THE EFFECTS OF OIL PRICES AND OTHER ECONOMIC INDICATORS ON HOUSING PRICES IN CALGARY, CANADA

by

Mercedes A. Padilla

Masters of Entrepreneurship Asian Institute of Management, 2001

BS Management Engineering Ateneo de Manila University, 1995

SUBMITTED TO THE DEPARTMENT OF ARCHITECTURE IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN REAL ESTATE DEVELOPMENT AT THE MASSACHUSSETTS INSTITUTE OF TECHNOLOGY

SEPTEMBER 2005

©2005 Mercedes A. Padilla. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly this paper and electronic copies of this thesis document in whole or in part.

Signature of Author	${ m r}\cdot$
	Mercedes A Padilla, Department of Architecture, August 5, 2005
Certified by:	
	William C. Wheaton
	Professor of Real Estate Economics
	Thesis Supervisor
Accepted by:	
	David Geltner
	Chairman, Interdepartmental Degree Program in Real Estate Development
	Chairman, interdepartmental Degree Program in Real Estate Development

THE EFFECTS OF OIL PRICES AND OTHER ECONOMIC INDICATORS ON HOUSING PRICES IN CALGARY, CANADA

$\mathbf{B}\mathbf{y}$

Mercedes A. Padilla

Submitted to the Department of Architecture On August 5, 2005 in Partial Fulfillment of the Requirements for the Degree of Master of Science in Real Estate Development

ABSTRACT:

This thesis aims to answer: (1) to what extent can oil prices and other economic indicators predict the changes in housing prices and rent in the Calgary single family housing market and (2) to determine what the lag time is between them. Implications of this study from a macro perspective are multiple. This study can be used as a simplified case study in isolating the effects of the boom and bust cycles of economic industries and quantify its impact to real estate performance.

Results found an astonishing correlation. Oil prices, exchange rate, interest rate and employment levels can determine up to 98% of the changes in house prices and rents. Oil prices, representing economic viability of the city, affect the real estate industry with a lag of 7 quarters of approximately two years, while interest rates representing the financial well-being of the city affect house prices and rents with a lag of 2½ years. Foreign exchange rate to the dollar, representing the relative global prosperity, affects real estate prices in one year.

House prices seem to be equally sensitive to a positive or negative shock in oil prices, exchange rate, and interest rates. At which, \$25/barrel oil price seems to be the "breakeven" level at which house prices remain stable, all else equal. Above which, prices will continue to appreciate, below which, prices will fall. Not surprisingly, this is the same estimate of the 'breakeven" point at which the oilsands in Calgary become economically viable.

Rents are more sensitive to positive shocks in oil prices, not exchange rate. Inversely, they sensitive to negative shocks in exchange rate, not oil prices. Rents are not sensitive to interest rates.

Thesis Supervisor:

William Wheaton

Title: Professor of Real Estate Economics

TABLE OF CONTENTS

TABLE OF CONTENTS	3
INTRODUCTION	4
LITERATURE REVIEW	4
BACKGROUND	
History of the Calgary, Canada	7
Calgary and Oil Prices Today	
HYPOTHESIS	
DATA SERIES AND TRENDS	11
House Price	11
Rent	15
Real Oil Prices	16
Exchange Rate	17
Interest Rates	18
Employment	19
METHODOLOGY	21
Regression Analysis	21
The Impact of Oil Prices	22
Reduced Form Model	
DETERMINING EMPLOYMENT	
1. Real Oil Prices	25
2. Exchange Rate	
3. Interest Rate	
DETERMINING HOUSE PRICES	26
1. Employment	27
2. Real Oil Prices	28
3. Exchange Rate	29
4. Interest Rate	30
Conclusion	31
DETERMINING RENTS	31
Analysis	32
Conclusion	
FORECAST AND SENSATIVITY ANALYSIS BASED ON OIL PRICE CHANGES	34
History of Oil Prices	34
Oil Prices Today	36
Sensitivity Analysis for Oil Prices	
Assumptions	37
Forecast Results for Housing Prices: Annual Model	38
Forecast Results for Housing Prices: Quarterly Model	38
Forecast Results for Rents	
Analysis	
FORECAST AND SENSATIVITY ANALYSIS BASED ON EXCHANGE RATES	40
FORECAST AND SENSATIVITY ANALYSIS BASED ON INTEREST RATES	43
CONCLUSION ON HOUSE PRICES	45
CONCLUSION ON RENTAL RATES	46
REFERENCES	48
APPENDICES	50

INTRODUCTION

Economic theory suggests that the boom and bust cycles of an economy precedes its housing industry, i.e. when the city is in a boom, the housing market will follow and vise versa [17,30,6]. In fact, many papers have been written in an attempt to use these economic indicators to accurately predict housing prices. An example is a recent paper by Artis, Banerjee and Marcellino [22] for the UK market but unfortunately, could only explain 50% of the variable changes based on economic indicators, using 80 variables. Some have gone so far as to say that home buyers do not behave with economic indicators but more with short-term price expectations [14,13]. In any case, there is an impression that housing prices, though in the long-term, would follow the trends of the economy, is actually simply inefficient [15] and complex to predict [16,31].

The objective of this paper is to prove, that economic indicators do precede the housing industry and in fact, devoid of extraneous variables such as speculation, predict housing prices with a high degree of accuracy. More so, this paper aims to quantify the degree of correlation, predict the direction of the change, define how sensitive the market it to these changes in the economy and know the timing of the change as well.

This paper aims to give an indication of this timeless economic question:

To what extent do economic indicators predict the housing market?

LITERATURE REVIEW

Many economic aggregate models have been developed since the 1960s. At first, such efforts forecasted the level of new residential investment [1, 20, 2]. Later on, models were developed for housing price movements in the owner-occupied housing sector based on changes in interest rates, financial institutions or credit markets. More complex models were then developed to accommodate the supply side of the equation, as well as the demand [7, 24, 5].

In these models, the demand side of the equation depended on exogenous variables such as demographic characteristics (X_1) such employment, population, etc. and real permanent income, the real price level of housing (P), the cost of financing at that price (U), and the

alternative cost of renting (R). The cost of financing (U) recently included tax implications and capital gains.

$$D = f(X_1, P, U, R)$$
 (1)

The supply side of the equation assumes that markets clear quickly and at any time, prices adjust to equal the demand for housing. Thus, demand should equal supply.

$$D = S \tag{2}$$

We can thus substitute (2) in equation (1) and get (3)

$$S = f(X_1, P, U, R)$$
(3)

Inversely, one can determine house price, P, as a function of supply

$$P = f(S, X_1, U, R)$$
(4)

If in equation (4), the adjustment of the stock to price is efficient then the equation of supply is (5).

$$S=f(P) \tag{5}$$

Substituting (5) in (4), P becomes a function of f(P).

$$P = f(X_1, f(P) U, R)$$
(6)

Isolating P, equation (6) can be reduced to the equation (7) below, known as the **reduced form model.**

$$\mathbf{P} = f(\mathbf{X}_1, \mathbf{U}, \mathbf{R}) \tag{7}$$

If, however, the supply side functions separately from P, i.e. S grows slowly because of building lags, then another model is to assume that supply stocks slowly depreciate over time (at a rate of δ) and expands gradually with new construction, C. Construction, on the other hand, depends of exogenous variables (X₂).

$$\Delta S = C(X_2, P) - \delta S \tag{8}$$

Most of the models for these equations are largely on number of housing units vs. the value of the housing stock, especially on the demand side of the equation.

In the early 1980s, the model was given a more precise definition, i.e. an after-tax inflation adjusted measure. The term U incorporated after tax cost of debt and property taxes

 $(i+t_p)(1-t_y)$ where i is the nominal interest rate and t_p and t_y are marginal tax rates of property and income. The inflation adjustment added the expected rate of future nominal price appreciation for housing assets, $E(\Delta P/P)$.

$$U = (i+t_p)(1-t_v) - E(\Delta P/P)$$
 (9)

The authors that first incorporated equation (8) to equation (1) and (2) were Kearl [17] estimating housing prices, Poterba [23] estimating housing investments and most recently, Mankiw and Weil [21] estimating the demand equation without including the stock of housing.

A final extension of the house pricing model involves modeling the factors which affect demand, i.e. mortgage interest rates are a factor of housing demand and interest rates [24,11], construction costs are a function of level of home building activity and construction costs globally [24], decision models for risk and return [27] etc.

While this history of models spanned almost three decades, there are only a short list of consistencies hold within all the models:

- Of all the variables, interest rates or mortgage rates are consistently an important variable to predict housing prices.
- Short-term price expectations or real housing price levels has the most immediate effect to future house prices
- 3. The housing market was described as having a somewhat predictable cyclical behavior, with inefficiencies. And attempts to explain complicated price dynamics, i.e. construction costs, etc. has been highly elusive [32]

REVISIONS TO THE HOUSING MARKET STOCK FLOW THEORY

Given the lessons of the housing market research, there are opportunities in revising this model. Studies have shown that real estate cycles are caused by external shocks in the economy [26]. After which, you can predict cycles in real estate based on inflation cycles, equilibrium price cycles, inflation cycles, rent rate catch-up cycles, and property life cycles to real estate

price cycles [29]. There are also extensive studies to predict the timing of these cycles [18,25]. The missing link in the above analysis is that all the indicators, such as interest rates, inflation rates, etc. are symptoms and causes of the cyclical behavior, but not the *direct* cause.

Little study has actually been done in linking a city's *vital trade's cycles* as a critical variable to predict the housing market industry. This may actually be the missing link to finally explain the housing industry in a predictable and quantifiable pattern.

BACKGROUND

To isolate a city's vital trade cycle and link it to its effects on housing prices, a city was picked that was dependent on only one economic trade so as to strip the cause and effect relationship to its simplest form. Having only one economic trade is critical in isolating the effects of the boom and busts cycle, as cities are usually dependent on many trades whose boom and bust cycles occur at different times.

More specifically, this paper will focus on the CMA¹ (Census Metropolitan Area) of the city of Calgary, Canada. Calgary is relatively dependent on only one industry, oil and gas.

Thus, its economic health can be arguably measured using one main economic indicator: oil and gas prices.

History of the Calgary, Canada²

The city of Calgary was born in 1894. It was primarily an agricultural town with a strategic railroad bridging the eastern and western part of Canada.

7

¹ A census metropolitan area (CMA) is a large urban area (known as urban core) together with adjacent urban and rural areas (known as urban and rural fringe) that have a high degree of social and economic integration with the urban cores. A CMA has an urban core population of at least 100,000.

² Source: http://calgary.foundlocally.com; http://www.calgaryalberta.net/history.html; and http://www.calgarypubliclibrary.com/library/local_history_resources.htm

Oil was first discovered in Calgary in 1914 with the Dingman well in nearby Turner Valley. This was to be one of the shortest booms ever, lasting from May to August 1914. It came to an abrupt halt with the outbreak of World War I. After World War I, in 1924, the roar of high pressure oil and gas erupting caused the Dingman well to run out. Royalite drilled below the Dingman well and struck it rich. This boom ended in 1927. The depression hit in the 1930s.

When the depression ended in 1939, with the start of World War II, strong demand for oil drained the Turner Valley. In 1947, oil was found at Leduc, Alberta.

In the 50's Calgary became the fastest growing city in Canada and it stayed that way for a long time. From 100,000 in 1947, it mushroomed to 200,000 by 1955 and 325,000 by 1965. The growth continued to center on oil, with reliable and constant help from the agricultural industries. The establishment as oil capital in the heyday of Turner Valley held, and as the oil patch spread across provincial boundaries and into the untapped North, Calgary remained the heart of the industry.

Although Calgary's oil reserves are estimated to be the biggest in the world – a whopping 1.7 to 2.5 trillion barrels of oil (bigger than the reserves of Saudi Arabia), most of the oil is found in oilsands, which need more technology and higher costs to excavate. High production costs and more readily accessible supplies from other regions of the world were major impediments to the development of the oilsands. Only 7% (or 175 billion barrels) are classified as "proven reserves", i.e. they are recoverable given the current long term price outlook. [4]

Thus, with the Arab Oil Boycott in 1974, which caused oil prices to climb steeply, it spurred a madcap exploration in Western Canada. A fresh boom in Calgary began which made past booms look tame. At the peak of the boom, 3000 people a month were arriving in Calgary. The city's population grew from 325,000 in 1974 to 650,000 by the early 1980s. The "oilpatch"

headquartered in Calgary grew rapidly. The city mushroomed and what little was left of old Calgary was being smashed down by the city block to make way for the new. The pressure to accommodate the boom was such that there really wasn't time for master planning. The buildings were approved with little thought given to the views to the relationship of one building to the rest. The city grew in both size and business stature, with all those shiny office towers creating a virtually instant downtown. Any surviving building that pre-dates the 1974-1980 oil boom is these days a candidate for being declared a heritage site.

The recession that had much of the rest of the world in its grip finally found Calgary in 1982 with a world oil glut and the enactment of the "National Energy Program" (NEP) legislation created by Finance Minister Jean Chretien unfairly sucking over \$100 billion in oil industry profits from the West. Whatever caused the boom in Calgary had come to an end and was going the other way. Minute vacancy rates shot up to 20% for office space downtown. Full employment became 15% unemployment and the trains going east were fuller then the ones coming west.

In the 1990's, Calgary's population maintained a slow and steady growth. The 1996-1998 gas exploration boom, offsetting a relatively weak Eastern Canadian and B.C. economy, has led to a large influx of new residents into the city. The city has grown by an average of 20,000 people per year over the past three years. By the turn of the century, Calgary's population is reaching almost 900,000. [9]

Calgary and Oil Prices Today

The oilsands have carried enormous potential for a very long time, but they have only become economical at massive scale in the 1990s. What has changed since the first large-scale commercial operation, Great Canada Oil Sands (now Suncor Energy), started in 1967 that

allowed for relatively recent explosive growth of this industry is the huge improvements in technology, which brought costs down dramatically over the past 40 years or so, and a hike in the long-term oil price expectations. Given historic price differential, the high side of the breakeven point requires a price of over \$25 USD per barrel to be economic in Calgary [4]. Only a few years ago, consumption of most banks and oil companies was only \$18 USD per barrel. With sweet crude oil averaging about \$45 USD per barrel over the long term, excavations in Calgarian oil sands and the oil industry in Calgary has become very profitable. This should be able to attract sufficient capital to keep output surging. In fact, Canada's oil production from the oilsands is on track to explode over the next decade, starting 2008. By 2015, oil production is expected to be 3 million barrels per day (more than triple today's output), becoming the second largest exporter (next to Saudi Arabia) in the coming decade, supplying 13% of new global demand in this period.

