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Abstract

The abundance of diverse biological data from various sources constitutes a rich source of knowledge, which has the power
to advance our understanding of organisms. This requires computational methods in order to integrate and exploit these
data effectively and elucidate local and genome wide functional connections between protein pairs, thus enabling
functional inferences for uncharacterized proteins. These biological data are primarily in the form of sequences, which
determine functions, although functional properties of a protein can often be predicted from just the domains it contains.
Thus, protein sequences and domains can be used to predict protein pair-wise functional relationships, and thus contribute
to the function prediction process of uncharacterized proteins in order to ensure that knowledge is gained from sequencing
efforts. In this work, we introduce information-theoretic based approaches to score protein-protein functional interaction
pairs predicted from protein sequence similarity and conserved protein signature matches. The proposed schemes are
effective for data-driven scoring of connections between protein pairs. We applied these schemes to the Mycobacterium
tuberculosis proteome to produce a homology-based functional network of the organism with a high confidence and
coverage. We use the network for predicting functions of uncharacterised proteins.

Availability: Protein pair-wise functional relationship scores for Mycobacterium tuberculosis strain CDC1551 sequence data
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Introduction

In recent years we have experienced an exponential growth of

biological data, including primary data such as genomic sequences

resulting from worldwide DNA sequencing efforts and as well as

functional data from high-throughput experiments, respectively.

This abundance of primary sequence data and the large

availability of public gene and protein sequence databases have

the capability to provide many new insights into the biology of

organisms. Several studies have shown that very often functional

properties of a protein are not necessarily determined by the whole

sequence but only by some of its sub-sequences [1]. Sequences

sharing similar or conserved features are referred to as

homologous sequences, and these features can be used for

inferring and scoring protein pair-wise functional connections.

One of these features is a protein domain, defined as a part of a

protein sequence and structure that can evolve, function and exist

independently of the rest of the protein chain [2].

Discovering sequence homology and modelling functional

interactions between homologues from sequence and experimental

data constitutes an important problem in molecular biology, as

these can help to describe their behaviour in cellular processes and

reveal the interplay between particular genes and proteins. In

order to determine functional similarity between proteins, many

approaches try to identify the sub-sequences of the proteins that

may contribute to their function. Several Bioinformatics tools have

been designed for deriving and storing these functional features.

These include standard sequence comparison tools such as

BLAST [3,4], protein sequence databases such as UniProt [5],

and protein signature databases such as InterPro [6], which

integrates together predictive models or protein signatures

representing protein domains, families and functional sites, from

multiple source databases, namely, PROSITE, Pfam, PRINTS,

ProDom, SMART, TIGRFAMs, PIRSF and SUPERFAMILY,

Gene3D, PANTHER [7].

Using homologous datasets obtained from pair-wise sequence

similarities, and protein domains and families in public databases,

the inference of functional connections can be carried out based

on the fact that two proteins sharing common domains or

belonging to the same family are more likely to be functionally

linked [8], i:e:, have similar functions with respect to molecular

function and biological process. Note, the interactions discussed

here are potential functional interactions, not direct physical

interactions. These functional associations may be set in Boolean

or binary form, i:e:, either two genes or proteins are functionally

linked in which case the score is 1 or they are not and the score

is 0. Such a scoring scheme is not consistent since it does not

take into account the nature of parameters used to derive

these functional associations. Understanding the properties of

these functional relationships is key to successful mathema-
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tical modelling of such a system and developing efficient scoring

techniques.

There are several problems with generating functional interac-

tion networks using diverse data types such as sequence and

functional genomics data. Considering that we are dealing with

inaccurate data obtained from different experiments [9,10], the

uncertainty of data and noise inherent in each experiment must be

efficiently managed by systematically weighing or scoring these

functional associations [11]. This is referred to as a reliability or

confidence score of functional associations for the particular

computational approach used for prediction. This produces a

graph with confidence-weighted relationships between each protein

pair, which weighs each evidence type on the basis of its accuracy.

Data-driven prediction methods should be able to extract essential

features from particular datasets and to discount unwanted

information. So, these scoring schemes must be data source and

technology dependent, meaning that a given scoring scheme should

normally vary according to the data sources and be designed on the

basis of the technology used. Furthermore, the effectiveness of a

scoring scheme for functional associations is critical for the quality of

the analyses performed on the resulting network, including

functional and structural analysis. An inability to accurately infer

and score these protein pair functional associations leads to the

propagation of annotation errors [12] and may negatively impact

on the prediction analyses performed on the basis of these networks.

Several scoring schemes have been proposed for sequence data

and are, so far, limited to only finding the similarity scores of

proteins that are referred to as scoring functions. In the case of

protein domain and family data, the scoring function is deduced

from the number of common signatures shared by two proteins

[10,13]. These schemes miss other features related to the data under

consideration including their nature and sources. On the other

hand, for sequence similarity data this scoring function is just the

E{value obtained from sequence comparison tools, and pair-wise

functional interactions between proteins are obtained by simply

applying an E{value cut-off [10,14–17]. However, there is no

single fixed E{value describing where homology ends and non

homology begins. This shows that these schemes are not equipped

to meet the requirements for scoring functional relationships, i:e:,
they do not capture all information shared between sequences.

