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Abstract

Single nucleotide polymorphisms (SNPs) on chromosome 9p21 are associated with coronary artery disease, diabetes, and
multiple cancers. Risk SNPs are mainly non-coding, suggesting that they influence expression and may act in cis. We
examined the association between 56 SNPs in this region and peripheral blood expression of the three nearest genes
CDKN2A, CDKN2B, and ANRIL using total and allelic expression in two populations of healthy volunteers: 177 British
Caucasians and 310 mixed-ancestry South Africans. Total expression of the three genes was correlated (P,0.05), suggesting
that they are co-regulated. SNP associations mapped by allelic and total expression were similar (r = 0.97, P = 4.8610299), but
the power to detect effects was greater for allelic expression. The proportion of expression variance attributable to cis-
acting effects was 8% for CDKN2A, 5% for CDKN2B, and 20% for ANRIL. SNP associations were similar in the two populations
(r = 0.94, P = 10272). Multiple SNPs were independently associated with expression of each gene (P,0.05 after correction for
multiple testing), suggesting that several sites may modulate disease susceptibility. Individual SNPs correlated with changes
in expression up to 1.4-fold for CDKN2A, 1.3-fold for CDKN2B, and 2-fold for ANRIL. Risk SNPs for coronary disease, stroke,
diabetes, melanoma, and glioma were all associated with allelic expression of ANRIL (all P,0.05 after correction for multiple
testing), while association with the other two genes was only detectable for some risk SNPs. SNPs had an inverse effect on
ANRIL and CDKN2B expression, supporting a role of antisense transcription in CDKN2B regulation. Our study suggests that
modulation of ANRIL expression mediates susceptibility to several important human diseases.
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Introduction

The chromosome 9p21.3 region adjacent to the loci encoding the

cyclin-dependent kinase inhibitors CDKN2A (ENSG00000147889)

and CDKN2B (ENSG00000147883) is an important susceptibility

locus for several diseases with a complex genetic background.

Recent genome-wide association (GWA) studies have shown that

single nucleotide polymorphisms (SNPs) in this region are associated

with coronary artery disease (CAD) [1–4], ischaemic stroke [5,6],

aortic aneurysm [7], type II diabetes [8,9], glioma [10,11], and

malignant melanoma [12]. Candidate gene approaches have also

reported SNPs in this region to be associated with breast [13,14],

ovarian [15], and pancreatic carcinoma [16], melanoma [17], and

acute lymphoblastic leukaemia [18], as well as with poor physical

function in the elderly [19]. Variants associated with these diseases

are represented in Figure 1. Most of the risk variants in the

chromosome 9p21 region identified by GWA studies are in non-

coding regions, suggesting that their effects are likely to be mediated

by influences on gene expression. Sequence variation can influence

expression by cis or trans mechanisms. Trans-acting elements

influence transcript levels of both alleles via diffusible factors and

are usually located distant to the genes they regulate, whereas cis-

acting elements act on genes on the same chromosome in an allele-

specific manner and are usually located close to the genes they

regulate. Since most reported risk variants in the 9p21 region do not

appear in mature transcripts, and there are no known or predicted

microRNAs mapping to this region [20–23], these variants are

unlikely to produce diffusible trans-acting factors and are therefore

likely to influence expression of nearby genes in cis. Genes in the

region include the cyclin-dependent kinase inhibitors CDKN2A

(p16INK4a) including its alternative reading frame (ARF) transcript

variant (p19ARF), CDKN2B (p15INK4b), and a recently-discovered non-

coding RNA, designated ANRIL (CDKN2BAS, ENSG00000240498),

that undergoes splicing and is transcribed from the opposite strand

to CDKN2A/B. The ARF/CDKN2A/B proteins are established

tumour suppressors deleted in a range of cancers including familial

cutaneous malignant melanoma [24]; they block cell cycle

progression and influence key physiological processes such as

replicative senescence, apoptosis, and stem-cell self-renewal [25].

Cis-acting regulatory elements for these genes have been identified in

vitro using reporter assays [26–30], but expression levels are also

influenced by factors such as age, chemotherapeutic agents, DNA

damage by ultraviolet or ionizing radiation, and levels of

transcriptional regulators [31], all of which are likely to act in trans.
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The function of ANRIL is unknown, but other processed non-coding

RNAs are involved in the regulation of gene expression through

transcriptional and translational control mechanisms [32].

Genetic effects on expression can be assessed by comparing total

expression levels in individuals with different genotypes at a

putative regulatory locus. This is termed expression quantitative

trait locus (eQTL) mapping [33]. This approach utilises informa-

tion from all members of the population, but reflects the net effect

of both cis and trans-acting influences; the sensitivity to detect cis-

acting effects is therefore reduced in the presence of significant

variation in trans-acting influences such as the environmental

factors outlined above. An alternative approach that is specific for

mapping cis-acting influences is to measure allelic expression

(aeQTL mapping). An unequal amount of transcript arising from

each allele in an individual heterozygous for a transcribed

polymorphism indicates the presence of cis-acting effects on

expression. While traditional eQTL analysis assesses the influence

of polymorphisms by comparing expression between samples,

allelic expression analysis compares the expression levels of alleles

within individual samples, making it much more robust to trans-

acting influences that affect both alleles such as age, gender,

population stratification, or experimental variability. This maxi-

mises the sensitivity for detecting cis-acting effects [34].

Variants associated with CAD span a region greater than

100kb, but the association is accounted for by SNPs within a 53kb

interval that define a core risk haplotype [35]. Lead SNPs for CAD

and diabetes are in separate LD blocks in Caucasians and are

independently associated with the two separate diseases [35]. To

date, CAD risk SNPs have shown inconsistent association with

CDKN2A, CDKN2B and ANRIL by eQTL mapping. One CAD risk

SNP was associated with altered ANRIL expression in blood, but

not with CDKN2A or CDKN2B expression [36], whilst a different

CAD risk SNP has been associated with reduced expression of all

three genes in peripheral blood T-cells [37]. However, the latter

study found no association with expression for other CAD risk

SNPs [37], and another report also found no association of a lead

CAD risk SNP with these genes or with global gene expression in

primary vascular tissue and lymphoblastoid cells [38]. Based on

evolutionary conservation and effects on expression, individual

SNPs (rs10757278 and rs1333045) have been highlighted as

potential causal variants for the association with CAD [36,37].

However, if multiple cis-acting effects are present at a locus,

resolving a disease association by fine-mapping may not be

possible. Examining gene expression rather than disease pheno-

type increases the power to map cis-acting effects, and we used this

approach to determine whether multiple sites independently

influence expression. Caucasian populations have strong linkage

disequilibrium (LD) in the chromosome 9p21 region which limits

the ability to separate the effects of individual SNPs on expression

[35]. Populations of African ancestry have less LD [39,40], which

can be exploited to improve the fine-mapping of functional

polymorphisms associated with quantitative traits [41,42].

We therefore used eQTL and aeQTL mapping to perform

detailed fine-mapping of the association of SNPs at the 9p21.3

locus with expression of CDKN2A, CDKN2B and ANRIL using a

mixed-ancestry South African (SA) population, as well as a British

Caucasian cohort. We identified multiple SNPs independently

associated with expression of each gene, suggesting that several

sites may modulate disease susceptibility. The markers identified in

GWA studies were all associated with allelic expression of ANRIL,

Figure 1. SNPs associated with disease in the chromosome 9p21.3 region. Genes are illustrated in blue at the top, with arrows representing
the direction of transcription. SNPs typed in our study and SNPs associated with various diseases are represented by black bars. Diseases in bold are
those with association data from genomewide association studies. The hatched box represents the core risk haplotype for CAD defined by Broadbent
et al [35]. Promoter regions for each gene are shown as pale blue boxes. DM = diabetes mellitus type II; BCC = basal cell carcinoma.
doi:10.1371/journal.pgen.1000899.g001

Author Summary

Genetic variants on chromosome 9p21 have been
associated with several important diseases including
coronary artery disease, diabetes, and multiple cancers.
Most of the risk variants in this region do not alter any
protein sequence and are therefore likely to act by
influencing the expression of nearby genes. We investi-
gated whether chromosome 9p21 variants are correlated
with expression of the three nearest genes (CDKN2A,
CDKN2B, and ANRIL) which might mediate the association
with disease. Using two different techniques to study
effects on expression in blood from two separate
populations of healthy volunteers, we show that variants
associated with disease are all correlated with ANRIL
expression, but associations with the other two genes are
weaker and less consistent. Multiple genetic variants are
independently associated with expression of all three
genes. Although total expression levels of CDKN2A,
CDKN2B, and ANRIL are positively correlated, individual
genetic variants influence ANRIL and CDKN2B expression in
opposite directions, suggesting a possible role of ANRIL in
CDKN2B regulation. Our study suggests that modulation of
ANRIL expression mediates susceptibility to several impor-
tant human diseases.