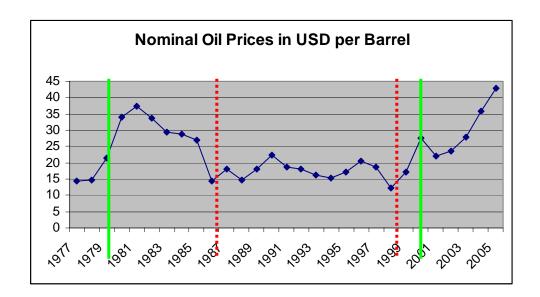
HYPOTHESIS

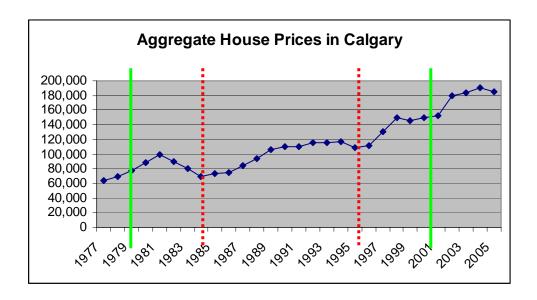
Thus, more specifically, this thesis will aim to answer: "To what extent can oil prices and other economic indicators predict the changes in housing prices and rent in the Calgary single family housing market?" And "If oil prices and other economic indicator can predict housing prices and rent, what is lag time between them?"

Implications of this study from a macro perspective are multiple. This study can be used as a simplified case study in isolating the effects of an economic indicator to real estate performance. You can deduct from this study:

- The extent of correlation between economic indicators and the patterns of reaction to the real estate industry
- The degree of the reaction, i.e. how sensitive is the market?

Timing, i.e. how fast does the market react?


Implications of this study from a micro perspective are as practical. Forecasts of oil and gas prices in the future can be used to predict the behavior of the local real estate industry in Calgary in the future. This model can be applied to determine when the best time is to buy and sell real estate in the city.


DATA SERIES AND TRENDS

(See Appendix A for Raw Data Annually and Appendix B for Raw Data Quarterly)

House Price

Calgary Canada is also well-documented in terms of aggregate indices for house prices in nominal Canadian dollars (CAD). Data from 1974 to the present was collected, both quarterly and annually. This is a span of 31 years, which has gone through two cycles of boom and bust for both oil and the real estate market in Calgary.

Descriptive Statistics:

	Oil	House
	Prices	Price
Mean	22.83146	114615.9
Standard Error	1.503615	7034.56
Median	20.59917	110000
Standard		
Deviation	8.097214	37882.27
Range	30.7175	125900
Minimum	12.0975	64000
Maximum	42.815	189900

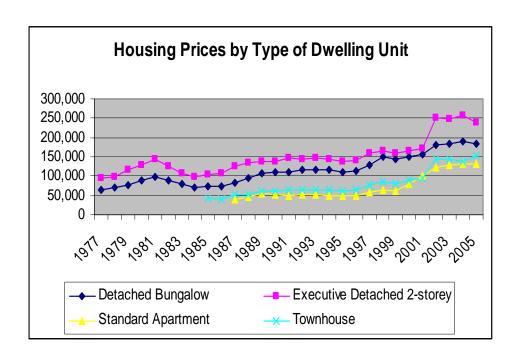
Based on simple observation, house prices seem to exhibit a pattern already. Increases in house price are relatively steady with spikes roughly when the nominal \$USD/barrel price of crude oil increases beyond the \$25 price level. In the chart, the point with the solid vertical line show when the price of oil starts to surpass the \$25 price level, and it is at that point in time that house prices start to appreciate at an increasing pace, signaling the start of a boom.

Similarly, there are patterns in the decrease of house prices. House prices decrease in the past 3 decades on only 2 occasions with a bottoming out in 1985 and 1996. It is not surprising, that both occasions at which house prices bottomed out were both 2-3 years from the bottoming out of prices of crude oil, 1987 and 1999 respectively. Thus, signaling the end of the bust. These are indicated in the chart with dotted vertical lines.

In determining house prices, the value of a detached, three-bedroom single storey home was used, which is the most popular dwelling unit type in Calgary.

2001 Census Data on Type of Dwelling Unit

Total Dwelling	250,165	100%
Single Detached [Bungalow] ³	198,525	79%
Apartment	4930	2%
Movable	1545	1%
Other [Attached], etc.	45,145	18%


It is described to have 1 ½ bathrooms and a one-car garage, a full basement but no recreation room, fireplace or appliances. Using outside dimensions (excluding garage), the total area of the house is 111 sq. metres (1,200 sq. ft.) and it is situated on a full-serviced, 511 sq. metre (5,500 sq. ft.) lot. Depending on the area, the construction style may be brick, wood, siding or stucco. The appraisal is based on Royal LePage's market survey and adjusted based on Royal Le Page's opinion of fair market value built on local data and market knowledge provided by their residential real estate experts [10].

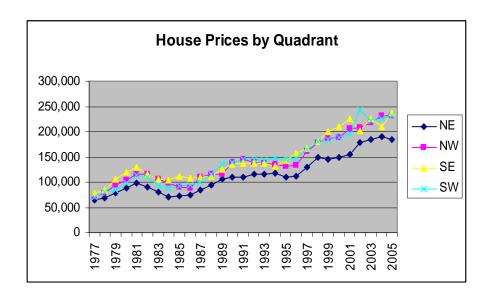
Mortgage financing has not been taken into account in arriving at published prices and all properties have been considered as being free and clear of debt. However, the type of mortgage debt financing on a property can affect its market value either up or down depending on the amount, term, rates of interest, method of repayment and other factors.

Between different dwelling unit types, the housing prices follow more or less the same trend, with correlation coefficients of at least 95% and above. With this characteristic, it is safe to assume that conclusions on a detached bungalow will most likely apply to other dwelling unit types as well, such as the 2-storey house, apartments, etc.

13

³ A bungalow is a one floor house for the bedrooms, kitchen, living room and bathroom. Some bungalows have either finished or unfinished basements.

Correlation Coefficients of House Prices of Different Types of Dwelling Units

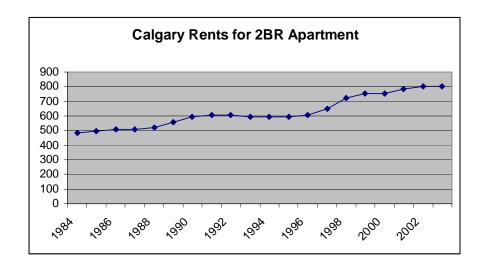

	Detached Bungalow	Executive Detached 2-storey	Standard Apartment	Townhouse
Detached Bungalow	1	2-siorey	прантеш	Townnouse
Executive Detached 2-storey	0.95728	1		
Standard Apartment	0.945417	0.966827	1	
Townhouse	0.956034	0.985266	0.979628	1_

For the purpose of this study, we have also used the NE properties as a benchmark for all the other locations. According to a study done by Torto Wheaton Research and the Royal Bank of Canada [28], the NE properties was described to be the best series that followed the price of a weighted series of housing prices in the different towns vs. town population⁴.

Furthermore, based on the chart below, all locations follow more or less the same trend, with correlations of 96% and above. With this observation again, we assume that conclusions on the NE properties can be generalized to the rest of Calgary.

-

⁴ Used roughly to approximate households and units based on Census data of 1991 and 1996.

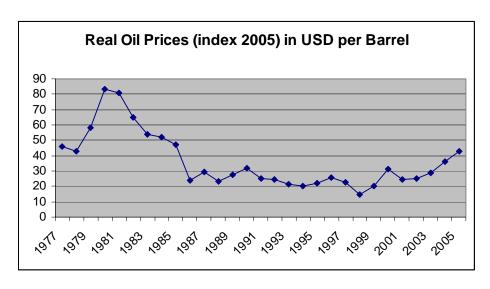


Correlation Coefficients of House Prices of Different Locations [Quadrants]

	NE	NW	SE	SW
NE	1			
NW	0.988129	1		
SE	0.961271	0.973806	1	
SW	0.989794	0.981152	0.957087	1

Rent

For rents, I used average rental rates from a rental market survey for privately initiated apartment structures with at least 3 units as published by the Canada Mortgage and Housing Corporation. Data for rents are available only annually and only from 1984, and is available in nominal Canadian dollars.



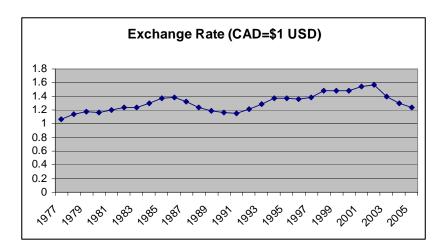
Rents				
Mean	626.95			
Standard Error	23.77554			
Median	600.5			
Mode	753			
Standard				
Deviation	106.3274			
Range	319			
Minimum	485			
Maximum	804			

Rents are expected to follow the trend for housing prices closely. Based on a study by Joshua Gallin in 2004 [12], rents go up at the same proportion as house price so that owners can compensate for increases in owning costs. In fact, based on this data series, rents and house prices have a high correlation of 0.976. Thus, we expect more or less the same variables to affect rents as they do house prices in the same way.

Real Oil Prices

Nominal Oil Prices of crude oil at \$USD per barrel were adjusted to 2005 real numbers using the Calgary Consumer Price Index (CPI) as the deflator⁵. Real Oil prices represent the main economic indicator of increased or decreased economic viability in the city of Calgary.

_


⁵ Formula is: where CPI_i is the Calgary CPI based where 1992=100 for the year i, and REAL OIL_i is the real oil price in USD per barrel for the year i and NOM_i is the nominal price of oil in USD per barrel for the year i. REAL $OIL_i = NOM_i * CPI_{2005}/CPI_i$

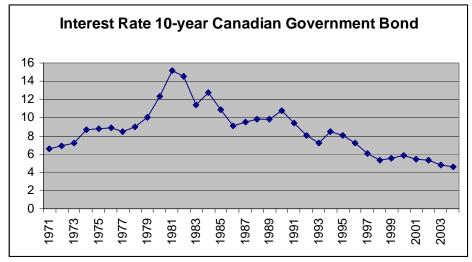
Real Oil Prices			
Mean	36.14621		
Standard Error	3.350487		
Median	28.57758		
Standard Deviation	18.04293		
Sample Variance	325.5472		
Minimum	14.52008		
Maximum	83.00738		

Since house prices react positively to positive shocks in the economy and vice versa according to a study done by Grimson and DeLisle in 1999 [26], it is expected that an increase in real oil prices would result in an increase in house prices.

Exchange Rate⁶

Since oil is an export oriented industry and is sold is USD/barrel, Calgary is expected to be very sensitive to exchange rates changes between the Canadian dollar and the US dollar. It is expected that exporters are more profitable when the local currency weakens.

Exchange Rate \$CAD=\$1USD			
Mean	1.303811		
Standard Error	0.024503		
Median	1.295066		
Standard			
Deviation	0.131953		
Minimum	1.063442		
Maximum	1.570343		


⁶ Foreign exchange of US dollar rates in Canadian dollars. Noon spot rate, average. Source: Bank of Canada

.

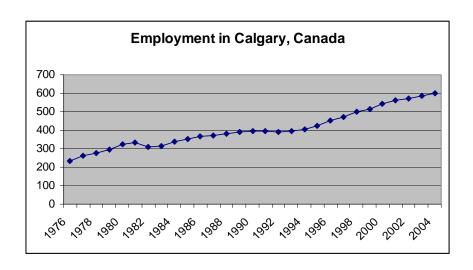
Exchange rates in Canada have been relatively stable, with a range of only 0.50 to the USD in a span of 3 decades. The boom and bust cycles of the exchange rate are not correlated in any way to oil prices (0.07 and 0.50 correlation quotient for nominal oil prices and real oil prices respectively) and vice versa.

Interest Rates⁷

Interest rates seem to be the most volatile among all the variables used, with a single peak during the depression in the early 1980's and interest rates becoming consistently better ever since. This can be attributed to the recovery of the economy after the recession, a relatively stable exchange rate and improvement of credit systems and laws.

Interest Rate			
Mean	8.593119		
Standard Error	0.455485		
Median	8.549672		
Standard			
Deviation	2.655912		
Range	10.59584		
Minimum	4.601075		
Maximum	15.19692		

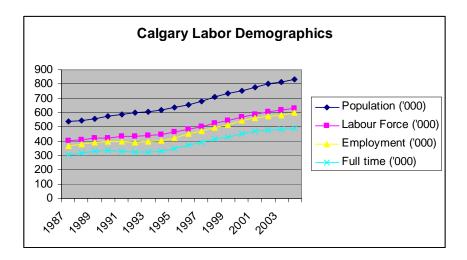
⁷ 10 year government Canadian bond. Source: Bank of Canada


-

Interestingly enough, although mortgage rates are more directly related to the cost of financing, interest rates were used because it gave a higher correlation to house price (0.75 vs. 0.73). Although, not surprisingly, mortgage rates and interest rates are highly correlated themselves (0.99).

This can be explained because interest rates affect not only the consumer buying habits of the home buyers, but the market as a whole as well in terms of making it more attractive to invest in expansion which ends up spurring the economy. Not mistakenly, when interest rates go down, the home buying demand should go up and the economy should enhance as well.

Employment


Employment is defined as number of persons in the CMA of Calgary, Canada, who, during the reference week, worked for pay or profit, or performed unpaid family work or had a job but were not at work due to own illness or disability, personal or family responsibilities, labour dispute, vacation, or other reason. Those persons on layoff and persons whose job attachment was to a job to start at a definite date in the future are not considered employed. Estimates in thousands, rounded to the nearest hundred.⁸

⁸ Source: Labour Force Survey, Statistics Canada

Employment			
Mean	405.0824		
Standard Error	18.82783		
Median	392.7		
Std Deviation	101.391		
Range	364.2196		
Minimum	234.0804		
Maximum	598.3		

In the past 3 decades, employment in Calgary has almost tripled, and is still consistently growing. This is proportionately consistent with Calgary's increase in population and labor force.

Based on the chart above, each labor demographic moves in unison with the rest. In fact, each demographic has almost 99% correlation with the other.

Correlation Coefficients of Different Demographics of Calgary, Canada

		Labour		
		Force	Employment	Full time
	Population ('000)	('000')	('000')	('000)
Population ('000)	1			
Labour Force ('000)	0.995485053	1		
Employment ('000)	0.989923428	0.997968	1	
Full time ('000)	0.980556586	0.992981	0.997991	1

Thus, one can deduct that the increase in population in the Calgary area is primarily because of migration for employment (inclusive of their families).

