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Abstract
Holography has long been recognized as an effective way to convey the information of complex 3-

dimensional structures such as those encountered in medical imaging, computer-aided design and

navigation. However, attempts at implementing a real-time holographic display device have been

hampered by the enormous space-bandwidth products required by such a task. I present here an

approach that alleviates many of the problems encountered in previous attempts at real-time com-

puter generated holography.

The basic idea underlying the MIT electronic holography display is the use of an acousto-optic

modulator as a dynamic display medium and the synthesis of a large aperture by scanning the im-

age of the modulator. The original implementation of the display is unsuitable for images larger

than a few square centimeters, because the necessary optical space-bandwidth product become un-

manageable by the electronic and optical subsystems. The goal of this thesis is to demonstrate that

large displays can be implemented with available technologies if we break the space bandwidth

product in small segments at both the image plane and Fourier plane, i.e. if we take a parallel ap-

proach.

In the image plane domain the display space-bandwidth product can be increased by simulta-

neously writing multiple acoustic columns on a single crystal and then optically multiplexing the



resulting holograms. I discuss the proper conditions under which the interline crosstalk remains

acceptable and introduce a scanning geometry that allows for such a multiple channel operation.

The Fourier domain can also be segmented in small domains, each being processed by a different

scanning element. I describe the behavior of the image when such a segmentation in implemented

and I then derive the conditions under which it can be effected without incurring significant image

degradation.

I finally describe the implementation of these concepts into a large scale holographic display which

includes the use of an array of 6 galvanometric scanners as the horizontal scanning element, two

18-channel acousto-optic Bragg cells working in tandem, and a bank of custom-designed high-

bandwidth framebuffers. The application of the concept of parallelism has allowed a six-fold scale-

up of the display, which now produces high quality images 150mm x 75 mm in frontal dimensions,

with a 30 degrees view zone.
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I INTRODUCTION

1.1 The need for advanced visual interfaces

1.1.1 Graphical user interfaces

A cliche often used when describing the progress of computing devices goes like this: If cars had

followed the same evolution curve that computers have done, a contemporary automobile would

cost a dollar and could circle the earth in an hour using a few cents worth of gasoline. Applying

the same metaphor to computer display devices, however, would likely find us at the wheel of a

1940's vintage Buick.

The fact is, there has been little conceptual advances in display technologies since the advent of

television in the 1940's. The NTSC standard adopted at that time specified a display resolution of

480 scan lines and about 640 pixels horizontally (It should be noted that NTSC images are not

sampled in the horizontal direction, but the 640 pixels figure is a commonly used approximation).

Today's high end computer terminals offer color images having 1280 pixels horizontally and 1024

scan lines. This corresponds to a factor of 4 improvement over more than a half century. A few

displays offer resolutions in the 2000 x 2000 range, which represents a factor of 13 over NTSC - a

figure that hardly compares to the evolution of computing devices.

There is nowadays a considerable effort aimed at the development and manufacture of a new gen-

eration of flat panel displays. Such an effort is spurred by the enormous market predicted for such

devices in portable computers and high definition television (HDTV). But the overwhelming frac-

tion of this effort is aimed at devices achieving characteristics similar to todays CRT's - only in a

flatter, more efficient, and hopefully less expensive manner.

There is, however, a real need for display devices that could go beyond what we have become

accustomed to. Conventional display devices offer only a puny fraction of the information that



can be processed by the human visual system. Compare this situation to the field of acoustics,

where digital recording devices and modern loudspeakers can offer sound of an almost lifelike

realism. With respect to these, even the most advanced high resolution displays now in use would

fare about as well as Edison's first recordings on wax cylinders.

This situation could be accommodated when the output of digital devices consisted in little more

than strings of letters and numbers. However, displaying the enormous amount of data being

processed by today's computers offers a formidable challenge from both the technical and human

interface perspectives. This challenge is unlikely to be resolved without bold and innovative

approaches to the problem of scientific visualization.

Researchers at the MIT Media Laboratory Visible Language Workshop (VLW) under the supervi-

sion of the late Muriel Cooper have taken the first steps towards a whole new paradigm in the

design, organization, and display of complex multidimensional data sets. These researchers well

understood that conventional monitors and user interfaces designs were inadequate in conveying

massive amounts of data. One of their early tasks thus consisted in optically tiling three high res-

olution monitors to achieve a display having an effective resolution of 6000 x 2000 pixels61 . They

then designed graphical user interfaces that used three dimensional metaphors such as transpar-

ency, blur, layering, and zoom to navigate through this "information landscape60 ". Their early

work clearly demonstrate that using a three dimensional representation can considerably aug-

ment the human brain in accessing and assimilating large amounts of information.

The VLW researchers are now using a commercially available stereographic display (the Crystal

Eye, manufactured by Stereographics Corp., San Rafael, CA) to evaluate their three dimensional

interfaces. Other groups performing related work prefer to use head mounted displays which

offer a wider field of view but a lesser resolution. The limitations of these technologies are quite

evident for researchers in the field. Stereographic displays render a scene from a single viewer

perspective. They are thus incapable of rendering motion parallax, which is one of the most

important depth cues that the human brain uses to extract depth from a scene. Attempts at simu-



lating motion parallax by tracking the position of the viewer's head invariably run into a signifi-

cant time lag due to the tracking, image rendering, framebuffer loading, and screen refresh

intervals. Moreover, these devices require the viewer to wear goggles that are often quite cumber-

some. Finally, none of these technologies present the feature of ocular accomodation, another

depth cue used by the brain to extract the range of nearby objects. The VLW graphical interface,

which makes use of image blur to simulate different depth planes, would obviously considerably

benefit from a device that could intrinsically reproduce arbitrary focal planes.

A few experiments in which multiple focal planes were used to display layered text and images

were attempted by Kenneth M. Carson at the MIT Media Laboratory6 5. Carson used a varifocal

mirror made of an aluminized membrane driven by a loudspeaker to image the phosphors of a

CRT at different planes. Early results clearly demonstrated the potential of volumetric imaging

technologies, despite the fact that the display acted like a large subwoofer and that varifocal dis-

plays cannot reproduce occlusion.

1.1.2 Vision studies

In the late 1980's Edward H. Adelson of the Massachusetts Institute of Technology introduced the

concept of plenoptic function to describe the structure of the information in the light impinging on

an observer 62. The plenoptic function describes everything that can be seen, hence its name (from

plenus, complete, and optic). The parameters of the plenoptic function thus include the light inten-

sity distribution at the viewer's pupil, as well as the wavelength, viewer position, and, in the case

of moving images, time. Adelson's thesis is that the human brain extracts the salient features of

this function principally by using sets of oriented filters in the visual cortex. Indeed such struc-

63
tures have been found by various research groups

In principle, determining the exact response of these filters opens the possibility of presenting the

viewer with a prefiltered version of the plenoptic function. The modified function would be undis-

tinguishable from the original, although requiring considerably fewer amount of data to repre-



sent. This determination presents obvious applications in image compression, apart from its

fundamental contribution to vision science.

The determination of the total processing bandwidth of the human visual system is considerably

complicated by the fact that these cortical filtering structures are multidimensional. Moreover,

conventional displays can present only a very small fraction of the plenoptic function to the

observer. A technology that could be used to convey the complete plenoptic function would rep-

resent a major advance in the study of human vision.

Conveying the entire plenoptic function to an observer implies an arbitrary degree of control over

the wavefronts reaching the eye (excluding absolute phase and polarization, to which the human

visual system is not sensitive), and obviously requires the processing of large amounts of data.

From early on holography was considered as a most likely candidate for this task, since in theory a

hologram allows the reconstruction of an arbitrary wavefront over an extended portion of space.

Despite a period of enthusiasm in the early 1960's, however, display holography has yet to fulfill

its promises. Indeed, numerous researchers have stated that the holy grail of display technology,

namely a holographic display capable of a perfect scene realism, is a technological impossibility.

The goal of this thesis is to demonstrate that this is not so. Digital holographic displays have been

demonstrated and can be scaled to useful sizes by adopting the appropriate optical architectures.

1.2 The bandwidth bottleneck

Although conventional display holograms can produce bright, full-color images of high resolution

and a large range of depths, they are static, and cannot be altered electronically as can a typical

two-dimensional display. Any use of three-dimensional data for interactive, animated, or real-

time display is commonly limited to a two dimensional rendering and display on a cathode-ray

tube (CRT). The possibility of a real-time holographic display has only recently emerged due to

advances in computers and computational methods, which allow for the rapid (seemingly real-

time) computing of a holographic representation of a given set of three-dimensional data, as well



as new electro-optical technologies for their display.

Up to a few years ago the interactive display of holograms was deemed impossible by a number of

researchers due to the formidable technical obstacles any such endeavor would need to overcome.

All those obstacles result from the very large amount of information necessary to convey an holo-

graphic image at either the computational, transmission,or display step. A simple calculation eas-

ily illustrates the extent of the problem. The information content of a holographic image is readily

calculated if we start from the grating equation:

Xfh = sinO (1.1)

Wherefh is the maximum spatial frequency of the hologram fringes, X is the wavelength of the dif-

fracted light and 0 is the angular width of the view zone.

According to the sampling theorem, the minimum sampling frequencyf, required to generate or

digitally transmit the hologram is:

f, = 2fh (1.2)

so that the number N of samples required for a 1-dimensional hologram of width d is:

N = df, = 2dsinO (1.3)

The total number Nt of samples required for a hologram with only horizontal parallax and with a

vertical resolution of 1 lines is thus:

N, = lN, = 2dl sin0 (1.4)

For a full parallax hologram of height w we have:



N 4dw sin2O (1.5)N, = 2(15

The information content of a typical hologram is thus several orders of magnitude larger than that

of a two-dimensional image, such as the image on a CRT display. From equation (1.5), a full paral-

lax hologram of dimensions 100 mm by 100 mm and a maximum diffraction angle of 30 degrees

contains approximately 25 billion samples of information - all for a single frame. In order to

update such an image with 8-bit resolution at a rate of 60 frames/second, a data rate of 12 Ter-

abits/sec would be required for transmission of the hologram. This bandwidth is well beyond the

range of current technology. A number of steps are clearly necessary before any electronic holog-

raphy display can be implemented.

1.3 Information content reduction strategies

1.3.1 Elimination of horizontal parallax

The human visual system extracts depth information in a scene mostly by virtue of its horizontal

parallax, a feature that has been applied in stereoscopic and lenticular displays. The elimination

of vertical parallax has also been exploited by Benton in the generation of white light viewable

holograms 14. A horizontal parallax only (HPO) hologram represents a scene from a single vertical

perspective only and the number of holo-lines is only matched to the vertical image resolution.

The vertical pitch of a HPO hologram thus has typical values of a few lines per mm, as opposed to

about 1000 for full parallax images. As a result, a two orders of magnitude gain in information

content is typically achieved. For instance, if we consider our previous example with a vertical

pitch of 4 lines/mm, the application of Equation (1.4) gives a total number of samples of 63 million

per frame.

Eliminating the vertical parallax results in considerable savings in display complexity. Indeed, the

display technology researched at the MIT media Laboratory which relies on the application of



one-dimensional transforms, would be unapplicable to full parallax displays. Because the vertical

focal plane is fixed and the horizontal focus is variable, HPO holograms exhibit some

astigmatism14 .This astigmatism can be kept to a minimum if the vertical focal plane coincides

with the middle plane of the image. Extensive experience with rainbow holograms shows that this

astigmatism remains virtually unnoticeable even for fairly deep objects.

1.3.2 Reduction of horizontal display resolution

A conventional hologram can image features of the order of a few wavelengths, while at a usual

viewing distance (say 600 mm) the human visual system will be unable to resolve features smaller

than 200 micrometers (corresponding to a 1 minute of arc angular extent). This property has been

exploited by Lucente who obtained considerable computational savings by precomputing holo-

graphic fringes and then accessing them using a look up table19 .The savings as far as display tech-

nology is concerned are less obvious, however, since the sample size at the hologram plane is

determined by the maximum angular extent of the scene as determined by equations (1.1) and

(1.2).

Another consequence of the limited resolution of the human eye is that it is possible to sequen-

tially display sections of the hologram without perceptible degradation if the proper conditions

are met. Chapter II will demonstrate how this property is fundamental to the present implementa-

tion of the MIT display.

1.3.3 Reduction of image size and horizontal viewing angle

Again referring to equations (1.4) and (1.5), it becomes obvious that the easiest way to reduce the

information content of a hologram is to reduce the size and viewing angle of the image. The hori-

zontal viewing angle, however, should be large enough so that both eyes of the observer fit within

the view zone. Assuming a viewing distance of 600 mm and an intraocular distance of 65 mm thus

results in a minimum angle of 6.2 degrees. In practice a certain amount of "look around" is also



necessary to provide the horizontal parallax information that is an important depth cue in human

vision. Allowing for a lateral translation of the observer by an amount equal to the intraocular dis-

tance doubles the horizontal view angle to a value of 12.4 degrees. Experiments performed on the

MIT display confirm that this value results in acceptable images, although this falls short of the 45

degrees view zone more typical of conventional display holograms.

If the horizontal extent of the image is limited to 50 mm and we assume a HPO hologram with 100

lines of vertical resolution and a horizontal view zone of 12 degrees, equation (1.4) results in a

number of samples of 3.3 million per frame. This figure is compatible with the performance of

commercially available frame buffers.

1.4 Historical background

1.4.1 Related experiments

A large body of literature exists concerning the computer generation of holograms9 10 but few

attempts have been made at displaying those at video-like frame rates. Holograms displayed

using present generation liquid crystal displays (LCD's) or magnetooptic light valves have a

space-bandwidth product which is too small by two orders of magnitude to qualify as "display

holograms".

The first attempts to display computer generated holograms in real time with a spatial light mod-

ulator were made at the California Institute of Technology in the mid 1980's by Psaltis et al1 8 using

a magneto-optic spatial light modulator. Later on the same group repeated the experiment with an

LCD 49. In both cases the low pixel count of the devices (128 x 128 for the magneto-optic device,

100 x 100 for the LCD) limited the experiments to a proof of principle.

