the univariate code, the function on all output links are equivalent.
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The overall network code (for any code type) is represented as the triple (A, F, B).

A is an r x v matrix where aij is nonzero if Xi is observed at link(j) and 0 otherwise.

F is a v x v matrix where fij is nonzero if link(i) is the incoming link and link(j)

is the outgoing link of the same node, and 0 otherwise. The links are numbered so

that F is upper triangular, which is possible since the graph is acyclic. B consists

of a column of d matrices Bl, one for each receiver. Each Bo is a r x v matrix that

represents the linear operation 3 performs on its inputs to recover the signals. Each

Bo has nonzero entries in the columns corresponding to incoming links of receiver

node 3. The product A(I- F)-1 B is the transfer matrix from source processes to

output processes of/3.

For the unconstrained multivariate code, nonzero entries of A and F are inde-

terminate variables aij and fij, respectively, hence the name multivariate code. In

the univariate code, the nonzero entries of A are all 1, and the nonzero entries of F

are the same variable a, hence the name univariate code. The multivariate broad-

cast code is represented similarly to the unconstrained multivariate code, except the

same variable is used for all nonzero entries in the same row. The entries of the Bo

matrices are not determined by the code, but for analysis purposes the entries are

indeterminate variables b, j for all code types. As an illustration, the A, F, and BO

matrices for the three code types are given for the network in figure 1-1, reproduced

in figure 2-2 with the sources, links, and receivers numbered.

Si S~

r r2

Figure 2-2: A network indicating the sources and receivers. The links are numbered
in topological order.
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Unconstrained Multivariate Code:

A a,,, al,2 0 0 0 0 0 F F
0 0 a 2,3 a2,4 0 0 0
A = ( a 1, 1 a 1, 2 0 0 0 0 /F z

j

0 0000 0 0 

0 O O O f2,5

0 0 0 0 f 3 ,5

0000 0

0 0

0 0

0 0

0 0 0 0 0 f5,6 f5,7

000 00 0 0 

000 0 0 0

Broadcast Constrained Multivariate Code:

A a a1 0 0 0 0 0

\ O 0 a 2 a 2 0 0 00

n N N

A= ,F=
0 1 1 00 0110000

/
000000 0O

0000 00
O O O O ae 0 O

00000
0 0 0 0 0

0 0

0000000
00 0 0 /

20

/

0 0
f2

f3

0 0
0 0

0000
0000
0000
0000
0000
0000
0000

0 0
0 

0 0

0

0

Univariate Code:

V V V...,

FI

F

O



B Matrices (identical for all code types):

B - 0 0 0 0 bl,6 0 B 0 0 ,4 0 0 b, 7

b2,1 0 0 0 0 b2 ,6 0 0 0 0 b2 ,4 0 0 b2 ,7

The analysis of a point-to-point network uses the link adjacency matrix F because

different outgoing links of a node can carry disparate signals. But in the broadcast

scenario, each node has only one outgoing signal. This allows an alternate represen-

tation of the two broadcast codes. We replace F with the node adjacency matrix G,

where gi,j is nonzero if there exists a link that connects node i to node j. A and B are

modified so that columns correspond to nodes instead of links. The nonzero entries

of G for the multivariate broadcast code are all independent indeterminate variables

gi,j, like the F matrix for the unconstrained multivariate code. The nonzero entries

of A and G of the univariate code are constructed in the same manner as before. The

transfer matrix is the same as the previous case, with G replacing F.
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Chapter 3

Performance Bounds

The network code (A, F, B) solves the multicast problem if and only if the transfer

matrix A(I - F)- 1 BT' is full rank for each receiver 3 [2]. This is equivalent to the

requirement that A(I- F)- 1 B' have a nonzero determinant. Note that for a mul-

tivariate code, the random coefficients are distinct variables aj c A and fi,j G F,

and the determinant polynomial is a multivariate polynomial in the ring F[x]. The

univariate code only has one variable, ca, resulting in a univariate polynomial. We

do not consider the coefficients in B because those coefficients are chosen in order to

recover source processes, and do not affect the design of the code. The code length

is determined by the size of the finite field, and is proportional to the computational

complexity of the code. Thus is it desirable to find the smallest field size which

contains a non-zero solution to the determinant polynomial. Given that a solution

exists in a given field, we also want to know the probability of randomly finding a

non-zero solution. We apply the analysis technique used in [1] to obtain bounds for

sufficient field size and probability of successful code construction for the univari-

ate code. Reference [1] makes the connection between network coding and network

flows, then recognizes that the network coding problem has a corresponding bipartite

matching formulation, since network flow problems can be reduced to bipartite graph

matching problems. Furthermore, the network coding problem can be analyzed using

the Edmonds matrix formulation for checking for a perfect matching in a bipartite

graph [3].