ANRIL Expression and Disease Associated SNPs
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but association with the other two genes was only detectable for

some of them. Our study suggests that modulation of ANRIL

expression mediates susceptibility to a range of important human

diseases.

Results

We measured expression of CDKN2A, CDKN2B and ANRIL in

peripheral blood from 310 healthy SA individuals (demographic

details provided in the Methods section). Allelic expression was

assessed for each gene using two transcribed SNPs located within

the same exon. We selected 56 SNPs that tag the common

variation in the region, specifically including SNPs with previously

reported phenotypic associations. The results of allelic expression

mapping in this population were compared with conventional

mapping using total expression in the same samples; and with

allelic expression mapping in a separate population of 177 healthy

British Caucasians. Information on the selected SNPs and

genotyping data are summarised in Table S1.

Inter-individual variation in expression
Total expression levels showed substantial inter-individual

variation for each of the three genes, up to 13.9-fold for CDKN2A,

36.1-fold for CDKN2B, and 25.5-fold for ANRIL. Allelic expression

ratios at individual transcribed markers also showed considerable

inter-individual variation, up to 5.6-fold for CDKN2A, 2.4-fold for

CDKN2B, and 6.8-fold for ANRIL. Plots of the allelic expression

ratios at each transcribed SNP in the SA and Caucasian cohorts

are shown in Figure S1 and Figure S2 and plots of the normalised

total expression Ct values are shown in Figure S3. Standard errors

for ANRIL were higher than for the other two genes in both the

allelic and total expression assays, which is likely to be due to the

fact that peripheral blood expression of ANRIL was lower than for

CDKN2A and CDKN2B.

We estimated the proportion of the variance in total expression

that can be attributed to cis-acting effects for each transcribed SNP

in the three genes, as described in the Methods section. For

CDKNA this proportion was 8% when rs3088440 was used to

estimate the variance in cis acting effects, and 4% when rs11515

was used. For CDKN2B the corresponding values were 5% (using

rs3217992), 5% (using rs1063192) and for ANRIL 20% (using

rs10965215), and 19% (using rs564398).

Correlation of CDKN2A, CDKN2B, and ANRIL expression
Total expression levels of CDKN2A, CDKN2B and ANRIL

were positively correlated (r = 0.24 to 0.30, all P,461025) as

shown in Figure S4, suggesting that expression of these genes is

co-regulated.

Allelic expression versus total expression for mapping
cis-acting effects

Allelic expression ratios (AER) measured at the two transcribed

SNPs in each gene were highly correlated (CDKN2A r = 0.68

P = 1.761023; CDKN2B r = 0.80 P = 1.7610212; ANRIL r = 0.90

P = 1.0610226; all genes combined r = 0.96 P = 3610261) as

shown in Figure S5. This was expected since the two transcribed

SNPs selected to assess AER in each gene are located in the same

exon and the same transcripts. We therefore used the AERs from

both transcribed markers in each gene (as described in the

Methods section) for the aeQTL analysis. This increased the

number of informative heterozygotes at which allelic expression

could be assessed for each gene and increased the power to detect

significant effects, as shown in Table 1.

Unlike allelic expression ratios, total expression data may be

influenced by covariates that influence expression in trans. We

therefore corrected total expression values for covariates (age, sex,

and ethnicity) and excluded outlying individuals as described in

the Methods section. These corrections did not significantly alter

the results of the eQTL analysis, as shown in Figure S6. All

subsequent analyses are presented using the covariate-corrected

eQTL data. We compared cis-acting effects assessed by eQTL and

aeQTL mapping, as shown in Figure 2. There was a strong

correlation both for the effect size (r = 0.87, P = 4.7610251) and

significance of association (r = 0.97, P = 4.8610299) at each

mapping SNP between the two techniques. However, the

associations were more significant for allelic expression than for

total expression analysis, indicating that allelic expression had

greater power for detecting cis-acting effects. This suggests that

trans-acting effects make a substantial contribution to the overall

variance of expression in these genes, which is consistent with our

Table 1. Increase in number of informative heterozygotes and associated SNPs using two transcribed SNPs per gene.

Transcribed SNP

Number (%) of
informative
heterozygotes in
Caucasian cohort
(n = 177)

Number (%) of
informative
heterozygotes in
SAcohort (n = 310)

Number (%) of mapping
SNPs significantly associated
with AER at transcribed SNP(s)
in Caucasian cohort*
(n = 53 SNPs)

Number (%) of mapping
SNPs significantly associated
with AER at transcribed
SNP(s) in SA cohort*
(n = 56 SNPs)

CDKN2A rs3088440 23 (12%) 103 (33%) 5 (9%) 2 (4%)

CDKN2A rs11515 33 (18%) 75 (24%) 0 (0%) 9 (16%)

CDKN2A markers combined 54 (29%) 159 (51%) 3 (6%) 11 (20%)

CDKN2B rs3217992 71 (38%) 112 (36%) 0 (0%) 4 (7%)

CDKN2B rs1063192 70 (37%) 87 (28%) 0 (0%) 2 (4%)

CDKN2B markers combined 90 (48%) 164 (53%) 5 (9%) 5 (9%)

ANRIL rs10965215 70 (37%) 155 (50%) 25 (47%) 27 (48%)

ANRIL rs564398 67 (36%) 85 (28%) 23 (43%) 22 (39%)

ANRIL markers combined 80 (43%) 187 (61%) 30 (57%) 31 (55%)

*Multiple testing was taken into account by calculating the family wise error rate using a Bonferroni correction for the 56 SNPs tested. Associations with family wise
error rate using a threshold of 0.05 (that corresponds to a nominal P value of 8.961024 or 2log10P of 3.05) were called significant. SNPs with less than 8 informative
heterozygotes were excluded.
doi:10.1371/journal.pgen.1000899.t001
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estimates that cis-acting effects account for only between 4 and

20% of the overall variance in expression of these genes.

Comparison of cis-acting effects between populations
and combined analysis

We compared aeQTL analysis between the SA and British

Caucasian samples. Results of aeQTL mapping were highly

correlated between the two populations, both for the significance

of the detected association (r = 0.94, P = 10272) and the estimated

magnitude of the effect on expression for each SNP (r = 0.82,

P = 2610238), as shown in Figure 3. Patterns of LD in the two

populations are shown in Figure S7. Minor allele frequency in the

SA population was higher (which increases the proportion of

informative heterozygotes for allelic expression analysis) for 33 of

the 53 SNPs typed in both populations.

In view of the similarity of the effects in the two cohorts, we

combined the data in subsequent analyses, increasing the power to

detect cis-acting effects of smaller magnitude and enabling us to adjust

for the effects of individual SNPs. The significance of associations for

individual SNPs in the combined cohort is shown in Figure 4.

Subsequent results refer to the combined dataset, with specific

discussion of differences between the populations where relevant.

As described in the Methods section, we defined significance

thresholds for all SNP associations using the family wise error rate

(FWER) where multiple testing was taken into account by using a

Bonferroni correction for the 56 SNPs tested. Associations with a

FWER threshold of 0.05 (corresponding to a nominal P-value of

8.961024, 2log10P of 3.05, and 2log10 FWER of 1.3) were

regarded as significant. Table S2 shows the 2log10 of the nominal

P-values and FWER for all SNP associations, and nominal

P-values are reported in the text.

The effect of each SNP on AER is also shown in Table S2. The

maximum change in allelic expression associated with any SNP

was 1.4-fold for CDKN2A, 1.33-fold for CDKN2B, and 1.97-fold for

ANRIL. Due to the power of our combined dataset we were able to

detect SNP effects on allelic expression as small as 1.05-fold that

were significant.