More recent experiments on holographic displays using LCD's have been implemented in Japan

by Hashimoto et al.37. An active matrix LCD display was used to modulate the phase of an colli-



mated HeNe laser beam. The images obtained by this group, however, were quite noisy and

exhibited a very low space bandwidth product due to the limited resolution of the LCD. The same

group is still active in the domain and is now working in the development of very high pixel count

LCD's for use in holographic applications. LCD's still have a long way to go before they can be

considered for practical aplications in real time display holography, but they hold the promise of

flat panel displays and are rapidly improving.

A different approach at synthesizing three dimensional images is being attempted by Kulick et al.

at the University of Alabama. Rather than attempting to generate actual micron-sized fringes, their

approach is to precompute a set of basis fringes that are then modulated as a whole by a LCD

panel. The images generated by this scheme are thus closely related to holographic stereograms.

No practical device has yet been manufactured by this group, although the very preliminary work

done so far seems encouraging.

Another research effort closely related to the goals of this thesis (namely, the display of reasonably

good quality moving holograms) was the one of Goetz et al.29 , which used scanned laser beams to

generate holograms of points in space using a thermoplastic recording material. The authors were

hoping to achieve television-quality images and refresh rates of around 1 frame per second. It is

interesting to note that while those authors were using AOM's as light modulators, the actual dis-

play medium was a thermoplastic sheet. The main problems encountered were due to the limited

frequency response and high noise of this thermoplastic. Unfortunately, no subsequent reports fol-

lowed the original publication.

1.4.2 The MIT holographic video project

Experiments on electronic holography were started at MIT in 1987 by Joel S. Kollin (then a MS stu-

dent at the MIT Media Laboratory) and Professor Stephen A. Benton with initial funding provided

by the U.S. West Corporation 27 ,'55 ,59. John S. Underkoffler, then an undergraduate student at MIT,

computed the original fringe patterns using the newly acquired CM1 supercomputer from Think-



ing Machines Corporation.

Kollin and Benton came up with the original concept behind the MIT technology, namely the use

of a scanned apertured Bragg cell as the display medium. It was only later that a bibliographical

search uncovered the use of an almost identical geometry for the projection of television images

developped in the late 1930's. The so-called Scophony projector was developed principally by J.H.

Jeffree and was once considered a serious contender for the display of television images16 57

Unfortunately, it could not compete with the CRT which was already a well developped technol-

ogy.

Further bibliographical investigations uncovered the fact that the use of a Scophony-type geome-

try had indeed been proposed at Xerox by Richard V. Johnson for the projection of three dimen-

sional images56. Johnson proposed the use of programmable chirp filters to alter the focal plane of

the image being writtten on a Bragg cell, an approach that is rather unpractical when compared to

the numerical synthesis of holographic fringes. Johnson also did not seem to be aware that good

three dimensional images could be achieved with horizontal parallax only holograms. Still, it is

puzzling that no more publications came out from Xerox on this topic.

Considerable technical difficulties prevented the initial researchers from displaying images with

the system under development. Indeed it was not until the summer of 1989 that simple geometric

patterns with a vertical resolution of 8 scan lines could be convincingly demonstrated by the

author of this thesis. Following this demonstration a U.S. patent was applied for in April 1990 and

awarded in 199258

Rapid progress followed the initial demonstration. A display exhibiting 192 horizontal scan lines

was demonstrated in 199025 and color images were achieved in 199140. It was then decided to

experiment with scaling up the technology, an endeavour that led to this doctoral dissertation. The

first results on the scaled up technology were presented in 19923 and by early 1994 we were able to

display high quality images 150 mm across.



II FUNDAMENTAL CONCEPTS

2.1 Overall description of the first-generation MIT display

The fundamental idea behind the MIT electronic holography display is the use of an acousto-optic

modulator (AOM) as the medium upon which the holograms are written1',3. The AOM consists of

a single transparent TeO 2 crystal operated in the slow shear mode. At one end of the crystal is an

ultrasonic transducer, which converts the electrical holographic information signal to a shear wave

that is launched down the crystal. As the shear wave propagates, the regions of greater elastic shear

present a modulated index of refraction to the optical beam, which passes at the Bragg angle with

respect to the acoustic wave. The optical beam thus emerges from the crystal with a relative phase-

difference pattern across its width that is proportional to the instantaneous amplitude of the shear

wave along the length of the crystal. This complex fringe pattern transfers the computer-generated

hologram (CGH) data to the optical beam. The crystal has an aperture time (width / sound speed)

of 40 microseconds and a space bandwidth product (max cycles / mm x aperture width) of 2000.

Its operating RF spectrum ranges from 50 to 100 MHz. Because its total angle of diffraction range

is only 3 degrees, optical demagnification is needed to bring the viewing angle to a more acceptable

value (typically 15 degrees).

Figure 2.1 shows the electro-optical portion of the display. A widened beam of coherent light is

phase modulated by the input CGH data-stream in the AOM, and assembled into the image of the

CGH by the scanning system. A 10mW HeNe laser is used as a coherent source of monochromatic

red light (632.8 nm wavelength). The beam is spatially filtered, expanded, and collimated using a

microscope objective, a pinhole, and a collimating lens. A horizontal slit-shaped portion of this

beam passes through the AOM, producing a diffracted order, which represents a portion of one line

of the hologram. In the AOM, the fringes propagate at a rate of 617 meters/second, which is the

speed of shear waves in the TeO2 crystal. Therefore, the diffracted image also moves (from left to
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Figure 2.1 Electro-optical section of the original MIT holographic display. The vertical lenses
have been omitted for clarity

right) at this rate. In order to make the image appear stationary, a spinning polygonal mirror is used

to scan the image of the AOM horizontally in the opposite direction. The horizontal scan also acts

to multiplex the image of the crystal, creating a virtual crystal that is exactly as long as one line of

the CGH. This multiplexing is necessary because the crystal's time-bandwidth product is typically

at least an order of magnitude smaller than the time-bandwith product of a single hologram line.

We can thus think of our CGH as a narrow slit being displaced along a much wider hologram. This

situation is very similar to the synthetic aperture radar (SAR) case where a narrow antenna is lin-

early and coherently scanned to give an effective aperture equal to the scan length64, the main dif-

ference being that we are generating a wavefront instead of recording one (thus the name Synthetic

Aperture Holography that is sometimes used to describe this concept). Another difference be-

tween our system and SAR is that our detector (the human eye) is an incoherent imaging device,

being sensitive only to the intensity of the incoming light. This characteristic of the eye prevents

the synthetic apertured hologram from displaying superresolved images, as is the case for SAR.

The vertical deflection is provided by a closed loop galvanometric scanner. The net effect is that of

a small horizontal-parallax hologram being scanned in a raster fashion much like the electron beam

in a CRT display. History-minded readers may note that the display exhibits many similarities
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Figure 2.2 Block diagram of the first generation display electronics

with the Scophony system introduced in the 1930's for the projection of two-dimensional television

images16

Computation of the images is done on a massively parallel supercomputer (Thinking Machines

Corp. model CM2) using algorithms developed at our laboratory 9. After computation the holo-

graphic information is sent to a high resolution frame buffer and converted to a signal having the

same bandwidth as the AOM. This signal is then upconverted to the AOM operating frequency

range by mixing it with a 100 MHz carrier and filtered to keep only the lower sideband. It is then

amplified and used to drive the AOM.

The operation of the display requires a precise synchronization between the various parts of the

system (polygonal mirror, galvanometric mirror and frame buffer), which is provided by the circuit

of Figure 2.2. This circuit derives all the necessary drive signals from the horizontal and vertical

sync pulses of the frame buffer .
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Figure 2.3 Hologram geometry for the computation of a single point. The fringe
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2.2 Mathematical optics of synthetic aperture holograms

2.2.1 The AOM as a Dynamic Hologram

Because of their wide bandwidth and dynamic range, Bragg cells have found many applications as

elements of optical processors20,21.The optical processing community usually uses the formalism

of linear systems theory to describe the operation of these devices. It will be much easier in the

course of this section to treat the signal propagating on the AOM as a dynamic hologram rather

than as an arbitrary waveform. This description also closely corresponds to the actual physical phe-

nomenon we are trying to reproduce, namely three-dimentional imaging. Let us say that the object

we want to display is a single point. At the computation step the corresponding geometry is shown

in Figure 2.3. The "hologram" plane is at a distance ho from the point Po and the simulated wave-

length corresponds to the wavelength eventually used for display (usually 633 nm). The maximum

spatial frequency of the fringes is related to the maximum viewing angle by equation (1.1). During

playback, the hologram information is launched at one end of the crystal as a series of radio-fre-

quency shear waves. The wavelength A of these waves is related to the speed of sound V of the crys-

tal and the RF frequency F by the equation:



AF = V (2.1)

Usually, A is longer than the original fringe spacing Af .The playback hologram will thus have cor-

respondingly lower spatial frequencies with the following consequences:

" The holographic image will be magnified along the x-axis by a factor equal to Af

" The maximum view angle will be reduced by the factor A / Af.

e The image will be magnified along the z-axis by the factor (A / Af)2 .

" The image will be at a distance do = ho (A / Af) 2 from the crystal plane.

e The image will move along the x-axis at the speed V

Because the longitudinal and transverse magnification are different, the image will exhibit some

distortion since it is elongated along the axis of highest magnification. For example, a sphere will

be mapped into an ellipsoid.

2.2.2 Synthetic aperture displays - the general case

It is clear that viewing the image corresponding to the information being written on the Bragg cell

requires a system that can compensate for the rapidly moving diffraction pattern. I propose to an-

alyze a general class of optical systems for this purpose. The basic components of this geometry

consist of the Bragg cell, an input lens L1, an angular scanning element G, and an output lens L2

(Figure 2.4). The scanning element rotates at an angular rate co which is usually determined by the

period of a scan line. This type of optical system was first proposed by J.H. Jeffree in 1936 for the

projection of television images (Scophony system). For this reason it is sometimes described as the

"Scophony geometry." This geometry has also been investigated in the late 70's for use in data

recordings 2, but as display devices Scophony-type video projectors could never be made to com-

pete economically against CRT's. Some modem laser printers are based on a variation of this de-

sign.

We want to determine the conditions under which a fringe pattern corresponding to a single point
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Figure 2.4 Horizontal geometry for the general case.

will be mapped into a stable image free of aberrations. A partial analysis using a conventional geo-

metrical approach was presented in ref. 2. A more elegant treatment which uses an extension of the

well known ABCD matrix description is described in Appendix A. I will only give the general re-

sults in this section.

Usually V is a constant dictated be the acousto-optic material and o is determined by the display

frame rate. This leaves 12 and 13 as independent parameters that can be manipulated to get a correct

image. For the image to be stable with respect to time, 12 has to obey the condition:

= f 1 (2doo + V)
2 2o (do + f 1)

Wheref 1 andf2 denote the focal lengths of lenses L, and L2 respectively. For the spatial frequencies

(corresponding to the directions from which the image is visible) to be stable with time the follow-

ing condition has also to be followed:

V f ' 2)
13 = f 2 + V-(f 1  (2.3)

The transverse magnification Mt of the display is a complicated expression which is a function of

do and the sum 12 + l3:



f1 f2Mt f=f2 +do(f+f 2 - 2 + 3) (d+f) (2.4)

An analysis of equations (2.2), (2.3), and (2.4) reveals many problems with that general description

of synthetic aperture displays:

* According to (2.2) the image will be stable only for a particular value of do. Any other value will

somewhat smear the image due to motion blur. This is clearly unacceptable for the imaging of

deep 3-dimensional objects.

o The display magnification is dependant upon do, which creates geometrical distortions in the

final image. It is however possible to correct for this effect at the computation step.

2.2.3 Confocal geometry

We will now examine the special case in which 12 =f1 and 13 =f2 (confocal geometry). In this degen-

erate case the conditions for imaging simplify considerably. Equation (2.2) becomes:

d2 = fi = (2.5)

and equation (2.3) is always satisfied. The transverse magnification of the system then simplifies to:

M, - (2.6)
f,

and the longitudinal magnification Mi thus becomes:

M; = M (L t (2.7)

The implementation of a practical display is considerably simplified if we adopt a confocal geom-

etry because the match between the linear speed of the fringes on the Bragg cell and the angular

rate of the mirror no longer depends on do. Deep images can thus be represented without motion



blur. The independence of the system magnification with respect to dealso brings substantial sim-

plifications in the overall design of the display.

The value of fi is usually determined from equation (2.5) since v is a constant of the Bragg cell ma-

terial and co is constrained by the horizontal scan rate. If we now choose f2 such that:

f 1 -A 
(2.8)

f 2  Af

The telescopic magnification of the lens system will be the inverse of the magnification described

in section 2.2.1 and the computed object will be displayed with no distortion. For the remainder of

this thesis a confocal geometry will be assumed unless stated otherwise.

2.2.4 Display resolution

At any instant in time only a small portion of the image is displayed. From the viewer's perspective

the display can be modeled as a narrow aperture being rapidly scanned across a larger hologram

(Figure 2.5). It is clear that this narrow aperture, which is also the output pupil, consists of the im-

age of the AOM formed by lenses L1 and L2 of Figure 2.4. The maximum useful display resolution

is determined by the pupil of the observer. If we assume a diffraction limited system and consider

an instant in time in which the diffracted light entirely fills the pupil of the viewer, the maximum

resolution condition is given by:

zi = Z2  (2.9)
S S

where S is the size of the AOM image and s the diameter of the eye pupil (Figure 2.5). In practice,

condition (2.9) cannot be met because the aperture scans across the image and part of the subtend

of the eye's pupil will be blocked during a fraction of the scan. The time behavior of the display

resolution for a given image location will exhibit the behavior shown in Figure 7. Because the scan

time is much smaller than the response time of the eye, the resolution function of Figure 7 is inte-
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grated over time by the visual system with the result that the overall resolution will always be in-

ferior to the diffraction limit of the eye, although approaching it asymtotically as S becomes large.

In practice, however, a determination of S from (2.9) gives visually excellent results. It is also obvi-

ous from (2.9) that the deeper the image, the longer the AOM has to be. The actual size of the AOM

can be expressed as:

S> Zmax (2.10)
Mt (Zobs - Zmax)

where Zobs is the distance between the observer and the AOM image, which is usually close to the

output lens, zmax corresponds to the section of the image closest to the observer, and Mt is the trans-

verse magnification factor of equation (2.6). As an example, with M-1 =5 (corresponding to a view

zone having a 14.5 deg. angular width assuming a 50 MHz bandwidth TeO2 AOM), zwax = 100 mm,

s = 3 mm and a viewing distance of 600 mm the minimum required AOM length is 3 mm, corre-

sponding to a space-bandwidth product of 243. Such a figure is well within the range of commer-

cially available TeO2 AOM's, as some of these exhibit space-bandwidth figures in the thousands5'6.