It is to no surprise therefore that an increase in employment will directly increase the demand for housing as new migrants will have new housing needs. It is also no surprise that among all the variables listed, employment has the highest correlation to house price (0.96) and

rent (0.97). And that, oil prices, interest rates and exchange rates will probably increase housing prices in as much as they increase employment.

METHODOLOGY

Regression Analysis

A regression analysis aims to find a relationship between the dependent variable (house price and rents) and the independent variables (oil prices, employment, interest rates, etc.) which are possible predictors of such. This commonly used statistical tool determines if there is a correlation between the variables and if so, the nature of their correlation.

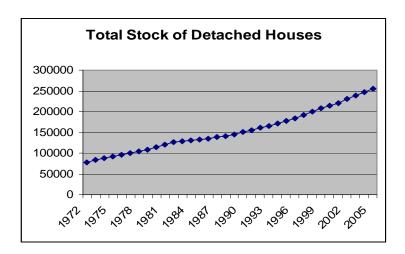
The result is a regression equation, which is a numerical equation that defines how dependent variables are predicted by independent variables. The regression also gives indicators on how good or poor the model is in predicting the dependent variable. If the t-stats are above 2 and the p-stats are below 0.1 for each variable, then those independent variables are correlated to the dependent variable. The multiple regression correlation coefficient, R², is a measure of the proportion of variability explained by the regression relationship model or the regression equation. Roughly, this means the R² is the percentage at which the model explains the changes in the dependent variable based on the independent variables. Lastly, the standard deviation is the range at which there is +/- error with a 95% confidence level.

Given the independent and dependent variables mentioned above, several permutations were done between the different combinations of potential economic indicators (see Appendix C). When the combination of variables was identified as having the highest correlations, the variables were lagged to determine the highest r square. The model with the highest t-stats, p-stats, R² and lowest standard deviation was determined and used.

The Impact of Oil Prices

Oil prices affect housing prices and rent in two ways:

- First, it generates employment which then pushes housing demand. Thus, the first step is to understand the effects of oil prices and other economic indicators on employment.
- Second, it generates prosperity in terms of income and wealth. Here, a regression
 model will determine the oil prices and other economic indicators and its relation to
 house prices and rent *directly*.


Reduced Form Model

It is important to note that this study will not take into consideration the stock flow (supply side) of housing of the city, since there is already a high correlation (0.86) between housing prices and housing starts on the same year, i.e. S = f(P) as described in equation (5) in the literature review. Thus the market seems to react quickly and the supply of housing is efficient in its adjustment to demand.

This can be explained partially by a study by Chinloy, 1996 [3], where Canada seems to react more to economic indicators and less to speculation than the United States. More so, a

possible cause of the high correlation is the fact that Calgary is a city is known for its bad weather (6 months out of the year is winter). Thus, there is little reason to live in Calgary aside from employment and economic viability, i.e. it is not a city that is susceptible to speculation. I believe, given this nature, developers are wary of overdeveloping new stock, if it's not demand driven. In fact, if you observe the chart above, the pattern of housing starts follow very much the pattern of house prices, with very little overshooting. Developers only build *when* prices are have already gone up, and not in anticipation of it. This results in a steady increase of stock throughout the years.

DETERMINING EMPLOYMENT

Annual Regression Model for Employment (See Appendix D)

EMP = 15.46 - 4.16 INT + 42.59 EXCH + 0.35 REAL OIL + 0.912 EMP (last year)

Where: EMP – Total Employment of Calgary CMA estimated in thousands

INT – Interest of 10-year Canadian Government Bond

EXCH – Exchange Rate of US dollar rates in Canadian dollars.

REAL OIL -Prices of Crude Oil in \$USD per barrel indexed to 2005 based on Calgary CPI

Statistical Results:

	Coefficients	Standard Error	t Stat	P-value
Intercept	15.4573	32.0715	0.4820	0.635
Real Oil	0.3493	0.1508	2.3162	0.030
Exchange	42.5911	20.6132	2.0662	0.051
Interest Rate	-4.1153	1.4104	-2.9179	0.008
Employ-1 year	0.9124	0.0383	23.8330	0.000

R Square 0.992361267 Standard Error 9.028227078

Quarterly Regression Model for Employment (See Appendix E)

EMP = 11.32 - 1.25 INT + 8.67 EXCH + 0.08 REAL OIL + 0.97 EMP (last year)

Where: EMP – Total Employment of Calgary CMA estimated in thousands

INT - Interest of 10-year Canadian Government Bond

EXCH – Exchange Rate of US dollar rates in Canadian dollars.

REAL OIL -Prices of Crude Oil in \$USD per barrel indexed to 2005 based on Calgary CPI

Statistical Results:

	Coefficients	Standard Error	t Stat	P-value
Intercept	11.3282	6.8246	1.6599	0.0998
Real Oil	0.0839	0.0403	2.0826	0.0396
Exchange Rate	8.6721	5.5030	1.5759	0.1179
Interest	-1.2494	0.3213	-3.8890	0.0002
Employ-1qtr	0.9719	0.0097	99.9017	0.0000

R Square 0.997320077 Standard Error 5.257589634

It is important to note that out of all the possible economic indicators that affect employment, the one that will explain 99% of the changes in real estate prices in Calgary comes from Real Oil Prices, Exchange Rate and Interest Rates. Real Oil Prices and Exchange Rates are positively correlated while Interest Rates are negatively correlated. We will explore each variable in more detail

1. Real Oil Prices

As Oil Prices go up, employment goes up. This is consistent vs. what was predicted since an increase in Real Oil prices result in more profits for oil companies, which attract more investments in the city *which increase jobs*.

More interestingly, for every \$ increase in oil price, there is a 350 new employees come to Calgary per year (84 per quarter).

2. Exchange Rate

Exchange rate is an important variable to predict employment primarily because oil in Canada is an export industry. Thus, the changes in foreign exchange to US dollars (USD) are critical in determining the degree of profitability of the company. Exchange rate affects employment positively. Thus, when the Canadian dollar (CAD) is weaker, the company's relative cost is lower (same amount of cost in CAD but less cost in terms of USD), thus making more money per barrel (which is sold in USD), which gives the long term effect of making the company more profitable, more likely to expand, increasing employment.

For every weakening in foreign exchange of CAD to USD by 10 cents, 867 new employees are expected per quarter or 4,259 new employees are expected per year. The slight discrepancy (18%) between quarterly and annual estimates may be explained with the fact that the longer the change in foreign exchange takes place, the more chances of employees being hired since hiring is a long-term decision.

3. Interest Rate

As predicted, the lower the interest rate, the higher the employment. This is because lower interest rates make it cheaper to finance businesses and making it more attractive to do investments. Thus, companies can expand, and thus attract more labor.

A 1% decrease in interest rates would increase employment by 1,250 employees quarterly or 4,115 annually.

DETERMINING HOUSE PRICES

Annual Regression Model (See Appendix F)

The model that can best forecast housing prices, given *annual* data is the following:

PRICE = 48,543.82 + 271.31 EMP - 2588.17 INT (lag 2 years) - 60457.9 EXCH (lag 1 year) + 259.15 REAL OIL (lag 2 years) + 0.414 Price (last year)

Where: Price - House Prices of a Single Detached Bungalow

EMP – Total Employment of Calgary CMA estimated in thousands

INT - Interest of 10-year Canadian Government Bond

EXCH – Exchange Rate of US dollar rates in Canadian dollars.

REAL OIL -Prices of Crude Oil in \$USD per barrel indexed to 2005 based on Calgary CPI

Statistical Results:

	Coefficients	Standard Error	t Stat	P-value
Intercept	48543.8211	19247.0577	2.5221	0.0198
Employment	271.3119	73.8131	3.6757	0.0014
Real Oil -2yr	259.1513	133.5547	1.9404	0.0659
Exchange -1yr	-60457.8502	23183.5881	-2.6078	0.0164
Interest -2yr	-2588.1735	949.4154	-2.7261	0.0127
Price -1 yr	0.4142	0.1358	3.0499	0.0061

R Square 0.974168641 Standard Error 6337.463458

Quarterly Regression Model (See Appendix G)

Similarly, this model was done as well using *quarterly* data. The quarterly model is as follows:

PRICE = 12353.03 + 80.51 EMP - 696.028 INT (lag 2 1/2yr) - 14992.8 EXCH (lag 1yr) + 53.66 REAL OIL (lag 1 3/4 yr) + 0.814337 Price last quarter

Where: Price - House Prices of a Single Detached Bungalow

EMP – Total Employment of Calgary CMA estimated in thousands

INT - Interest of 10-year Canadian Government Bond

EXCH – Exchange Rate of US dollar rates in Canadian dollars.

REAL OIL -Prices of Crude Oil in \$USD per barrel indexed to 2005 based on Calgary CPI

Statistical Results:

	Coefficients	Standard Error	t Stat	P-value
Intercept	12353.0348	6173.4845	2.0010	0.0480
Employment	80.5148	23.0601	3.4915	0.0007
Real Oil-7qtrs	53.6608	35.0869	1.5294	0.1292
Exchange-4qtrs	-14992.7996	6898.8015	-2.1732	0.0321
Interest-10qtrs	-696.0279	264.5475	-2.6310	0.0098
Price-1qtr	0.8143	0.0437	18.6368	0.0000

R Square 0.985445048 Standard Error 4443.919041

Analysis:

It is important to note that out of all the possible economic indicators that affect price, the one that will explain 97.4% - 98.5% of the changes in real estate prices in Calgary comes from Employment, Real Oil Prices, Exchange Rate and Interest Rates. Real Oil Prices and Employment are positively correlated while Interest Rates and Exchange Rates (CAD to USD) are negatively correlated. We will explore each variable in more detail

1. Employment

Housing prices are most correlated to the existing employment. This is not unusual as an increase in employment indicates an increase in people who would need a house who can afford to buy a house. The current employment level is in fact an indication of the total *consumer base* of the housing market. Also, considering that 95.0% of the labour force is already employed in Calgary and as discussed, the fact that increase in population in Calgary is highly correlated to increase in employment (99%), an increase in employment is presumably caused by either migration or an increase in the labor force (i.e. graduating students). This new source of people who have new housing needs fuel the increase in demand for housing, and vice versa. This is consistent with our previous predictions.

_

⁹ Calculated as Total Employment divided by the Total Labour Force in Calgary. Based on Labour Force Survey 2004 for Calgary, Alberta. Source: Statistics Canada

For every 1,000 new employees in Calgary, houses prices are expected to increase by \$80 for the next quarter or by \$271 in the next year (which is roughly the quarterly coefficient multiplied by 4). Given that the past 3 year average increase in employment is 12,500 per year, house prices should expect *an appreciation of \$3387.5 or 2% per year just from the trend of increasing employment alone.*

2. Real Oil Prices

As Oil Prices go up, real estate prices go up. As explained by the employment regression, this is caused primarily because an increase in Real Oil prices result in more profits for oil companies, which attract more investments in the city, *which increase jobs*, which increase migration into the city and thus effectively increase the demand for housing and vice versa. In this model, for every \$ increase in oil price, there is a 350 new employees come to Calgary per year (84 per quarter). Alternatively, 350 new employees per year results in a \$95 increase in house price or an appreciation of .05% per year per \$1 increase in real oil prices from its effects via employment.

Oil prices also affect housing prices directly. This can be explained because an increase in oil prices would generate prosperity and wealth. This increases the consumer's ability to buy housing or upgrade their current house. The effect of this is such that for every \$1 increase in real oil prices, there is an increase in house price by \$259/year or an appreciation of 0.14%.

Thus, the accumulative effect of an increase in oil price of \$1/barrel would be \$355/year or 0.2%.

More interestingly, Real Oil Prices affect housing prices directly with a lag of 2 years, but more specifically 1 ³/₄ years (7 quarters). This makes sense since first of all, it is reasonable to expect that the effects of such news is not instantaneous, and the process of expanding a

company, hiring new people, and uprooting people and moving them into a new city will take approximately two years before all is said and done. Secondly, since housing is a substantial investment for an average household, an increase in wealth would not increase the consumer habit of buying houses right away. A consistent stabilization of an increase in prosperity would be prudent first before it would significantly affect buying behavior.

Expanding the computations described above, the accumulative increase in price per increase in \$1/barrel after the 2 year lag has passed is as follows:

	Current	Year 1	Year 2
via Employment	94.77	181.24	260.13
Direct Effect ¹⁰	259.15	405.75	502.28
Total Effect	353.92	586.98	762.41
Accumulative			
Appreciation	0.2%	0.3%	0.4%

Thus, based on this model, the rule of thumb is: *house price is expected to appreciate by of 1% every \$2/barrel increase in real oil prices (index year 2005) with a lag of two years.*

3. Exchange Rate

It is important to note that although exchange rate has a positive correlation to employment, the exchange rate affects consumers the other way. This means that as the Canadian dollar (CAD) strengthens, demand for housing increases. This can probably be explained because the exchange rate also affects how the Canadian consumer would spend his/her money. When the Canadian dollar is stronger, the consumer feels richer, and is thus more likely to spend on housing. A stronger CAD means that imports are cheaper, increasing the effective household income as consumers have more money to buy local items, including real estate. In addition to this, when the Canadian dollar is stronger, the real estate market in Canada also becomes a more attractive investment relative to other parts of the world. That is because

29

¹⁰ This includes the effect of the change in last year's house prices (with a coefficient of 0.4142)

for every CAD earned, you get more USD out of it. Thus, it fuels an increase in demand as well. Since the effect of exchange rate on consumer's behavior is more direct, the lag time is only one year.

The direct effect of the changes in exchange rate is that for every appreciation of the dollar by 10 cents, house prices are expected to increase by \$6046 (3.2% appreciation) in the same year and \$8071 (4.4%) by the next year.

However, the effects of exchange rate will be tapered down by its inverse effects on employment with a total impact as follows for every appreciation in exchange rate of ten cents:

	Current	Year 1
via Employment	(1155.55)	(2209.87)
Direct Effect	6045.79	8071.32
Total Effect	4890.24	5861.45
Accumulative		
Appreciation	2.6%	3.2%

Overall, it is still better for house prices that the currency appreciates, rather than depreciates. And as a rule of thumb, for every 10 cents appreciation in exchange rate, one can expect appreciation in house prices by 3.2% in the next year and vice versa.

4. Interest Rate

The way interest rates affect the housing market is obvious. Lower interest rates make buying a house financially cheaper and more affordable. Likewise, higher interest rates make it more difficult to buy a house whether or not there is a demand for it.