Multiple sites influence CDKN2A, CDKN2B, and ANRIL
expression

As shown in Figure 4, multiple SNPs were associated with cis-

acting influences on expression of CDKN2A, CDKN2B and ANRIL.

This could be the result of multiple independent loci influencing

expression of each gene, but could also be a reflection of strong LD in

the region since associations might be observed for ‘non-functional’

SNPs (that do not directly influence expression) which are in LD with

other ‘functional’ polymorphisms. Adjusting for the effect of

individual SNPs was used to assess whether multiple SNPs were

independently correlated with expression of the three genes, as shown

in Figure 5. For each gene stepwise adjustments were made for the

effect of the SNP which showed the most significant association with

expression, until independent effects could no longer be detected.

Associations remained significant after adjusting for the top SNP for

CDKN2A and CDKN2B, and the top two SNPs for ANRIL.

Our results indicate that even after adjusting for the effects of the

most significant marker, some of the remaining SNPs still showed

significant association with ANRIL expression. This could be

explained by the presence of more than one functional polymor-

phism affecting expression, but could also reflect the presence of a

functional polymorphism that is in disequilibrium with both

markers. However, examination of the allelic expression patterns

provides additional support for the presence of multiple sites

affecting expression. For example, Figure 6 shows the allelic

expression ratios observed at the transcribed SNP rs564398 in

ANRIL, grouped according to the genotype at rs10965215. These

two SNPs are in strong LD (D9 = 0.98), hence the absence of

individuals homozygous for the A allele at rs10965215 that are

heterozygous at rs564398. We observe that the G allele of the

transcribed SNP (rs564398) is overexpressed (G/A AER values

greater than 1), however overexpression is stronger (P = 10215 using

the Mann-Whitney test) for individuals that are also heterozygous at

the second polymorphism (rs10965215). This pattern is not

consistent with allelic expression being determined by a single

biallelic polymorphism acting in cis and suggests that there is more

than one functional polymorphism or that this polymorphism is

multiallelic. Such patterns were common in our data.

The direction of cis-acting effects on expression was compared

between genes for SNPs showing significant associations with

expression of each gene, as shown in Table 2. SNP effects for

CDKN2A and ANRIL were in the same direction for all 10 SNPs,

meaning that alleles associated with overexpression of CDKN2A

were also associated with overexpression of ANRIL. By contrast,

for all 8 SNPs that were significantly associated with allelic

expression of both CDKN2A and CDKN2B, the alleles associated

with CDKN2A overexpression were associated with CDKN2B

underexpression. Similarly for all 3 SNPs significantly associated

with allelic expression of both CDKN2B and ANRIL, alleles

associated with overexpression of CDKN2B were associated with

ANRIL underexpression. The total expression analysis had

insufficient power for similar analyses to be performed.

In vivo effects of putative regulatory elements identified
in vitro

We investigated whether SNPs within regulatory regions

previously identified by in vitro reporter assays were associated

with cis-acting effects on expression in vivo. The effect on gene

expression and significance of the association for each SNP is

summarised in Table S2.

CDKN2A expression was significantly correlated with SNPs in its

promoter and the ARF transcript promoter [26–29], and with

SNPs close to the RDINK4/ARF domain that has been shown to

regulate expression of CDKN2A, ARF and CDKN2B in vitro [30].

CDKN2B expression was also significantly correlated with SNPs

in the CDKN2A and ARF promoter regions, suggesting that these

elements influence expression of both genes. CDKN2B expression

was not significantly correlated with the single SNP typed in its

promoter (rs2069418) prior to adjustment, but this became

significant after adjustment for the most significant SNP in the

ARF promoter (rs3218018).

ANRIL expression was strongly associated with SNPs in the

CDKN2B promoter (P = 10272), ARF promoter (P up to10253) and

RDINK4/ARF domain (P = 10212), as well as with SNPs adjacent to

the CDKN2A promoter (rs3731239, P = 10225).

Figure 2. Significance of associations and effect size estimates using total and allelic expression. Scatter plots depict the P-values (A)
and estimates of effect size (B) obtained for each SNP for all three genes by eQTL (X-axis) and aeQTL (Y-axis) mapping. Bar charts show the
comparison of the significance of association for CDKN2A (C), CDKN2B (D), and ANRIL (E); and the effect size estimates for CDKN2A (F), CDKN2B (G), and
ANRIL (H). The Y-axes on the bar charts show the 56 SNPs ordered by chromosome location (most telomeric at the top). Grey bars to the left represent
total expression and black bars to the right represent allelic expression.
doi:10.1371/journal.pgen.1000899.g002
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These data validate in vivo the function of the regulatory

elements identified by in vitro transfection studies, and confirm that

shared cis-acting elements influence expression of CDKN2A,

CDKN2B and ANRIL.

CAD, diabetes, and cancer risk variants are associated
with cis-acting effects on expression

We examined the correlation of allelic expression of

CDKN2A, CDKN2B and ANRIL with SNPs reported to confer

disease susceptibility. The effect on gene expression and

significance of the association for each SNP is summarised in

Table 3.

CAD and stroke. SNPs within the core risk haplotype region

for CAD [35] were associated with ANRIL expression (P up to

10221), but none were associated with CDKN2A or CDKN2B

expression. CAD risk alleles were all associated with reduced

ANRIL expression, up to 1.9-fold, suggesting that expression of

ANRIL, rather than CDKN2A or CDKN2B, might mediate

atherosclerosis susceptibility. However, other CAD risk variants

located telomeric to the core risk haplotype region such as

Figure 3. SNP effects in the SA and Caucasian cohorts. Scatter plots show the correlation between aeQTL results obtained in the SA (Y-axis)
and Caucasian cohorts (X-axis) for: (A) significance of association with expression (2log P value) for all three genes; (B) effect size at each SNP for all
three genes; (C) effect size at each SNP for CDKN2A only; (D) effect size at each SNP for CDKN2B only; (E) effect size at each SNP for ANRIL only. Linear
regression line for the association is shown as a solid line with the 95% confidence intervals shown as dotted lines.
doi:10.1371/journal.pgen.1000899.g003

ANRIL Expression and Disease Associated SNPs
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Figure 4. Significance of association with expression for SNPs in the combined population. The Y-axis represents the 2log P value for
individual SNPs (shown in chromosomal order along the X-axis) for: CDKN2A (A); CDKN2B (B); ANRIL (C). The horizontal black line on each graph
represents the significance threshold after adjustment for multiple testing (family wise error rate of 0.05 corresponding to 2log10P = 3.05). The
relative location of genes and promoter elements is represented at the top (CDKN2A and CDKN2A/ARF promoters yellow; ANRIL promoter blue;
CDKN2B promoter orange; CDKN2A/ARF regulatory domain red). Letters along the bottom represent associations from GWA studies (C = CAD,
D = diabetes, M = melanoma, G = glioma) and the black bar at the bottom represents the core risk haplotype for CAD defined by Broadbent et al [35].
doi:10.1371/journal.pgen.1000899.g004
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rs7044859 and rs496892 showed substantially larger effects and

stronger associations with ANRIL expression (P,10260 for each

SNP), and were also significantly associated with CDKN2A and

CDKN2B expression (P,1024 for each SNP). The CAD risk alleles

at these SNPs correlated with reduced expression of ANRIL and

CDKN2A, but increased CDKN2B expression. Associations for

these SNPs remained significant after adjusting for the effect of the

lead CAD SNPs within the core risk haplotype region

(rs10757274, rs2383206, rs10757278 and rs1333049) [35], but

SNPs within the core risk haplotype were no longer significantly

associated with ANRIL expression after adjusting for the effect of

SNPs at the distal locus (rs10965215 and rs564398). This suggests

that the core CAD risk haplotype does not account for all of the

observed association with ANRIL expression in peripheral blood.

Based on evolutionary conservation and effects on ANRIL

transcription, rs1333045 within the core risk haplotype has been

previously highlighted as a potential functional variant responsible

for conferring susceptibility to CAD at the 9p21 locus [36]. In our

analysis rs1333045 was associated with ANRIL expression

(P = 10212), but not with CDKN2A or CDKN2B expression. Its

effects were similar to those of other SNPs in the core risk

haplotype for CAD. After adjusting for the effect of rs1333045, 32

SNPs remained significantly associated with ANRIL expression,

suggesting that the effect attributed to such variants was not due to

LD with rs1333045.