For all practical purposes, the display resolution will thus generally be limited by the quality of the

system optics or by the algorithms used in the hologram computation.
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Figure 2.6 Display resolution time dependence for a stationary observer.
The diffracted rays are vignetted by the observer's pupil during intervals

tI - t2 and t3 - t4.

2.2.5 Vertical scanning subsystem

The vertical scanning section of the system is more straightforward because the display exhibits no

vertical parallax. The vertical scanning is effected in a raster fashion and its rate (typically from 30

to 60 Hz) places it well within the range of commercially available closed-loop galvanometric

scanners22. Moreover, the required vertical resolution is relatively low (less than 1000 lines) and

remains well within the modulation transfer function limits of ordinary scanning lenses. Because

the vertical focal plane is fixed and the horizontal focus is variable, deep images will exhibit some

astigmatism, as they do in any horizontal parallax-only autostereoscopic display 4 . This astigma-

tism can be kept to a minimum if the vertical focal plane coincides with the middle plane of the im-

age. Extensive experience with rainbow holograms shows that this astigmatism remains almost

unnoticeable even for fairly deep objects.

A desirable feature of the vertical scanning system is that the output beam be normal to the image

plane throughout the field. This condition, known as telecentricity, assures that the displayed im-

age will not become vertically distorted as the horizontal focus is moved away from the vertical fo-

cus plane. A telecentric system converts an angular beam deflection to a linear translation by

having the scanning element positioned one focal length in front of the output lens24. This causes

a problem in the confocal system since this space is usually occupied by the horizontal scanning

element. The solution is to put the vertical scanner away from the horizontal scanning element and

re-image it at the required plane using a cylindrical relay lens L3 (Figure 2.7). We can then use the
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Figure 2.7 Vertical scanning geometry for a single channel Bragg cell. The output lens L2
is the same as in Figure 2.4. L3 and L4 are cylindrical

same lens L2 both as a horizontal and vertical output lens. The geometry of the vertical scanning

subsystem results in a very narrow viewing zone and it is usually necessary to place a one-dimen-

sional diffuser in the vertical focus plane25. Such a diffuser can be approximated by a fine pitched

lenticular array, or can be produced using holographic techniques25. Placing the diffuser in the ver-

tical focus plane of the display increases the view zone by diffusing each line in the vertical direc-

tion, but leaves the horizontal image content unaltered.

2.3 Limitations in the original design

2.3.1 AOM space bandwith product

As demonstrated in Chapter I, synthetic holography requires large amounts of information. For

example, a hologram having an horizontal size d = 100 mm and an angle of diffraction 0 = 30 de-

grees would require 158 000 samples per scan line for a HeNe laser. Assuming a 50 MHz RF band-

width (a typical figure for shear mode TeO 2 Bragg cell) and a 60 Hz refresh rate results in a display

having less than 11 lines of resolution. This figure is clearly unreasonable for any practical appli-

cation.

Increasing the number of lines while keeping the refresh rate, view angle and horizontal size con-

stant requires a proportionally larger number of samples per unit time. For a single acoustic chan-

nel this translates into a higher operating bandwidth for both the Bragg cell and the associated



electronics. Many factors, however, impose a practical upper bound on the maximum bandwidth.

In the case of shear mode TeO2 this limit comes from the relatively high acoustic attenuation of the

material, which is a quadratic function of the operating frequency 5 (this quadratic dependence is a

general property of Bragg cell materials). This attenuation limits the useful range of the material to

less than 75 MHz if we want to keep a space-bandwidth product larger than 1000. The use of other

materials such as Lithium Niobate (LiNbO3) or Gallium Phosphide (GaP) can extend the band-

width into the gigahertz range, but once again it is very difficult to attain high space-bandwidth

products at those frequencies5,6. In addition, the electronics associated with the synthesis and sig-

nal processing parts of the system become impractical or prohibitively expensive when working at

such high bandwidths.

2.3.2 polygonal scanner limitations

The limitations of the polygonal scanning approach become evident if we describe how the design

parameters scale with image size and horizontal view zone. I will consider here the case where the

horizontal scanning element coincides with the Fourier transform of the Bragg cell phase pattern,

i.e., the focal point of lens L, of Figure 2.4. At the scanning plane, the size of this Fourier transform

is given by:

Ax = f 1Af, = Af 1 (2.11)

where f, is the focal length of lens Li, D fs is the range of spatial frequencies on the Bragg cell, v is

the acoustic velocity of the Bragg cell material and Av denotes the frequency range of the signal

sent to the transducer.

The frequency range of the signal sent to the Bragg cell is related to the number of samples N and

to the horizontal scan period t by the formula:

Av = N - dsinO (2.12)
2z Xt



where we have made use of relation (1.3).

It is clear from (2.12) that the size of the Fourier transform, and hence the size of the horizontal scan-

ning element, is proportional to the product of the width and view angle of the desired hologram

for a given horizontal scan rate. For a polygonal scanner a number of straightforward calculations

lead to the following design parameters 2:

The polygon radius R must have a minimum value given by:

XP tAv
R 2,t (2.13)

27c

where P is the number of polygon facets. Using (2.13) with (2.12) then leads to the result:

27

- The angular speed of the polygon obeys the formula:

2 = (2.15)
P'1

A few numerical explorations easily demonstrate that using a polygon as the horizontal scanning

element becomes impractical for images more than a few centimeters across. As an example, an im-

age with a horizontal size of 20 cm and a view angle of 20 degree would require a polygon having

a radius of 50 cm, assuming a 12-sided element spinning at 12 000 rpm.



III HOLOGRAM PLANE SEGMENTATION

3.1 Divide and Conquer

I described in section 2.3.1 how the space bandwidth product limitations of both Bragg cells and

digital electronics severely restrain the attainable image size. A solution to this problem may con-

sist of dividing the holographic image into a large number of subelements, with each of these ele-

ments having only to process a small fraction of the total optical and computational load. This

approach has paid off in the computer science field, where massively parallel computers designed

by Thinking Machines Corp, Maspar Inc., and Intel have proven the validity of the "divide and

conquer" principle. The use of parallelism is also actively investigated in the optical signal pro-

cessing community. Indeed, one of the principal motivations behind the development of optical

processors lies in their inherent capability for parallel operation.

The next task is now to determine the most efficient way to divide the imaging system into a sub-

set of parallel operations. An obvious candidate is the line scanning operation since the horizon-

tal scan lines are essentially independent from each other. This is a consequence of the horizontal

parallax only nature of the display. Simultaneously writing N horizontal scan lines at a time

divides the bandwidth required by each individual acoustic channel by a factor N. In theory large

holograms could be written with relatively low bandwidth electronics if N is sufficiently large.

3.2 Multiple channel Bragg cells

3.2.1 Description

It could be feasible to use N different Bragg cells and then combine their output by optical means

but such an approach would be expensive and bulky. In addition, optically registering the N dif-

ferent horizontal lines would likely be quite difficult to achieve. Fortunately for the author of this



thesis it has proved feasible to simultaneously address a large number of acoustic channels on the

same acousto-optic substrate. Multichannel Bragg cells have been investigated in the optical sig-

nal processing community since the 1960's and cells with as many as 128 channels have been

described41.

A simplified drawing of a multichannel Bragg cell is shown in Figure 3.1. A piezoelectric trans-

ducer is mechanically bonded with metallic thin films to the acousto-optic material. The metallic

bonding layer also serves as the bottom electrode for the transducer assembly. The top electrode

layer contains multiple electrodes and each electrode defines a single channel of the device.

The design of an individual channel of a multichannel Bragg cell is smilar to that of a single chan-

nel device. Multiple electrodes on a single substrate, however, impose additional design

constraints2. These include the minimization of electrode spacing, adjacent channel crosstalk, and

consideration of thermal constraints.

3.2.2 Multichannel Bragg cell design considerations

In this section I will describe the different constraints on multichannel deflectors and describe the

necessary tradeoffs in the implementation of such devices and I will loosely follow the develop-

ment of refs. 7 and 42. I will first discuss the case of isotropic materials and extend it to anisotrpoic

materials in the next section.

e- wave propagation ground plane

electrical
4-- signal

inputs

electrodes
transducer

Figure 3.1 Typical multichannel Bragg cell configuration
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Figure 3.2 Geometry for integrated optical effects calculations.

The ideal diffraction efficiency of an AOM with a transducer of length L and height H (Figure 3.2)

is:

diffracted _ _i_2 M2P (3.1)
Iincident Tg H

where P is the input power and M2 is a figure of merit specific to each acousto-optic material. This

figure of merit is often used when comparing materials since it determines how much power is

necesssary to attain a given diffraction efficiency. M2 is expressed as:

6 2

M2 = n(3.2)
p V

where n is the index of refraction, p is the photoelastic coefficient, and p is the density of the mate-

rial. The values of M2 for a few commonly used materials are given in Table 3.1. Longitudinal

mode TeO 2 clearlystands out as an exceptional material in this respect.

In the holographic video display the efficiency is kept low so that it varies nearly linearly with the

power of the input electric signal.



It is important to determine the shape of the acoustic field when using multiple channel since the

acoustic leakage from one channel to another is the prime source of interchannel crosstalk. The

sound field radiated from the transducer diffracts in a fashion similar to the spreading of a light

field so that the sound field can be calculated using the Huygens-Fresnel diffraction formula43.

For an isotropic material the far field pattern is thus related to the Fourier transform of the aper-

ture shape. For example, the far field pattern E(9) of a square transducer is, in the y-direction:

.HO 1 2sin ( H ) 2

E (0) = K A (3.3)
HO
A

where 0 is the angular direction from the normal to the transducer plane and K is a constant. In the

near field the acoustic field profile is given by a Fresnel integral. For a square transducer the

expression is:

E (x, z) = exp(-ikz)JH' 2 exp [- X -Xo)] dxo (3.4)
,- iA z -- A2

The near field of the acoustic field extends into the material at a distance D. The distance D is

defined as the point where the first null in the acoustic energy pattern intercepts the projection of

the transducer edge. The transducer height is chosen so that D coincides with the time-aperture

distance of the Bragg cell. For a rectangular electrode this distance is:

H
D = (3.5)

The separation of the channels in a multichannel device is chosen as to minimize the acoustic

crosstalk while keeping the fill factor as high as possible to make an efficient use of the material.

This acoustic crosstalk arises from the presence of acoustic sidelobes in the near field pattern as

described by (3.4). The sidelobes can be minimized by electrode apodization. Good results have

also been obtained by using diamond or trapezoid shaped electrodes 7. The crosstalk factor



between two acoustic fields generated by rectangular electrodes at the distance z has been calcu-

lated in reference 7 and is described by the expression:

Az 1+ (H2 4S 2
t 2 S21(2 42 22nS 2[1-(1/4S)] 

(3.6)

where S is the center to center spacing between electrodes. At the distance D defined in (3.4) the

crosstalk becomes:

= H 1+ (H2 4S 2
2 2 S 2 [ 1 - (H 2 /4S 2 ) ]2

To hold the isolation to greater than 20 db over the length D the aperture to spacing ratio must be

less than one third.

For multichannel operation it is desirable to operate at high acoustic frequencies in order to mini-

mize the crosstalk and thus be able to stack a larger number of channels on the same substrate. The

acoustic attenuation, which varies as the square of the frequency, imposes an upper limit on the

operating frequency for a given space bandwidth product.

Equations (3.3) to (3.7) are valid in the case of rectangular electrodes. Both the acoustic spreading

and crosstalk values can be reduced by the use of apodized or diamond shaped electrodes7. By

generating an acoustic profile which approximates a Gaussian distribution the diffraction of the

acoustic field is reduced in a fashion similar to the case of a Gaussian laser beam (which is to be

expected since the distribution of both fields is described by the Huygens-Fresnel formula). Most

commercially available multichannel devices now use apodized electrodes.

3.2.3 The anisotropic case

Equations (3.3) to (3.7) describe the case of an isotropic material such as fused quartz or certain

types of flint glasses. Most acousto optic materials are crystalline in nature, however, and thus



exhibit anisotropic properties. In an anisotropic crystal the phase velocity of the acoustic waves

varies as a function of the direction of propagation relative to the orientation of the crystal. The

effect of acoustic anisotropy have been studied extensively in refs. 43 and 44 and will be summa-

rized here.

The acoustic anisotropy of a material is characterised by the material acoustic anisitropy b. b is

zero in the isotropic case. In anisotropic materials the power flow direction is different from the

propagation direction. It can be proved that the effect of anisotropy on the propagation of a sound

field close to the principal axes of the crystal is to multiply the acoustic wavelength A by the factor

(1-2b) to obtain an effective wavelength A(1-2b). When b is negative the material exhibits larger

acoustic spreading than the isotropic case. When b > 0 the acoustic waves diverge more slowly

than in isotropic materials. Some materials have self-collimating modes where b is close to 0.5. In

those materials the beam divergence essentially vanishes, a property that renders them very

attractive for multichannel Bragg cells.

The values of b for some commonly used acousto-optic materials are given in Table 3.1.

attenuation

velocity (dB/gs-

material orientation mode M 2  (km/s) GHz2) b

GaP [1-10] shear 4.13 1.5 0.487

TeO 2  [001] longitudinal 34.5 4.2 15 0.24

TeO 2  [110] shear 793 0.617 220 -26

PbMoO 4  [001] longitudinal 36.3 3.63 15 -0.18

LiNbO 3  [100] longitudinal 7.0 6.57 0.15

LiNbO 3  [001] shear 2.92 3.59 2.6

Table 3.1 Properties of selected acousto-optic materials

We can see from Table 3.1 that the values of b vary considerably between different materials. The

[1-10] propagation mode of gallium phosphide is almost perfectly collimated, a fact that makes

this material very attractive for signal processing applications. Unfortunately a number of other

factors seriously limit the usefulness of this material for our application, the principal one being



that the material is only transparent in the red part of the spectrum. These limitations will be

explained in the following section.