In order to overcome these shortcomings, we propose an

information-theoretic based measure to score protein-protein

relationships in functional interaction networks predicted from

homology data. This approach is shown to be effective for scoring

functional pair-wise relationships from homology data, and translat-

ing the amount of biological content shared between proteins into the

score of their functional relationships. We apply our method to score

functional relationships between proteins in Mycobacterium tuberculosis

(MTB) strain CDC1551 to produce a functional network from

sequence data for this organism. This approach is compared to the

STRING (Search Tool for the Retrieval of Interacting Genes/

Proteins) [11,18] homology scoring system for sequence similarity,

and to existing scoring schemes for protein family and domain

sharing [10,13] in terms of functional classification coherence. Results

show that the new scoring approach is as effective as that of the

STRING approach, but produces a reliable functional network with

higher coverage. The MTB functional network produced is then used

to predict the functional class of proteins of unknown function,

evaluated using leave-one-out cross validation.

Materials and Methods

This section describes novel scoring schemes for protein family

and domain data extracted from protein family databases, as well

as for protein sequence similarity obtained by running sequence

comparison tools such as Basic Local Alignment Search Tool

(BLAST). Sequences in Fasta format and InterPro data for the

organism were downloaded from the Integr8 project of the

European Bioinformatics Institute (EBI) at http://www.ebi.ac.uk/

integr8. Scoring functional relationships for data from protein

families and domains has been widely addressed by the

Bionformatics community. However, the approaches described

so far in the literature are limited to finding the similarity scores

between proteins by the number of common signatures shared by

proteins. Two examples of such a scheme are given below.

Scheme 1: Scoring Function of Pfam Domain Sharing [10].

The scoring function Spfam of Pfam domain sharing is simply

the number of common domains of the two proteins defined as

follows:

Spfam pi,pj

� �
~ Dpi

\Dpj

��� ��� ð1Þ

where Dpk
is the set of Pfam domains found in protein pk.

Scheme 2: Scoring Function based on Protein Signature

Profiling [13].

The similarity score between a pair of proteins pi,pj

� �
is

computed using a binary similarity function between a pair of their

signature profiles and is given by

m pi,pj

� �
~

Pn
‘~1

Pi ^ Pj

� �
‘

Pn
‘~1

Pi _ Pj

� �
‘

ð2Þ

where n is the number of signatures contained in proteins of a

genome of interest and P‘~ S‘1,S‘2, . . . ,S‘n½ � the signature profile

of protein p‘, with S‘k~1, if the signature Sk exists in protein p‘
and S‘k~0 otherwise.

Note that the scheme 1 expressed by the equation (1) can be

rewritten using Boolean operator ‘and (^)’ as follows:

Spfam pi,pj

� �
~
Xn

‘~1

Pi ^ Pj

� �
‘

and similarly, the scheme 2 in the equation (2) can also be written

using set operators ‘intersection (\)’ and ‘union (|)’ as

m pi,pj

� �
~

Dpi
\Dpj

��� ���
Dpi

|Dpj

��� ���

with Pk and Dpk
as defined above.

These two schemes just count the number of shared signatures

without taking into account the nature of the data and experiments

used to derive them. In addition, the limitation of the second

scheme can be seen in this small illustration: Let’s consider three

proteins p1, p2, and p3, with 3, 4, and 9 detected signatures,

respectively. If we assume that p1 and p2 share 2 signatures and 3
signatures are shared by p2 and p3, we have: m p1,p2ð Þ~0:400 and

m p2,p3ð Þ~0:273. So, m p2,p3ð Þvm p1,p2ð Þ, whereas one should

expect to have m p1,p2ð Þvm p2,p3ð Þ when looking at the number of

the common signatures shared by these proteins. In fact, the

scoring function as a function of the number of common signatures

shared by a pair of proteins, is expected to be increasing. This
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property does not hold for scoring functions based on protein

signature profiling, making this unattractive.

In the case of sequence similarity, the existing scoring schemes

rely on the use of the negative logarithm of E{values obtained

from a sequence similarity tool. As pointed out previously, the

problem with these scoring schemes is that initially there is no

single fixed E{value describing where homology ends and non

homology begins. This constitutes an impediment to these scoring

schemes beyond the fact that they may obviously lead to the

singularities caused by the log of zeros.

Thus, these schemes are not equipped to capture all the parameters

related to the data under consideration and technology used to derive

them. In order to overcome these shortcomings, we introduce novel

scoring schemes based on the information-theoretic approach, taking

into account the nature of the data and technology used and where the

user can tune parameters based on their confidence in the data source.