Diabetes. The lead chromosome 9p21 SNPs associated with

diabetes in GWA studies are located in a separate LD block to the

CAD risk variants [7,9], and the phenotypic effects of CAD and

diabetes variants have been shown to be independent [35].

Diabetes risk alleles in this region (rs10811661-T and rs2383208-

A) were associated with under-expression of ANRIL, but were not

associated with CDKN2A or CDKN2B expression in our Caucasian

population. However, these SNPs showed no association with

expression of ANRIL in the SA population, despite greater power

to detect effects in this cohort.

A separate locus for diabetes susceptibility in the chromosome

9p21 region in Caucasians is located within the region associated

with CAD risk. The rs564398-T risk allele at this locus is

associated with diabetes [8], CAD [35] and stroke [5]. This SNP

had the strongest association with ANRIL expression of all the

SNPs we tested (P = 10281), but was not significantly associated

with CDKN2A or CDKN2B expression. The rs564398-T risk allele

was associated with ANRIL underexpression, and the association

remained significant after adjusting for the effect of rs10811661,

the lead diabetes SNP. However, the association with rs10811661

was no longer significant after adjustment for rs564398.

Figure 5. Effect of sequential adjustment for most highly associated SNPs. Bars represent the significance of association (2log10P) for each
SNP. (A) Unadjusted. (B) Adjusted for the most highly associated SNP for each gene (CDKN2A rs7036656, CDKN2B rs3218018, ANRIL rs564398). (C)
Adjusted for the two most highly associated SNPs for each gene (CDKN2A rs7036656 and rs36228834, CDKN2B rs3218018 and rs3814960, ANRIL
rs564398 and rs10965215). Values in the top right corner are the number of significantly associated SNPs after each round of adjustment, following
correction for multiple testing. The horizontal black line on each graph represents the significance threshold after adjustment for multiple testing
(family wise error rate of 0.05 corresponding to 2log10P = 3.05).
doi:10.1371/journal.pgen.1000899.g005
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Cancers and frailty. GWA studies have recently identified

chromosome 9p21 SNPs correlated with susceptibility for glioma

[10,11] and malignant melanoma [12]. The glioma risk allele

rs1063192-C was highly correlated with increased ANRIL

expression (P = 10261), while the melanoma risk variant

rs1011970-T correlated with reduced expression of ANRIL.

Neither was associated with CDKN2A or CDKN2B expression.

Multiple candidate gene association studies have reported

associations between SNPs in this region and susceptibility to a

variety of diseases. These have mostly involved cancer phenotypes

because the cell-cycle regulators CDKN2A and CDKN2B are

recognised to be involved in predisposition to certain cancers.

Such association studies have implicated 9p21 SNPs as being

potentially involved in the development or therapeutic response to

pancreatic [16,43], breast [13,14,44], ovarian [15,45], and

bladder [46] carcinoma, as well as acute lymphoblastic leukaemia

[18], and melanoma [17,47,48]. The SNPs associated with these

phenotypes showed a significant correlation with allelic expression

of one or more of the genes we examined, as summarised in

Table 3. A SNP (rs2811712) that is associated with severely limited

physical function in older people [19] was significantly associated

with CDKN2B expression, but not with ANRIL expression.

Discussion

This is the most detailed study to date of cis-acting influences on

expression at the chromosome 9p21 locus. We have shown that

multiple sites in the 9p21 region independently influence CDKN2A,

CDKN2B and ANRIL expression, and demonstrated that SNPs

associated with diseases including CAD, diabetes, and cancers are

all highly associated with ANRIL expression, suggesting that

modulation of ANRIL expression may mediate disease susceptibil-

ity. We also report novel methodology for allelic expression

analysis that allowed us to combine data from multiple transcribed

polymorphisms and to adjust for the effects of particular SNPs. We

have demonstrated that this approach has greater power than total

expression analysis for mapping cis-acting effects.

Total expression levels of CDKN2A, CDKN2B and ANRIL, which

reflect the combined influence of cis and trans-acting factors, were

positively correlated. This corroborates other recent data [37], and

suggests that expression of these genes is co-regulated. We have

shown that trans-acting influences account for the majority of the

observed variance in expression of these genes (80–96%), and the

correlation in total expression levels is likely to reflect co-regulation

of the genes through trans-acting factors. In addition, our allelic

expression analysis demonstrated that expression is also influenced

by shared cis-acting elements in the region. Despite the positive

Figure 6. Effect of genotype at rs10965215 on allelic expression ratio of transcribed ANRIL SNP rs564398. Diamonds represent the
allelic expression ratio for each individual, all of whom are heterozygous for the transcribed SNP rs564398. The first column shows individuals who are
homozygous for rs10965215 (mean ratio 1.57), and the second column shows individuals who are heterozygous for rs10965215 (mean ratio 2.00). The
third column shows the expression ratio obtained from genomic DNA in individuals who are heterozygous for the transcribed SNP rs564398, where
the two alleles are present in a 1:1 ratio (mean ratio 1.00).
doi:10.1371/journal.pgen.1000899.g006

Table 2. Correlation of SNP effects between genes by aeQTL
mapping.

CDKN2A-
ANRIL

CDKN2B-
ANRIL

CDKN2A-
CDKN2B

SNP effects same direction 10 0 0

SNP effects opposite 0 3 8

The table shows the SNP effect between genes for SNPs that show significant
association (using family wise error rate threshold 0.05) with expression of both
genes. Gene pairs are shown along the top. SNP effects in the same direction
means that a SNP is associated with overexpression or underexpression of both
genes, whereas SNP effects in the opposite direction means that a SNP
associated with underexpression of one gene is associated with overexpression
of the other gene.
doi:10.1371/journal.pgen.1000899.t002
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correlation in total expression levels, cis-acting effects associated

with individual SNP alleles may act in opposite directions; the

effect of individual SNPs on CDKN2B expression were opposite to

effects on CDKN2A and ANRIL expression (which were concor-

dant) in our study. Because cis-acting effects represent only a small

proportion of the overall variance in expression of these genes, the

effects acting in trans are likely to account for the positive

correlation seen in total expression, but this does not diminish the

potential biological significance of the cis-acting effects. ANRIL

overlaps and is transcribed in antisense with respect to CDKN2B

[49]. It is modestly conserved across species [36] and its function is

not known, but recent work has demonstrated that antisense

transcription from CDKN2B downregulates CDKN2B expression in

cis through heterochromatin formation [50]. This is consistent with

our observation of an inverse effect of SNPs on ANRIL and

CDKN2B expression. By contrast, CDKN2A and ANRIL showed

positive correlations for both allelic and total expression in our

study. CDKN2A and ANRIL do not overlap, but are transcribed

divergently from transcription start sites separated by just 300 base

pairs. Although the ANRIL promoter is currently not charac-

terised, it may share promoter elements with CDKN2A and the

resulting co-regulation could account for the positive correlation in

expression we observed for these genes, similar to that described at

other sites [51]. In this context, inhibition of CDKN2B expression

by ANRIL would enable a level of crosstalk between CDKN2A and

CDKN2B expression, which would be consistent with the inverse

cis-acting effect of SNPs on CDKN2A and CDKN2B that we

observed. The observation that cis-acting genetic effects played a

greater role in expression of ANRIL compared to CDKN2A and

CDKN2B (20% compared to less than 8% and 5% respectively)

makes it a good candidate for genetic causation mediated through

influences on expression.