23



3.1 Bound on Code Length and Construction

Lemma 1. Let (A, F, B) be the univariate network code for a specific connection

problem. Let d be the number of receivers and v be the number of links in the network.

(i) For a feasible multicast connection problem using the univariate code, a solution

exists in any finite field Fq, where q > dv.

(ii) The probability of a successful code construction by randomly choosing Oa is at

least 1 -dq
q

Proof. It can be shown [1] that

det(A(I- F)-1 BT) = (-1)r(u+l)det( [ (3.1)[I-F B' 

A 0
where I is the Edmonds matrix corresponding to the flow graph of the

I-F Bo
source nodes and receiver d.

(i) Consider the determinant polynomial of the Edmonds matrix in terms of the

variables a and bo;i,j (the coefficients of By). Every term of the determinant is a

product of elements such that no element is from the same row or column. Thus

no product term in the determinant can have a b,,j with exponent greater than

1. The exponent of a in any product term cannot be greater than v, since a

only occurs in the first v columns of the matrix. Therefore the largest exponent

of any variable is at most v. If we take the product of d polynomials (one for

each receiver), the largest exponent of any variable is at most dv. By applying

the argument used in [1], we can show that there exists a nonzero solution to

the polynomial in Fq, q > dv. The argument uses induction to show that values

can be assigned to each variable in such a way that the polynomial is nonzero.

(ii) The determinant polynomial of the corresponding Edmonds matrix has degree

<_ v in terms of a. There are d such polynomials, one for each receiver. The

24



requirement that each polynomial is nonzero is equivalent to requiring the prod-

uct of the polynomials to be nonzero. Therefore the degree of the polynomial

we wish to consider is at most dv. The polynomial has at most dv distinct roots

in a field q > dv. If ca is randomly chosen from Fq, the probability that the

determinant is nonzero (i.e. a root is not chosen) given the determinant is not

identically zero is > - d, by the Schwartz-Zippel Theorem [3].q

3.2 An Alternate Bound

We give an alternate lower bound on the field size necessary for a solution to exist.

Lemma 2. Let (A,F,B) be the univariate network code for a specific connection

problem. Let d be the number of receivers and r be the number of distinct source

processes. Define p to be one less than the number of links in the longest path between

source and receiver nodes.

(i) For a feasible multicast connection problem using the univariate code, a solution

exists in any finite field Fq, where q > dpr.

(ii) The probability of a successful code construction by randomly choosing Z is at

least 1 - dpr
q

Proof. All possible paths between nodes are represented in the series (I + F + F2 +

F3 +...). Since F is nilpotent there exists some n such that Fn is the all zero matrix,

and (I + F + F 2 + F3 +...) = (I-F) - 1 [2]. It is easy to verify that FP+1 = 0 and

(I- F)- x -(I + F + F2 ... + FP). This means that (I- F)-' contains entries that

are polynomials in of degree no more than p. Then the determinant polynomial

of A(I- F)-'BT in terms of a and b,3,.j has a maximal degree < pr, and a nonzero

solution for all receivers exists in Fq, q > dpr. Applying the Schwartz-Zippel Theorem,

the probability the determinant is nonzero for a randomly chosen ac is > 1 P. d
q

25



3.3 Bounds Using the Node Adjacency Matrix

Bounds for the broadcast codes can be obtained using the node adjacency matrix

representation, yielding a third bound for the univariate code.

Lemma 3. Let (A,G,B) (node adjacency matrix represenation) be the univariate

network code for a specific connection problem. Let d be the number of receivers and

n be the number of nodes in the network.

(i) For a feasible multicast connection problem using the univariate code, a solution

exists in any finite field Fq, where q > dn.