The lag time for interest rates to take effect is 2 years or more specifically 2 ½ years (10 quarters). I believe that there is a longer lag time for interest rates to take effect in the housing market because most financial borrowings have fixed terms of an average of 5 years. Thus, even when interests decrease, there are penalties to pre-terminate financial packages making interest effects a little stickier.

The direct effect of the interest rate is that for every decrease in exchange rate of 1%, there is an increase in house prices by \$2588 or 1.4% in the current year and by \$4123 or 2.2% in the next year.

Interest rates also affect house prices in another way, by encouraging business to invest and expand because of lower financing cost, thus increasing employment.

To summarize, the total impact of interest rates on housing prices are as follows:

	Current	Year 1
via Employment	1116.53	2135.25
Direct Effect	2588.17	4122.66
Total Effect	3704.70	6257.91
Accumulative Appreciation	2.0%	3.4%

Two-thirds of the actual impact of interest rates is direct, which is consistent with current literature. However, a substantial one-third of its effect comes from its impact on the economy as a whole. As a rule of thumb, every decrease of interest rates by 1% increases house price appreciation by 2% in the current year and 3.4% in the next.

Conclusion:

The abovementioned model makes sense and is a good model to predict housing prices for the Calgary market. In fact, based on the model, one can predict housing prices given today's oil prices, interest rates and exchange rates as far as two years from now with a margin of error of only \$4,444 (using quarterly data) to \$6,337 (using annual data) CAD with a 95% confidence level.

DETERMINING RENTS (See Appendix H)

RENT = 150.54 + 1.16 EMP - 205.28 EXCH (lag 1 year) + 0.513 REAL OIL (lag 2 years) + 0.371 RENT (last year)

Where: EMP – Total Employment of Calgary CMA estimated in thousands

EXCH – Exchange Rate of US dollar rates in Canadian dollars.

REAL OIL -Prices of Crude Oil in \$USD per barrel indexed to 2005 based on Calgary CPI

Statistical Results:

	Coefficients	Standard Error	t Stat	P-value
Intercept	150.537	42.894	3.510	0.003
Employment	1.161	0.206	5.650	0.000
Real Oil-2	0.513	0.400	1.284	0.220
Exchange-1	-205.283	55.238	-3.716	0.002
Rent-1	0.371	0.117	3.178	0.007

R Square 0.988018648 Standard Error 12.87168923

Analysis:

It is important to note that out of all the possible economic indicators that affect rents, the one that will explain 98.8% of the changes in rents in Calgary comes from Employment, Real Oil Prices and Exchange Rate. Real Oil Prices and Employment are positively correlated while Exchange Rates (CAD to USD) are negatively correlated.

It is interesting to note that there are noteworthy similarities between the behavior of house prices and rents. Particularly, they have the same variables that affect them in the same way: when there is an increase in employment, there is a new housing need that has to be filled, which increases demand for rents as well. Similarly, when oil prices increase, it fuels higher employment and more income, creating bigger demand and better affordability. Lastly, the higher the exchange rate, the more consumers feel richer, the more they can afford higher rents. With respect to lag times, it is no coincidence that the effect of real oil prices and exchange rate is exactly the same as house prices, i.e. 2 years and 1 year respectively. This means that changes in the economy affect the real estate industry, whether renting or selling, in the same way.

However, there are major differences. For one, interest rates are no longer a significant variable directly, though it still affects rental rates via employment. This is because the increase

and decrease of interest rates do not affect the operating costs of renters because renters do not use financing for their housing needs.

Secondly, rents seem to be less sensitive to the changes in the variables.

Effect of 1,000 employee increase on rental rates: \$1.16 (0.14% appreciation)

Effect of a \$1/barrel change in oil prices on rental rates

	Current	Year 1	Year 2
via Employment	0.41	0.78	1.11
Direct Effect	0.51	0.85	1.12
Total Effect	0.92	1.63	2.23
Accumulative Appreciation	0.1%	0.2%	0.3%

Effect of a 10 cents appreciation in exchange rate on rental rates

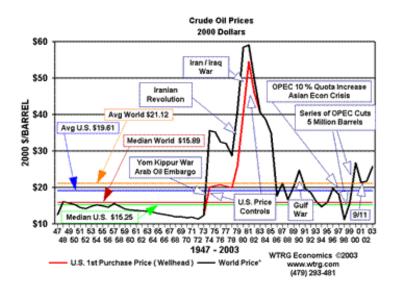
	Current	Year 1
via Employment	-4.94	-9.46
Direct Effect	20.53	26.31
Total Effect	15.58	16.85
Accumulative Appreciation	1.9%	2.1%

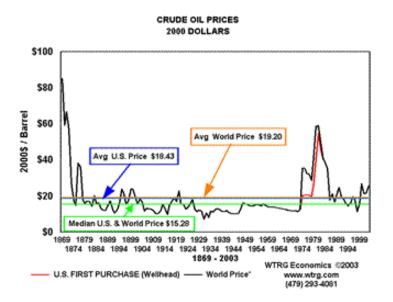
Effect of a 1% decrease in interest on rental rates

	Current	Year 1
Total Effect (via Employment)	0.48	1.09
Accumulative Appreciation	0.1%	0.1%

With respect to the regression equation, it is interesting to note that the intercept of \$150 seems to determine the minimum level acceptable for board and lodging.

Conclusion:

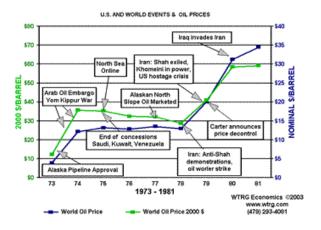

Thus the abovementioned model makes sense and is a good model to predict rents for the Calgary market. In fact, based on the model, one can predict rents given today's oil prices and exchange rates as far as two years from now with a margin of error of only \$13 CAD with a 95% confidence level.


FORECAST AND SENSATIVITY ANALYSIS BASED ON OIL PRICE CHANGES

History of Oil Prices¹¹

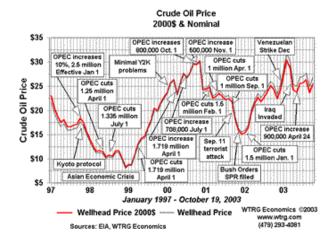
The complete history of oil prices is exhaustive and is beyond the scope of this paper.

However, below are charts which will give a good picture on the key historical facts and events that affected oil prices in the past.



¹¹ Source: WTRG Economics (http://www.wtrg.com/prices.htm) and http://www.eia.doe.gov/price.html

Pre-OPEC/Arab Boycott – 1947-1973



Post-OPEC oil price boom – 1974-1982

The Recession 1982-1997

Oil Prices Today

Current oil production is just about equal to current global demand for oil. However, oil is running scarce. The average life cycle of an oil reserve is 50 years, with the largest producer and exporter of oil, Saudi Arabia, already in its 7th decade of production. Still, among all the oil supplier countries, only Saudi Arabia is operating with excess capacity. Furthermore, most of the supply of crude oil relies on the politically unstable regions such as the Middle East with all its violence, Nigeria with its ethnic tension and the increasingly unfriendly Venezuela with its strikes. [8]

On the other hand, the demand for oil is increasing with fervor. There is higher than expected demand in industrialized countries and the unexpected appetite for oil of an emerging economic power, China. The US is the largest consumer of oil, and demand has risen because of its strengthening economic recovery and greater consumption from the popular fuel-hungry Sport Utility Vehicles (SUVs). China's demand is up 20% over the past year, driven primarily by its expanding economy. Traders are betting this rapid growth will continue for several years although there is some chance that the economy will "overheat" and oil demand growth will slacken.

The producers' cartel Opec accounts for about half of the world's crude oil exports and attempts to keep prices roughly where it wants them by trimming or lifting supplies to the market. International oil companies traditionally used times of seasonally weaker demand, when prices were lower, to rebuild stocks. However, consumption forecasts by market experts turned out to be too low. The result was that producers were not able to accumulate stock. Opec argues that its members are now pumping flat-out - which is largely true - and that it is powerless in a situation where factors other than mere supply and demand are at work. This lack of stock makes the prices more volatile and sensitive to world oil events.

Both the scarcity of supply and the increase in demand has fueled the increase in oil prices today. If no new source of oil or alternative source of energy is found, economists predict the world will run out of oil by the year 2070.

Sensitivity Analysis for Oil Prices

Based on Dr. Sherry Cooper, chief economist of BMO Nesbitt Burns, "Light sweet crude [oil prices] will likely average about \$45 USD/barrel over the long term, taking into account peaks at over \$60 US per barrel during high growth periods, an troughs in the mid-\$30's US during recessions" [4]. Based on this analysis, we will forecast oil prices based on 3 future scenarios: \$30 USD/barrel (depression), \$45 USD/barrel (expected average) and \$60 USD/barrel (during peak seasons).

Assumptions

Interest and Exchange Rates estimates were based on the financial outlook from TD Economics, the economics department of one of the biggest banks in Calgary, TD Canada Trust. The forecast was based on their economists and experts.

The Interest Rate and Foreign Exchange outlook is as follows:

	2005			2006			2007/08	
	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
Interest Rate	3.74	4.15	4.45	4.70	4.85	4.60	4.45	5.00
Exchange Rate	1.235	1.227	1.220	1.216	1.212	1.208	1.205	1.20

Plugging in the forecasts for interest rate, oil prices and exchange rates, the regression models were used for future forecasts of employment.

It is important to note that forecast for housing price for the year 2006 and 2007 will be based on the actual oil prices, interest rates and exchange rates in the past year and today, thus will be more reliable data and less sensitive to changes in forecast assumptions.

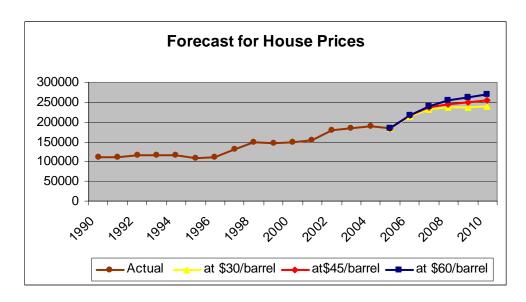
Forecast Results for Housing Prices: Annual Model

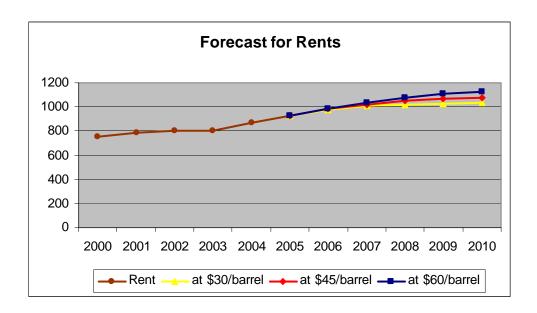
	\$30/barrel	\$45/barrel	\$60/barrel
Current	185,000.00	185,000.00	185,000.00
2006	215,118.08	216,539.66	217,961.24
2007	232,523.12	235,830.56	239,138.00
2008	236,555.00	245,714.27	254,873.53
2009	237,880.88	250,543.67	263,206.46
2010	238,942.65	254,041.78	269,140.90

Forecast Results for Housing Prices: Quarterly Model

	\$30/barrel	\$45/barrel	\$60/barrel
Current	185,000.00	185,000.00	185,000.00
2005.2	190,021.30	190,443.17	190,865.03
2005.3	195,504.07	196,654.41	197,804.74
2005.4	201,853.55	203,948.31	206,043.06
2006.1	207,345.28	210,529.56	213,713.85
2006.2	211,984.21	216,348.12	220,712.03
2006.3	216,352.52	221,943.81	227,535.11
2006.4	220,372.06	227,206.28	234,040.49
2007.1	223,127.78	232,001.15	240,874.51
2007.2	225,470.54	236,207.11	246,943.68
2007.3	227,473.64	239,912.38	252,351.11
2007.4	229,182.05	243,175.62	257,169.19
2008.1	230,677.65	246,091.30	261,504.95
2008.2	231,922.40	248,632.92	265,343.44
2008.3	232,960.53	250,855.28	268,750.03
2008.4	233,828.26	252,804.29	271,780.32

To check the accuracy of the housing forecast models, I compared the annual model with the quarterly model. On average, there price differences were 4% or less.


Price Differential	\$30/barrel	\$45/barrel	\$60/barrel
2006	1,104.56	(2,467.28)	(6,039.13)
2007	6,209.62	(1,993.50)	(10,196.62)
2008	4,207.79	(3,881.68)	(11,971.15)
Difference	2%	-1%	-4%


Forecast Results for Rents:

	\$30/barrel	\$45/barrel	\$60/barrel
Current	931	931	931
2006	976	982	988
2007	1007	1020	1034
2008	1017	1047	1077
2009	1025	1065	1105
2010	1032	1080	1128

Analysis:

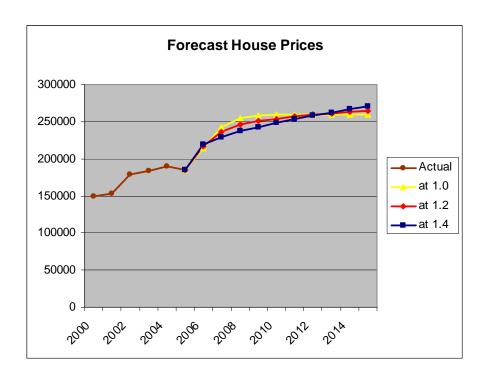
Based on the current outlook on interest rates, exchange rates, and oil prices, things are optimistic for the Calgary housing market in the next quarters and years. In fact, considering that the increase in oil prices happened early this year, housing prices are expected to reflect this jump next year with an appreciation of 16-17% and 8-10% in the next year after that. Rents on the other hand, will follow the same upward trend but in a much slower pace, increasing by 5-6% in the next year and only 8-11% in the year after. Both house prices and rents level off in 2010 onwards.

Given the strength of other economic indicators, i.e. a low interest rate, an exchange rate of about 1.20 CAD/USD and exploding employment, a sharp decrease in house prices and rents are expected only when prices fall to the low \$20/barrel range, which is highly unlikely given the current supply and demand issues of the global oil economy. In fact, the "breakeven" level for housing prices to remain level is at the \$25/barrel range. Below this level, it's time to sell. Above this level, prices will continue to appreciate. It is not a coincidence that this threshold is consistent with the "breakeven" level of oil and gas companies to remain economically viable.