Longitudinal mode TeO 2 exhibits some degree of self-collimation, while shear mode TeO 2 shows

a very large amount of acoustic spreading. One could think that this large spreading factor pre-

cludes the use of shear mode tellurium dioxide for multichannel devices, but its extraordinary fig-

ure of merit M2 stil makes it a leading contender for low bandwidth systems.

3.2.4 Selection of suitable materials

The selection of a suitable acoustic material for use in a multichannel Bragg cell depends on a

number of parameters and is a complex design decision. The figure of merit M 2 and the spreading

factor b have already been described. Among the other main factors to be considered are

" Acoustic attenuation of the material. This parameter varies with the square of the frequency and

thus places a limit of the maximum bandwidth that can be acheived for a given cell size. The

high acoustic attenuation of shear mode TeO2 limits its operation to below 100 MHz in most

cases.

" Optical transmission. The material has to be transparent across the specified wavelengths. In the

case of an electronic holography display the material should be highly transmissive across the

visible spectrum. This limits the use of gallium phosphide, which is transmisssive only in the

red part of the spectrum.

* Thermal conductivity. A large number of closely spaced transducers inject significant amounts

of acoustic energy in a material. This energy eventually gets dissipated as heat. The resulting

thermal gradients can cause acoustic velocity and spatial refractive index gradients that can

interfere with the proper operation of a Bragg cell if the thermal conductivity of the material is

not sufficient.

" Good mechanical and chemical properties. The material has to be non-hygroscopic and no

extraordinary procedures should be necessary to cut and polish it.



* Commercial availability. It should be possible to grow high quality boules of a sufficient size at a

reasonable cost.

The materials most commonly described in the litterature for multichannel operation are longitu-

dinal mode TeO 2, shear mode GaP, and lithium niobate. Devices based on those materials are com-

mercially available from vendors such as NEOS Corp. , Brimrose Corp., Crystal Technology, and

Isomet Corp. In the system design section (Chapter III) I will give an example of the selection pro-

cess and design of a multichannel Bragg cell.

3.3 Vertical scanning subsystem

The horizontal scanning requirements for a multichannel system are the same as for a single chan-

nel. Multichannel operation places several constraints on the vertical scanning subsystem, how-

ever. Figure 3.3 describes a typical optical configuration for a multichannel holographic video

display.

The vertical scanning subsystem has to perform the following functions:

" project a real image of the Bragg cell on the output plane of the display with a correct magnifi-

cation factor

" vertically scan that real image so that the combination of horizontal and vertical scanning cre-

ates a seamless raster.

2 F4- -> - 2 F4 - 4- F5-><- F5 -

vertical. etia
scanneA Honizontal forcs

scanming L lnBragg Li L2 L3 L4 plane L5 plane
cell

Figure 3.3 Vertical axis scan optics for a multichannel system.



Two additional constraints are also made necessary by the requirement that the horizontal and

vertical scanning mirrors be as small as possible such that their inertia is minimized. Mirror inertia

is an important factor in galvanometric scanner systems since a low inertia allows for faster and

more precise beam positioning.

The vertically collimated light diffracted by the Bragg cell is focused down on the vertical scan-

ning mirror Si by the combination of lenses L1 and L2.L4 images the plane defined by Si on the

horizontal scanning element S2 so that both the horizontal and vertical scanning planes coincide

with the front focal plane of L5.This assures that the scanning system is telecentric in both the hor-

izontal and vertical directions. L3 is placed as close to the Si plane as possible and is chosen so that

the Bragg cell is imaged at the correct position in the output plane. In most cases it is desirable to

have the Bragg cell imaged at the same plane by both the horizontal and vertical scanning optics

to minimize the amount of astigmatism.

The combination of lenses L1, L2, L3, and L5 determines the vertical magnification of the Bragg cell

in the image plane. In most implementations of the display L, and L5 are spherical lenses shared

by the horizontal and vertical imaging subsystems. This leaves L2 and L3 as free parameters to

determine the vertical magnification and imaging plane. The optical configuration described

above has the advantage that it allows for a wide latittude in the choice of the Bragg cell's channel

spacing. This in turns renders it possible to optimize the multichannel Bragg cell parameters inde-

pendently of the display optics.



IV FOURIER PLANE SEGMENTATION

4.1 Replacing the polygon by a galvanometric scanner.

4.1.1 Motivation

As I have demonstrated in section 2.3.2 it rapidly becomes impractical to use a polygonal scanner

as we scale up the display. The fundamental reason is that the size of the Fourier transform of the

image is proportional to the product of the size and view zone of the hologram. Combining equa-

tions (2.5) and (2.10) yields the result:

XAvAx - (4.1)
20o

where Av is the radio-frequency bandwidth of the signal sent to the Bragg cell and 0) is the angu-

lar frequency of the Fourier plane scanning element. Combining (4.1) with (2.12) then gives us:

dsinOAx = 2wt (4.2)
2otr

where t is the active period of a scan line. We can rewrite (4.2) in the form

d sinOAx= 2di (4.3)
20

with 92 being the total angular excursion corresponding to a scan line. Thus the only way to

reduce the size of the Fourier transform is to augment Q. The f /number of the output lens scales

linearly with the scan angle, so in practice Q is generally kept below 15 degrees (equivalent to a 30

degrees optical deflection range).



In a polygonal mirror each facet has to exceed the Fourier transform size, a situation that rapidly

leads to impractical figures. A possible solution to this problem is to use a galvanometric scanner

as the horizontal scanning element. Since we require a constant angular velocity scanning over

the entire deflection range, the galvanometric scanner is fed with a triangle or sawtooth wave-

form. For an horizontal scanner the size of the scanning mirror is simply given by the extent of the

Fourier transform (4.3).

4.1.2 Scan frequency

The advantage of the galvanometric scanner approach is that the mirror size (and thus the size of

the scanning section) is always much smaller than the diameter of a corresponding polygonal

scanner. The main drawback comes from the lower scanning speed achievable with galvanomet-

ric scanners. The angular speed of galvanometric scanners rapidly decreases with mirror inertia

(and thus size), but the requirement of an acceptable display refresh rate constrains the scan rate to

aminimum value. The scanning period Tscan is related to the display parameters by the relation:

tscan = t + Tr dsinO + Tr (4.4)

where Tr corresponds to a retrace interval made necessary by the mirror inertia. The display

refresh rate f is then:

f M (4.5)
NTscan

where M is the number of acoustic channels in the Bragg cell and N is the total number of horizon-

tal lines in the display.

A simple numerical example is useful to illustrate the problems encountered if we use a single

mirror as our Fourier transform scanning element. We assume an image with the characteristics

defined in Section 2.3.1 (0 = 30 deg., d = 100 mm, Av = 50 MHz) and an optical deflection in the



Fourier plane of 30 degrees. Applying equation (4.3) results in a Fourier transform (and mirror)

size of 95 mm. The minimum scan period is then 1.58 msec., corresponding to a scanner frequency

of 633 Hz if no retrace interval is present. No commercially available technology, however, can sat-

isfy these requirements.

A lower scan rate can be acheived if we add a substantial retrace time or diminish the bandwidth

of the electrical signal, but this comes at the expense of the number of holographic lines if we keep

the refresh rate constant. Although a retrace time is inevitable in any electromechanical system, we

want the active duty cycle to be as high as possible. Likewise, we want to make full use of the

bandwidth attainable by the display electronics.

4.2 Segmenting the Fourier plane

It is clear from the previous section that there are quite serious limitations in using a single galva-

nometric deflector as the Fourier transform scanning element. However, at any given moment the

pupil of an observer will intersect only a small part of the diffracted light, as Figure 4.1 demon-

strates. A reasoning based on spatial frequency concepts clearly illustrates this. The pupil of the

observer subtends only a small fraction of the total spatial frequency spectrum in the image plane.

This spectral range corresponds to a small spatial extent in the Fourier plane.

We can thus conclude that no difference in the image content would be noticeable if only that

small portion of the front focal plane that subtends the pupil would be scanned (provided, of

course, that the observer does not move). This suggests that under the proper conditions the large

scanning element at the Fourier plane could be replaced by an array of smaller mirrors without

significant image degradation. the determination of those conditions, as well as the exact impact

of mirror segmentation on the image characteristics, will be the focus of this chapter.



4.3 Geometrical interpretation

The most intuitive way to analyze the consequences of the Fourier plane segmentation is to use a

geometrical approach. To this end, we model the last section of the holographic display as a lens

which images the scene of interest at a variable conjugate ratio. We also consider that the image of

the AOM always satisfies the condition (2.9) so that we can ignore its existence in this analysis. In

this static model the scanning mirror defines the pupil of the imaging system. An analysis which

takes into account the effects of the Bragg cell characteristics will be presented in the next section.

The human visual system will not notice a decrease in image quality if the spot size of the light

deflected by any single scanner is smaller than the resolving power of the eye. This can be stated

in geometrical terms by requiring that the exit pupil of an image projected by each scanner be

larger than the pupil of the eye:

Imirror > Pe f 2  (4.6)
view

where p eyedenotes the human pupil size (typically about 3 mm),f 2 is the focal length of the out-

put imaging lens, and Dei denotes the viewing distance. It is to be noted that relation (4.6) is

independent of the separation between the output lens and the image. This property derives from

the fact that the aperture stop is situated in the front focal plane of the imaging lens. All the prin-

cipal rays in the image space are thus parallel to the optical axis of the lens. Such a system is said

scannero
observer

scanner 2 i

Figure 4.1 Multiple scanner geometry

Dview



to be telecentric on the image side. The interested reader will find a demonstration of (4.6) in Appen-

dix B.

There is necessarily a gap between each deflecting mirror. This gap will be projected as a dark area

at the viewer plane. The pupil of the observer intersecting the interscanner gap has two conse-

quences:

" There is a decrease in the total intensity reaching the observer's retina

e The perceived resolution of the scene is diminished because the effective system pupil is

reduced.

It is thus essential that the gap between each scanner be small compared to the eye pupil (Figure

4.1) so that fluctuations in light intensity as the observer moves sideways remain acceptable. That

condition can be stated as:

[gap D 2  (4.7)
view

In addition to the intrinsic gap lclear due to the mirror clearance at rest an additional component

is introduced when the mirrors are rotated (Figure 4.2). The total spacing between the mirrors can

thus be deduced from a simple trigonometric calculation:

gap clear mirror1 - COS ] (4.8)

where 0 is the total mechanical scan excursion.

g9ap

u /4r

scan

Figure 4.2 Interscanner gap



Equations (4.6) to (4.8) show that the mirror size has to be within a certain range for the image to

be acceptable. Mirrors which are too small will reduce the resolution of the display while exces-

sive dimensions lead to noticeable gaps.

4.4 Spatial frequency analysis

4.4.1 Introduction

The previous ray tracing model is very useful in the determination of the general geometrical

requirements of the display. However, it does not provide a quantitative description of image res-

olution with respect to such factors as scanning mirrors size, Bragg cell frequency response, and

wavelength. In the realm of optics, such questions are usually answered by using a spatial fre-

quency analysis. In this section I will proceed to such an analysis in the case of coherent and inco-

herent Bragg cell illumination.

Coherent illumination by the means of a laser has historically been the preferred type of illumina-

tion for electronic hologramsl,2,25,49,48 for the reason that laser light is easy to manipulate, and that

coherent sytems are usually simpler to analyze51. The disadvantage of coherent illumination

stems from the difficulty in avoiding coherent noise (speckle) in the image. Laser light sources of

sufficient power for large size displays are also quite expensive.

Partially coherent light sources solve the speckle problem, and might eventually prove less expen-

sive than lasers. Candidates for such light sources include superluminescent Light Emitting

Diodes (LED's) and arc lamps. It might also prove possible to use gain guided visible laser diodes

whose mode structure has been scrambled over time by varying their drive current as partially

coherent sources. The analysis of incoherent systems, which is based on partial coherence theory,

is however somewhat more complicated.



4.4.2 Coherent illumination

4.4.2.1 Intermirror coherence

When analysing the behavior of a multiple mirror system it is essential to determine the effects of

phase coherence between mirrors. Optical systems which incorporate multiple actuated mirrors

are becoming increasingly useful in optical astronomy since they remove the mechanical con-

straints that limit the size of single mirors and can be used to compensate for atmospheric aberra-

tions. In those systems the phase relation between each reflecting surface has to be kept rigorously

(less than 1/10 wave) constant to maintain the resolving power of the telescope.

The MIT holographic video display, however, does not require a phase match between mirrors as

long as each mirror obeys condition (4.6). Indeed, such a phase match would be impossible to

maintain during scanning, as the following reasoning will demonstrate.

Let us suppose that the successive mirror edges of Figure 4.1 have a phase difference <p at the

beginning of the scan. As the mirrors rotate during a scan the distance between the mirror edges

will vary, and thus the phase difference between edges will change at the rate:

d_ - 4rol 
(4.9)

dt X

As an example, a 1 cm wide mirror will see the phase of its edge change by 52 000 radians with

respect to its neighbors during a single 15 deg. scan. The excursion time corresponding to a single

scan will always be considerably smaller than the integration time of the human eye (a condition

made necessary by the need to avoid flicker), with the consequence that the mirrors can be consid-

ered as being completely incoherent from each other.

The mutual incoherence of adjacent mirrors signifies that no interference effects between mirrors,

which could result as intensity variations in the image plane, will be observable. It thus acts in the

advantage of the observer, a situation opposite to the case of astronomical optics.



4.4.2.2 Spatial frequency response

In the remainder of this chapter I shall consider the holographic video display as a diffraction lim-

ited optical system. This assumption is reasonably close to reality if we consider the optics

between the laser and the horizontal scanning mirrors since in practice most components in that

section operate at relatively high f /numbers. Most of the aberrations in the display come from the

output lens whose aperture is very large (with f/numbers typically between 1.2 and 2).

The spatial frequency response of the display is simply the product of the spatial frequency

response of the Bragg cell/signal processing electronics times the magnification factor M:

MAy _/2AvAfx -v fV (4.10)

Equation (4.10) assumes that the mirror array covers the entire Fourier spectrum and that the out-

put lens is large enough to avoid vignetting. These conditions are usually met in practice.