We compared total expression and allelic expression for the

investigation of cis-acting influences on expression. While tradi-

tional eQTL analysis assesses the influences of polymorphisms by

comparing expression between samples, allelic expression analysis

compares the expression levels of alleles within individual samples,

making it more robust to influences that affect both alleles such as

age, gender or population stratification. This offers an important

advantage for dissecting such cis-acting influences on expression,

which although of lesser magnitude than trans-acting influences,

may be of biological importance and possibly account for the

genetic susceptibility observed in recent GWA studies. For aeQTL

mapping we used a novel adaptation of our previously reported

methodology [52] to combine multiple transcribed SNPs per gene,

which increased the number of informative individuals and the

power for detecting cis-acting effects. We demonstrated this

approach using two transcribed polymorphisms per gene, but

our methodology offers the potential for the inclusion of multiple

additional transcribed variants. The results obtained by eQTL and

aeQTL mapping were similar, consistent with previous work

suggesting that the two approaches identify the same cis-acting loci

[42]. However, we demonstrated that aeQTL analysis had

substantially greater power than the eQTL approach. Adjusting

for trans-acting covariates including age, sex and ethnicity in our

eQTL analysis did not substantially alter the results. An influence

of age on CDNK2A has been reported [53], but there was little

variability in the age of our SA cohort (90% of whom were

between the ages of 18 and 30 years). The fact that allelic

expression is a more efficient way to identify cis-acting influences

on expression has implications for future studies investigating the

effects of SNPs on expression at other loci, for example for the

hundreds of non-coding SNPs correlated with different diseases by

recent GWA studies [54].

Allelic expression quantifies the relative contributions of each

allele to the mRNA pool irrespective of the absolute mRNA levels,

and therefore provides information about transcriptional effects

and polymorphisms within the transcript influencing RNA

degradation in cis. By contrast, total expression analyses that

quantify absolute mRNA levels are also sensitive to post-

transcriptional regulatory effects, such as mRNA degradation by

microRNAs. In extreme cases tight post-transcriptional regulation

could keep total mRNA levels constant irrespective of the

contributions of each allele to the total mRNA pool. The fact

that the results of eQTL and aeQTL mapping were so similar in

our study suggests that the effect of regulation at the post-

transcriptional level is limited, although regulation of CDKN2A

expression by a microRNA has been described [55]. In general,

although allelic expression is a robust method for mapping sites

influencing expression in cis, investigation of total expression and

other intermediate phenotypes such as protein levels or protein

activity will provide complementary information that contributes

to fully understanding the phenotypic effects of cis-acting

polymorphisms. It would be desirable to determine whether the

significant associations with mRNA expression observed for

CDKN2A and CDKN2B are confirmed at the protein level.

Although we had hoped to use trans-ethnic fine-mapping to

refine the associations with expression, the results of aeQTL

mapping were in fact very similar in the SA and Caucasian

populations. This replication in a separate cohort strongly supports

the validity of our findings and enabled us to perform a combined

analysis of the two cohorts. This approach of pooling data from

ethnically-divergent populations has been previously shown to

increase the power to detect influences on expression that are

shared across populations [42,56]. The principal difference we

identified between the two populations was for the SNPs

associated with type II diabetes. The lead diabetes SNP

rs10811661 was correlated with ANRIL underexpression in the

Caucasian cohort, but not in the SA population, despite greater

power to detect effects in that cohort. This may reflect differences

in LD between the populations, but suggests that rs10811661 may

not itself be the causal variant influencing diabetes susceptibility

through effects on ANRIL expression. Studies to determine

whether this SNP is associated with diabetes in populations of

African origin would be of interest.

The power of our analyses to detect differences in expression

enabled us to adjust for the effects of individual SNPs. Using this

we were able to demonstrate that expression, and therefore

probably disease predisposition, is independently influenced by

multiple sites and that the observed effects cannot be explained by

a single polymorphic site. From our analysis we cannot exclude the

existence of rare variants with large effects, but previous

resequencing studies in this region did not find rare variants

associated with disease phenotypes [2,3]. We are unable to say

whether the individual SNPs for which we found associations are

the actual ‘causal’ variants responsible for the effects on

expression, or if the association simply reflects linkage disequilib-

rium between these SNPs and the causative polymorphisms.

Although fine mapping studies often purport to identify causal

variants, in the context of complex diseases characterising the

pathways involved in disease predisposition may be more

important. This is of particular interest for these genes where

variation in expression is mostly due to trans effects which may be

substantially influenced by non-genetic factors, raising the

prospect that it may be amenable to therapeutic modulation.

The putative causal variants rs10757278 and rs1333045 previously

associated with altered ANRIL expression [36,37] were signifi-

cantly associated with reduced ANRIL expression in vivo in our

ANRIL Expression and Disease Associated SNPs
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analysis, but their effects were relatively modest compared to other

SNPs in the region and adjustment for the effect of these SNPs

accounted for only a small proportion of the effect observed at

other SNPs. The maximum changes in expression associated with

individual SNPs were substantial, up to 2-fold for ANRIL, but we

were also able to detect effects of much smaller magnitude; the

minimum significant effect was associated with just a 1.05-fold

change in expression. Although the associations of SNPs with

expression that we observed were statistically highly significant, we

cannot say what impact such effects on expression have on disease

risk. However, even small differences in gene expression due to

genetic factors that are present throughout an individual’s lifetime

could contribute to differences in common late-onset phenotypes

such as CAD and diabetes, and the effects may be even greater in

tissues related to disease.

We examined in vivo expression in primary cells rather than in

transformed cell lines. Although cell lines have been extensively

used to investigate cis-acting influences on expression [56,57],

patterns of expression may be altered in immortalised cells,

particularly for genes such as these that are associated with

senescence and cell-cycle regulation. Furthermore, widely used

cell lines are pauciclonal or monoclonal [58,59] and since a

significant proportion of human genes exhibit random patterns of

monoallelic expression within single clones of cell lines [60], cis-

acting effects in these cells are unlikely to be representative of

polyclonal cell populations in vivo. Previous studies have

delineated the promoters and other elements regulating

CDKN2A/ARF and CDKN2B expression using reporter assays

[26–30]. Such studies are valuable to identify causative

polymorphisms, but since they examine the effects on expression

outside of the normal haplotype, chromatin and cellular context

their findings require confirmation by in vivo studies [34,61]. Our

analysis confirmed that polymorphisms in upstream regulatory

elements identified by in vitro assays were significantly associated

with cis-acting effects on expression in vivo, but we also

demonstrated that other loci located up and downstream were

associated with effects on expression of similar or even larger

magnitude. These data highlight the complexity and multiplicity

of sites influencing expression in the region. The assays we used

to investigate CDKN2A expression also included the ARF

transcript variant. This gave the possibility to detect sites

influencing expression of both transcripts, and we were able to

detect effects of SNPs in both the CDKN2A and ARF promoter

regions, although differential effects of loci on individual

transcripts cannot be distinguished using this approach.

All of the SNPs in the region associated with disease in GWA

studies were associated with influences on ANRIL expression,

suggesting that modulation of ANRIL expression may mediate

susceptibility to these phenotypes. SNPs in the CAD core risk

haplotype region [35] that are most strongly associated with

CAD in GWA studies were associated with reduced ANRIL

expression, but other SNPs associated with CAD which lie

outside of the core risk haplotype showed independent and

stronger associations with ANRIL underexpression. This may

reflect differences in the relative importance of particular sites in

the tissues responsible for the association with CAD. Indeed, the

patterns of association we have observed in peripheral blood in

healthy individuals may differ from those in primary disease

tissues. Similarly, differences in the relative contribution of each

SNP to modulation of expression in the tissues crucial for the

pathogenesis of the different conditions could explain why

particular diseases are associated with different subsets of SNPs

that influence ANRIL expression. Recent work also suggests that

ANRIL has multiple transcripts, which may be differentially

expressed between tissues [36,38]. Confirmation of our findings

in tissues relevant to each disease and for different ANRIL

transcripts would therefore be desirable, although for CAD and

other complex diseases the cell populations responsible for

mediating disease susceptibility are unknown and may be

inaccessible. Although tissue specificity of cis-acting influences

is well documented, variation in cis-acting effects is primarily

explained by genetic variation, with allele-specific expression at

most SNPs being the same between tissues in the same individual

[62]. Analysis of expression in blood is therefore likely to give

biologically relevant information despite the fact that this may

not be the tissue in which influences on expression actually

mediate disease susceptibility.