Scoring Scheme For Protein Family and Domain
Consider two proteins denoted pi and pj , sharing signatures or

entries S1, . . . ,SM : We define the similarity score gij of proteins pi

and pj as the minimum number of occurrences of these signatures

in proteins pi and pj , i:e:,

g:gij~
XM
k~1

minfnki,nkjg ð3Þ

where nk‘ is the number of occurrences of signatures Sk in the

protein p‘:
Broadly speaking, the reliability or confidence score increases

with the confidence-level of data, which depends on the data source

and is torn down by the uncertainty-level of data linked to the

dispersion measure s. As we are dealing with data from experiments

containing a certain level of uncertainty, which propagates into the

data, it is natural to use the normal distribution, as these data can be

summarized in terms of mean and standard deviation. In fact, in this

case this distribution constitutes an attractive approximation as it

maximizes information entropy in the data. Thus, we set the

confidence-level d of the similarity score g as

d:d g,s,að Þ~w
ga

s

� �
ð4Þ

with the function w the cumulative probability of the standard

Gaussian distribution defined by

w zð Þ~ 1ffiffiffiffiffiffi
2p
p

ðz

{?
exp {

x2

2

� �
dx ð5Þ

and a the calibration control parameter, with a§0:5, strengthening

the impact of the confidence-level for the data under consideration,

in which case, a~0:5 is associated with low confidence data. The

training dataset D consists of all pairs Sk,xkð Þ, where xk is the

number of times the signature Sk was observed. In order to get rid of

observations that lie at abnormal distances from the data, referred to

as outliers, it is recommended to use the rectified dataset DS , the

subset of the training datasetD consisting of a data point which falls

inside 1:5 IQRð Þ, i:e:,

DS~ Sk,xkð Þf [ D : Q1{1:5 IQRð ÞƒxkƒQ3z1:5 IQRð Þg

with Q1 and Q3, respectively, the 1st (lower) and 3rd (upper)

quartile, and IQR~Q3{Q1 the interquartile range. s is thus the

standard deviation of the rectified dataset, estimated from

maximum likelihood and given by

s~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

k~1

xk{�xxð Þ2
vuut ð6Þ

where N is the number of signatures found in the rectified dataset,

and �xx~
PN

k~1 xk=N, the mean or average of the set.

Given the confidence-level d of the similarity score g defined in

equation (4), the uncertainty measure related to the outcome g
resulting from the data is obtained from the binary entropy

function, given by

H2 dð Þ~{d log2 dð Þ{ 1{dð Þ log2 1{dð Þ ð7Þ

In fact, the uncertainty measure function H2 dð Þ is defined in the

interval ½0,1�, with H2 0ð Þ~0~H2 1ð Þ since lim
s?0z

s log2 sð Þ~0, and

also lim
s?1{

1{sð Þ log2 1{sð Þ~0: Finally, we set up the capacity of

inferring the functional relationship score between two proteins

belonging to the same family or sharing common signatures as

C dð Þ~1{H2 dð Þ ð8Þ

and the reliability or confidence score of the functional

relationship between two proteins by

R~
C dð Þ

max
s

C sð Þ ð9Þ

Note that for g significantly large, d converges to 1: Therefore, the

uncertainty measure H2 dð Þ converges to 0, leading to the

maximum capacity of inferring the functional relationship of 1:
This means that the reliability of a functional relationship between

two proteins is given by

R~C dð Þ=bit ð10Þ

To illustrate the dependency of this new measure on the data

under consideration and the technology used to produce them, we

plot the variation of confidence level d, uncertainty H2 and

capacity C in terms of common domains g between proteins, for

different values of a, which keeps track of the technology used to

produce data and s controlling the impact of data under

consideration, respectively. These are user-tunable parameters

and results are shown in figures 1–4.

These results show that the confidence level d increases as the

number of common signatures between the two proteins increases,

and that for a higher value of a, indicating the efficiency level of the

technology used to derive data, the confidence level d is higher, and

so is the reliability or confidence score, due to the fact that in this

case the uncertainty component is smaller. Similarly, the impact of

data obtained from each technology is taken into account through

s: Interestingly, this confidence score formula accommodates the

case where no common pattern is found between two proteins in the

training dataset, in which case, the confidence score or reliability of

a functional relationship is 0: In addition, this scoring scheme takes

into account a false positive assignment of any of the common

patterns by narrowing down the confidence score of proteins

containing only one common signature, depending on the measure

Scoring Functional Interactions from Sequence Data
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of dispersion s which can provide a hint on the nature of the data

under consideration. Indeed, the measure of dispersion s impacts

on the confidence score in the sense that if data is far away from the

average, in which case s is high, the uncertainty component might

be large and significant while calculating the confidence score, thus

yielding a lower confidence score. Thus, with knowledge of the data

source, the measure of dispersion s can be penalized by a factor e

between 0 and 1, in order to reduce the impact of the uncertainty

component.

Scoring Scheme For Protein Sequence Similarity
For a given set of pair-wise homologous sequences, Bastian

[19, 20] showed that their biological evolution can be formalized

by the evolution of their shared amount of information. This is

Figure 1. Confidence level variation for a~1. For a fixed calibration control parameter, as the number of shared domains increases, the
confidence level also increases with a decrease in the standard deviation s.
doi:10.1371/journal.pone.0018607.g001

Figure 2. Confidence level variation for s~2:38: For a fixed standard deviation, as the number of shared domains increases, the confidence
level also increases with an increase in the calibration control parameter.
doi:10.1371/journal.pone.0018607.g002
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measured by the mutual information in the sense of Hartley [21,

22], estimating the information they share due to their common

origin and parallel evolution under similar selective pressure.