(ii) The probability of a successful code construction by randomly choosing a is at

least 1 dnq

Proof. The proof is exactly the same as in Lemma 1, by replacing the link adjacency

matrix F with the node adjacency matrix G, and constructing the appropriate A and

B matrices. D

The node adjacency matrix representation also allows us to analyze the multivari-

ate broadcast code. Since the variables are identical to the unconstrained multivari-

ate code representation, by the proof in [1] for unconstrained multivariate codes, the

bound for the multivariate broadcast code is d, the number of receivers.

3.4 Comparison of Bounds

The lower bound of required field size for a multivariate code is d, the number of

receivers [1]. Clearly the three univariate bounds are greater than the multivariate

bound. The multivariate bound only depends on the number of receivers, and the

univariate bounds are dependent on the topology of the graph. In particular, the uni-

variate bounds can grow as the number of nodes in the network increases. However

the code length will not be adversely affected, because code length grows logarithmi-

cally in relation to field size. Depending on the network, one bound will be smaller

than the other, and either bound can be used to choose an appropriate field size. A

26



Table 3.1: Bounds for various code types.

network that is very dense may contain many links, but consequently have a small

maximum path length. Conversely, a sparse, wide-spread network can contain long

path lengths between sources and receivers, but may have few links. Furthermore, use

of the node adjacency matrix tightens the bound from dv to dn, because in general

the number of links in a network exceeds the number of nodes, and can be O(n 2 ) in

a dense graph. Table 3.1 summarizes the various bounds.

We showed that the bound for the multivariate broadcast code is identical to the

unconstrained multivariate code. In other words, there is no penalty, in terms of

bounds, for enforcing the broadcast constraint on the multivariate code. Another

way to analyze the multivariate broadcast code is to model the broadcast constraint

by creating a broadcast graph by inserting virtual nodes and links at every real node

that has multiple outgoing links, and constructing an unconstrained multivariate

code on the new graph. Figure 3-1 illustrates how this is done. If an unconstrained

multivariate code cannot be constructed on the broadcast graph, then a multivariate

broadcast code cannot be constructed on the original graph, providing a way to

determine the feasibility of a broadcast constrained code. The broadcast graph also

makes it possible to apply the min-cut max-flow theorem for network information

flow [4] to broadcast constrained networks.
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Figure 3-1: The graph on the right shows how the graph on the left is augmented
to model the broadcast restraint. A multivariate broadcast code on the left graph is
equivalent to an unconstrained multivariate code on the right graph.
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Chapter 4

Simulations

Simulations were run on various network configurations to compare the performance of

the univariate code with the multivariate codes. The three different code types were

constructed on randomly generated network graphs, and the rank of the transfer

matrices for each receiver was evaluated to determine the success of a code. For

each code type, codes were constructed in finite fields p starting with p = 11, and

three different random codes were generated and tested before increasing the field

size. Four different field sizes were tried before declaring failure. Trials were also

conducted using fields with characteristic 2, and they yielded similar results to trials

using fields with odd characteristic.

The three main parameters for the networks were number of nodes n, transmission

range p, and number of source (r) and receiver (d) nodes. n node locations were

chosen uniformly within a unit square by randomly generating x- and y-coordinates.

Nodes were sorted by increasing x-coordinate value, and nodes within range p were

connected by directed links (the tail at the lower-numbered node) to produce acyclic

graphs. Source and receiver nodes were assigned to the r lowest- and d highest-

numbered nodes, respectively. Note that the broadcast constraint precludes source

nodes with a rate greater than one. This is due to the fact that a single node cannot

output distinct processes within the broadcast constraint. Thus, the rate for each

network is equal to the number of source nodes.

Figure 4-2 provides some simulation results. Each plot corresponds to a different
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source-receiver configuration. For a constant number of nodes (10 for the results in

4-2), the plot shows success rates for different transmission ranges. Included with the

success rates of the three code types is the success rate for the connectivity of the

network. Connectivity in this case is defined as the existence of a path from each

source to each receiver, a requisite for any code to work. As expected, the connectivity

success rate upper bounds the codes' success rates, the unconstrained multivariate

code upper bounds the constrained version, which in turn upper bounds the univariate

code. This is because univariate codes are a subset of multivariate broadcast codes,

which is a subset of general multivariate codes. In the cases that the unconstrained

multivariate code succeeded but the multivariate broadcast code failed, the problem

was essentially a bottleneck in the network caused by the broadcast constraint. In the

cases where the multivariate broadcast code succeeded but the univariate code failed

the problem was that the processes at the receiver nodes were linearly dependent,

preventing decoding of the source processes. Figure 4-1 contains examples of networks

for which only a subset of the codes succeed. While the unconstrained multivariate

code works for network (a), the broadcast codes fail because links 3 and 4 transmit the

same signal, so the signals on the receiver's terminal links are not linearly dependent.