Previous genomewide expression analyses using microarrays

and immortalised cell lines did not identify association of CDKN2A

and CDKN2B expression with markers in this region, although they

did not examine ANRIL expression [56,57]. However, two recent

studies specifically examining expression in the chromosome 9p21

region in primary cells reported associations between CAD risk

SNPs and gene expression in blood [36,37]. Jarinova et al found

significant association of CAD risk variant rs1333045-C with

ANRIL expression, but not with CDKN2A or CDKN2B expression

[36]. Liu et al reported that a different CAD risk allele rs10757278-

G was associated with reduced expression levels of CDKN2A,

CDKN2B, and ANRIL, but in the same study found no correlation

for five other SNPs tested, including two additional SNPs

associated with CAD (rs518394 and rs564398). They also found

no association for two SNPs associated with diabetes (rs10811661

and rs564398), the frailty risk SNP rs2811712, and a melanoma

risk SNP (rs11515) [37]. We demonstrated that CAD risk SNPs

rs1333045-C and rs10757278-G both correlate with ANRIL

underexpression, but found no correlation of these SNPs with

CDKN2A or CDKN2B expression. However, we identified highly

significant influences on expression associated with other SNPs for

which Liu et al found no association (rs10811661 with CDKN2A

and ANRIL; rs564398 with ANRIL; rs2811712 with CDKN2B;

rs11515 with CDKN2A and CDKN2B). These findings are likely to

reflect the greater power of our analysis for detection of cis-acting

effects due to the larger sample size and increased sensitivity of our

aeQTL mapping approach.

The finding that disease associated SNPs are all associated with

ANRIL expression suggests that ANRIL plays a role in influencing

disease susceptibility. Although little is known about the targets of

ANRIL, its effects may be mediated through antisense transcription

regulation of CDKN2B in the tissues critical for the pathogenesis of

the different diseases. The observation that the effects of sequence

variants acting in cis were stronger for ANRIL than for CDKN2B

may reflect selection pressure against variants that have substantial

direct effects on the expression of critical genes. CDKN2A, ARF and

CDKN2B are cell cycle regulators and are plausible candidates for

involvement in the pathogenesis of the diseases for which we found

SNP associations with ANRIL. Mutations involving these genes are

well documented in glioma [63,64] and melanoma [49,65,66].

Overexpression of CDKN2A and CDKN2B in murine models is

associated with pancreatic islet hypoplasia and diabetes [67,68],

and there is also emerging evidence that vascular cell senescence

involving these pathways is involved in the pathogenesis of

atherosclerosis [69,70].

Our data show that multiple independent sites in the

chromosome 9p21 region influence CDKN2A, CDKN2B and

ANRIL expression. SNPs associated with disease in GWA studies

are all associated with ANRIL expression, indicating that

modulation of ANRIL expression mediates susceptibility to a

variety of conditions.
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Methods

Participants
Peripheral blood for DNA and RNA analysis was collected from

anonymous adult volunteers in two cohorts: 310 SA blood donors

and 177 British Caucasians from north-east England. The self-

reported ethnicity of the SA cohort was: 200 Cape mixed-ancestry;

67 African black; 19 Indian; 10 white; 4 other/unknown. 42%

were male, with median age 20 years (range 17–60, lower quartile

19, upper quartile 23). In the Caucasian cohort, 50% were male,

with median age 63 years (range 25–101, lower quartile 51, upper

quartile 69).

Ethics statement
The study complies with the principles of the Declaration of

Helsinki. Informed consent was obtained from all participants and

the study was approved by the Newcastle and North Tyneside

Local Research Ethics Committee and the University of Cape

Town Faculty of Health Sciences Research Ethics Committee.

DNA and RNA extraction and cDNA synthesis
For the South African samples DNA was extracted using a

phenol/chloroform method from 4ml of peripheral blood in

EDTA collected at the time of the RNA sample. For the British

samples, DNA was obtained from the RNA solution prior to

DNase treatment.

RNA was extracted from 2.5ml of peripheral blood collected

using the PAXgene system (Qiagen) following the manufacturer’s

protocol and was DNase treated using RQ1 RNase-Free DNase

(Promega). For AEI measurements, approximately 2mg of total

RNA was reverse transcribed and eluted in 20ml, using

SuperScript VILO cDNA Synthesis Kit (Invitrogen) for the SA

samples and SuperScript III First-Strand Synthesis System for RT-

PCR (Invitrogen) for the British samples. For real-time PCR

measurements, 500ng of total RNA was reverse transcribed using

High Capacity RNA-to-cDNA Master Mix (Applied Biosystems)

and eluted in 20ml.

Selection of transcribed SNPs for allelic expression
analysis

Using the NCBI Entrez Gene database (http://www.ncbi.nlm.

nih.gov/, 28/01/08), transcribed SNPs with expected heterozy-

gosity .0.2 in the HapMap CEU population were selected as

suitable candidates for assessment of allelic expression. Tran-

scribed polymorphisms in ANRIL, which was not annotated in the

databases at the time of the design, were identified by comparing

the reported mRNA sequence [49] with NCBI dbSNP. Tran-

scribed SNPs selected using these criteria were: rs3088440 and

rs11515 in exon 3 of CDKN2A; rs3217992 and rs1063192 in exon

2 of CDKN2B; rs10965215 and rs564398 in exon 2 of ANRIL. The

two CDKN2A SNPs are also present in ARF, allowing the

assessment of cis-acting influences on both of these transcripts.

Another SNP rs10738605 in exon 3 of ANRIL also satisfied these

criteria but was subsequently excluded due to poor performance of

the assay.

Selection of mapping SNPs
SNPs previously reported to be associated with disease

phenotypes were selected for mapping effects on expression

[6,8,9,13–19,43,45–48,71–74]. Additional tag SNPs required to

capture common variation in a core region of interest

(Chr9:21958155–22115505) based on HapMap CEU data were

also selected using HaploView 4.0 Tagger software using the

following parameters: minimum minor allele frequency 0.01,

pairwise tagging, r2 threshold .0.8. SNPs within other function-

ally important elements such as CDKN2A and CDKN2B promoters

[26,29,30,75] or a putative ANRIL promoter region (which we

arbitrarily defined as 1kb up and downstream of the transcription

start site) were selected if they were reported more than once in

NCBI dbSNP, had expected heterozygosity .5%, and were

associated with alteration of transcription factor binding sites

(using PROMO v.3.0.2) [76,77]. Details of included SNPs are

shown in Table S1.

Genotyping
Multiplex SNP genotyping was performed by primer extension

and MALDI-TOF mass spectrometry using iPLEX Gold

technology from Sequenom (Sequenom Inc, San Diego, USA).

SNP assays were designed using Sequenom’s RealSNP (www.

RealSNP.com) and MassARRAY Assay Design v3.0 Software

(multiplex details and primer sequences available in Table S4).

PCR was performed using 20ng of DNA in a 10ml reaction volume

for 35 cycles using standard iPLEX methodology. Spectra were

analysed using MassARRAY Typer v3.4 Software (Sequenom).

Spectra and plots were manually reviewed and auto-calls were

adjusted if required. Positive and negative controls were included.

Individual samples with low genotype call rates (,80%) and SNP

assays with poor quality spectra/cluster plots were excluded.

Correspondence to Hardy-Weinberg proportions was checked for

each SNP.

Measurement of allelic expression ratios
PCR primers for the selected transcribed SNPs were designed

using Primer3 (v.0.4.0) software [78]. CDKN2A primers span exons

3–4 and include both transcribed SNPs (rs3088440 and rs11515)

in the same amplicon. ANRIL primers span exons 1–2 and include

both transcribed SNPs (rs10965215 and rs564398) in the same

amplicon. For CDKN2B, separate primer pairs for transcribed

SNPs rs1063192 and rs3217992 were designed entirely within

exon 2 (due to the distance of transcribed SNPs from the exon

boundary).

Quantification of the allelic expression ratio was performed by

primer extension and MALDI-TOF mass spectrometry using

iPLEX Gold with similar parameters to the genotyping assay.

Spectra were analysed using MassARRAY Typer v3.4 Software

(Sequenom) and allelic ratios were estimated as the ratios of the

area under the peak representing allele 1 to that representing allele

2. Measurements were performed in four replicates using 50ng of

cDNA template. Results from amplification of genomic DNA were

used as an equimolar reference to normalise the cDNA values.

Genomic normalisation reactions for CDKN2B used the same PCR

primers as used for cDNA, but for CDKN2A and ANRIL (where

primers were cDNA-specific) separate assays designed to be as

close as possible in size and location to the cDNA primers were

used. Primer sequences are shown in Table S3. For some assays

the allelic ratios measured in gDNA ratios did deviate from a 1:1

ratio, as shown in Table S4, confirming that allelic ratios in cDNA

required correction for assay bias. However, as expected the

gDNA ratios for each assay were relatively homogeneous with little

inter-individual variability compared to cDNA ratios (Figure S1

and Figure S2). We compared the results of expression mapping

using two different normalisation strategies in the SA cohort:

normalising to a mean population normalisation factor versus

normalising each individual’s cDNA to their own gDNA ratio.