Moreover, this mutual information is proportional to the bit score

computed with standard methods in sequence comparisons.

Let S s1,s2ð Þ be the bit score alignment of homologous

sequences s1 and s2, set with its standard units, and I s1,s2ð Þ

mutual information between these two sequences. We have

S s1,s2ð Þ~l|I s1,s2ð Þ ð11Þ

where l is a constant defining the unity, which depends on the

statistical parameter scale K for the search size (http://www.ncbi.

nlm.nih.gov/BLAST/tutorial/Altschul-1.html) derived from the

Figure 3. Variation of uncertainty in terms of s: As the number of shared domains increases, the uncertainty composante decreases as the
standard deviation s decreases.
doi:10.1371/journal.pone.0018607.g003

Figure 4. Variation of capacity in terms of s: As the number of shared domains increases, the capacity for inferring functional relationships
between proteins, and therefore link confidence scores increases as the standard deviation s decreases.
doi:10.1371/journal.pone.0018607.g004
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scoring matrix and amino acid composition of the sequence [23].

Therefore, generally S s1,s2ð Þ=S s2,s1ð Þ and they are equal only if

they have the same scale for the search size. However, the mutual

information I s1,s2ð Þ between two sequences s1 and s2 satisfies

I s1,s2ð Þ~I s2,s1ð Þ and I s1,s2ð Þ§0 [24].

Equation (11) shows that the mutual information I s1,s2ð Þ
increases with the bit score S s1,s2ð Þ, which measures the average

information available per position to distinguish an alignment

from chance, calculated using relative entropy of target and

background distributions [25] as

H s1,s2ð Þ~
X

i,j

qijsij~
X

i,j

qij log2

qij

qiqj

� �
ð12Þ

where qij is the ‘‘target’’ residue substitution frequency, the

probability of finding a residue i aligned with a residue j after a

certain amount of evolution given that they have both evolved

from a common ancestor who had a residue k at that position. qi is

the probability of occurrence of a residue i in a collection of

sequences, i:e:, the probability that a residue i would align by

chance based solely on its frequency in a sequence.

Thus, we define the reliability or confidence score R s1,s2ð Þ of a

functional relationship between two protein sequences s1 and s2 as

normalized mutual information calculated [26] as

R s1,s2ð Þ~ I s1,s2ð Þ
max H s1ð Þ,H s2ð Þf g ð13Þ

measuring how the protein sequence s1 is able to predict the

protein sequence s2, and where H sð Þ is the relative entropy

obtained by aligning a protein sequence s by itself. Indeed, the

increase of mutual information with relative entropy yields bias,

and this bias is corrected by dividing the mutual information by

the maximum entropy of the sequence pair.

Using equation (11), the mutual information I s1,s2ð Þ can be

computed as follows:

I s1,s2ð Þ~ S s1,s2ð ÞzS s2,s1ð Þ
lzl0

ð14Þ

where l and l0 are constants defining unity for S s1,s2ð Þ and

S s2,s1ð Þ, respectively. For a protein sequence s, H sð Þ~I s,sð Þ,
obtained using equation (14) and given by

H sð Þ~ 2|S s,sð Þ
lzl0

ð15Þ

Finally, R s1,s2ð Þ is independent of constants defining unity for

S s1,s2ð Þ and S s2,s1ð Þ, and calculated as

R s1,s2ð Þ~ S s1,s2ð ÞzS s2,s1ð Þ
2| max S s1,s1ð Þ,S s2,s2ð Þf g ð16Þ

It is obvious that this scoring scheme relies only on the two

protein sequences for which the confidence score is being

computed. Two protein sequences whose mutual information of

their evolutionary history embedded in their similarity score is 0,

indicates that the two sequences are not similar and so, their

confidence score is also 0. Thus, this scoring scheme accommo-

dates the case where no similarity is found between two protein

sequences and the error due to the arbitrary growth of the mutual

information between two protein pairs is corrected by the

maximum entropy induced.

Results and Discussion

MTB Functional Network Derived from Sequence Data
The computation of relationship scores (as described in the

methods section) was performed on the whole Mycobacterium

tuberculosis strain CDC1551 proteome to produce functional links

between proteins from homology data, including pair-wise links

from sequence similarity and protein family data derived from the

InterPro database. Sequence similarity searches were carried out

using BLASTP under a BLOSUM62 matrix based on the premise

that if the E{value is less than 0:01, the hit is similar to the query

sequence and is likely to be evolutionarily related [27]. Resulting

functional link scores are provided in Table S1.

We investigated the general behaviour of the link confidence

scores induced from homology datasets. Results are depicted in

Table 1 in terms of number and frequency of functional links in a

given bin S : x, where S : x corresponds to link score values

ranging between (x{1)=10 and x=10 (x{1)=10vscoreƒ½
x=10�.These results indicate that the link confidence scores from

protein family data are either low (ƒ0:4) or high (w0:7). This is

due to the calibration control parameter applied to data from the

InterPro database, which is a~1 with penalty parameter e~0:45,

producing either low or high confidence according to the fact that

two proteins share only one domain or more than one domain,

respectively. Moreover, in most cases, prediction of functional

links from sequence similarity matches that of protein family data

but at different confidence levels. The link score sij between

proteins pi and pj obtained for the combined data is given by

sij~1{ 1{rS
ij

� 	
1{rF

ij

� 	
ð17Þ

under the assumption of independency, where rS
ij and rF

ij are link

confidence scores obtained from sequence similarity and protein

family datasets, respectively.