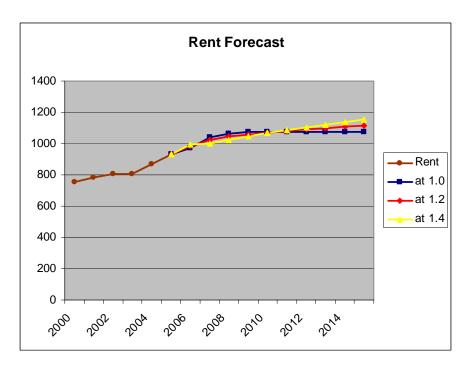
However, it seems that at the point when changes in oil prices are reflected in the market, i.e. on the 3rd year onward, for every \$15/barrel difference, there is a 5-6% difference in forecasted housing prices and 3-5% difference in rents which accumulate and widens every year.

FORECAST AND SENSATIVITY ANALYSIS BASED ON EXCHANGE RATES

Assuming the long-term forecast of \$45/US barrel, the same interest rates as indicated in the TD Economics report and the corresponding employment levels using the regression equation, a similar sensitivity analysis can be done using three levels of exchange rates: 1.2 (current), 1.4 and 1.0 CAD to the USD.


Forecast Results for Housing Prices:

		0	
	At 1.0	At 1.2	At 1.4
Current	185000.0	185000.0	185000.0
2006	214110.1	216421.2	218732.3
2007	243007.7	236293.1	229578.5
2008	254336.1	245807.2	237278.4
2009	258017	250492.2	242967.4
2010	259445.6	253938.4	248431.2
2011	259949.6	256739.6	253529.5
2012	260078.5	259153.3	258228.1
2013	260059	261296.8	262534.6
2014	259984.3	263228.1	266471.9
2015	259892.7	264980.2	270067.7


Forecast Results for Rent:

	At 1.0	At 1.2	At 1.4
Current	931	931	931
2006	972	982	992
2007	1,039	1,020	1,002
2008	1,064	1,043	1,023
2009	1,073	1,059	1,045
2010	1,076	1,071	1,066
2011	1,077	1,082	1,087
2012	1,077	1,091	1,105
2013	1,076	1,099	1,122
2014	1,076	1,107	1,138
2015	1,075	1,114	1,152

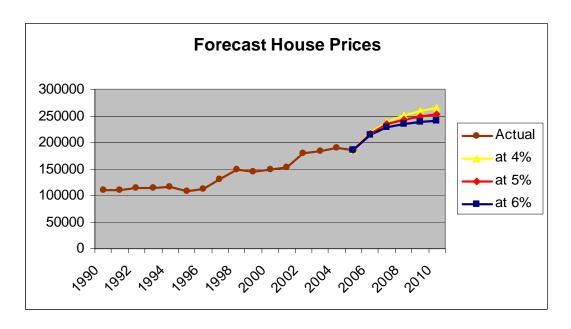
Based on the forecasts of housing prices, there is a *short-term* but very slight advantage on the strengthening of the Canadian dollar. This is probably caused by the direct and immediate effect of the Canadian dollar having more purchasing power, making Canadians afford new housing or upgrade their current dwelling unit. However, in the *medium-term* (as soon as the second year to the seventh year), the housing market would already reflect the indirect effect of the strengthened dollar via weakening imports, weakening of export companies including oil and gas companies and the slowing down employment because of this. But in the *long-term* (8th year onwards), the housing market would benefit from the strengthening of the Canadian dollar because the country as a whole would have a stronger economy.

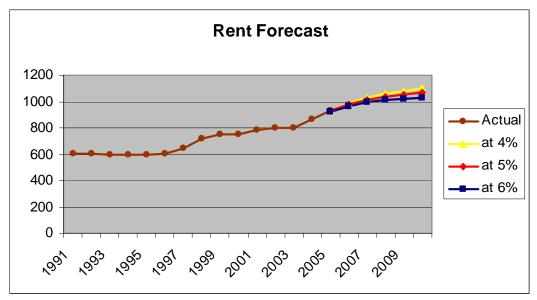
Rent follows the same trend, with a short term advantage for a strong dollar, a medium term advantage for the weaker dollar (except that it lasts only until the 5th year), and finally a long term advantage with a strong dollar, for the same reasons.

For all forecasts, housing prices are expected to increase by 15-18% in the first year, and 5-13% in the next. Rents are expected to increase from 5-7% in the first year and 8-11% in the second.

FORECAST AND SENSATIVITY ANALYSIS BASED ON INTEREST RATES

Assuming the long-term forecast of \$45/US barrel, the same exchange rates as indicated in the TD Economics report and the corresponding employment levels using the regression equation, a similar sensitivity analysis can be done using three levels of exchange rates: 5% (long term expected average), 4% and 6%.


Forecast Results for Housing Prices:


	At 4%	At 5%	At 6%
Current	185,000	185,000	185,000
2006	217,418	215,792	214,166
2007	238,501	233,933	229,366
2008	251,369	243,400	235,432
2009	259,206	249,018	238,829
2010	264,740	252,892	241,044

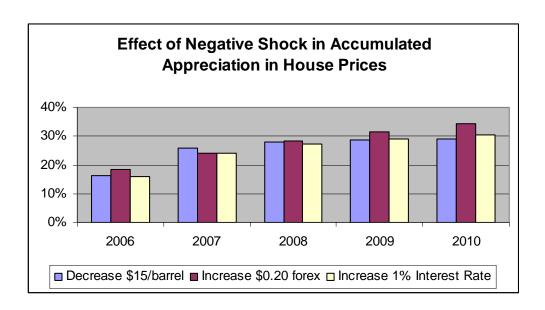
Forecast Results for Rents:

	At 4%	At 5%	At 6%
Current	931	931	931
2006	987	976	965
2007	1029	1012	995
2008	1059	1036	1013
2009	1082	1053	1024
2010	1099	1066	1032

For all forecasts, housing prices are expected to increase by 15-18% in the first year, and 7-10% in the next. Rents are affected only indirectly, in as much as it affects employment. Forecasts for rent are expected to increase from 4-7% in the first year, and 8-12% in the second.

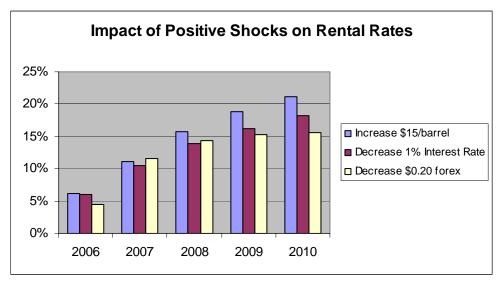
The "breakeven" point at which prices will start to decline is at 10.5% for housing prices and 10% for rent. The only time interest rates reached this high was during the recession in 1980-1986 and once in 1990. It seems unlikely that interest rates would reach these alarming levels in the next five years.

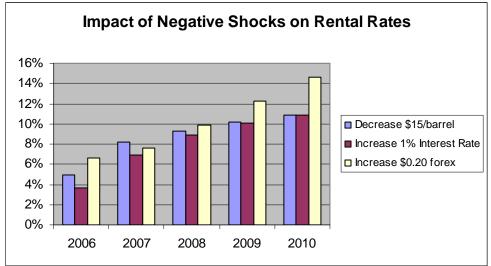
CONCLUSION ON HOUSE PRICES


Based on the forecasts, a positive shock in the economy defined as either an increase in oil prices of \$15/barrel, a decrease of foreign exchange by \$0.20 or a decrease in interest rates would produce more or less the same accumulated appreciation per year. See chart below.

	Increase \$15/barrel	Decrease \$0.20 Forex	Decrease 1% Interest Rate
2006	18%	16%	18%
2007	29%	31%	29%
2008	38%	37%	36%
2009	42%	39%	40%
2010	45%	40%	43%

On the other hand, negative shocks in the economy, *in isolation*, defined as the reverse will only slow down or arrest the appreciation of house prices by the third year, without decreasing the real estate value.


	Decrease \$15/barrel	Increase \$0.20 forex	Increase 1% Interest Rate
2006	16%	18%	16%
2007	26%	24%	24%
2008	28%	28%	27%
2009	29%	31%	29%
2010	29%	34%	30%



It thus seems like a high return investment to buy housing now in the Calgary market. It is generally low risk, based on this thesis since the most recent increase in real oil prices of +\$14 in the past two years (from an annual average of \$28 to \$42) is fuelling the increase in prices now. If prices continue at the current average of \$45/barrel, we should be expecting an appreciation of 17%. If prices continue at the level that is this month (July 2005) at \$55-60/barrel, we can expect an 18% appreciation next year and an accumulated appreciation of 33% by the 2nd and 3rd year when the oil prices reflect in the market.

CONCLUSION ON RENTAL RATES

Rents, on the other hand, are more sensitive to positive shocks in oil prices and negative shocks in foreign exchange, while stickier in the reverse. The spending pattern seems to be that good news is more welcomed in oil prices and bad news seems to be more alarming, when it comes to exchange rates. Rents seem least sensitive to changes in interest rate.

The prospects in rents seem equally optimistic. Rents seem to spiral upward, reflecting the past positive shocks in the economy and following the pattern of housing prices. Even with isolated negative shocks, we are expecting at least a 4-7% increase in rents next year and a 7-8% accumulated increase in rents the year after.

REFERENCES

- 1. Alberts, W. W., "Business Cycles, Residential Construction Cycles, and the Mortgage Market," <u>The Journal of Political Economy</u>, LXX, 263-281, June, 1962.
- 2. Brady, E.A., "A Sectoral Econometric Study of the Postwar Residential-Housing Market," <u>Journal of Political Economy</u>, LXXV, 147-158, April, 1967.
- 3. Chinloy, Peter 1996. "Real Estate Cycle: Theory and Empirical Evidence", Journal of Housing Research, Vol 7, 2, 1996.
- 4. Cooper, Sherry. "Oilsands Bounty a Magnet for Global Superpowers", Calgary Herald, July 14, 2005, page C4.
- 5. Fair, R.C., "Disequilibrium in Housing Markets", Journal of Finance, 27, 1972.
- 6. Goetzmann, William and Roewenhorst Geert, 1999. "Global Real Estate Markets: Cycles and Fundamentals", Yale ICF Working Paper No. 199-03.
- 7. Huang, D.S., "The Short-term Flows of Nonfarm Residential Mortgages," <u>Econometrica</u>, XXXIV, 433-459, April 1966.
- 8. http://news.bbc.co.uk. "Why are Oil Prices so High", BBC News, September 28, 2004.
- 9. http://www.incalgary.com
- 10. http://www.royallepage.ca/schp/query.asp
- 11. Jaffee, D.M., "An Econometric Model of the Mortgage Market", in E. Gramlich and D. Jaffee (eds), <u>Savings Deposits</u>, <u>Mortgages</u>, and <u>Housing</u>; <u>Studies for the Federal Reserve-MIT-Penn Economic Model</u>. (Lexington, MA: Lexington Books, 1972)
- 12. Joshua Gallin, 2004. "<u>The long-run relationship between house prices and rents</u>," <u>Finance and Economics Discussion Series</u> 2004-50, Board of Governors of the Federal Reserve System (U.S.).
- 13. Karl E Case & John M Quigley & Robert J Shiller, . "Home-buyers, Housing and the Macroeconomy," RBA Annual Conference Volume, Reserve Bank of Australia.
- 14. Karl E. Case & Robert J. Shiller, 1989. "<u>The Behavior of Home Buyers in Boom and Post-Boom Markets</u>," NBER Working Papers 2748, National Bureau of Economic Research, Inc.
- 15. Karl E & Robert J Shiller,, 1989. "<u>The Efficiency of the Market for Single-Family Homes</u>," <u>American Economic Review</u>, American Economic Association, vol. 79(1), pages 125-37.
- 16. Karl E. Case & Robert J. Shiller, 1990. "Forecasting Prices and Excess Returns in the Housing Market," NBER Working Papers 3368, National Bureau of Economic Research, Inc.
- 17. Kearl, J.R., "Inflation, Mortgages and Housing", Journal of Political Economy, 87 (5), 1979.
- 18. Kicki Björklund & Bo Söderberg, 1999. "Property Cycles, Speculative Bubbles and the Gross Income Multiplier," Journal of Real Estate Research, American Real Estate Society, vol. 18(1), pages 151-174.
- 19. Øyvind Eitrheim and Solveig K. Erlandsen, November 2004. "House prices in Norway 1819-1989", Norges Bank Working Paper 2004/21.

- 20. Maisel, S.J., "A Theory of Fluctuations in Residential Construction Starts," <u>American Economic Review</u>, 53, 2, 1963, 359-379.
- 21. Mankiw, N.G. and D.N. Weil, "The Baby Boom, the Baby Bust and the Housing Market," Regional Science and Urban Economics, 19, 1989.
- 22. Michael Artis & Anindya Banerjee & Massimiliano Marcellino, 2001. "Factor Forecasts for the UK," Economics Working Papers ECO2001/15, European University Institute
- 23. Poterba, J. M., "Tax Subsidies to Owner-Occupied Housing: An Asset-Market Approach," <u>The Quarterly Journal of Economics</u>, November 1984, 729-752.
- 24. Smith, L.B., "A Model of the Canadian Housing and Mortgage Markets," <u>Journal of Political Economy</u>, Vol. 77, No. 3, 1969, pp. 795-816.
- 25. Stephen A. Pyhrr & Stephen E. Roulac & Waldo L. Born, 1999. "Real Estate Cycles and Their Strategic Implications for Investors and Portfolio Managers in the Global Economy," Journal of Real Estate Research, American Real Estate Society, vol. 18(1), pages 7-68
- 26. Terry V. Grissom & James R. DeLisle, 1999. "The Analysis of Real Estate Cycles, Regime Segmentation and Structural Change Using Multiple Indices (or A Multiple Index Analysis of Real Estate Cycl," Journal of Real Estate Research, American Real Estate Society, vol. 18(1), pages 97-130.
- Theodore M. Crone & Richard P. Voith, 1998. "<u>Risk and return within the single-family housing market</u>," Working Papers 98-4, Federal Reserve Bank of Philadelphia.
- Torto Wheaton Research, "<u>Canadian Multi-Housing Outlook a report to the Royal Bank of Canada</u>", March 2002
- 29. Waldo L. Born & Stephen A. Pyhrr, 1994. "Real Estate Valuation: The Effect of Market and Property Cycles," Journal of Real Estate Research, American Real Estate Society, vol. 9(4), pages 455-486.
- 30. Wheaton, Bill and DiPasquale, Denise. <u>Urban Economics and Real Estate Markets</u>. Prentice Hall Inc. 1996
- 31. Wheaton, Bill, 1999. "Real Estate Cycles: Some Fundamentals", Real Estate Economics, 27,2.
- 32. Wheaton, William & DiPasquale, Denise, 1992. "Housing Market Dynamics and the Future of Housing Prices", Harvard University.