There was no difference in the results obtained using these two

normalisation strategies, as shown in Figure S8. The mean gDNA

ratios for each assay were the same in the SA cohort and a sample
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of Caucasian individuals (no significant difference using a two

sample t-test), and we therefore used the mean gDNA ratios for

normalisation of all samples.

The appropriateness of genomic normalisation ratios and

linearity of the AER response were checked by mixing PCR

products from individuals homozygous for the minor and major

alleles in varying ratios (8:1, 4:1, 1:1, 1:4, 1:8) and using these as

template for the allelic expression assays. These experiments

confirmed that allelic expression showed a linear response and that

normalisation ratios obtained using allelic expression assays on a

1:1 mixture of alleles for each SNP correspond to normalisation

ratios obtained from genomic DNA (Table S4 and Figure S9).

Allelic expression ratios for the two transcribed markers in each

gene were highly correlated (CDKN2A r = 0.68, p = 1.761023;

CDKN2B r = 0.80, p = 1.7610212; ANRIL r = 0.90, p = 1.0610226;

all genes combined r = 0.96, p = 3610261) as shown in Figure S5;

we therefore used a novel approach of combining allelic ratios

from the two transcribed markers in each gene to increase the

number of informative heterozygotes.

Relative quantification of total gene expression using
real-time PCR

Real-time PCR reactions were performed using TaqMan gene

expression gene expression probes and reagents (Applied Biosys-

tems) and run on a 7900HT Real-Time PCR System (Applied

Biosystems). Commercially available FAM-labelled TaqMan

assays were used for CDKN2A exons 2–3 (Hs00923894_m1) and

ANRIL exons 1–2 (Hs01390879_m1). A custom FAM-labelled

assay was used for exon 2 of CDKN2B. Commercially available

VIC-labelled TaqMan assays were used for three reference genes

shown to be suitable for normalisation of expression in peripheral

blood [79,80]: B2M (4326319E), GAPD (4326317E), and HPRT1

(4326321E). TaqMan assays are validated by the manufacturer to

have close to 100% amplification efficiency and assays were

selected to quantify the same transcripts as the allelic expression

assays. PCR was performed according to the manufacturer’s

protocol using four replicates, 25ng cDNA template per reaction,

and the following multiplex combinations: CDKN2A/B2M,

CDKN2B/GAPD, and ANRIL/HPRT1.

Relative total expression was analysed using the comparative

cycle threshold (Ct) method. Ct values for each target gene were

normalised to the mean Ct value of the three reference genes [79].

Standard errors and variances of measurements for allelic and

total expression analyses in the SA population are shown in Table

S5.

Statistical analyses
The association between total expression, as measured by real

time PCR, and each of the SNPs was assessed using linear

regression of the log transformed normalized expression values on

the genotype assuming no dominance or interactions between the

effects of different SNPs. The effect of including age, sex, and

ethnicity as covariates, as well as excluding outlying individuals as

determined by visual inspection (highlighted in Figure S4) were

investigated. Self reported ethnicity was included as a categorical

variable (categorised as ‘‘Cape mixed-ancestry’’, ‘‘black African’’,

‘‘white’’, ‘‘Indian’’, and ‘‘other’’). These corrections made no

significant difference to the results of eQTL mapping (Figure S6).

All analyses were performed using the corrected data. Plots

illustrating the associations between genotype and total expression

for selected SNPs are shown in Figure S10.

We analysed allelic expression ratios using an extension of the

approach we published previously [52]. We restrict ourselves to

biallelic markers, and code one arbitrarily chosen allele as 0 and

the other as 1. We designate with g the phase-known and with T

the phase-unknown genotype of an individual. The latter can be

ascertained through genotyping. We assume that the amount of

mRNA originating from a single allele follows a lognormal

distribution where the variance does not vary between different

alleles. The log of the ratio between the expression levels of both

alleles, I, can therefore be assumed to be normally distributed.

For an individual that is heterozygous for m transcribed

polymorphisms, m ratios can be determined. We designate the

vector of the logarithms of these ratios as I~ I1,:::,Im
� �0

. Under

the assumptions above, the components of I are normally

distributed with Ik*N mk gð Þ,skð Þ where the means mk gð Þ depend

on the genotype g but the variance sk is genotype independent but

may depend on the site used to measure the allelic expression

ratio. We model the expected value as a linear combination of the

influences of the typed polymorphisms:

mk gð Þ~
Xn

i~1

aihik gð Þ,

where ai represents the effect of the ith cis acting markers; and hik

characterizes the phase between transcribed and putative cis acting

markers:

hik gð Þ~
1 if the genotype at markers i and k is 11=00

{1 if it is 10=01

0 otherwise

8><
>:

In order to assess the association between a specific SNP and

allelic expression, let us consider a set of L individuals. For an

individual l (l~1,:::,L) we can measure the unphased genotype Tl

and a vector representing the log of the allelic expression ratios Il .

Up to a multiplicative constant the likelihood of observing a

certain pattern of imbalance in this set of individuals given their

genotyping results is:

L~P
l

f Il DTlð Þ

with

f Il DTlð Þ~
X

g

f Il Dgð ÞP gDTlð Þ

where P gDTlð Þ designates the probability of the phased genotypes g

given the genotyping results Tl and f Il Dgð Þ describes the density of

the distribution of Il given the genotype g. P gDTð Þ was estimated

using the hap procedure from the R-package gap (as deposited in

the CRAN archive http://cran.r-project.org/) to phase the

genotypes of the two populations separately.

We assume that the allelic expression ratios measured at

different sites are conditionally independent given the genotype.

Therefore:

f Il Dgð Þ~P
k

f Ik
l Dg

� �

where f Ik
l Dg

� �
~f Ik

l ; mk gð Þ,sk

� �
and f Ik

l ; mk gð Þ,sk

� �
denotes the

density of a normal distribution with the individual expression

ratio Ik
l as variate, a genotype dependent mean mk gð Þ and a

variance s2
k. Therefore L depends on ai (i = 1,…,n) and sk

(k = 1,…,m), and maximisation of this likelihood allows assessment
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of the effects of single or groups of SNPs and to adjust for the

effects of other markers by comparing nested models using

likelihood ratio tests.

For both total and allelic expression multiple testing was taken

into account by calculating the family wise error rate using a

Bonferroni correction for the 56 SNPs tested. Associations with

family wise error rate below a threshold of 0.05 (corresponding to

a nominal P-value of 8.961024, 2log10P of 3.05, and

2log10FWER of 1.3) were called significant.

From our allelic and total expression data we also estimated the

proportion of total expression variance that is due to cis-acting

effects. This assumes that cis and trans-acting factors act in an

additive manner, do not interact, are independent and that there is

random mating, no segregation distortion, and the locus is not

subject to imprinting. Given these assumptions, we estimate

the variance due to cis acting effects, V cð Þ, as V̂V cð Þ~
1

2 n{1ð Þ
Xn

i~1

e2
Ti

1{ri

1zri

� �2

, where ri is the allelic expression ratio

for individual i, and the proportion of the total variance due to

cis acting effects can be estimated as
2V̂V cð Þ
V̂V eTð Þ

, where V̂V eTð Þ is

the estimated total variance, i.e. V̂V eTð Þ~
1

n{1

Xn

i~1

eTi{�eeTð Þ2

with �eeT~
1

n

Xn

i~1

eTi and eTi represent the total expression level for

individual i as determined by real time PCR.

Supporting Information

Figure S1 Allelic expression ratios at transcribed SNPs in the SA

cohort. Y-axes show AER for the following transcribed SNPs: (A)

CDKN2A rs11515; (B) CDKN2A rs3088440; (C) CDKN2B

rs3217992; (D) CDKN2B rs1063192; (E) ANRIL rs564398; (F)

ANRIL rs10965215. Each point represents an individual, with

standard error bars shown. Black circles represent cDNA

measurements and blue circles genomic DNA measurements.