The multivariate codes work for network (b) but the univariate code fails. The

determinant polynomial of the transfer matrix is identically zero for the univariate

code of this network.

The unconstrained multivariate code success rate is the best that can be done in

any network, and the multivariate broadcast code success rate is the best that can

be done in a wireless network. While the results for the multivariate codes track well

with the connectivity, the univariate code success rates deviate from the multivariate

results. The gap diminishes when the number of nodes is increased (see figure 4-3 for

n = 15 and figure 4-4 for n = 20). Also note for the n = 20 case that the energy

cost (from increase in transmission range) of switching from a multivariate broadcast

code to a univariate code is small. Furthermore, chapter 5 discusses a relaxation

of the univariate code which bridges the performance gap between the multivariate

broadcast code and the univariate code.
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Figure 4-1: Networks for which only a subset of the codes succeed. (a) The uncon-
strained multivariate code works for this network but the broadcast codes fail. (b)
The multivariate codes work for this network but the univariate code fails.
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Chapter 5

Analysis of Univariate Code

5.1 Effect of Field Characteristic

In simulations for networks with a single source, code failures should have only oc-

curred from lack of connectivity in the graph, resulting in equal success rates for all

code types. However, occasionally the univariate code failed when the multivariate

code succeeded. The reason was found to be caused by the characteristic of the field,

2 in this case. For a finite field of characteristic 2, any value added to itself results

in zero. There were instances where nodes received inputs that summed to zero, re-

gardless of the value of a, causing the code to fail unilaterally. This situation can be

easily avoided by choosing fields with odd characteristic, and illustrates how the char-

acteristic of the field can affect the code. Figure 5-1 gives a simple graph exhibiting

this type of situation. This graph is the simplest case; the situation where signals are

cancelled out can arise in an unlimited number of different network configurations.

Figure 5-1: This network illustrates the simplest case where using a field with char-
acteristic 2 causes signals to be cancelled out in using the univariate code. The
intermediate nodes receive the same data from the left-most node. The summing
node receives equal inputs, resulting in a zero output.
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field 1 I 2 3 4 5 6 1 7 8 9 10 11-15

F4 0.70 0.99 0.99

F8 . 0.69 0.99 0.99 0.99 0.99 0.99 0.99
F16 0.69 0.99 0.99 0.99 0.99 0.98 0.98 0.99 0.98 0.99 0.99

Z3 0.97 0.72
25 [ 0.98 0.97 0.95 0.70
27 0.98 0.99 0.98 0.99 0.95 0.70
2 11. 0.96 0.96 0.96 0.96 0.95 0.96 0.96 0.97 0.95 0.66 

Table 5.1: Univariate code success rate for specific values of a.

5.2 Choice of a

We examined how the actual value chosen for the variable a affects code success. Us-

ing various network configurations, the univariate code was tested with every nonzero

value in the finite field substituted for a. Ignoring the trials where the code failed for

all possible values, the success rate for each value was recorded. Three finite fields

with even characteristic and four finite fields with odd characteristic were tested. The

results are provided in table 5.1.

For most values of a, the univariate code is successful essentially all the time. At

first glance this is surprising, because for a given network connection, the determinant

polynomial of the transfer matrix is not affine, and thus there is some value for

which the polynomial evaluates to 0. On closer inspection, a receiver node had many

more terminal links than the number of sources r, and it only required r linearly

independent links to decode. Thus, with high probability, there existed some set of

links that were linearly independent for any value of a.

However, the success rate for a = 1 in F2m and o = p- 1 in Zp is around 70%.

To explain this we examine the properties of these elements in their respective fields.

The r x v matrix M = A(I - F)-1 is the transfer matrix from source processes to

each link in the network. The elements of M are polynomials in the variable a. Let

P represent an entry of M. Let MO be the matrix created by taking the columns of

M that correspond to the terminal links of a receiver node /3. The source processes

can be recovered at /3 if rank(M3) = r.
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In F 2 m.
2m-1

P = Egi, g E {O, 1}. (5.1)
i gi

If a = 1, then

2q-1

P = gi (5.2)
i=1

= 0 or 1. (5.3)

Thus every element in MO evaluates to 0 or 1 when a = 1. This restricts the degrees

of freedom of the entries of MO, making it less likely for rank(MO) to equal r.