Appendix C

	Definition of Variables Used			
Oil Prices				
Nominal Oil	Refiner Acquisition Cost of Imported Crude Oil in \$USD per barrel			
Real Oil Calgary 2005	Inflation adjusted to 2005 index based on Calgary CPI in \$USD per barrel			
Real Oil Canada 2005	Inflation adjusted to 2005 index based on Total Canada CPI index in \$USD per barrel			
GDP Deflated Oil 2004	Constant 2004 GDP deflated prices based on Total Canada			
Financial Indicators				
Exchange Rate	Foreign exchange of US dollar rates in Canadian dollars. Noon spot rate, average. Source: Bank of Canada.			
Interest Rate	10 year government Canadian bond. Source: Bank of Canada			
Mortgage Rate	Conventional mortgage lending rate, 5-year term in percent. Source: Canada Mortgage and Housing Corporation			
Vacancy Rate	Vacancy rates in percent of apartment structures of six units and over, privately initiated in CMA of Calgary, Alberta. Source: Canada Mortgage and Housing Corporation			
Inflation Calgary	Consumer Price Index of Calgary			
Inflation Canada	Consumer Price Index of Canada			
Employment in Calgary				
Total Population	Number of persons of working age. Estimates in thousands, rounded to the nearest hundred			
Total Labour Force	Number of civilian, non-institutionalized persons 15 years of age and over who, during the reference week, were employed or unemployed. Estimates in thousands, rounded to the nearest hundred			
Total Employment	Number of persons who, during the reference week, worked for pay or profit, or performed unpaid family work or had a job but were not at work due to own illness or disability, personal or family responsibilities, labour dispute, vacation, or other reason. Those persons on layoff and persons whose job attachment was to a job to start at a definite date in the future are not considered employed. Estimates in thousands, rounded to the nearest hundred.			
Unemployment Rate	The unemployment rate is the number of unemployed persons expressed as a percentage of the labour force. The unemployment rate for a particular group (age, sex, marital status) is the number unemployed in that group expressed as a percentage of the labour force for that group. Estimates are percentages, rounded to the nearest tenth.			
Housing Stock				
Housing Starts Total Completions Single detached housing Semi-detached housing Apartments Row Units	Housing starts, under construction and completions in Calgary CMA for the following dwelling types: single detached, semi-detached, apartment units and row housing units and total completions. Source: Canada Mortgage and Housing Corporation			
Housing Stock ¹²	Stock data for the following dwelling types: single detached, apartment, movable dwelling and other type of dwelling and total housing stock. Source: Census Data			

Housing Stock computed as housing stock per 5 years in Census data plus housing starts per year

Appendix A
Annual Raw Data Used for Regression Analysis

	PRICE	RENT	EMP	CPI	INT	EXCH	OIL	REAL OIL
1970							1.800	
1971				26.21	6.6082		2.133	10.871
1972				27.34	6.9269		2.463	12.037
1973				29.22	7.2653		3.145	14.380
1974				32.16	8.6662		12.443	51.698
1975				35.83	8.7883		13.884	51.769
1976			234.1	38.83	8.9164		13.472	46.350
1977	64000		262.9	42.12	8.4331	1.0634	14.526	46.081
1978	69500		274.3	45.61	9.0349	1.1407	14.562	42.658
1979	78000		296.4	49.56	10.0183	1.1714	21.543	58.078
1980	89000		322.5	54.68	12.3670	1.1692	33.973	83.007
1981	99000		331.4	61.97	15.1969	1.1989	37.476	80.802
1982	90000		311.1	69.43	14.5401	1.2337	33.593	64.643
1983	80000		313.5	72.51	11.4342	1.2324	29.347	54.076
1984	70000	485	336.7	74.37	12.7300	1.2951	28.866	51.861
1985	73000	496	353.5	76.51	10.8300	1.3655	26.998	47.148
1986	74500	509	365.6	79.20	9.1217	1.3895	14.323	
1987	84000	510	371.6	82.17	9.4958	1.3260	18.047	29.345
1988	93400	523	379.9	84.37	9.8333	1.2307	14.621	23.154
1989	106000	555	390.7	87.68	9.7950	1.1840	18.069	27.533
1990	110000	595	395.5	93.11	10.7625	1.1668	22.202	31.859
1991	110000	608	395.6	98.68	9.4183	1.1457	18.739	25.371
1992	115000	607	392.7	99.99	8.0533	1.2087	18.115	24.205
1993	115000	593	395.1	101.33	7.2150	1.2901	16.170	
1994	117000	594	403.2	102.76	8.4250	1.3657	15.411	20.037
1995	109000	592	425.2	105.14	8.0825	1.3724	17.147	
1996	112000	606	450.7	107.36	7.2033	1.3635	20.599	25.636
1997	130000	647	471.7	109.72	6.1092	1.3846	18.554	22.594
1998	150000	722	498.8	111.32	5.2967	1.4835	12.098	14.520
1999	145000	753	515.5	114.23	5.5517	1.4857	17.271	20.202
2000	150000	753	541.9	118.43	5.8900	1.4854	27.683	31.229
2001	152961	783	562.8	121.29	5.4675	1.5488	21.988	24.220
2002	179100	804	572.6	125.80	5.2942	1.5703	23.633	25.100
2003	183500	804	583.5	130.18	4.7942	1.4010	27.845	28.578
2004	189900		598.3	132.45	4.6011	1.3013	35.902	36.216
2005	185000			133.61		1.2364	42.815	42.815

PRICE - House Prices of NE Detached Bungalow

RENT - Rent index for 2 Bedroom Apartment

CPI - Consumer Price Index for CMA of Calgary, Canada (1992 = 100)

INT - Interest Rate, 10-year Canadian government bond

EXCH - Exchange Rate, CAD=\$1USD, noon spot rate average

OIL - Nominal Oil Prices in \$USD per barrel

REAL OIL - Nominal Oil Prices in \$USD per barrel adjusted based on Calgary CPI (index 2005)

Appendix B **Quarterly Raw Data Used for Regression Analysis**

	PRICE	EMP	OIL	REAL OIL	CPI	INT	EXCH		Р	PRICE	EMP	OIL	REAL OIL	CPI	INT	EXCH
1970.1			1.800			7.839		1988		84,000	377.4	15.203	24.124	83.733	9.350	1.267
1970.2			1.800			7.834		1988		84,000	376.2	15.683	24.680	84.433	9.800	1.230
1970.3			1.800			7.626		1988		92,500	381.0	14.323	22.460	84.733	10.187	1.219
1970.4			1.800	40.400	05.000	7.140		1988		93,400	384.8	13.273	20.854	84.567	9.997	1.206
1971.1 1971.2			1.990 2.180	10.196 11.140	25.933 26.000	6.380 6.935		1989 1989		89,000 95,000	393.4 396.7	16.807 18.970	26.189 28.960	85.267 87.033	10.337 9.767	1.192 1.193
1971.2			2.180	10.999	26.333	6.886		1989		106,000	383.9	17.613	26.324	88.900	9.767	1.193
1971.4			2.180	10.903	26.567	6.232		1989		106,000	388.5	18.887	28.028	89.533	9.557	1.168
1972.1			2.413	11.920	26.900	6.659		1990		118,000	391.4	19.743	28.806	91.067	10.483	1.183
1972.2			2.480	12.129	27.167	7.071		1990		125,000	396.3	15.960	22.933	92.467	11.003	1.170
1972.3			2.480	11.997	27.467	7.163		1990		120,000	395.9	23.560	33.396	93.733	10.930	1.153
1972.4			2.480	11.839	27.833	6.814		1990		110,000	398.0	29.543	41.247	95.167	10.633	1.161
1973.1			2.590	12.131	28.367	6.913		1991		110,000	398.5	19.393	26.356	97.767	9.730	1.156
1973.2 1973.3			2.590 2.590	11.907 11.626	28.900 29.600	7.342 7.468		1991 1991		115,000 113,000	397.8 396.0	18.153 18.617	24.554 24.851	98.233 99.533	9.757 9.610	1.149 1.144
1973.4			4.808	21.296	30.000	7.466		1991		110,000	389.5	18.793	25.171	99.200	8.577	1.135
1974.1			11.590	50.106	30.733	7.617		1992		110,000	386.8	16.153	21.577	99.467	8.430	1.177
1974.2			12.933	54.266	31.667	8.882		1992		117,000	393.8	18.663	24.847	99.800	8.500	1.194
1974.3			12.653	51.624	32.567	9.518		1992		117,000	398.4	19.417	25.747	100.200	7.533	1.202
1974.4			12.597	49.713	33.667	8.648	0.986	1992		115,000	391.3	18.227	24.097	100.500	7.750	1.262
1975.1			13.033	50.389	34.367	7.998	0.999	1993		114,000	390.1	17.343	22.898	100.633	7.650	1.261
1975.2			13.560	51.281	35.133	8.651	1.022	1993		115,000	391.0	17.680	23.289	100.867	7.457	1.270
1975.3 1975.4			14.107 14.837	51.445 52.709	36.433 37.400	9.279 9.225	1.031 1.018	1993 1993		115,000 115,000	394.9 404.4	15.590 14.067	20.341 18.323	101.833 102.000	6.993 6.760	1.304 1.325
1975.4			13.347	46.749	37.400	9.225	0.995	1993		117,000	404.4	13.003	16.944	102.000	7.093	1.325
1976.2		224.0	13.427	46.296	38.533	9.093	0.979	1994		117,000	396.5	15.773	20.526	102.100	8.490	1.382
1976.3		234.1	13.520	46.021	39.033	9.005	0.977	1994		117,000	399.6	16.697	21.496	103.200	8.993	1.371
1976.4		244.1	13.593	45.341	39.833	8.505	0.992	1994	.4 1	117,000	415.1	16.170	20.705	103.767	9.123	1.368
1977.1		254.1	14.383	46.955	40.700	8.381	1.030	1995		115,000	415.5	16.993	21.627	104.400	8.890	1.407
1977.2		264.2	14.537	46.170	41.833	8.524	1.052	1995		112,500	421.8	18.230	23.068	105.000	8.000	1.371
1977.3		265.8	14.540	45.456	42.500	8.349	1.070	1995		110,000	430.9	16.583	20.885	105.500	8.053	1.356
1977.4	64,000 65,500	267.4 269.0	14.643 14.500	44.795 43.653	43.433	8.478 8.898	1.102	1995		109,000 110,000	433.0 438.1	16.780 18.383	21.099 23.007	105.667	7.387 7.393	1.356
1978.1 1978.2	66,750	270.6	14.500	42.480	44.133 45.300	8.984	1.113 1.127	1996 1996		111,000	454.5	20.257	25.122	106.167 107.133	7.750	1.369 1.365
1978.3	68,000	276.0	14.493	41.742	46.133	8.906	1.144	1996		112,000	456.4	20.723	25.503	107.133	7.730	1.370
1978.4	69,500	281.5	14.770	41.873	46.867	9.352	1.178	1996		116,000	454.3	23.033	28.293	108.167	6.297	1.350
1979.1	71,500	286.9	15.930	44.218	47.867	9.692	1.186	1997		120,000	460.6	21.020	25.591	109.133	6.540	1.359
1979.2	72,500	292.3	19.203	51.930	49.133	9.446	1.158	1997	.2 1	124,000	461.0	17.910	21.719	109.567	6.490	1.386
1979.3	73,500	299.5	24.043	63.764	50.100	9.928	1.166	1997		127,000	471.1	17.767	21.453	110.033	5.853	1.385
1979.4	78,000	306.8	26.993	70.140	51.133	11.007	1.175	1997		130,000	495.2	17.520	21.136	110.133	5.553	1.409
1980.1	80,000	314.0	32.190	81.882	52.233	12.780	1.164	1998		154,000 154,000	495.1 496.3	13.330	16.106	109.967	5.407	1.430 1.447
1980.2 1980.3	83,000 86,000	321.2 325.3	34.117 34.470	84.465 82.720	53.667 55.367	11.353 12.474	1.170 1.159	1998 1998		154,000	502.3	12.343 11.887	14.726 14.084	111.367 112.133	5.393 5.363	1.515
1980.4	89,000	329.5	35.117	81.192	57.467	12.860	1.184	1998		150,000	501.7	10.830	12.871	111.800	5.023	1.542
1981.1	74,000	333.6	38.720	86.902	59.200	13.173	1.194	1999		150,000	508.0	10.863	12.834	112.467	5.067	1.511
1981.2	86,500	337.7	37.760	82.292	60.967	15.033	1.199	1999		150,000	515.5	15.433	18.061	113.533	5.340	1.473
1981.3	99,000	330.7	35.947	75.771	63.033	17.258	1.212	1999		150,000	515.8	19.750	22.812	115.033	5.647	1.486
1981.4	99,000	323.6	35.863	73.686	64.667	15.324	1.192	1999		145,000	522.8	23.037	26.417	115.867	6.153	1.473
1982.1	99,000	316.6	35.030	69.606	66.867	15.291	1.209	2000		147,000	534.5	26.793	30.707	115.933	6.220	1.454
1982.2 1982.3	99,000 94,000	309.6 309.3	33.130 33.140	63.764 62.398	69.033 70.567	16.390 14.557	1.245 1.250	2000 2000		147,000 152,000	538.3 540.4	26.517 29.120	29.968 32.323	117.567 119.700	6.010 5.793	1.480 1.482
1982.4	90,000	309.0	33.073	61.661	71.267	11.923	1.231	2000		150,000	554.3	28.300	31.196	120.533	5.537	1.526
1983.1	89,000	308.7	30.197	56.140	71.467	11.320	1.227	2001		152,000	545.2	24.157	26.881	119.400	5.387	1.528
1983.2	88,000	308.4	28.570	52.239	72.667	11.017	1.231	2001	.2 1	152,000	561.3	23.857	25.708	123.300	5.783	1.541
1983.3	86,000	315.1	29.267	53.488	72.700	11.773	1.233	2001	.3 1	155,000	569.6	23.013	24.873	122.933	5.480	1.546
1983.4	80,000	321.8	29.353	53.280	73.200	11.627	1.238	2001		155,000	574.6	16.923	18.811	119.533	5.220	1.580
1984.1	73,000	328.6	28.887	52.053	73.733	12.333	1.255	2002		166,900	573.5	19.190	20.888	122.067	5.507	1.594
1984.2	75,500	335.3	29.187	52.357	74.067	13.690	1.293	2002		175,100	567.7	23.957	25.289	125.867	5.500	1.554
1984.3 1984.4	75,500 70,000	339.4 343.5	28.873 28.517	51.287 50.609	74.800 74.867	13.043 11.853	1.314 1.318	2002 2002		179,100 179,100	574.3 574.7	25.937 25.450	27.249 26.254	126.467 128.800	5.097 5.073	1.563 1.570
1985.1	68,000	343.5 347.6	27.227	47.978	75.400	11.747	1.353	2002	 1	181,100	574.7 575.8	30.587	31.350	129.633	5.073	1.510
1985.2	70,000	351.7	27.480	47.811	76.367	10.910	1.369	2003		184,300	581.7	25.617	26.068	130.567	4.590	1.398
1985.3	70,000	355.5	26.580	45.905	76.933	10.670	1.360	2003		187,400	585.4	27.370	27.974	130.000	4.793	1.380
1985.4	73,000	359.2	26.707	45.885	77.333	9.993	1.379	2003	.4 1	183,500	590.8	27.807	28.304	130.533	4.767	1.316
1986.1	75,000	362.9	19.087	32.457	78.133	9.690	1.404	2004		181,600	595.9	31.087	31.506	131.100	4.510	1.318
1986.2	77,000	366.6	12.857	21.678	78.800	8.953	1.384	2004		189,100	600.2	33.940	33.974	132.733	4.607	1.359
1986.3	74,500	366.5	11.877	19.791	79.733	8.960	1.385	2004		189,500	599.7	38.687	38.677	132.900	4.686	1.307
1986.4 1987.1	74,500 72,000	366.4 366.3	13.470 16.897	22.334 27.900	80.133 80.467	8.883 8.297	1.385 1.338	2004 2005		189,900 185,000	597.2 604.4	39.893 41.553	39.833 41.553	133.067 132.867	4.450 4.293	1.221 1.227
1987.1	78,000	366.2	18.283	29.613	82.033	9.410	1.333	2005		100,000	004.4	46.600	41.003	132.007	4.293	1.246
1987.2	80,000	372.6	19.050	30.495	83.000	10.303	1.322	2000				TO.000			7.020	1.240
1987.4	84,000	381.1	17.957	28.687	83.167	9.973	1.311									

