
The Monge Array: An Abstraction and Its Applications

by

James Kimbrough Park

B.S.E., Electrical Engineering and Computer Science
Princeton University

(1985)
S.M., Electrical Engineering and Computer Science

Massachusetts Institute of Technology
(1989)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1991

0 Massachusetts Institute of Technology 1991

Signature of Author 
Deprtment of Electrical Engineering and Computer Science

May 20, 1991

Certified by _ -.
Charles E. Leiserson

--As-soc]-ia Professor of Comuter Science and Engineering

Accepted by

ARCHIVES Arthur C. Smith
Chairman, Departmental Committee on Graduate Students

MASSACIUSETTS i~STITUTE
OF TECHNOLOGY

JUL 2 4 1991

. ERARIES
a.i-_ -



I;



The Monge Array: An Abstraction and Its Applications

by

James Kimbrough Park

Submitted to the Department of Electrical Engineering and Computer Science

on May 20, 1991,

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Abstract

This thesis develops a body of versatile algorithmic techniques. We demonstrate the power and
generality of these techniques by applying them to a wide variety of problems. These problems
are drawn from such diverse areas of study as computational geometry, VLSI theory, operations
research, and molecular biology.

The algorithmic techniques described in this thesis are centered around a family of highly-
structured arrays known as Monge arrays. An m x n array A = {a[i,j]} is called Monge
if

a[i,j] + a[k, < a[i, + a[k,j]

for all i, j, k, and I such that 1 < i < k < m and 1 < j < e < n. We will show that Monge
arrays capture the essential structure of many practical problems, in the sense that algorithms
for searching in the abstract world of Monge arrays can be used to obtain efficient algorithms
for these practical problems.

The first part of this thesis describes the basic Monge-array abstraction. We begin by
defining several different types of Monge and Monge-like arrays. These definitions include a
generalization of the notion of two-dimensional Monge arrays to higher-dimensional arrays.
We also present several important properties of Monge and Monge-like arrays and introduce a
computational framework for manipulating such arrays. We then develop a variety of algorithms
for searching in Monge arrays. In particular, we give efficient sequential and parallel (PRAM)
algorithms for computing minimal entries in Monge arrays and efficient sequential algorithms
for selection and sorting in Monge arrays. Highlights include an O(dn lgd- 2 n)-time sequential
algorithm for computing the minimum entry in an n x n x .-- x n d-dimensional Monge array,
an O(n3/2lg 2 n)-time sequential algorithm for computing the median entry in each row of an
n x n two-dimensional Monge array, and an optimal O(lg n)-time, (n2 / lg n)-processor CREW-

PRAM algorithm for computing the minimum entry in each 1 x n x 1 subarray of an n x n x n
three-dimensional Monge array.

The second part of this thesis investigates the diverse applications of the Monge-array
abstraction. We first consider a number of geometric problem relating to convex polygons
in the plane. Specifically, we use Monge-array techniques to develop efficient algorithms for
several proximity problems involving the vertices of a convex polygon, as well as the maximum-
perimeter-inscribed-k-gon problem and the minimum-area-circumscribing-k-gon problem. We

iii



jv

then present several applications of Monge-array techniques to problems involving dynamic
programming. These applications include a special case of the traveling salesman problem, the
optimal-binary-search-tree problem, and several variants of the economic lot-size problem from
operations research, We conclude with several parallel algorithms for a shortest-paths problem
involving certain grid-like directed acyclic graphs. These algorithms are used to obtain fast
parallel algorithms for string editing and surface reconstruction from planar contours. High-
lights of this part of the thesis include an O(kn + nlgn)-time sequential algorithm for the
minimum-area-circumscribing-k-gon problem, an 0(n)-time sequential algorithm for a special
case of the n-vertex traveling-salesman problem, an O(n2 )-time sequential algorithm for the
backlogging economic lot-size problem with arbitrary concave production, inventory, and back-
logging cost functions, and art O(lg2 n)-time, (n 2 / lg n)-processor CREW-PRAM algorithm for
the string-editing problem.

Following the body of this thesis is an appendix that provides a comprehensive overview of
the Monge-array abstraction and its many applications. This appendix is organized as a list of
problems and includes many results not discussed elsewhere in the thesis.

Keywords: algorithmic techniques, Monge arrays, array searching, convex polygons, dynamic
programming, the traveling-salesman problem, optimal binary search trees, economic lot-sizing,
string editing, surface reconstruction from planar contours.

Thesis Supervisor: Charles E. Leiserson

Title: Associate Professor of Computer Science and Engineering



Acknowledgements

First and foremost, I must acknowledge Alok Aggarwal. As my mentor and frequent coauthor,

he deserves an enormous amount of credit for the contents of this thesis. I am deeply indebted

to him for introducing me to the wonderful world of Monge arrays and for showing confidence

in my ability as a researcher when my own self-confidence was low. Without him, this thesis

would never have been written. I must also thank my thesis advisor Charles Leiserson for his

advice, his patience, and the financial support he provided me. I am especially grateful for his

suggestion that I compile the Monge-array compendium included at the end of the thesis; this

compendium allowed me to indulge my desire to mention every single Monge-array result that I

know about and still finish the thesis. I would also like to thank Leo Guibas, the third member

of my thesis committee, for his helpful comments on a early draft of the thesis.

Portions of this thesis represents collaborative work with Alok Aggarwal, Dina Kravets,

Yishay Mansour, Baruch Schieber, and Sandeep Sen. I have also benefited greatly from technical

discussions with Tom Cormen, Mic Grigni, Alex Ishii, Nabil Kahale, Mike Klugerman, Mark

Newman, Carolyn Haibt Norton, Rob Schapire, Eric Schwabe, Cliff Stein, Joel Wein, and Julia

Yang.