4.4.2.3 Impulse response and coherent transfer function

In an imaging system we can consider the image as a convolution of the image predicted by geo-

metrical optics with an impulse response that is determined by the exit pupil of the system 51. The

image amplitude can be written as

Ui (xi) = ( (x - xO) U9 (xO) dxO (4.11)

where Ug is the ideal image predicted by geometrical optics and h is the impulse response of the

imaging system. h is simply the Fraunhofer diffraction pattern of the exit pupil:

h = K P (x) exp -i idx (4.12)

where K is a constant.



The coherent transfer function H(f,)is defined the Fourier transform of the inpulse response and is

thus described as:

H(fx) = P(Adifx) (4.13)

The problem of determining the display resolution in the image plane is thus reduced to the deter-

mination of the smallest pupil in the system. If we exclude the pupil of the observer and consider

each lens in the system to be of adequate size we can distinguish three pupils:

e The RF spectrum pupil.

* The Bragg cell pupil.

e The scanning system pupil.

The signal processing electronics temporal frequency response defines an effective pupil that is

determined by the maximum and minimum values of the RF spectrum sent to the transducers.

The geometrical interpretation of this effect is easy to understand if we consider a single point

imaged by the Bragg cell (Figure 4.3 ). The physical size of the pupil at the Bragg cell plane is then

given by the formula:

AV 2Xd Av
P = dv (4.14)

maximum
spatial
frequency

Av
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image

Bragg cell ,

Figure 4.3 The spatial frequency range on the Bragg cell defines an effective
aperture PAv



where do is the distance between the Bragg cell and the image (or equivalently, the focal length of

the Fresnel lens written on the Bragg cell).

It is more convenient to work in the image space where the image of the Bragg cell has been

demagnified by the confocal system described in section 2.2.3. In that space the Bragg cell is

imaged close to the focal plane of the output lens. If we follow the prescriptions of section 2.2.3,

the distance di between the image of the Bragg cell and the image of our original point will match

the calculated value. In the space imaged by the output lens the laws of geometrical optics give the

relations

di =M do (4.15)

PAv = MPO AV (4.16)

where M = f 2/f 1 is the transverse magnification ratio. Combining (4.14), (4.15), and (4.16)

result in the expression

P AV 2Xd1Av (4.17)
' MV

cellThe size of the RF pupil is of course bound by the physical extent of the Bragg cell Pce. In the

image space we have thus the relation:

Av cell
Pi A Pi (4.18)

cell cell
where Pi = MPc is the horizontal extent of the Bragg cell image. The coherent transfer

function of the Bragg cell / signal processing subsystem (assuming no other pupils are present in

the display) can thus be described as:



Sdmax Mv cel ) (4.19)H(fx) = rect min[PAV picell] [2Av' cell -'

where the rectangle function is defined as

[1 |xI5;l/2
rect(x) = L oteris (4.20)
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The mirror array constitutes the third pupil in the display. The sections of spatial frequency spec-

trum scanned by adjacent mirrors can be considered as incoherent to each other, with the conse-

quence that their contributions to the image sum incoherently. The consequence of this incoherent

summing is that the impulse response of the scanning array is limited by the spatial extent of each

single mirror. Thus when computing the coherent transfer function the horizontal extent of a sin-

gle mirror constitutes the effective pupil:

P scan = 1 (4.21)

Since the mirror pupil is situated at the Fourier plane of the imaging lens the coherent transfer

function of the display is given by

H(f,) = rect(f1 (4.22)

Equations (4.19) and (4.22) can be combined to yield the overall coherent transfer function Hsystem:

H system(f,) = rect fxmax Xf 2  M (4.23)
T m ly p readjm [nt ' 2Av'MPJ (4.2 b

The modulus of the system point spread function is then calculated to be:
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m 2 d221 Xd1  otherwise
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4.4.3 Incoherent illumination

I explained in section 4.4.1 that it might prove advantageous to use incoherent light sources for

electronic holography displays, their principal advantage being that they considerably reduce

speckle noise. To analyze the spatial frequency response of systems using incoherent sources it

becomes necessary to use an analysis based on incoherent imaging. An excellent treatment of

incoherent imaging concepts can be found in reference 51, upon which is based the analysis of this

section. Because the MIT electronic holography display exhibits horizontal parallax only, a one-

dimensional analysis will be applied here.

Incoherent imaging systems obey the intensity convolution integral and are frequency-analyzed

as linear mappings of intensity distributions. Designating the spatial frequencies along the x-axis

as fx , it can be shown51 that the incoherent transfer function H'(fx) is related to the coherent trans-

fer function H(fx) by the formula:

fH(4 - H*(+ d4

H'(f) = (4.25)

IH (4) d4

The function H is usually referred to as the optical transfer function(OTF) of the system and its

modulus is known as the modulation transfer function (MTF). In an optical system without aber-

rations the OTF is calculated using the pupil function P(Xdifx) as the coherent transfer function(di

being the pupil to image distance). For a system with aberrations, the same reasoning can be



applied provided we use the generalized pupil function P' as the coherent transfer function 1. P'

can be written as:

P' (Xdifx) = P (Xdiff) exp [jkW(Xd ifx) ] (4.26)

where the product kW(x) represents the phase error resulting from the system aberrations at the

point x. The calculation of the incoherent OTF is thus reduced to the determination of the phase

error followed by the application of (4.26) with P' in lieu of H. Since in this analysis I consider the

display to be diffraction-limited, I will assume the pupil function to be real and determined by the

coherent pupil function described in eq. (4.13).

The pupils described in section 4.4.2.2 are all real and have edges described by step functions. For

imaging systems incorporating such pupils the OTF is quite easy to calculate and id described in

ref. 51. For rectangular pupils the OTF is related to the coherent cutoff limitfo by the relation:

H'(fx) = A(4Jx) (4.27)

where A is the triangle function defined as

[1 -x |x(x) = -1 1 <1(4.28)A0 otherwise

Since the coherent cutoff frequencyfo for the display has been determined in the previous section

the determination of the incoherent transfer function is straightforward. Using (4.27) with (4.23)

directly gives the result:

f2Mv X~d-
H'(fx) = A fxmax [ , 2' MPcell (4.29)

1 1 2AvMPO -li



4.4.4 Effect of the observer's pupil

The results determined in sections 4.4.2 and 4.4.3 correspond to the spatial frequencies observed is

a piece of photographic film were placed at the image focus. The final image is created on the

observer's retina by the eye lens. A complete description of the display should take into account

the effect of the human eye, which will be modeled as a diffraction limited lens with a focal length

pie and a pupil function PFey

As explained in section 4.3, the perception of the holographic image is optimum when the eye

does not straddle the projection of an intermirror gap. This condition obviously cannot be met in

cases where the projection of the mirror aperture is smaller than the eye pupil. In that case, the

resolution is limited by the aperture of a single mirror because the contibutions from each mirror

are incoherently summed. The best possible image OTF is found by modifying equation (4.29) to

take the imaging characteristics of the eye into account. The OTF at the plane of the eye retina is

thus written as:

H( eye r Xdei' d i'ef 2 di'e Mv dieYe XIdi
fH = A xax eYe ' ' 2 ' b celJ (4.30)

( fX ~ P ee'Z obs, zobs 2Vzobs MP 0cl

where di eye is the distance between the eye lens and the image on the retina and zobs is the dis-

tance between the observer and the plane of the hologram.

Equation (4.30) gives the OTF of the holographic image on the retina of the observer's eye. For

most practical purposes, however, we are more interested in the spatial frequencies of the image

on the plane of the hologram. These are related to the retinal spatial frequencies by the magnifica-

tion of the eye lens:

H( fx ) = H fb = A fxmax XZobs Xf 2 MV (4.31)

d eye X f [eye ' I' 2AV MPO (431
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Figure 4.4 Variation in display resolution as the eye pupil moves across the intermirror
gap. The resolution is minimum when the pupil straddles the gap.

equations (4.30) and (4.31) are valid if either one of two conditions is fulfilled:

" The eye of the observer is colinear with the projection of a mirror image or

" The scanning mirror size is much smaller than the eye pupil so that at least one complete mir-

ror image occupies the eye pupil for any observer position.

Those conditions are not met when the eye straddles the boundary between two mirrors. In that

case the resolution will decrease as the eye moves across to attain a minimum when the eye pupil

is centered on the gap between successive mirrors. Figure 4.4 describes how the resolution varies

as the eye moves across the intermirror gap.

4.5 Discussion

As the above discussion makes clear there is an optimum mirror size which will result in a maxi-

mum overall resolution while keeping the effect of the gaps to a minimum. This condition is met

when we have an equality in equation (4.6). In practice this condition imposes an optimum mirror

size in the order of a millimeter. No commercially available galvanometric scanner technology can

allow such a tight packing of scanning elements, however, and thus in practice the mirror size will

be limited by the physical size of the galvanometric element. An optimal mirror array could pos-



sibly be manufactured with the silicon micromachining technologies being developed in a num-

ber of laboratories. This opens the door to large, solid state displays almost within reach of today's

technology.

Bragg cells having a large aperture and corresponding high space bandwidth product value are

commercially available in many materials. Thus in practice the Bragg cell aperture P 11 is not a

limiting factor in the design of our imaging system. In this analysis I have not taken into account

the attenuation factor characteristic of acousto-optic materials. In practice the effect of the mate-

rial attenuation will be to lower the MTF of the Bragg cell in the case of large apertures. We also

assumed that the Bragg cell was illuminated with a light beam of uniform intensity. Very often,

however, laser beams will have a Gaussian profile which alters the Bragg cell MTF for a given

aperture. A derivation of Bragg cell MTF's which includes the effect of attenuation and light dis-

tribution across the aperture can be found in ref. 45.

Throughout this analysis I have modeled the human eye as a diffraction limited optical system,

and I have also assumed the visual system to be equally sensitive to all spatial frequency compo-

nents of an image. These assumptions are clearly inaccurate, and a more complete model should

take into account the spatial frequency response of the human visual system.



V SYSTEM DESIGN

5.1 Objectives

The previous two chapters have laid the foundation for a new generation of large sized displays.

The first generation system was capable of displaying 3 x 221 = 6.29 million samples. The overall

objective of the second generation display has been to increase the total capacity of the display by

a factor of six to bring the total number of samples to a number close to 38 million. As I have

explained in chapters 3 and 4, the only practical way to attain those figures is to make use of paral-

lelism at both the image and Fourier transform planes.

This chapter will cover the implementation of the second generation of holographic video dis-

plays. It should be noted that such an implementation was done progressively over a period of

two years. For the sake of simplicity, however, I will describe only the final version of the system

as is stands now (April 1994). Describing the display in its previous incarnations would add little

scientific or technical content to this thesis.

I will concentrate exclusively on the electro-optical portion of the display in this section. The

computation of the holographic fringes used in the display is a fascinating topic by itself, and the

reader is referred to ref. 19 for more information on that subject.

5.2 Selection of a suitable display driver

The radio-frequency bandwidth of the signals sent to the Bragg cells determinate the optimum

Bragg cell material to be used. That bandwidth is primarily determined by the architecture of the

display driver. Since a Bragg cell based display has no memory each complete frame should be

refreshed at a rate sufficient to avoid flicker (in practice, above 30 frames/s, although 60 frames/s

is a more desirable number). The total sample rate S of the display electronics is thus equal to:



S Nsamples (5.1)
Iframe

frrame

where frame denotes the period of a single frame. A 38 million samples image refreshed at 30

frames/s will thus require 1.14 billion samples per second. This is equivalent to a total data rate of

9.12 Gbits/s if we assume 8 bits per sample. An additional constraint is that the samples must be

read without interruption during each line scan, which typically consists of hundred of thousands

of samples. Any significant gaps in the bit stream would be readily visible on the image plane.

No commercially available display driver can output 1.14 billion samples/s, which is the motiva-

tion for using a parallel approach. At the time of the design (Fall 1990), systems built by Metheus

and Univision could achieve rates of 360 to 400 Msamples/s, but discussions with the technical

staff of those companies rapidly convinced us that this option was not practical. The main prob-

lem with these systems came from the fact that they could not be reconfigured to output long

uninterrupted data streams.

Fortunately another group at the Media Laboratory was at the same time developing a high band-

width framebuffer for use in a digital video processing system. One outstanding characteristic of

the so-called CHEOPS framebuffer comes from its extreme flexibility in producing different types

of video signals46.This flexibility is due to the extensive use of programmable array logic chips

(PAL's) in the control circuitry and to the fact that a large number of display parameters can be

modified by software. Indeed we found that relatively straightforward modifications in the PAL

programming and in the display software could render the CHEOPS framebuffer suitable to the

display of holographic images. In particular the display could be reconfigured to output uninter-

rupted data streams of an arbitrary length.

Many problems were still present, however. The first problem was that the initial design could not

allow the synchronous operation of multiple cards. The solution to this problem was to distribute

the display clock so that all framebuffer cards could be run as slaves from a single master card.



The implentation of this scheme was in practice quite difficult because of the high frequency (110

MHz) of the display clock. Another problem was that the CHEOPS processor card was originally

designed to address a maximum of four output modules. This problem was solved by addressing

additional output cards as input cards and modifying the controller firmware consequently. For

more details on these modifications the reader is referred to ref. 47.

Each CHEOPS framebuffer board has three output channels, which are normally used to drive the

red, green, and blue pixels of a video monitor. Each of these channels comprises a digital to ana-

log converter (DAC) having 8 bits of resolution. Each framebufffer channel accesses 221 = 2.1 mil-

lion bytes of video random access memory. Thus the fulfillment of our initial goal requires 38 / 2.1

= 18 output channels equivalent to 6 framebuffer boards.

5.3 Display parameters

Each one of the display driver channnels accesses 2.1 Mbytes of memory. We now have to deter-

mine the image format that will produce the best visual results when using the full display mem-

ory.

A first constraint comes from the architecture of the CHEOPS display driver that makes it consid-

erably more efficient in manipulating data blocks being powers of 2. We also were seeking a verti-

cal resolution superior to 100 lines, a horizontal size of around 150 mm, and a horizontal view

angle superior to 20 degrees. A few calculations convinced us that the most suitable number of

pixels per scan line was equal to 218 = 262144 pixels. Choosing a horizontal size of 150 mm will

then result in a horizontal view zone of 33 degrees if we refer to equation (1.3) and assume an illu-

mination wavelength of 633 nm (HeNe laser). The number of display lines is then equal to 18 x 221

/ 218 = 144 lines, a figure which is comparable to the NTSC standard for broadcast television.