PRICE - House Prices of NE Detached Bungalow
CPI - Consumer Price Index for CMA of Calgary, Canada (1992 = 100)
INT - Interest Rate, 10-year Canadian government bond
EXCH - Exchange Rate, CAD=\$1USD, noon spot rate average
OIL - Nominal Oil Prices in \$USD per barrel
REAL OIL - Nominal Oil Prices in \$USD per barrel adjusted based on Calgary CPI (index 2005)

Appendix D

Regression Annual Analysis Employment vs Interest Rate, Exchange Rate, Employment-1 and Real Oil Price

	E1.15		EV.011	DEAL OIL	E145 4
	EMP	INT	EXCH	REAL OIL	EMP-1
1978	274.3	9.0349	1.1407	42.658	262.9
1979	296.4	10.0183	1.1714	58.078	274.3
1980	322.5	12.3670	1.1692	83.007	296.4
1981	331.4	15.1969	1.1989	80.802	322.5
1982	311.1	14.5401	1.2337	64.643	331.4
1983	313.5	11.4342	1.2324	54.076	311.1
1984	336.7	12.7300	1.2951	51.861	313.5
1985	353.5	10.8300	1.3655	47.148	336.7
1986	365.6	9.1217	1.3895	24.162	353.5
1987	371.6	9.4958	1.3260	29.345	365.6
1988	379.9	9.8333	1.2307	23.154	371.6
1989	390.7	9.7950	1.1840	27.533	379.9
1990	395.5	10.7625	1.1668	31.859	390.7
1991	395.6	9.4183	1.1457	25.371	395.5
1992	392.7	8.0533	1.2087	24.205	395.6
1993	395.1	7.2150	1.2901	21.320	392.7
1994	403.2	8.4250	1.3657	20.037	395.1
1995	425.2	8.0825	1.3724	21.789	403.2
1996	450.7	7.2033	1.3635	25.636	425.2
1997	471.7	6.1092	1.3846	22.594	450.7
1998	498.8	5.2967	1.4835	14.520	471.7
1999	515.5	5.5517	1.4857	20.202	498.8
2000	541.9	5.8900	1.4854	31.229	515.5
2001	562.8	5.4675	1.5488	24.220	541.9
2002	572.6	5.2942	1.5703	25.100	562.8
2003	583.5	4.7942	1.4010	28.578	572.6
2004	598.3	4.6011	1.3013	36.216	583.5

SUMMARY OUTPUT

Regression Statistics									
Multiple R	0.996173312								
R Square	0.992361267								
Adjusted R Squar	0.990972407								
Standard Error	9.028227078								
Observations	27								

ANOVA

	df	SS	MS	F	Significance F
Regression	4.0000	232957.1830	58239.2957	714.5147	0.0000
Residual	22.0000	1793.1955	81.5089		
Total	26.0000	234750.3784			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	15.4573	32.0715	0.4820	0.6346	-51.0548	81.9694	-51.0548	81.9694
Interest Rate	-4.1153	1.4104	-2.9179	0.0080	-7.0402	-1.1904	-7.0402	-1.1904
Exchange Rate	42.5911	20.6132	2.0662	0.0508	-0.1580	85.3402	-0.1580	85.3402
Real Oil	0.3493	0.1508	2.3162	0.0303	0.0365	0.6621	0.0365	0.6621
Employ-1	0.9124	0.0383	23.8330	0.0000	0.8330	0.9918	0.8330	0.9918

Appendix E Regression Quarterly Employment vs. Real Oil, Interest, Exchange Rate, Employment-1

	EMP F	REAL OIL	INT	EXCH	EMP-1								
1976.3	234.1	46.021	9.0048	0.9775	224.0								
1976.4	244.1	45.341	8.5047	0.9924	234.1								
1977.1	254.1	46.955	8.3811	1.0299	244.1	SUMMARY OUTPL	JT						
1977.2	264.2	46.170	8.5239	1.0524	254.1								
1977.3	265.8	45.456	8.3492	1.0697	264.2	Regression							
1977.4 1978.1	267.4 269.0	44.795 43.653	8.4783 8.8977	1.1017 1.1133	265.8 267.4	Multiple R R Square	0.99865914 0.99732008						
1978.2	270.6	42.480	8.9838	1.1133	269.0	Adjusted R Square							
1978.3	276.0	41.742	8.9056	1.1437	270.6	Standard Error	5.24826587						
1978.4	281.5	41.873	9.3524	1.1783	276.0	Observations	115						
1979.1	286.9	44.218	9.6920	1.1864	281.5	-							
1979.2	292.3	51.930	9.4462	1.1581	286.9	ANOVA							
1979.3	299.5	63.764	9.9279	1.1664	292.3		df	SS	MS	F	Significance F		
1979.4	306.8	70.140	11.0072	1.1748	299.5	Regression	4	1,127,552	281,888	10,234	2E-140		
1980.1 1980.2	314.0 321.2	81.882 84.465	12.7802 11.3535	1.1643 1.1701	306.8 314.0	Residual Total	110 114	3,030 1,130,582	28				
1980.2	325.3	82.720	12.4742	1.1586	321.2	Total	114	1,130,562					
1980.4	329.5	81.192	12.8600	1.1840	325.3		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95% Lo	wer 95.0% Uppe
1981.1	333.6	86.902	13.1728	1.1936	329.5	Intercept	11.3282	6.8246	1.6599	0.0998	-2.1966	24.8531	-2.1966 2
1981.2	337.7	82.292	15.0333	1.1986	333.6	Real Oil	0.0839	0.0403	2.0826	0.0396	0.0041	0.1637	0.0041
1981.3	330.7	75.771	17.2578	1.2117	337.7	Interest	-1.2494	0.3213	-3.8890	0.0002	-1.8860	-0.6127	-1.8860
1981.4	323.6	73.686	15.3237	1.1918	330.7	Exchange Rate	8.6721	5.5030	1.5759	0.1179	-2.2335	19.5777	-2.2335
1982.1	316.6	69.606	15.2906	1.2089	323.6	Employment-1	0.9719	0.0097	99.9017	0.0000	0.9526	0.9912	0.9526
1982.2	309.6	63.764 62.398	16.3900 14.5567	1.2446 1.2499	316.6								
1982.3 1982.4	309.3 309.0	62.398	14.5567	1.2499	309.6 309.3								
1983.1	308.7	56.140	11.3200	1.2273	309.0								
1983.2	308.4	52.239	11.0167	1.2310	308.7								
1983.3	315.1	53.488	11.7733	1.2328	308.4								
1983.4	321.8	53.280	11.6267	1.2385	315.1								
1984.1	328.6	52.053	12.3333	1.2554	321.8								
1984.2	335.3	52.357	13.6900	1.2925	328.6		EMP	REAL OIL	INT	EXCH	EMP-1		
1984.3 1984.4	339.4 343.5	51.287 50.609	13.0433 11.8533	1.3139 1.3184	335.3 339.4	1995 1995		21.627 23.068	8.8900 8.0000	1.4069 1.3713	415.1 415.5		
1985.1	347.6	47.978	11.7467	1.3534	343.5	1995		20.885	8.0533	1.3555	421.8		
1985.2	351.7	47.811	10.9100	1.3693	347.6	1995		21.099	7.3867	1.3560	430.9		
1985.3	355.5	45.905	10.6700	1.3600	351.7	1996		23.007	7.3933	1.3691	433.0		
1985.4	359.2	45.885	9.9933	1.3793	355.5	1996		25.122	7.7500	1.3645	438.1		
1986.1	362.9	32.457	9.6900	1.4037	359.2	1996		25.503	7.3733	1.3701	454.5		
1986.2	366.6 366.5	21.678 19.791	8.9533	1.3842	362.9 366.6	1996		28.293 25.591	6.2967 6.5400	1.3503	456.4 454.3		
1986.3 1986.4	366.4	22.334	8.9600 8.8833	1.3853 1.3847	366.5	1997 1997		25.591	6.4900	1.3585 1.3861	454.3 460.6		
1987.1	366.3	27.900	8.2967	1.3378	366.4	1997		21.453	5.8533	1.3848	461.0		
1987.2	366.2	29.613	9.4100	1.3329	366.3	1997		21.136	5.5533	1.4089	471.1		
1987.3	372.6	30.495	10.3033	1.3222	366.2	1998		16.106	5.4067	1.4304	495.2		
1987.4	381.1	28.687	9.9733	1.3110	372.6	1998		14.726	5.3933	1.4467	495.1		
1988.1	377.4	24.124	9.3500	1.2674	381.1	1998		14.084	5.3633	1.5148	496.3		
1988.2	376.2	24.680	9.8000	1.2298	377.4	1998		12.871	5.0233	1.5422	502.3		
1988.3 1988.4	381.0 384.8	22.460 20.854	10.1867 9.9967	1.2194 1.2062	376.2 381.0	1999 1999		12.834 18.061	5.0667 5.3400	1.5113 1.4728	501.7 508.0		
1989.1	393.4	26.189	10.3367	1.1919	384.8	1999		22.812	5.6467	1.4726	515.5		
1989.2	396.7	28.960	9.7667	1.1932	393.4	1999		26.417	6.1533	1.4727	515.8		
1989.3	383.9	26.324	9.5200	1.1823	396.7	2000		30.707	6.2200	1.4535	522.8		
1989.4	388.5	28.028	9.5567	1.1685	383.9	2000	.2 538.3	29.968	6.0100	1.4802	534.5		
1990.1	391.4	28.806	10.4833	1.1826	388.5	2000		32.323	5.7933	1.4822	538.3		
1990.2	396.3	22.933	11.0033	1.1704	391.4	2000		31.196	5.5367	1.5257	540.4		
1990.3 1990.4	395.9 398.0	33.396 41.247	10.9300 10.6333	1.1531 1.1610	396.3 395.9	2001 2001		26.881 25.708	5.3867 5.7833	1.5278 1.5411	554.3 545.2		
1990.4	398.5	26.356	9.7300	1.1558	398.0	2001		24.873	5.4800	1.5461	561.3		
1991.2	397.8	24.554	9.7567	1.1489	398.5	2001		18.811	5.2200	1.5804	569.6		
1991.3	396.0	24.851	9.6100	1.1436	397.8	2002		20.888	5.5067	1.5944	574.6		
1991.4	389.5	25.171	8.5767	1.1347	396.0	2002	.2 567.7	25.289	5.5000	1.5542	573.5		
1992.1	386.8	21.577	8.4300	1.1772	389.5	2002		27.249	5.0967	1.5632	567.7		
1992.2	393.8	24.847	8.5000	1.1942	386.8	2002		26.254	5.0733	1.5695	574.3		
1992.3	398.4	25.747	7.5333	1.2016	393.8	2003		31.350	5.0267	1.5098	574.7		
1992.4 1993.1	391.3 390.1	24.097 22.898	7.7500 7.6500	1.2619 1.2614	398.4 391.3	2003 2003		26.068 27.974	4.5900 4.7933	1.3984 1.3801	575.8 581.7		
1993.1	390.1	23.289	7.6500	1.2614	391.3	2003		28.304	4.7933	1.3801	581.7 585.4		
1993.3	394.9	20.341	6.9933	1.3039	391.0	2003		31.506	4.5100	1.3178	590.8		
1993.4	404.4	18.323	6.7600	1.3249	394.9	2004		33.974	4.6074	1.3595	595.9		
1994.1	402.1	16.944	7.0933	1.3413	404.4	2004	.3 599.7	38.677	4.6858	1.3072	600.2		
1994.2	396.5	20.526	8.4900	1.3824	402.1	2004		39.833	4.4500	1.2207	599.7		
1994.3 1994.4	399.6	21.496 20.705	8.9933 9.1233	1.3713 1.3678	396.5 399.6	2005 2005		41.553	4.2933 4.0200	1.2270 1.2458	597.2 604.4		
1994.4	415.1	20.705	9.1233	1.30/8	399.6	2005	.4		4.0200	1.2458	004.4		

Appendix F
Regression Analysis of Price against variables of Employment, Interest Rate (lag 2 yrs), Real Oil Prices (lag 2 yrs), Exchange Rate (lag 1 yr) and House Price (last year)