In Zp, the order of the element p - 1 is 2, i.e. (p_ 1)2 = 1 mod p. This means the

powers of a(t evaluate to either 1 or -1, restricting the degrees of freedom of P and

the possible values it can evaluate to.

Overall the results for F2m were better than that for Zp. This helps the case for

choosing F:2 over Zp, along with the observation that operations over F 2m are more

straightforward to implement for vectors of bits. The caveat is that the cancellation

effect of the characteristic explained in the previous section will not be avoided.

5.3 Relaxing the Code

In the univariate code, every link coefficient is the same value a. We diversify the

code by allowing some of the link coefficients to be a different value. At each node,

a certain fraction of incoming links f are assigned the coefficient and the leftover

1 - f fraction of links are assigned the value 1. While the link fraction f is fixed

for the entire network, each node chooses the specific link assignments randomly.

The broadcast constraint is maintained. Figure 5-2 contains the univariate code and

multivariate broadcast code results from 4-2, but includes the results for relaxed

codes. For each transmission range, nine different values of f from 0.1 to 0.9 were

tested. As the results show, this simple modification can make the univariate code

comparable to the multivariate broadcast code. Figure 5-3 provides the results of the
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relaxed code for n = 15. The performance of the relaxed code closely meets the bound

of the multivariate broadcast code. Recall the simulation results provided in chapter

4. The performance of the univariate code deviated from that of the other codes for

n = 10 and n = 15, but not for n = 20. Note that the relaxed code performance

for n = 10 and n = 15 is similar to the univariate code performance for n = 20.

Therefore, diversifying the code is an alternate solution to improving performance,

instead of increasing the number of nodes.
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Figure 5-2: Simulation results for the relaxed univariate code. n = 10. The two dotted
lines outline the success rate of the multivariate broadcast code and the univariate
code. The points indicate different realizations of the relaxed code by varying the
link fraction parameter (the fraction of links using ca as the link coefficient).
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Chapter 6

Conclusion

Multicast network coding can be applied to any type of network and clearly has its

advantages over multicast routing. However there are additional issues that must be

addressed for multicast in wireless sensor networks. These issues include the necessity

of a distributed method of operation, the node broadcast constraint, and concerns of

scalability. We have presented a simplified network code motivated by wireless sensor

networks. The code derives from placing constraints on a randomly generated code

to meet the challenges of a wireless network. The first issue is solved by the use of a

randomly generated network code. The other two issues are addressed by constraining

the random network code to meet the broadcast constraint and requiring all nodes

to use the same, simple code. This single code facilitates mass production of nodes

and only requires one parameter to be programmed into all nodes before deployment.

We have adapted the analysis used for random network codes to determine bounds

on the required code length and code construction success probability.

Simulation results indicate that the univariate code performance is comparable to

multivariate codes. Further work is needed to fully characterize the tradeoffs between

number of nodes, transmission range, and node complexity. Different network config-

urations will benefit from deploying additional nodes versus increasing transmission

range, or diversifying the code. Each method has its own cost in term of compu-

tational and transmission energy. The question is, when can a network connection

problem be solved by adding more nodes to the network, and when will it only be
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solved by a more complicated code? Other further work is to look at the robustness

of the code to link erasures and dynamic networks; is there a penalty in terms of

robustness for using univariate codes?

We introduced one method to add diversity to the code and showed that the

performance gap between the broadcast codes could be recovered. There are several

other simple methods of adding diversity to the code. Another idea is to have two

codes; some nodes use the coefficient a and other nodes use another coefficient a'. The

same, simple node can be used for both codes because the coefficient is programmed

as a parameter.

There are many more problems to solve in order to implement the univariate code

as a working method for data transmission in wireless networks. For one, the model

does not deal with interference, an unavoidable aspect of wireless communications.

Either we need to include the effects of interference into the model, or explore a

model that is not adversely affected by interference, bursty traffic for example. An

actual implementation will have to address synchronization issues, and how to deal

with failed network connections. But as the history of coding theory has shown,

abstract models and theoretical bounds are an important and essential first step

towards developing practical algorithms.
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