5.4 Selection of Bragg cell parameters

5.4.1 Bragg cell materials

The 110 MHz sampling rate of the CHEOPS output circuitry implies a maximum analog band-

width of 55 MHz by virtue of the Nyquist theorem. We are now faced with the task of finding the

optimum material on which we can multiplex 18 of those channels.

If we refer to Chapter 2, the most attractive materials for multichannel operation are the ones

exhibiting some degree of self-collimation, such as shear mode GaP or longitudinal tellurium

dioxide. It is thus logical to consider these materials first.

At design time, good quality gallium phosphide crystals cut along the shear mode propagation

axis were not commercially available. Moreover, GaP is only transmissive in the red portion of the

spectrum, which excludes its utilisation for color displays.

The next two candidates, longitudinal mode TeO 2 and shear mode TeO 2 , have a long history of

use in multi-channel Bragg cells. High quality crystals of adequate sizes are commercially avail-

able from a number of vendors.

5.4.2 Longitudinal vs shear mode TeO 2 Bragg cells

A side by side comparison of Bragg cells based on those two materials greatly simplifies the selec-

tion task; I will first treat the longitudinal mode TeO 2 case. In the remainder of this chapter the

suffixes x and y will denote quantities measured along the horizontal and vertical axes respec-

tively.

The angular range of light diffracted by the AOM is found by combining equations (1.1) and (2.1):

AOX = XAF (5.2)
V



and the angular range in the image plane is related to (5.2) by the magnification Mt' of the optical

system:

x AQX _ XAFAO. - -- - --- (5.3)
Mx MXVt t

using condition (2.9) to determine the necessary size of the display and combining it with (5.3)

results in the expression:

AOxV sz
D > i max (5.4)

XAF (Zobs - Zmax)

In the case ouf our system with a 55 MHz analog RF range the angular range will be restricted to

0.47 deg. Thus a 30 deg. image plane view zone will require a magnification factor of 1/63. With

zmax = 100 mm, s = 3 mm and a viewing distance of 600 mm the minimum required Bragg cell

length is thus 38 mm.

The minimum scan time t of a single line will be equal to 218 / 110 106 = 2.4 ms. Since the output

imaging lens limits the optical scanning range at the Fourier plane to±15 degrees the necessary

angular speed of the deflecting element is equal to 30 / (0.0024 x 2) = 6250 deg/s = 109 rad / s.

The focal length of the Fourier transform lens is then determined with the help of (2.5) since we

have chosen a confocal geometry. The use of longitudinal Te02 with an acoustic velocity of 4.26

km/s results in a Fourier transform lens having a focal lengthfft = 9.8 m.

The minimum necessary height H of the transducer is found by solving equation (3.4) while tak-

ing into account the effect of the anisotropy factor b. This results in the expression:

H = JDA (1 - 2b) (5.5)



where we have assumed a rectangular shaped transducer for the sake of simplicity. A 75 MHz

center frequency longitudinal mode TeO2 crystal having an aperture of 38 mm thus requires a

transducer height of 1 mm. The criterion that the interchannel isolation be greater than 20 db over

the length D implies an aperture to spacing ratio of 1/3, which signifies that the acoustic channels

will be spaced 3 mm apart. The crystal will thus have a height Ht'ot of 3 x 18 = 54 mm. The same

calculation with shear mode TeO 2 yields the following results, which are displayed in Table 5.1:

material AOf (deg.) D (mm) H (mm) Htot (mm) M2 fftX (m)

TeO 2 (long.) 0.47 38 1 54 34.5 19.5

TeO 2 (shear) 3.23 6 1.56 84 793 2.83

Table 5.1 Multichannel Bragg cells parameters

Discussions with Bragg cell manufacturers confirmed that both types of Bragg cells were indeed

feasible in the specified dimensions although this involved stretching the state of the are in crystal

growing techniques. I decided on the use of the shear mode material in the final design for the fol-

lowing reasons:

" The figure of merit M2 of the shear mode material is 23 times higher than for the longitudinal

mode, which according to equation (3.1) implies that the required driver power is 4.7 times

smaller.

" The focal length of the Fourier transform element is considerably shorter, which significantly

simplifies the design of the optical system.

" Previous generations of the display were implemented with shear mode TeO 2, which resulted

in considerable practical experience with this material.

The longitudinal mode material, however, becomes more attractive at higher bandwidths and

probably represents the better alternative for large sized displays.

NEOS Corp. (Melbourne, FL) was selected as the Bragg cell provider. The initial design was for a

Bragg cell having dimensions Htot = 75 mm and D = 12 mm (a larger space bandwidth product



than the minimum necessary was chosen as to allow with future experimentation with very deep

images or other display geometries). However, problems encountered during crystal growth

required limiting the height of the crystals to 67 mm. The height of each transducer was chosen

equal to 1.5 mm and the distance between transducer centers equal to 4 mm. Through the use use

of carefully apodized diamond shape electrodes the manufacturer was able to maintain an inter-

channel isolation greater than 25 db across the length of the Bragg cell.

5.5 Fourier plane scanning

5.5.1 Scanning element requirements

The 2.4 ms active scan time per line would imply driving the scanning elements with a sawtooth

having a frequency of 420 Hz if no retrace time were present. In practice, however, the mechanical

inertia of the scanning elements implies the addition of a retrace interval after each horizontal scan

line. This inactive retrace interval results in a lower display refresh rate, and should thus be kept at

a minimum.

The speed and precision of the Fourier plane scanning places severe constraints on the scanning

elements. Those constraints can be stated as follows:

" Mechanical deflection range in excess of 15 degrees.

" High speed and low inertia.

" High linearity and repeatability.

* Low thermal drift and long term drift.

" Small body size, allowing for a dense packing of the array elements.

5.5.2 Scan configuration

Evaluation of different galvanometric scanners on the market led to the selection of the model

6350 from Cambridge Technology, Watertown, MA. However, calculations based on the galva-
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Figure 5.1 Row of galvanometric scanners

nometer size and inertia demonstrated that a simple juxtaposition of the scanning elements Figure

5.1 would not result in an acceptable performance. The array scheme of Figure 5.1 requires indi-

vidual mirrors of a width at least equal to the galvanometer body's width. The inertia of fused sil-

ica mirrors having this dimension would be significantly higher than the galvanometer rotor's,

resulting in a considerable degradation in the scanning system-'s frequency response.

The use of beryllium mirrors was considered to solve this problem. However, beryllium mirrors

are extremely expensive, with a cost per unit higher than a galvanometer. It was thus decided to

use the scanning elements in the configuration of Figure 5.2. Although more complex, this config-

uration allows to halve the mirror width and presents the advantage of reducing the intermirror

gap as per equation (4.8).
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Figure 5.2 Altemate arrangement of galvanometric scanners.



The configuration of Figure 5.2 results in mirrors having a width of 20 mm. Their height was

selected to avalue of 6 mm after evaluation of the vertical scanning requirements (which will be

discussed later in this chapter). Each fused silica mirror is 3 mm thick, which results in a mirror

distortion of less than 1/4 wave during scanning.

The galvanometers are mounted on a thick aluminum plate which also serves as a heat sink. The

array operation requires that the mirrors stay in excellent angular registration thorough the scan-

ning range, a task that stretched the patience of the author. The most challenging task was to

dynamically register the mirrors, a process that involved a careful adjustment of the servo

response of each galvanometer.

The response of the scanning elements was carefully analyzed to determine the optimum scanning

waveforms and frequencies. It became quite evident that a traditional raster type of scanning

(which uses sawtooth waveforms to drive the galvanometers) could not be implemented at rea-

sonable frequencies because the slew rate of the actuator would imply long retrace intervals and

consequently unacceptedly low refresh rates. It was then decided to drive the scanning elements

with triangular waveforms, and to use both scan directions as active write intervals. This so-

called boustrophedonic configuration minimizes the inactive scan time and thus results in accept-

able refresh rates. Its main inconvenient comes from the need for two sets of Bragg cells, each

driven from opposite sides during alternate lines.

The size of the Fourier transform is given by the equation:

Ax = XfxAv (5.6)
V

and is thus equal to 145 mm with a TeO2 Bragg cell having a 50MHz bandwidth in the configura-

tion described in section 5.4.2. This configuration thus requires 7 scanning elements of the above

type.
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Figure 5.3 Horizontal scanning waveform. Time intervals are in milliseconds.

5.5.3 Horizontal scan format

Even the triangular scan format requires a significant inactive interval since we are interested in

using only the linear portion of the scan. After a series of experiments I decided on the format

described in Figure 5.3.

The active scan time per horizontal line is determined by the CHEOPS firmware to be equivalent

to 2.4 ms. There are two active intervals per scan period. The scan frequency is set to 150 Hz,

which signifies that there will be a 0.9 ms inactive period between each active interval. The active

duty cycle per horizontal line is thus equal to 73%.

As derived in Section 5.4.2, a 30 degrees optical range is deflected during an active interval during

which each mirror rotates at a constant velocity of 109 rad/s. The total mechanical excursion,

including inactive intervals, is equal to 18 degrees.

A total frame includes 221 / (2 x 218)= 4 complete active scan periods. An inactive period is added

after each frame as a vertical retrace interval. The display refresh rate is thus equal to 150 / (4 + 1)

= 30 Hz, which is acceptable in terms of flicker.
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Figure 5.4 Simplified drawing of the holographic video display

5.6 Optical geometry (Horizontal axis)

5.6.1 Beam shaping optics

A schematic drawing of the horizontal display optics is presented in Figure 5.5. A simplified per-

spective drawing of the overall display geometry is presented in Figure 5.4. The horizontal axis

beam shaping optics consist of a simple beam expander composed of lens L2 and L3. The telescope

formed by those lenses magnifies the 2 mm diameter input laser beam by a factor of 7.5. The cen-

tral portion of the collimated expanded beam illuminates the two Bragg cells.

5.6.2 Bragg cells

The geometry of each Bragg cell has been described in section 5.4.2. The Bragg cells are placed

back to back with their surfaces almost touching each other (this feature was included in the origi-

nal design). Their orientation with respect to the laser is chosen to satisfy the Bragg condition at

the center frequency and is then fine tuned to get the flattest possible response across the passband

(50 - 100 MHz).
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5.6.3 Fourier transform optics

The calculations of section 5.4.2 imply that the Fourier transform lens must have a focal lengthffp

= 2830 mm. This number is of course quite impractical if implemented with a single lens. It was

thus decided to use two lenses L4 and L6 in a telephoto combination. Elementary geometrical

optics prescribe the distance z46 between L4 and L6 :

Z46 ~ f4 + f6 - f.f (5.7)
f ft

and the total distance z4fl' between L4 and the Fourier plane is given by:

f6 4 -Z 46)
Z4ft - (5.8)

Withf 4 = 600 mm andf 6 = -150 mm we thus get z46 = 482 mm and z4t= 1035 mm. Using a tele-

photo combination thus results in a considerable improvement in the display footprint.

5.6.4 Output imaging lens

The focal length of the imaging lens L10 is determined by equation (2.6). I chose a value of 275 mm

which results in a horizontal view zone of 30.2 degrees for a 50 MHz analog bandwidth signal sent

to the Bragg cell.

The diameter D of the imaging lens is given by the equation 2:

(sca XffAv
D = 2fiotan ( 2 )1+ f (5.9)

For the values mentioned above, an imaging lens having a diameter of 295 mm is thus required.

The very low f /number of the lens implies that it should be a multi-element lens. The design and

fabrication of the lens was contracted to an external source (Optikos Corp, Cambridge, MA). The



final design consists essentially in a doublet of two plano-convex lenses with the planar surfaces

facing the conjugate focii. Its active aperture when mounted is 320 mm. The doublet is mounted

in a black anodized aluminum barrel.

5.7 Optical geometry (vertical axis)

5.7.1 Beam shaping optics

Because the fill ratio of the acoustic channels is about one third, it would be quite inefficient to illu-

minate the crystal aperture by just vertically expanding the incoming laser beam. It was thus

decided to individually illuminate each acoustic column with a properly shaped beam. The opti-

cal system described in Figure 5.6 performs the desired beam shaping operation. The key element

in this configuration is a Damman grating manufactured by the National Institute of Optics (Que-

bec, Canada), which separates the incoming beam into 19 orders of equal power. The angular sep-

aration between each order is equal to 50 milliradians. The Damman grating is placed in the

confocal plane of lenses L, and L3. Choosing the focal length of L3 equal to 300 mm results is a

vertical stack of light sheets spaced 4 mm apart, which corresponds to the interchannel spacing of

the Bragg cell. The thickness of each sheet is determined by the width of the incoming beam times

Damman
grating

L3

Figure 5.6 Splitting an incoming beam into multiple collimated beams with a Damman
grating



the magnification of the L1-L3 telescope. Since the acoustic width is about equal to the laser beam

diameter a unit magnification is chosen, and thusf1 =f3 = 300 mm. The Bragg cells are adjusted so

that the light sheets and the acoustic columns are correctly registered

5.7.2 vertical scanning

The vertical scanning subsystem is similar to the description given in section 2.2.5. A detailed she-

matic is provided in Figure 5.5. Lenses L4 and L5 focus the light diffracted by the Bragg cell on the

surface of the vertical scanning mirror. A cylindrical doublet L7 placed immediately after the mir-

ror determines the vertical focal plane of the scanned array in the image plane. The cylindrical

doublet L8 -L9 images the vertical scanning mirror on the horizontal scanning plane. The output

lens L10 then images the Bragg cell array in the center of the image plane. The vertical transverse

magnification is essentially determined by lenses L4, L5, and L10 and is approximately given by

the formula:

M Yf 10( Z45  (5.10)
4 f5 f 4 f

It was decided at the design stage to set the aspect ratio of the image equal to 2:1, (equivalent to

the aspect ratio of the ShowScan cinematographic process and close to adopted standard for

HDTV), thus implying a vertical image size of 75 mm. The image of the Bragg cell is sweeped 8

times per frame (4 times forward an 4 times backward) and thus the required magnification ratio

is equal to 75 / (8 x 67) = 0.14.

The vertical scan is of a conventional sawtooth type, non interlaced, at a 30 Hz rate. The retrace

interval is equivalent to a full horizontal scan interval (6.66 ms). A galvanometer motor identical

to the ones used in the horizontal scanning (Cambridge Technology model 6350) was selected,

with a scanning mirror having dimensions of 60 (along the scan axis) x 7 x 3 mm.
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5.7.3 Vertical diffuser

The horizontal parallax only nature of the display requires a diffusing element in the image plane.