Evaluating the Scoring Scheme
We compared our approach for scoring functional interactions

inferred from sequence similarity to the STRING homology

scoring scheme. STRING is a database of known and predicted

protein-protein associations for a large number of organisms

derived from high-throughput experimental data, the mining of

databases and literature, and from predictions based on genomic

analysis. For this assessment we used only their links derived from

homology data, which uses a scoring scheme based on E-values

obtained from the Smith-Waterman algorithm with a reasonably

strict cut-off score to ensure high quality matches [28]. We also

compared our approach for scoring functional interactions from

protein family and domain to the scoring scheme for protein

signature profiling (SFSP).

The STRING scheme classifies its functional link confidence

scores into three different categories, low, medium and high

confidence, with corresponding scores less than 0.4, between 0.4

and 0.7, and greater than 0.7, respectively [11]. These scores

measure our confidence in pair-wise functional interactions in the

networks produced. Even though sequence data are initially

accurate, computational tools used to produce sequence similarity

data may introduce noise due to certain unpredictable factors,

such as arbitrary increases of bit score or over-estimation of

similarity patterns between sequences. In order to take into

account these uncertainties in sequence similarity data while

Scoring Functional Interactions from Sequence Data
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ensuring the accuracy of functional interactions produced, one can

set a cut-off score above which a given interaction is more likely to

occur. Therefore, the comparison was performed in terms of

functional classification accuracy for links with a medium

confidence level and upwards (link score greater than 0:4). The

number of associations predicted in different MTB functional

networks produced using different approaches are shown sepa-

rately in Table 1 for each approach and confidence ranging from

low to high.

The SFSP as defined by equation (2) may produce several link

scores for the same number of shared domains, we have

considered the maximum score when over-estimating, their

minimum when underestimating and their average score,

referred to as SFSP-Max, SFSP-Under and SFSP-Mean, res-

pectively. We plot the scores obtained using our approach and

these from SFSP, and results are shown in figure 5. As pointed

out previously, the scoring function should be increasing since

our confidence level increases with the number of common

Table 1. MTB strain CDC1551 functional links derived from sequence data using our approach, STRING homology scheme for
sequence similarity, and using the SFSP approach for protein family and domain sharing.

Sequence Similarity Protein Family and Domain

Confidence Bins Our Approach STRING scheme Our Approach SFSP-Under SFSP-Aver SFSP-Over

Low S : 01 4321 0 0 33240 0 0

S : 02 3001 0 0 4365 0 0

S : 03 1206 0 0 814 0 0

S : 04 606 44 20915 172 27494 0

Medium S : 05 424 263 0 6 6 6

S : 06 215 140 0 41 5746 0

S : 07 96 99 0 45 1394 0

High S : 08 31 57 7847 0 3906 0

S : 09 21 58 0 18 155 45

S : 10 25 52 9945 6 6 38656

Medium-High Total: 812 669 17792 116 11213 38707

Overall Total : 9946 713 38707 38707 38707 38707

Number of Interactions per Source and Link Score shown separately by bin.
doi:10.1371/journal.pone.0018607.t001

Figure 5. Variation of Scores in the Protein Signature Profiling (SFSP) based approach compared to our approach. Change in Protein
Signature Profiling Score minimum, mean and maximum and our approach when varying the number of shared domains between proteins.
doi:10.1371/journal.pone.0018607.g005
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signatures shared between pair-wise proteins. These results show

that only SFSP-Under estimation provides the increasing scoring

function but unfortunately it yields a poor coverage and for this

reason it is not considered for further performance evaluation.

The scoring scheme developed here produces an increasing

scoring function and provides a better trade-off between SFSP-

Max and SFSP-Mean. Considering the confidence score cut-off

applied, the configuration of the network produced from SFSP-

Max estimation is the same as that derived using the scheme

based on the scoring function of domain sharing described by

equation (1).

Statistical significance of Functional Interactions Derived
We evaluated the statistical significance and biological

relevance of the functional interactions inferred using our scoring

approach in terms of functional classification coherence. To

measure this, an interaction between two proteins is said to be

significant or correct if these proteins belong to the same

functional class.

The functional classes were extracted from Tuberculist (http://

genolist.pasteur.fr/Tuberculist), and the repartition of interacting

proteins in the functional network per functional class or category

for different configurations is shown in Table 2. The evaluation

was done using a sub-network generated by each protein in the

functional network, consisting of functional interactions between a

protein under consideration and its direct neighbours, referred to

as a P-subgraph. The proteins in the unknown functional class

were excluded from the evaluation.