	BB10E	E		- V0114		DD10E 4
4070	PRICE	EMP	INT-2		REAL OIL-2	
1978	69500	274.2911	8.916428	1.063442	46.35005	64000
1979	78000	296.3924	8.433119	1.140659	46.08086	69500
1980	89000	322.5189	9.03489	1.171424	42.65799	78000
1981	99000	331.4195	10.01833	1.169227	58.07817	89000
1982	90000	311.1433	12.36697	1.198903	83.00738	99000
1983	80000	313.5184	15.19692	1.233735	80.80226	90000
1984	70000	336.7198	14.54014	1.232412	64.64257	80000
1985	73000	353.5208	11.43417	1.295066	54.07598	70000
1986	74500	365.6215	12.73	1.365507	51.86081	73000
1987	84000	371.5718	10.83	1.389471	47.14784	74500
1988	93400	379.9	9.121667	1.325983	24.16168	84000
1989	106000	390.7	9.495833	1.230701	29.34505	93400
1990	110000	395.5	9.833333	1.183972	23.15447	106000
1991	110000	395.6	9.795	1.166774	27.53307	110000
1992	115000	392.7	10.7625	1.145726	31.85888	110000
1993	115000	395.1	9.418333	1.208723	25.37114	115000
1994	117000	403.2	8.053333	1.290088	24.20517	115000
1995	109000	425.2	7.215	1.365673	21.3202	117000
1996	112000	450.7	8.425	1.372445	20.03746	109000
1997	130000	471.7	8.0825	1.363522	21.78905	112000
1998	150000	498.8	7.203333	1.384598	25.63583	130000
1999	145000	515.5	6.109167	1.483505	22.59448	150000
2000	150000	541.9	5.296667	1.485705	14.52008	145000
2001	152960.5	562.8	5.551667	1.485394	20.2016	150000
2002	179100	572.6	5.89	1.54884	31.22949	152960.5
2003	183500	583.5	5.4675	1.570343	24.22024	179100
2004	189900	598.3	5.294167	1.401015	25.10024	183500

SUMMARY OUTPUT

Regression Statistics										
Multiple R	0.986999818									
R Square	0.974168641									
Adjusted R Square	0.968018317									
Standard Error	6337.463458									
Observations	27									

	df	SS	MS	F	Significance F
Regression	5	31808055258	6361611052	158.3931	6.21117E-16
Residual	21	843432304.8	40163443.08		
Total	26	32651487563			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	48543.8211	19247.05766	2.52214	0.01981	8517.37366	88570.26851	8517.37366	88570.26851
Employment	271.3119	73.81306	3.67566	0.00141	117.80928	424.81458	117.80928	424.81458
Interest -2	-2588.1735	949.41536	-2.72607	0.01266	-4562.59080	-613.75616	-4562.59080	-613.75616
Exchange -1	-60457.8502	23183.58807	-2.60779	0.01643	-108670.76070	-12244.93963	-108670.76070	-12244.93963
Real Oil -2	259.1513	133.55474	1.94041	0.06587	-18.59104	536.89354	-18.59104	536.89354
Price -1	0.4142	0.13580	3.04988	0.00609	0.13176	0.69659	0.13176	0.69659

Appendix G

Regression Quarterly House Prices vs. Employment, Real Oil-7, Interest Rate-10, Exchange Rate-4 and Price last Quarter

	DDIOF	E14B	DEAL OIL 7	INIT 40	EVOL. 4	DDIOE 4									
1978.1	PRICE 65,500	EMP 269.0	REAL OIL-7 46.296	INT-10 9.2785	EXCH-4 1.0299	PRICE-1 64000									
1978.2	66,750	270.6	46.021	9.2254	1.0524	65500									
1978.3	68,000	276.0	45.341	9.0631	1.0697	66750	SUMMARY C	LITPLIT							
1978.4	69,500	281.5	46.955	9.0930	1.1017	68000									
1979.1	71,500	286.9	46.170	9.0048	1.1133	69500	Regressi	on Statistics							
1979.2	72,500	292.3	45.456	8.5047	1.1273	71500	Multiple R	0.992695849							
1979.3	73,500	299.5	44.795	8.3811	1.1437	72500	R Square	0.985445048							
1979.4	78,000	306.8	43.653	8.5239	1.1783	73500		qı 0.984738497							
1980.1	80,000	314.0	42.480	8.3492	1.1864	78000		or 4443.919041							
1980.2	83,000	321.2	41.742	8.4783	1.1581	80000	Observations	109							
1980.3	86,000	325.3	41.873	8.8977	1.1664	83000									
1980.4	89,000	329.5	44.218	8.9838	1.1748	86000	ANOVA								
1981.1 1981.2	74,000 86,500	333.6 337.7	51.930 63.764	8.9056 9.3524	1.1643 1.1701	89000 74000	Danasaiaa	df	SS 1.37718E+11	MS 27543626676	F 1394.726	Significance F 7.00443E-93			
1981.2	99,000	337.7	70.140	9.3524	1.1701	86500	Regression Residual	5 103	2034086894	19748416.44	1394.726	7.00443E-93			
1981.4	99,000	323.6	81.882	9.4462	1.1840	99000	Total	103	1.39752E+11	19740410.44					
1982.1	99,000	316.6	84.465	9.9279	1.1936	99000	Total	100	1.0070221111						
1982.2	99,000	309.6	82.720	11.0072	1.1986	99000		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
1982.3	94,000	309.3	81.192	12.7802	1.2117	99000	Intercept	12353.03	6173.48	2.0010	0.0480	109.3848	24596.6849	109.3848	24596.6849
1982.4	90,000	309.0	86.902	11.3535	1.1918	94000	Employment	80.51	23.06	3.4915	0.0007	34.7804	126.2491	34.7804	126.2491
1983.1	89,000	308.7	82.292	12.4742	1.2089	90000	Real Oil-7	53.66	35.09	1.5294	0.1292	-15.9258	123.2473	-15.9258	123.2473
1983.2	88,000	308.4	75.771	12.8600	1.2446	89000	Interest-10	-696.03	264.55	-2.6310	0.0098	-1220.6955	-171.3603	-1220.6955	-171.3603
1983.3	86,000	315.1	73.686	13.1728	1.2499	88000	Exchange-4	-14992.80	6898.80	-2.1732	0.0321	-28674.9448	-1310.6544	-28674.9448	-1310.6544
1983.4	80,000	321.8	69.606	15.0333	1.2314	86000	Price-1qtr	0.81	0.04	18.6368	0.0000	0.7277	0.9010	0.7277	0.9010
1984.1	73,000	328.6	63.764	17.2578	1.2273	80000									
1984.2	75,500	335.3	62.398	15.3237	1.2310	73000									
1984.3	75,500	339.4	61.661	15.2906	1.2328	75500	4005	PRICE	EMP	REAL OIL-7	INT-10	EXCH-4	PRICE-1		
1984.4 1985.1	70,000 68,000	343.5 347.6	56.140 52.239	16.3900 14.5567	1.2385 1.2554	75500 70000	1995. 1995.		415.5 421.8	23.289 20.341	7.5333 7.7500	1.3413 1.3824	117000 115000		
1985.1	70,000	351.7	53.488	11.9233	1.2925	68000	1995.		430.9	18.323	7.7500	1.3713	112500		
1985.3	70,000	355.5	53.280	11.3200	1.3139	70000	1995.		433.0	16.944	7.4567	1.3678	110000		
1985.4	73,000	359.2	52.053	11.0167	1.3184	70000	1996.		438.1	20.526	6.9933	1.4069	109000		
1986.1	75,000	362.9	52.357	11.7733	1.3534	73000	1996.		454.5	21.496	6.7600	1.3713	110000		
1986.2	77,000	366.6	51.287	11.6267	1.3693	75000	1996.	3 112,000	456.4	20.705	7.0933	1.3555	111000		
1986.3	74,500	366.5	50.609	12.3333	1.3600	77000	1996.	4 116,000	454.3	21.627	8.4900	1.3560	112000		
1986.4	74,500	366.4	47.978	13.6900	1.3793	74500	1997.		460.6	23.068	8.9933	1.3691	116000		
1987.1	72,000	366.3	47.811	13.0433	1.4037	74500	1997.		461.0	20.885	9.1233	1.3645	120000		
1987.2	78,000	366.2	45.905	11.8533	1.3842	72000	1997.		471.1	21.099	8.8900	1.3701	124000		
1987.3	80,000	372.6	45.885	11.7467	1.3853	78000	1997.		495.2	23.007	8.0000	1.3503	127000		
1987.4 1988.1	84,000 84,000	381.1 377.4	32.457 21.678	10.9100 10.6700	1.3847 1.3378	80000 84000	1998. 1998.		495.1 496.3	25.122 25.503	8.0533 7.3867	1.3585 1.3861	130000 154000		
1988.2	84,000	376.2	19.791	9.9933	1.3329	84000	1998.		502.3	28.293	7.3933	1.3848	154000		
1988.3	92,500	381.0	22.334	9.6900	1.3222	84000	1998.		501.7	25.591	7.7500	1.4089	154000		
1988.4	93,400	384.8	27.900	8.9533	1.3110	92500	1999.		508.0	21.719	7.3733	1.4304	150000		
1989.1	89,000	393.4	29.613	8.9600	1.2674	93400	1999.		515.5	21.453	6.2967	1.4467	150000		
1989.2	95,000	396.7	30.495	8.8833	1.2298	89000	1999.	3 150,000	515.8	21.136	6.5400	1.5148	150000		
1989.3	106,000	383.9	28.687	8.2967	1.2194	95000	1999.		522.8	16.106	6.4900	1.5422	150000		
1989.4	106,000	388.5	24.124	9.4100	1.2062	106000	2000.		534.5	14.726	5.8533	1.5113	145000		
1990.1	118,000	391.4	24.680	10.3033	1.1919	106000	2000.		538.3	14.084	5.5533	1.4728	147000		
1990.2	125,000	396.3	22.460	9.9733	1.1932	118000	2000.		540.4	12.871	5.4067	1.4860	147000		
1990.3 1990.4	120,000 110,000	395.9	20.854 26.189	9.3500 9.8000	1.1823 1.1685	125000 120000	2000. 2001.		554.3	12.834	5.3933 5.3633	1.4727 1.4535	152000 150000		
1990.4	110,000	398.0 398.5	28.960	10.1867	1.1826	110000	2001.		545.2 561.3	18.061 22.812	5.0233	1.4802	152000		
1991.2	115,000	397.8	26.324	9.9967	1.1704	110000	2001.		569.6	26.417	5.0667	1.4822	152000		
1991.3	113,000	396.0	28.028	10.3367	1.1531	115000	2001.		574.6	30.707	5.3400	1.5257	155000		
1991.4	110,000	389.5	28.806	9.7667	1.1610	113000	2002.		573.5	29.968	5.6467	1.5278	155000		
1992.1	110,000	386.8	22.933	9.5200	1.1558	110000	2002.	2 175,100	567.7	32.323	6.1533	1.5411	166900		
1992.2	117,000	393.8	33.396	9.5567	1.1489	110000	2002.		574.3	31.196	6.2200	1.5461	175100		
1992.3	117,000	398.4	41.247	10.4833	1.1436	117000	2002.		574.7	26.881	6.0100	1.5804	179100		
1992.4	115,000	391.3	26.356	11.0033	1.1347	117000	2003.		575.8	25.708	5.7933	1.5944	179100		
1993.1	114,000	390.1	24.554	10.9300	1.1772	115000	2003.		581.7	24.873	5.5367	1.5542	181100		
1993.2	115,000	391.0	24.851	10.6333	1.1942	114000	2003.		585.4	18.811	5.3867	1.5632	184300		
1993.3 1993.4	115,000 115,000	394.9	25.171	9.7300 9.7567	1.2016 1.2619	115000	2003. 2004.		590.8 595.9	20.888	5.7833 5.4800	1.5695 1.5098	187400		
1993.4	117,000	404.4 402.1	21.577 24.847	9.7567	1.2619	115000 115000	2004. 2004.		600.2	25.289 27.249	5.4800	1.3984	183500 181600		
1994.1	117,000	396.5	25.747	8.5767	1.2702	117000	2004.		599.7	26.254	5.5067	1.3801	189100		
1994.3	117,000	399.6	24.097	8.4300	1.3039	117000	2004.		597.2	31.350	5.5000	1.3158	189500		
1994.4	117,000	415.1	22.898	8.5000	1.3249	117000	2005.		604.4	26.068	5.0967	1.3178	189900		

Appendix H

Regression Rent vs. Employment, Exchange Rate-1, Real Oil-2, Rent last year

	RENT EMP		EXCH-1	REAL OIL-2	RENT-1	
1985	496	353.52	1.2951	54.0760	485	
1986	509	365.62	1.3655	51.8608	496	
1987	510	371.57	1.3895	47.1478	509	
1988	523	379.90	1.3260	24.1617	510	
1989	555	390.70	1.2307	29.3451	523	
1990	595	395.50	1.1840	23.1545	555	
1991	608	395.60	1.1668	27.5331	595	
1992	607	392.70	1.1457	31.8589	608	
1993	593	395.10	1.2087	25.3711	607	
1994	594	403.20	1.2901	24.2052	593	
1995	592	425.20	1.3657	21.3202	594	
1996	606	450.70	1.3724	20.0375	592	
1997	647	471.70	1.3635	21.7891	606	
1998	722	498.80	1.3846	25.6358	647	
1999	753	515.50	1.4835	22.5945	722	
2000	753	541.90	1.4857	14.5201	753	
2001	783	562.80	1.4854	20.2016	753	
2002	804	572.60	1.5488	31.2295	783	
2003	804	583.50	1.5703	24.2202	804	
2004		598.30	1.4010	25.1002	804	
2005			1.3013	28.5776		
			1.2364	36.2156		
				42.8150		

SUMMARY OUTPUT

Regression Statistics				
Multiple R	0.993991272			
R Square	0.988018648			
Adjusted R Square	0.984595405			
Standard Error	12.87168923			
Observations	19			

ANOVA

	df	SS	MS	F	Significance F
Regression	4	191275.1062	47818.777	288.62063	2.80578E-13
Residual	14	2319.525371	165.68038		
Total	18	193594.6316			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	150.5367	42.8937	3.5095	0.0035	58.5389	242.5345	58.5389	242.5345
Employment	1.1614	0.2056	5.6499	0.0001	0.7205	1.6023	0.7205	1.6023
Exchange-1	-205.2827	55.2380	-3.7163	0.0023	-323.7565	-86.8089	-323.7565	-86.8089
Real Oil-2	0.5130	0.3996	1.2838	0.2200	-0.3440	1.3699	-0.3440	1.3699
Rent-1	0.3709	0.1167	3.1775	0.0067	0.1205	0.6212	0.1205	0.6212