The function of this diffuser is to scatter light along the vertical axis while leaving the horizontal

content of the image unaltered. The final version of the display uses a one dimensional holo-

graphic diffuser manufactured by Physical Optics Corp, Torrance, CA. The total angle of diffusion

is 30 degrees in the diffusing direction. This diffuser exhibits extremely low scatter along the non

diffusing axis and proved very satisfactory for our purpose.

5.8 Display electronics

5.8.1 RF signal processing.

Figure 5.8 shows a block diagram of the RF processing circuitry. The signal coming from the

CHEOPS framebuffer is first filtered to keep the lower sideband and then mixed with a 100 MHz

local oscillator which upconverts it to a signal having a frequency range adequate for the Bragg

cell (50 - 100 MHz). The upconverted signal then goes through a variable attenuator whose pur-

pose is to equalize the optical power coming out of each Bragg cell channel. The signal is then

amplified and filtered to keep the lower of the two sidebands resulting from the upconversion.

attenuation
local oscillator control current

input

analonSPD

low pass filter mixer attenuator small signal low pass filter
amplifier

A
Bragg cell A

BTTL control
B signal

analog SPDT
Bragg cell B power switch

amplifiers

Figure 5.8 Block diagram of the RF processor



Since each Bragg cell is active only during one half of a scan period an electronic SPDT switch

routes the RF signal to the corresponding active cell. The demultiplexed RF signals then go

through a set of power amplifiers before being sent to the Bragg cells.

The signal processing system is implemented on standard two sided printed circuit boards. The

circuitry corresponding to two complete channels is built onto each board. Each board is enclosed

in an aluminum case which limits the amount of radio frequency being radiated and serves as a

heat sink for the power amplifiers. The cases fit into a standard rackmount cage where 3 box fans

help dissipate the large amount of heat (400 watts) dissipated by the power amplifiers.

5.8.2 Generation of scan signals

5.8.2.1 Horizontal scan signals

The generation of the control signals is considerably simplified from the fact that the CHEOPS

framebuffer generates its own separate h-sync and v-sync signals. The h-sync signal is sent

directly to the phase lock input of a high quality digital function generator (Hewlett Packard

#3314A) which is set to generate a triangular wave of the correct amplitude. The phase relation

between the sync input and the triangular scan signal is directly set on the signal generator. The

triangular waveform is then sent to the horizontal scan servo amplifiers.

A divide-by-two counter also processes the CHEOPS h-sync pulse into a 50% duty cycle square

wave of a period equal to a scan interval (6.67 ms). This square wave is used to control the demul-

tiplexing switches of the RF signal processor. An inverter and switch combination determines

which Bragg cell is active during each scan direction. A detailed drawing of the control circuit is

shown in Appendix C.

5.8.2.2 Vertical scan signals

The vertical scan signal is generated by incrementing a counter at every h-scan pulse. The outputs

of the counter are connected to a digital to analog converter (DAC) and the counter is cleared by
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Figure 5.9 Signals used to drive the holographic display.

the CHEOPS v-sync pulse. The signal coming from the DAC is thus a discrete sawtooth in which

each step correspond to a horizontal scan interval. This signal is then sent to the vertical scan servo

amplifier with a correct amplitude and offset.



VI RESULTS

6.1 Image size and view zone

The final version of the display was implemented with 6 scanning elements in the Fourier plane.

The useable portion of the RF spectrum thus extends across a 42 MHz bandwidth. The measured

size of the image is equal to 150 x 75 mm. The depth of field is essentially limited by the amount of

astigmatism that the human eye can tolerate (about 300 mm at a normal view distance). The verti-

cal resolution is equal to 144 lines. A picture of a typical holographic image is shown in Figure 6.1.

Figure 6.1 Holographic still image of a Honda EPX. Wendy Plesniak
rendered the image and Mark Lucente computed the hologram fringes.

6.2 Resolution

6.2.1 Vertical resolution

The vertical resolution is determined by the number of scan lines per unit length. In the final ver-

sion of the display this equates to 75 / 144 = 2 lines/mm, a figure roughly equivalent to the verti-

cal resolution of an average NTSC monitor. The vertical lines do not blur into each other. Indeed,

a close inspection of the image reveals that successive scan lines are separated by a narrow gap

(Figure 6.2). At a normal viewing distance this gap is barely noticeable.

M -. ____ im- - - - ___ - 11 -. _ __ __ ---- ____ - - - ---
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Figure 6.2 Close-up of the central part of the preceding image. The
size of the enlarged area is 6.4 x 4.8 mm

6.2.2 Point spread function (horizontal axis)

The horizontal axis PSF was determined by placing a CCD array directly in the image plane after

having removed the vertical diffuser. This CCD array has almost square pixels of a size equal to

8.33 x 9.71 micrometers. Only one galvanometric scanner at a time was illuminated to eliminate

the effects of mirror misregistrations. The video frames coming from the array were digitized by a

Sirius video frame grabber installed in an SGI ONYX workstation. A vertical array of points was

calculated at different z-planes, both on and off axis, to evaluate the behavior of the PSF. Figure

6.3, Figure 6.4, and Figure 6.5 give a detailed view of the PSF at those planes.

The PSF along the horizontal axis is quite similar for on-axis and off-axis points, and stays fairly

constant with respect to depth. In the vertical direction the scan lines come to a focus only at the

Bragg cell plane (where the diffuser would normally be). From Figure 6.4 we can deduce the half

intensity width of the PSF to be equal to 70 micrometers. A calculation using equation (4.24) gives

a figure of 15 micrometers. It is thus clear that the optical system is far from being diffraction lim-

ited.



Figure 6.3 Enlarged section of a single
vertical line. The line is imaged on-axis
and is 3 mm from the plane of the Bragg
cell in the image space. The size of the
area is 2.5 x 4.6 mm.
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Figure 6.4 Plot of the central section of Figure 6.3.
The X axis represents the pixel count and the Y axis
the relative intensity. Each pixel is 8.3 microns
wide.

The aberrations which spread the PSF imply that the optics do not be behave exactly as predicted

in Chapter IV. Indeed, in a system with aberrations the PSF usually narrows as the aperture is

reduced (up to a point where pupil diffraction effects take over), which is opposite to the case of a

diffraction-limited system. At any usual viewing distance the pupil of the observer is consider-

ably smaller than the projection of the system pupil in the Mark II display. The consequence of

this is that the angle subtended by a single point will always be smaller than 70 / Dview pradians

where Dview is the viewer's distance. The minimum comfortable viewing distance for a human

observer is about 20 centimeters. Thus the angle subtended by a point will always be smaller than

1 minute of arc, which is the resolution limit of the human eye.

dim



Figure 6.5 left image: off axis close-up of a single vertical line situated 3 mm from the image of the
Bragg cell. Center image: on-axis vertical line, 5 cm away from the Bragg cell plane. Right image: off
axis vertical line, 5 cm away from the Bragg cell plane. All off-axis images were calculated to be 6 cm
away from the optical axis. The size of the area is 2.5 x 4.6 mm in all three cases.

6.3 Contrast ratio

The contrast ratio in this type of display depends strongly on the type of image being represented.

This stems from the fact that the dynamic range of the Bragg cell is shared by adjacent image sec-

tions when the scene to be represented moves away from the Bragg cell plane. Single points (cor-

responding to specular reflections) imaged away from the image plane can be extremely bright,

but also lead to intermodulation noise problems (detailed in the following section), and are thus

usually either avoided or attenuated (this is also the case in optical holography). The vertical lines

of Figure 6.5 are examples of such specular images.

A realistic situation can be simulated by measuring the contrast between a uniform diffuse patch a

few millimeters across and the surrounding field. Such a diffuse patch was calculated using a

pseudo-random diffuser algorithm. The measurements were carried out using a Newport light

meter placed at the plane of the Bragg cell image. For a single uniform patch the measured ratio

was equal to 70. Similar measurements carried out on the EPX image of Figure 6.1 yielded similar

results.



6.4 Noise

6.4.1 Intrinsic vs system noise

Two principal types of noise can be defined when analysing the image: Intrinsic noise and system

noise.

The intrinsic noise derives from the physics of the display and can thus never be eliminated,

although its inluence can be minimized by being careful when computing the holograms. This

type of noise is well characterized and can be calculated. Quantization noise and intermodulation

noise fit into that category.

System noise derives from various factors such as reflections on lens surfaces, scattering by dust

particles on optical surfaces, and noise coming from the processing electronics. Very often these

sources of noise will affect some parts of the image more than others (this is especially true from

lens reflection artefacts).

6.4.2 Intrinsic noise

6.4.2.1 Quantization noise

Quantization noise arises from the finite size of the samples used to represent our images (8 bits/

sample in the case of CHEOPS). This is a well known effect in any digital signal processing sys-

tem. The mean square value of this quantization noise can be shown to be equal to:

2

(e2 (6.1)
12

where d is the size of a quantization step. Since the maximum signal is 2nd in the case of n bits

per sample, the ratio of peak signal to rms noise is:



S/N= - (6.2)
12

For 8 bits per sample this ratio is 887 or 59 db.

The quantization noise spectrum is uniformly distributed across the frequency range of interest.

This noise will thus appear as scatter in the final image. It is of a fundamental nature and the only

way to reduce it would be to replace the current framebuffer by a model offering more bits per

sample. Equation (6.2) thus represents the highest possible theoretical S/N ratio of the display. In

practice, however, quantization noise proves to be by far the smallest contributor to the overall

noise in our images and can be neglected.

6.4.2.2 Intermodulation distortion.

The Bragg cell is not a linear device. More specifically, the diffracted first order intensity is given

by expression (3.1).

For very a small diffraction efficiency value the response of the Bragg cell is almost linear. How-

ever the AOM response will be less and less linear as the RF input power is increased.

Intermodulation distortion arises from this nonlinearity in the Bragg cell response. It appears

when two signals are added and then pass through a nonlinear system. If the respective spatial

frequencies of the signals aref1 andf 2 then at the output of our system the following terms will be

added to the original spectrum:

2fl-f 2, 2f 2 -f 1 , 3f 1 -f 2, 3f 2 -f 1 , 3f,-2f 2, ... (6.3)

The first two terms of (6.3) are called third order intermodulation products and are by far the most

significant contributors the the overall intermodulation distortion. Their effect on the image shows

up as a kind of fuzzy halo or ghost surrounding any bright part of the displayed object. For two



equal amplitude spatial frequencies fi and f2 the power Iint in the intermodulation products is

described by the relation:

I2
t- __ (6.4)

I 36

where I, is the intensity of the first order diffracted beam and r) is the power diffraction efficiency

forfi orf 2 by themselves. Thus if T1 = 0.1 the third order intermodulation products will be down

by 35 db relative to the main signal. It is clear from (6.4) that we have to drive our display at low

diffraction efficiencies (less than 10 %) if we want a clean image. Unfortunately, light scattering

from the various optical surfaces become significant at such low efficiencies, so the final operating

point of the Bragg cell is a compromise between intermodulation noise and scatter. This problem

is also encountered in optical holography, where intermodulation products are usually labelled

"self referencing noise". It can be minimized by avoiding bright, specular reflections in the holo-

gram.

6.4.3 System noise

6.4.3.1 Framebuffer noise

The noise coming from hardware errors in the CHEOPS framebuffer proved to be quite a nuisance

in the early parts of the project. It was fortunately gradually brought under control, to the extent

that the measured framebuffer noise does not exceed the quantization noise.

6.4.3.2 RF processor noise

The RF processing of the signal inevitably introduces some degradation. Three effects are mainly

responsible for this degradation:

" White noise.

" Harmonic distortion.



* Intermodulation distortion.

The white noise mainly comes from thermal excitations in the solid-state electronics. Since we use

high quality components and our signals are of a relatively high level (typically from 0 to 25

dbm), this white noise has been measured to be smaller than the quantization noise and thus can

be neglected. Its effect, if visible, would be that of a uniform scatter across the image.

Harmonic distortion arises from nonlinearities in the mixers and amplifiers. An harmonic distor-

tion component will have an integral number of times the frequency of the input signal. On the

display this would be seen as a ghost image displayed at twice the spatial frequency of the original

image. Harmonic distortion is virtually negligible in our system since the frequency range of the

Bragg cell is restricted to an octave. Any harmonic term will fall outside the Fourier scanning

plane an will not appear in the image.

Intermodulation distortion arises from the same nonlinearities in the electronics. Its visual imact

has been described in Section 6.4.2.2. The main contribution to intermodulation distortion in our

RF subsystem comes from the mixers. Third order intermodulation products have been measured

to be more than 35 db below signal when the input levels are carefully adjusted.

6.4.3.3 Multiple reflections

All the lenses in the optical system were coated with multilayer dielectric coatings, resulting in ref-

flection coefficients inferior than 0.5 % at each air/glass interface. However, the large number of

lens surfaces in the system resulted in some sligtly visible reflections usually visible from a narrow

angle. Those multiple reflections seem to be the main contributor to the overall display noise.



6.5 Scanning artifacts

6.5.1 Mirror misregistration and intermirror gap

The segmented nature of the Fourier transform scanning scheme introduces scanning artifacts if

the scanning elements are not carefully registered both statically and dynamically. In addition the

intermirror gap results in a intensity dropoff within a small portion of the spatial frequency spec-

trum.

The registration errors proved to be impossible to completely eliminate, although careful adjust-

ments resulted in misregistrations which were detectable only by a close examination of the

image. It was found that the galvanometers drift slowly with time, resulting in the need to adjust

the offset voltages every three months or so. It should be noted, however, that the thermal drifts

have become considerably smaller over time.
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Figure 6.5 Left: Effect of scanning mirror misregistration. The CCD array was put in the image
plane while receiving light from the multiple mirrors. The size of the imaged area is 2.5 x 4.6 mm.
Right: Plot of the intensity profile across the picture at left. The X axis represents the pixel count and
the Y axis the relative intensity. Each pixel is 8.3 microns wide.



This probably the consequence of some form of thermal aging in the scanner armature and associ-

ated electronics. A picture of a typical misregistration error is shown in Figure 6.5. In this case the

maximum misregistration was equal to 800 micrometers. Misregistration between successive scan-

ning elements is usually considerably lower.