Found at: doi:10.1371/journal.pgen.1000899.s001 (0.26 MB

DOC)

Figure S2 Allelic expression ratios at transcribed SNPs in the

Caucasian cohort. Y-axes shows AER for the following tran-

scribed SNPs: (A) CDKN2A rs11515; (B) CDKN2A rs3088440;

(C) CDKN2B rs3217992; (D) CDKN2B rs1063192; (E) ANRIL

rs564398; (F) ANRIL rs10965215. Each point represents an

individual, with standard error bars shown. Black circles represent

cDNA measurements and blue circles represent genomic DNA

measurements.

Found at: doi:10.1371/journal.pgen.1000899.s002 (0.21 MB

DOC)

Figure S3 Total expression values in the SA cohort. Y-axes

show normalised total expression Ct values relative to reference

genes for: (A) CDKN2A; (B) CDKN2B; (C) ANRIL. Each point

represents an individual, with standard error bars shown.

Found at: doi:10.1371/journal.pgen.1000899.s003 (0.19 MB

DOC)

Figure S4 Correlations between total expression levels of

CDKN2A, CDKN2B and ANRIL. Scatter plots show correlations

between total expression levels for: (A) CDKN2A and CDKN2B; (B)

CDKN2A and ANRIL; (C) CDKN2B and ANRIL. Expression values

on the X- and Y-axes are shown as delta Ct values for the target

gene relative to the three internal control genes. Circles represent

individual samples and the crosses represent three outliers

excluded from correlation analyses. Linear regression lines are

shown as solid lines, with dotted lines indicating the 95%

confidence intervals. Pearson correlation coefficient (r) and the

P-value for each association are shown in the top left of each plot.

Found at: doi:10.1371/journal.pgen.1000899.s004 (0.12 MB

DOC)

Figure S5 Correlation between AER in individuals heterozy-

gous for both transcribed markers in a gene. The X- and Y-axes

show the allelic expression ratio (AER) at the two transcribed

SNPs in each gene. Each point represents an individual who is

heterozygous for both transcribed SNPs in that gene. Circles

represent CDKN2A, squares CDKN2B, and triangles ANRIL.

Found at: doi:10.1371/journal.pgen.1000899.s005 (0.03 MB

DOC)

Figure S6 Effect of adjustment for covariates and outliers on

total expression mapping. Scatter plots depict the estimates of

effect size (A) and significance of association (B) for each of the 56

SNPs obtained using unadjusted total expression values (X-axis)

versus values adjusted for covariates (age, sex, ethnicity) and with

outliers removed (Y-axis). Pearson correlation coefficient (r) and

the P-value for each association are shown in the top left of each

plot.

Found at: doi:10.1371/journal.pgen.1000899.s006 (0.05 MB

DOC)

Figure S7 Linkage disequilibrium in the SA and Caucasian

cohorts. Figures show linkage disequilibrium between the 56 SNPs

in each population: (A) D9 in Caucasian cohort; (B) D9 in SA

cohort; (C) r2 in Caucasian cohort; (D) r2 in SA cohort. Colouring

in (A) and (B) represents D9 values: D9 = 1, LOD,2 (blue); D9 = 1,

LOD.2 (red); D9,1, LOD.2 (shades of pink); D9,1, LOD,2

(white). Shading in (C) and (D) represents r2 values: r2 = 1 (black);

0,r2,1 (shades of grey); r2 = 0 (white).

Found at: doi:10.1371/journal.pgen.1000899.s007 (1.05 MB

DOC)

Figure S8 Effect of individual normalisation of allelic expression

ratios. Scatter plots compare the estimates of effect size (A) and

significance of association (B) for each of the 56 SNPs obtained

using allelic expression ratios normalised to a combined normal-

isation factor (X-axis) versus individual normalisation of each

cDNA ratio to the gDNA ratio from the same individual (Y-axis).

Pearson correlation coefficient (r) and the P-value for each

association are shown in the top left of each plot.

Found at: doi:10.1371/journal.pgen.1000899.s008 (0.05 MB

DOC)

Figure S9 Linear relationship between measured and expected

allelic expression ratios for alleles mixed in known ratios (8:1, 4:1,

1:1, 1:4, 1:8) at each transcribed SNP. (A) CDKN2A rs3088440. (B)

CDKN2A rs11515. (C) CDKN2B rs3217992. (D) CDKN2B

rs1063192. (E) ANRIL rs10965215. (F) ANRIL rs564398.

Found at: doi:10.1371/journal.pgen.1000899.s009 (0.05 MB

DOC)

Figure S10 Effect of genotype on total expression of ANRIL for

selected SNPs. Y-axis shows the normalised total expression value

for ANRIL. X-axis shows genotype for SNPs with cis-acting effects:

(A) rs564398; (B) rs10965215; (C) rs7865618. Linear regression

lines are shown as solid lines, with dotted lines indicating the 95%

confidence intervals.

Found at: doi:10.1371/journal.pgen.1000899.s010 (0.10 MB

DOC)

Table S1 Summary of included SNPs. F = SNP removed from

analysis in this cohort as genotype available for ,80% of
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individuals. CAD = coronary artery disease; MAF = minor allele

frequency; HW = Hardy-Weinberg.

Found at: doi:10.1371/journal.pgen.1000899.s011 (0.20 MB

DOC)

Table S2 Effect size and significance of association for SNPs

associated with disease. Data shown are for aeQTL mapping in

the combined population. Effects are reported as fold changes in

expression for individuals who are homozygous for the minor

allele relative to individuals who are homozygous for the major

allele (calculated from allelic expression data using two transcribed

SNPs per gene). Association for each SNP is presented as the

2log10 P-value and the 2log10 of the family wise error rate

(FWER) using a Bonferroni correction for the 56 SNPs tested.

Associations that were significant using a FWER threshold of 0.05

(corresponding to 2log10P of 3.05, or 2log10FWER of 1.3) were

regarded as significant.

Found at: doi:10.1371/journal.pgen.1000899.s012 (0.20 MB

DOC)

Table S3 Primer sequences.

Found at: doi:10.1371/journal.pgen.1000899.s013 (0.03 MB

XLS)

Table S4 Comparison of allelic expression normalisation ratios

obtained from genomic DNA and experimental equimolar

mixtures.

Found at: doi:10.1371/journal.pgen.1000899.s014 (0.03 MB

DOC)

Table S5 Comparison of variances between total expression and

allelic expression measurements in the SA cohort.

Found at: doi:10.1371/journal.pgen.1000899.s015 (0.03 MB

DOC)
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74. Züchner S, Gilbert JR, Martin ER, Leon-Guerrero CR, Xu PT, et al. (2008)

Linkage and Association Study of Late-Onset Alzheimer Disease Families

Linked to 9p21.3. Annals of Human Genetics 72: 725–731.

75. Li J-M, Nichols MA, Chandrasekharan S, Xiong Y, Wang X-F (1995)

Transforming Growth Factor beta Activates the Promoter of Cyclin-dependent

Kinase Inhibitor p15 (INK4B) through an Sp1 Consensus Site. J Biol Chem 270:

26750–26753.

76. Messeguer X, Escudero R, Farre D, Nunez O, Martinez J, et al. (2002)

PROMO: detection of known transcription regulatory elements using species-

tailored searches. Bioinformatics 18: 333–334.

77. Farre D, Roset R, Huerta M, Adsuara JE, Rosello L, et al. (2003) Identification

of patterns in biological sequences at the ALGGEN server: PROMO and

MALGEN. Nucl Acids Res 31: 3651–3653.

78. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for

biologist programmers. In: Misener S, Krawetz SA, eds. Bioinformatics Methods

and Protocols: Methods in Molecular Biology. TotowaNJ: Humana Press. pp

365–386.

79. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, et al. (2002)

Accurate normalization of real-time quantitative RT-PCR data by geometric

averaging of multiple internal control genes. Genome Biology 3: resear-

ch0034.0031–research0034.0011.

80. Zhang X, Ding L, Sandford AJ (2005) Selection of reference genes for gene

expression studies in human neutrophils by real-time PCR. BMC Molecular

Biology 6.

ANRIL Expression and Disease Associated SNPs

PLoS Genetics | www.plosgenetics.org 17 April 2010 | Volume 6 | Issue 4 | e1000899