To assess functional category coherence of functional interac-

tions derived from a random model, we compute the P-value for

each P-subgraph defined as the probability that the P-subgraph

under consideration occurs by chance or is comprised of randomly

drawn interactions. The hypergeometric distribution, which yields

the probability of observing at least ‘ interactions between proteins

from a given P-subgraph of size S by chance among I interactions

of the same type in the entire functional network considered to

be a background distribution, is used to model the P-value [14]

given by

P{value~1{
X‘{1

n~0

I

n

� �
L{I

S{n

� �

L

S

� � ð18Þ

where L is the size of the functional network, i:e:, the number of

functional links in the network, with all the proteins in the

unknown class removed.

We assessed functional category coherence of functional

interactions derived using our approach and STRING homology

data for sequence similarity, as well as those inferred using our

scheme for protein family and domain, and those obtained using

SFSP-Mean and SFSP-Max estimation. Results displayed in

figures 6 and 7 show that the functional interactions induced

have a very low probability of occurring by chance. Note that this

statistical test against a random distribution aims at checking if a

given P-subgraph in the functional network consists of randomly

grouped proteins. These figures show that using a significance level

of 0:05 as the optimal threshold, more P-subgraphs derived using

our approach are statistically significant than those obtained from

the STRING homology scoring and provides roughly equal

statistically significant percentage of P-subgraphs with SFSP-Mean

and SFSP-Max schemes. A total of 205 out of 378, representing

54:2% of P-subgraphs in our network are significant compared to

213 out of 485 representing 43:9% of P-subgraphs for the

STRING scoring system for sequence similarity. For SFSP scheme

for protein family and domain, A total of 1078 out of 1515
representing 71:2% of P-subgraphs in our network are significant

compared to 901 out of 1261 representing 71:5% of P-subgraphs

for SFSP-Mean and to 1517 out of 2024 representing 75% for

SFSP-Max.

Effectiveness of The Novel Scoring Scheme
To evaluate the classification power of the new scoring scheme,

we used the modified Receiver Operator Characteristic (ROC)

curve analysis that measures the number of true positive (TP)

predictions (number of functional interactions correctly identified)

Table 2. Distribution of MTB strain CDC1551 proteins per functional class.

Sequence Similarity Protein Family and Domain

Functional Class Our Approach STRING Scheme Our Approach SFSP-Under SFSP-Aver SFSP-Over

1 Virulence, detoxification and adaptation 34 33 89 0 82 143

2 Lipid Metabolism 47 97 190 19 133 222

3 Information Pathways 12 21 148 2 125 183

4 Cell-wall and Cell Process 82 101 236 2 181 355

5 Stable RNAs - - - - - -

6 Insertion Sequences and Phages 32 2 42 0 30 55

7 PE/PPE/PGRS Proteins 89 43 59 0 57 142

8 Intermediary Metabolism and Respiration 65 174 603 1 508 759

9 Protein of Unknown Function 77 77 287 0 222 555

10 Regulatory Proteins 17 14 148 0 145 165

Total 455 562 1802 24 1483 2579

Number of proteins per functional class in the functional networks produced using our approach and the STRING homology scheme, and using the SFSP approach for
protein family and domain sharing.
doi:10.1371/journal.pone.0018607.t002
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against the number of false positive (FP) (number of functional

interactions incorrectly identified) [29], in which case the area

under the ROC curve (AUC) is used as a measure of dis-

criminative power. The larger the upper AUC value (the portion

between the curve and the line TP = FP), the more powerful the

scheme is.

For a given number of P-subgraphs ranging from 5 to 485, we

randomly generated 1000 independent samples and compute the

average number of correct and incorrect predicted interactions

expected to be normally distributed from the central limit

theorem. Thus, we perform modified ROC analyses for the two

scoring approaches, and results are shown in figure 8 for

sequence similarity. These results indicate that our approach

outperforms the STRING scheme, respectively, with an average

of 95:9% and 4:1% of functional interactions correctly and

incorrectly identified out of 378 P-subgraphs, compared to the

STRING scheme, which provides an average of 89:3% and

10:7% of functional interactions correctly and incorrectly

identified, respectively, out of 485 P-subgraphs. This shows not

only that it is not sufficient to ensure high quality matches [28]

Figure 6. Significance of functional interactions derived using our approach and the STRING scheme. At each significance level a in
these graphs, we counted all relevant predicted associations for the two approaches and computed the percentage. Each a corresponds to the
number of associations with p-value b and a ƒbva, where a is the significance level just before a in the plot.
doi:10.1371/journal.pone.0018607.g006

Figure 7. Significance of functional interactions derived using our approach and SFSP approach. At each significance level a in these
graphs, we counted all relevant predicted associations for the two approaches and computed the percentage. Each a corresponds to the number of
associations with p-value b and a ƒbva, where a is the significance level just before a in the plot.
doi:10.1371/journal.pone.0018607.g007
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by just applying a reasonably strict cut-off score when using the

Smith-Waterman algorithm, but also this practice may lead to a

poor coverage. Results in figure 9 indicate that our method

performs comparably to the SFSP-Max and SFSP-Mean

schemes, and provides a better trade-off between over-estimat-

ing and averaging scores for SFSP schemes in terms of precision

and coverage. Our approach provides an average of 79% and

21% of functional interactions correctly and incorrectly,

respectively, identified out of 1515 P-subgraphs. SFSP-Mean

yields an average of 80:5% and 19:5% of functional interactions

correctly and incorrectly identified, respectively, out of 1261 P-

subgraphs while SFSP-Max produces an average of 73:3% and

26:7% of functional interactions correctly and incorrectly

identified, respectively, out of 2024 P-subgraphs. Apart from

the general limitation common to scoring schemes inferred from

signature profiling based approaches, SFSP-Max produces a

poor precision. This poor performance is due to the fact that

when over-estimating it includes all false positives and our

approach corrects this, providing an improved precision and

coverage.