The intensity dropoff due to the gaps proved to be barely perceptible except upon very close

examination. This dropoff did not significantly degrade the holographic image.

6.5.2 boustrophedonic scan errors

The boustrophedonic nature of the Fourier plane scanning introduces severe constraints in the lin-

earity of the scanning devices (indeed these constraints are the main reason that type of scan is not

used in television). Any velocity differences between the forward and backward scans will show

up as discontinuities in the image. Such discontinuities are most visible if the image consists of

simple vertical lines, such as in the test pattern of Figure 6.6. It is clear from Figure 6.6 that some

degree of nonlinearity is present at the extreme edges of the scan, with typical discontinuities of a

few hundred microns. It should be noted, however, that this residual nonlinearity is very difficult

to notice in more complex images.

Figure 6.6 Test pattern consisting of one central vertical line and two lines at the
edge of the field. The lines are image 3 mm from the Bragg cell plane.



6.5.3 Vertical scanning errors

The vertical scanning element has to perform an angular step after each half scan. The settling

time of the scanner creates some small errors visible as gaps between line groups at the beginning

of each scan. These gaps are most visible if we image a uniform field and can be discerned at the

extreme edges of Figure 6.7. Once again, these artifacts are considerably harder to notice in usual

images.

Figure 6.7 Uniform field generated with a pseudo-random phase sequence. The
vertical striations are an artifact of the pseudorandom algorithm.

6.6 Distortions

6.6.1 Field curvature

The output plane is slighly curved due to the optical geometry selected and the fact that the out-

put lens consists of only two elements. Without correction the total field curvature is equal to 1 cm.

This problem is easy to correct in the horizontal direction by introducing an opposite curvature in

the simulated reference beam when computing the hologram. By introducing such a quadratic

phase term in the reference beam the horizontal curvature can be rendered negligible. The vertical

field curvature is considerably smaller (a few mm) because the output lens works at a larger f/

number in the vertical direction.



6.6.2 Bow scan distortion.

An X-Y scanning scheme consisting of two orthogonal elements will always introduce a form of

trigonometric distortion known as bow scan22. This distortion can be readily noticed in Figure 6.7

as a curvature of the top and bottom of the image. Bow scan can be corrected by various optical

schemes usually incorporating the use of a prism. Such a scheme could eventually be imple-

mented in the MIT display but would likely prove quite expensive, requiring the fabrication of a

prism having a size comparable to the extent of the Fourier transform.



VII CONCLUSION

The application of parallel architecture principles at every stage in the design has allowed a six-

fold increase in display capabilities with respect to previous implementations. An order of magni-

tude increase in the display space-bandwidth product is still necessary before this technology can

be put to practical uses, however. A number of technical problems also need to be solved if this

technology is ever to have commercial applications. Some of these problems, as well as a few

directions that might help to solve them, are discussed below.

" The use of lasers as light sources is expensive and introduces some speckle in the image.

Although careful computational approaches can reduce this speckle, it is the opinion of the

author that a minimal amount of speckle is unavoidable with lasers. Superluminescent, par-

tially coherent light sources such as the latest generation of superluminescent LED's might rep-

resent a solution to this problem.

e Galvanometric scanners are cumbersome devices for scanning the Fourier plane. Practical

implementations of the segmented scanning approach will probably use arrays of microme-

chanical deflectors such as those described in references 53 and 54. The use of these microme-

chanical components would eliminate most moving parts from the display (with the exception

of the vertical scanner), thus rendering it essentially solid-state.

e Very large and expensive TeO2 crystals will be required for large displays if the material is used

in the shear mode. Using the same material in the longitudinal mode along with higher band-

width electronics might prove more practical.

It is the opinion of the author that future developments in three-dimensional display technologies

will benefit from more advanced studies in the psychophysics of human perception. The display

developed in the context of this thesis should prove an ideal tool for psychophysical experiments



since it allows for an unprecendented control over three-dimensional imaging parameters and

produces high quality images of a useful size.

More importantly, holographic video represents a truly new medium, a rare happening in human

history. The relationship between electronic holography and still holography is similar to the rela-

tionship between television and still photography. These two types of holography will almost cer-

tainly evolve in quite different directions, each medium developing its own language. Some

applications of electronic holography such as medical imaging, air trafic control, or car design are

relatively straightforward, but it could be that the most interesting uses of an interactive holo-

graphic medium lie in an entirely different domain. The first medium to have been designed

from the beginning as entirely digital, electronic holography permits the creation of arbitrary

wavefronts, including some that do not exist in nature. It could thus have an impact in the visual

arts comparable to the advent of electronic synthesizers (which create arbitrary sound waveforms)

in music.

The prospects look bright for the future of holographic video displays. Our information process-

ing capabilities have been growing exponentially over the last few decades and that growth shows

no sign of slowing down with such technologies as optical computers, superconducting devices

and ultra-fast semiconductors looming in the future. Some of the figures given in this thesis

which seem a little bit farfetched now will be commonplace when a whole CHEOPS fits on a sin-

gle chip. There is no doubt in the mind of the author that some kind of holographic display will

one day be used for practical purposes. Whether this hypothetical device will use the current

approach or will function on a totally different principle is harder to predict. The present system

with its cumbersome electromechanical scanning array might one day be remembered as the late

20th century equivalent of the Nipkow disk, but one thing is certain: it has carved itself a niche in

scientific history as the first functional holographic video display.



APPENDIX A: The paraxial opti-
cal system with time dependent

elements

A.1 Introduction

Optical scientists are well acquainted with the ABCD matrix description of the general paraxial

optical system. Although very useful, this formalism cannot be directly used in the case of time-

dependent systems, i.e. systems in which the rays are altered in a time-dependent fashion. Such

systems are now becoming commonplace with the advent of laser scanning ans adaptive optics

technologies. In this paper I will introduce an extension of the ABCD matrix formalism which will

allow us to deal efficiently with time-dependent systems.

A.2 Problem Definition

A general paraxial optical system can be described by a set of linear equations which relate the

positions x1, x2 and the slopes x'1, x'2 at any two reference planes:

x2 = Ax 1 + Bx 1  (A.1)

x = Cx 1 + Dx',

Or, in matrix form:

X2 A B xi (A.2)
x' 12 C D x'

we are now interested to investigate the case where the rays are affected in a time dependent fash-

ion. That is, they can be translated or rotated by time dependent operators, as opposed to the pre-



vious case where all the components of the system were considered static. For a translation,

Equation (A.1) thus becomes:

x2 = Ax 1+ Bx', + Ht
(A.3)

x2 = Cx 1 + Dx'(

And for a rotation they become:

x2 = Ax, + Bx', (A.4)

x = Cx 1 + Dx'1 + Wt

Obviously our ABCD matrices are no longer sufficient to describe the situation. The solution to

this problem is to switch to a 3-dimensional space where a vector is now represented by the coor-

dinates (x,x',t). If we neglect the propagation time for a ray, we will be now working in a plane

imbedded in a larger 3-D space. This plane is defined by the time coordinate itself which does not

change thorough the transformations. Such coordinates are called homogeneous coordinates.

Thus a time dependent translation is now represented by the matrix:

x2 1 0 H xi
x'2 0 1 0 X'1  (A.5)

And a rotation is represented by:

x2 1 0 0 x1H = 0 1 W x', (A.6)
T t 001 t

The general case can now be described by the matrix:



x2 10 H xi
x' = 0 1W x'1

t- 0 0 1- t-

(A.7)

where A,B,C and D represent the coefficients of the traditional 2 x 2 ABCD matrices.

A.3 Examples

A.3.1 A Translating Thin Lens

Let us now consider the case of a thin lens translating at a speed H. We want to find the relation-

ship between two references planes situated at distances 11 in front and 12 in back of the lens.

A thin lens is represented by the matrix:

M11

-0

0 0
1 0

0 1

(A.8)

We now consider this lens moving at a speed H with respect to the rest of the system. This means

that the coordinate system of the lens will change over time. In the original reference frame, such a

translation will be represented by the product:

(A.9)M2 = T~IM 1 T

where T is the translation matrix of equation (A.5). After calculation we get the result:

1 0 0

M2 = -1 H
f f

0 0 1-

(A.10)



We thus conclude that a lateral translation of a lens results in an angular ray displacement. To have

the general matrix relating two arbitrary reference planes we then multiply by the matrices corre-

sponding to the propagation of the rays in free space:

1 12 0 1 0 0 1 1, 0

M= 0 0 11 0 0
f 1

0 0 1 0 0 1

12 11 12 (A.11)

1 H-

Sf f

M= 1 11 H (.2

0 0 1

If the light source is positioned at e and 2 describes image position the matrix becomes:

- 0 Hf

M =1 l H (A.12)

f 12 f

L0 0 1

A.3.2 A traveling image on a Bragg cell

A holographic image travelling on a Bragg cell can be considered of consisting of a multitude of

superimposed lenslets, each of which images a specific point in the image space (superposition

principle). If the Bragg cell is illuminated by a plane wave (which is usually the case in practice)

and we consider the case of a particular point imaged at a distance do from the Bragg cell the

matrix formulation becomes:



x 11 e 0 X0 0
1 V (-x 0 + Vt) (A.13)

x' do do do (.3

A.3.3 A scanning mirror

A scanning mirror rotating at an angular rate o) deflects an incoming beam at a rate 2o Its matrix

is thus of the form:

1 0 0

M= - 1 2co (A.14)
f

0O 0 1J

A.4 Analysis of Scophony-type displays

We now posess all the elements necessary to model an optical system similar to the one used in the

MIT electronic holography display. Such a system is represented schematically in Figure A.1.

The Bragg cell is illuminated from point source Si located on axis. Each image component dis-

played at a specific depth do with respect to the Bragg cell can be modeled as a series of diffractive

lenslets having a focal length do. In defining do we use the usual sign convention, i.e. do is negative

if the lenslet is diverging and positive if it is converging. It is sufficient to track the behavior of the

-- 10 1 2 13 > 1 4

Point Bragg Li Scanning L2 Image
source cell element

Figure A.1 Schematic diagram of a Scophony-type optical system



light interacting with a single lenslet to deduce the behavior of the system with respect to different

planes.

By using the previously described formalism the whole system can be modeled as the product:

out Xin

x'out = Msystem xin (A.

t JLtJ

with

Msystem = M 8M 7 M 6M 5M 4M 3M 2M1 M 0  (A.

and the corresponding matrices described as:

10 0
1 0
0 1

15)

16)

(A.17)

(A.18)

1 10 0

MI= - 1

do do
0 0 1

where V represents the acoustic propagation rate on the Bragg cell.

1

M2 =0

0

M3 - ~

-0

11 0

1 0
0 1

0 0

1 0

0 1]

(A.19)

(A.20)

1

MO = 0

0



1 12 0

M 4 = 0 1 0 (A.21)

LO 0 1j

1 0 0
M 5 = 0 1 2co (A.22)

L0 0 1

1 13 0M6 0 1 0 (A.23)
0 0 1

1 0 0

M7 1 0 (A.24)
f2

-0 0 1

1 14 0

M8 = 0 1 0 (A.25)

0 0 1

For the display to render a steady image the following conditions must be met:

* The conventional imaging criterion must be observed. This is equivalent to stating that the first

row, second column element M12of Msystem (the B of the subset ABCD matrix) is nul:

system = 0 (A.26)

e The image must be steady in the image plane. This can be stated as:

dx- = 0 
(A.27)

where xin denotes the position of the source S.



e The spatial frequencies of the lenslet written on the Bragg cell must be time independent in the

image plane. This is equivalent to state that the chief ray of the source and moving lenslet sub-

system must be mapped to a time-independant ray in the image space. This condition can be

stated as:

dx'O
O =

dt
(A.28)

with

Vt
x'i =

0~

(A.29)

Finding a correct imaging system is thus equivalent to applying applying the previous conditions

on equation (A.15) where the input vector xin is given by:

x0
* Vt~

x= _

do
-t

(A.30)

Such a calculation can be done analytically by using mathematical programs such as Mathematica.

However, calculations done using the general matrix of expression (A.16) results in formidably

long expressions for the desired quantities. These expressions can be significantly shortened if the

light source is placed at infinity (which is usually the case in practice) and if the Bragg cell is

placed against lens L, (thus 11 = 0), which also has the advantage of rendering the display more

compact. In that case the application of conditions (A.27) and (A.28) on the image vector gives the

expressions:

_V r+1+i(2 1+ l+ 2 4+ 1 i<l
= -K 12+ 13 + 14 - 14( ) + 2(o(13 + 14 - -34 0

do( f2 f2
(A.31)



dx', _u V (12+l3-f -f2) + 2 o 1 _ (A.32)
dt f if2 f2

The variable 14 of (A.31) can be substituted by using condition (A.26). Solving for 12 then results in

the expression:

-f 1 (V+ 2od0 )
12 2o(d+f 1 ) (A.33)

And solving (A.32) for 13 gives the result:

V(f 1 -1 2)
13 = f 2 + V - 2f (A.34)

V- 2of 1

The magnification of the holographic image can be determined by considering the projection of

the lenslet foci plane (situated at a distance do from L1 if the source is at infinity) by lenses L, and

L2. Such a calculation can be done with conventional ray optics to give the result:

M( f f 2  (A.35)
f1fz+dolfl + fz)~(12+13) (do+ fl)



APPENDIX B: Demonstration of equation (4.6).

The optical system under consideration consists of a point source S, an aperture stop P, an imaging

lens L, and the pupil of the eye Peye(Figure B.1). The pupil P is situated at the front focal plane of

L1 (such a system is said to be telecentric on the image side.). We want to find the minimum size do of

P that will prevent vignetting.

The exit pupil of the first section of the system is determined by projecting the geometrical shadow

of P on he plane of lens L1:

dol I doll
d 10 11  f I (B.1)

and the non vignetting condition can be expressed as:

d > 3 (B.2)

From the lens law we have:

f 112

2 2- fi1
(B.3)

+-- 0 >0 ' f >2 >- 13

Point
source Image

aperture eye
stop lens

Figure B.1 Telecentric imaging system



Substituting (B.3) into (B.1) yields the result:

di

and thus condition (B.2) can be expressed as:

deyefido > 13

d012 (B.4)

(B.5)



!TIz

cj~

0
0
'*1
0
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