General Analysis of the Structure of the Functional
Network Produced

We performed a general analysis of the homology-based

functional network produced by integrating into a single network

all functional interactions inferred from sequence similarity and

protein family and domain data using our scheme. The number of

functional links in the combined network, which contains a total of

2206 proteins (nodes), is given in Table 3. The results in figure 10

show that this network exhibits scale-free topology, i:e:, the degree

distribution of proteins approximates a power law P kð Þ~k{c,
with the degree exponent c*1:55. We analyzed the general

behavior of this network by finding the number of cliques and the

distribution of hubs. Here protein hubs are described as ‘‘single

points of failure’’ able to disconnect the network. This functional

network contains 262 clusters, or cliques, with 174 hubs and with

the biggest cluster containing 1957 gene products.

Predicting Protein Functional Class
Several approaches have been proposed for predicting protein

functions from functional networks and are mainly classified into

two categories, namely global network topology and local

neighborhood based approaches. Global network topology based

approaches use global optimization [30–32] or probabilistic

methods [33–36] or machine learning [37–39] to improve the

prediction accuracy using the global structure of the network

under consideration. Unfortunately, these approaches raise a

scalability issue which might not be proportional to the

improvement in predictions compared to most straight forward

approaches, which rely only on local neighborhood [40] of

uncharacterized proteins.

In the case of local neighborhood based approaches, known as

‘Guilt-by-Association’ or ‘Majority Voting’ or ‘Neighbor Count-

ing’ [41], direct interacting neighbors of proteins are used to

predict protein functions. However, the biggest limitation of

approaches relying on the direct neighbors of the protein under

consideration is that they are unable to characterize proteins

whose direct interacting neighbors are all uncharacterized, thus

impacting negatively on annotation coverage. Investigating the

Figure 8. Modified ROC curves for functional interactions.
Number of incorrect functional interactions (false positives) versus
number of correct functional interactions (true positives) in the MTB
strain CDC1551 functional networks produced by our approach and the
STRING homology network for sequence similarity.
doi:10.1371/journal.pone.0018607.g008

Figure 9. Modified ROC curves for functional interactions.
Number of incorrect functional interactions (false positives) versus
number of correct functional interactions (true positives) in the MTB
strain CDC1551 functional networks produced by our approach and the
SFSP scheme for protein family and domain.
doi:10.1371/journal.pone.0018607.g009
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relation between interacting neighbors of a given protein using

network topology, Chua et al. [8,42] show that in many cases, a

protein shares functional similarity with level-2 neighbors (2

branch-lengths away) and proposed a functional similarity weight

(FS-Weight) method for predicting protein functions from protein

interaction data. Here, we analyze the performance of using direct

interacting neighbors and second level interacting neighbors. The

second level interacting neighbors were used when we were unable

to use direct interacting neighbors, in order to improve coverage.

The functional network produced from sequence data was used

to predict, where possible, the functional class of proteins in the

Tuberculist unknown functional class using a local neighborhood

based approach. Through this, a new functional class is assigned to

an unknown protein based on the functional class frequently

occurring among its direct interacting neighbors. In this case, the

score of a given functional class c for a protein p is given by the

frequency fc pð Þ of occurrence of functional class c among direct

neighbors of p, and calculated as follows:

fc pð Þ~
X

q [ N p

dq cð Þ ð19Þ

where N p refers to the set of direct interacting partners of protein

p, and dq is the q{function indicator given by

Figure 10. Power law property of MTB strain CDC1551 functional network obtained from sequence data. Connectivity distribution of
detected functional links k per protein, plotted as a function of frequency P kð Þ.
doi:10.1371/journal.pone.0018607.g010

Table 3. MTB strain CDC1551 functional links derived from sequence data using our approach.

Interactions from Interactions From Protein

Confidence Bins Sequence Similarity Family (InterPro data) Combined Interactions

Low S : 01 4321 0 206

S : 02 3001 0 125

S : 03 1206 0 62

S : 04 606 20915 18381

Medium S : 05 424 0 1634

S : 06 215 0 605

S : 07 96 0 262

High S : 08 31 7847 6998

S : 09 21 0 855

S : 10 25 9945 10022

Medium-High Total: 812 17792 20376

Overall Total : 9946 38707 39150

Number of Interactions per Source and Link Score shown separately by bin.
doi:10.1371/journal.pone.0018607.t003
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dq tð Þ~
1 if the protein q performs the function t

0 otherwise:




Since the objective is to assign to an unknown protein only one

functional class, we make use of global network information, and

the prediction of a given protein functional class is based on an

over represented functional class found amongst its direct

neighbors. The functional class with the largest chi-squared score

is assigned to the protein. The chi-square score of functional class c
for protein p [43] is given by

Sc pð Þ~ fc pð Þ{p(p)½ �2

p pð Þ ð20Þ

where fc pð Þ is defined in equation (19) and p pð Þ is the global

expected number of proteins belonging to the functional class c,

given by p pð Þ~n|pc, with pc that of proteins belonging to the

class c among all the proteins in the functional network under

consideration and n the order of the functional network, i:e:,
number of proteins in the network.

As an illustration, protein ‘fadA6’ (MT3660 or Rv3557c),

named Acetyltransferase FADA6 (UniProt accession P96834),

which is involved in lipid metabolism (figure 11), is functionally

linked to proteins annotated to the lipid metabolism class. This

means that if we assumed that the protein ‘fadA6’ was not

classified then it is likely that ‘fadA6’ would have been annotated

to the lipid metabolism class. Similarly, protein ‘lprJ’ (MT1729 or

Rv1690), named lipoprotein LPRJ (O33192), is also known to be

involved in lipid metabolism (figure 12). All its direct interacting

partners are of the unknown class, in which case if the class of ‘lprJ’

was not known, the use of level-1 neighbors would fail to classify

this protein. However, using the level-2 neighbors would

successfully classify this protein. Finally, figure 13 shows protein

MT1417 (Rv1372, Q7D8I1), which is of unknown class in

Tuberculist, but suggested by UniProt to belong to the

chalcone/stilbene synthase family known to be involved in lipid

metabolism. The prediction method annotates this protein to lipid

metabolism, thus confirming the suspicion.

Once again, the classification performance of these approaches

can be evaluated with modified ROC curve analyses. We used

leave-one-out cross-validation to evaluate the efficiency of these

prediction approaches at computing the number of proteins

correctly classified and those incorrectly classified. Note that

when using the level-2 interacting neighbors to classify a protein,

the instance of each protein is counted, i:e:, if a given level-2
neighbor interacts with different direct interacting neighbors, it

will be counted twice. In order to compare the effectiveness of

these approaches, we combined their related modified ROC

curves and results are shown in figure 14. These results indicate

that while the level 2 interacting partners may be used to improve

the coverage, they contain many false positives impacting

negatively on the precision. Combining level 1 and level 2
interacting partners slightly improves precision and coverage.

These two measures of protein classification quality are computed

as follows:

Precision~
TP

TPzFP
and Coverage~

TP

N

where TP (true positive) is the number of proteins correctly

classified, i:e:, number of proteins for which the actual

classification is the same as the one predicted, FP (false positive)

is the number of proteins for which the classification is different to

the one predicted, and N is the total number of classified proteins

in the functional network. Thus, the precision measures the

Figure 11. Illustration of Guilt-By-Association using level-1 interacting neighbors for protein classification. P-subgraph showing the
direct interacting partners of protein ‘FAdA6’ (in the center shown in white). Proteins in white are involved in lipid metabolism, while the gray nodes
are of the unknown class.
doi:10.1371/journal.pone.0018607.g011
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Figure 12. Illustration of Guilt-By-Association using level-2 interacting neighbors for protein classification. Graph depicting level-1 and
level-2 interacting partners of protein ‘lprJ’. Proteins in white are involved in lipid metabolism and those shown in gray are of unknown class.
doi:10.1371/journal.pone.0018607.g012

Figure 13. Illustration of protein functional classification inferrence. P-subgraph showing the direct interacting partners of protein ‘M1417’
(gray node in the center) of unknown class. Proteins in white are involved in lipid metabolism.
doi:10.1371/journal.pone.0018607.g013
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proportion of proteins with correct classifications among all

proteins classified, and coverage measures the proportion of

proteins correctly classified among the proteins in the functional

network. The use of level-1 neighbors provides a precision of

0:8344749 with a coverage of 0:8144847, while level-2 neighbors

produces a precision of 0:596374 with a coverage of 0:3481894.

Combining level-1 and 2 neighbors yields a precision of

0:8349459 with a coverage of 0:8172702. This is only a slight

improvement over using level-1 neighbors only, but the

illustration for LPRJ above shows the value in using both.

Conclusions
We have developed novel information-theoretic based schemes

for calculating the link confidence scores or link reliability for

homology data, i:e, data from protein family and sequence

similarity. These convert the amount of biological content shared

between proteins into confidence scores of their functional

relationships. The methods could be used for a clustering analysis

but here they are used for functional network generation.

We applied these schemes to the genome of Mycobacterium

tuberculosis strain CDC1551 to produce a protein-protein functional

network. Results showed that the novel scheme is efficient and

effective compared to the existing schemes and can be used to

improve functional networks inferred from sequence data in terms

of precision and coverage.

We analyzed the global behaviour of the network obtained from

the new scoring schemes. Furthermore, the functional network

produced was used to classify proteins in the unknown class using a

local neighborhood based approach extended to level-2 protein

neighbors in order to improve genomic coverage.

Currently, we are integrating into a single protein-protein

functional network, all pair-wise functional interactions obtained

from different data sources, including genetic interactions, and

functional genomics data, in order to predict functions, where

possible, of uncharacterized proteins in the genome and to study

the biology of the organism.
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