In my six years at M.I.T., I have found the Theory of Computation group a very stimulating

environment, and I have learned a great deal from its faculty and students. I would also like

to acknowledge the group's amazing support staff, especially William Ang, Be Hubbard, David

Jones, and Denise Sergent.

The work presented in this thesis was supported in part by the Defense Advanced Research

Projects Agency under Contracts N00014-87-K-0825 and N00014-89-J-1988, the Office of Naval

Research under Contract N00014-86-K-0593, and an NSF Graduate Fellowship.

v





In memory of Bessie Byrne Gorrell Park



, I 



Contents

Introduction

I The Abstraction

1 Preliminaries
1.1 Two-Dimensional Monge Arrays .
1.2 Higher-Dimensional Monge Arrays ..................
1.3 Related Concepts ............................
1.4 The Computational Model . . . . . . . .

2 Minimization Algorithms
2.1 Two-Dimensional Monge Arrays
2.2 On-Line Algorithms ..........
2.3 Higher-Dimensional Monge Arrays . .
2.4 Partial Monge Arrays .........

3 Selection and Sorting Algorithms
3.1 Row Selection ..................

3.1.1 Row Selection When k is Small ....
3.1.2 Row Selection When k is Large ....

3.2 Array Selection .................
3.3 Row Sorting ...................
3.4 Array Sorting ..................
3.5 Open-Problems .................

4 Parallel Algorithms
4.1 Preliminaries .....................
4.2 Two-Dimensional Monge Arrays.
4.3 Plane Minima in Three-Dimensional Monge Arrays
4.4 Tube Minima in Three-Dimensional Monge Arrays

9
. . . . . . . . 9
........ 17
........ .. 23
........ .. 25

27........................ .29........................ .38........................ .40........................ .50
51

......... 53

......... .54

......... .56

......... .66

......... .68

......... .70

......... 71

73................. .74................. .76
................. 85................. .86

ix

1

7

. . . .

. . . . .

. . . . .

. . . . .
. . . . . . .

. . . . .



X

II The Applications

5 Convex-Polygon Problems
5.1 Intervertex Distances ............................
5.2 Maximum-Perimeter Inscribed d-Gons ..................
5.3 Minimum-Area Circumscribing d-Gons. .................

5.3.1 Finding the Best Flush d-gon ...................
5.3.2 Using the Best Flush d-gon to Obtain the Best Arbitrary d-gon

CONTENTS

95

97
.... . . 97
.. .... . 103
.... . .105
.... .. 107
.... .. 112

6 Two Dynamic-Programming Applications
6.1 A Special Case of the Traveling-Salesman Problem ......
6.2 Yao's Dynamic-Programming Problem .............

6.2.1 Optimal Binary Search Trees ..............
6.2.2 Yao's Algorithm .....................
6.2.3 An Alternate Quadratic-Time Algorithm .......

7 Dynamic Programming and Economic Lot Sizing
7.1 Background and Definitions . .

7.1.1 The Basic Model .....
7.1.2 The Backlogging Model
7.1.3 Two Periodic Models .

7.2 Arborescent Flows and Dynamic
7.3 The Basic Problem ........

7.3.1 Nearly Linear Costs
7.3.2 Other Cost Structures

7.4 The Backlogging Problem
7.4.1 Nearly Linear Costs
7.4.2 Concave Costs ......
7.4.3 Other Cost Structures

7.5 Two Periodic Problems .....

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . . .

Programming .
. . . . . . . . .

I. . . . . . . . .
I. . . . *. . ..
I. . . . . . . . .
I. . . . . . . . .

7.5.1 Erickson, Monma, and Veinott's Problem
7.5.2 Graves and Orlin's Problem ........

7.6 Some Final Remarks . . . . . . . . .

8 Shortest Paths in Grid DAGs
8.1 A Shortest-Paths Algorithm . . . . . . . .
8.2 String Editing and Related Problems .......
8.3 Surface Reconstruction from Planar Contours . .

119
........... 120

... .. . . . .. . 128

... . . .. . .. . 128
........... 131

... . . . . .. .. 133

137..... ........ 139
..... . . . .. .. . 139
..... . . . ... . . 144
..... . . . . .. .. 148
..... . . ...... .. . . 148
.... . . . . . .. .. 151

............. 152..... .. . ... .. 160
....... .... 162

.... . . . . . .. .. 162

.... . . . . ... .. 168

.... . . . . . .. .. 171

.... . . . . . .. .. 173

.... . . . . . .. .. 173

.... . . . . . .. .. 174

... . . . . . ... . . 177

181................... 182
.................. 189
.. .. . . ... . . . . .. . .. 190

Conclusion

A A Monge-Array Compendium
A.1 Array-Searching Problems .............................
A.2 Geometric Problems ................................
A.3 VLSI Problems ...................................
A.4 Dynamic-Programming Problems .........................

193

195
. 195

. 198
. . 202
. . 203

..

..

..

..

..

..

. . . . . . .



CONTENTS xi

A.5 Problems from Operations Research ......................... 206
A.6 Graph-Theoretic Problems . ......... . .......... 208

Bibliography 211





Introduction

This subject of this thesis is Monge arrays and their applications to algorithm design. An m x n

two-dimensional array (or matrix) of real numbers, denoted A = a[i,j]}, is called a Monge

array if it satisfies the following property: for all rows il and i2 and columns jl and j 2 satisfying

1 i < i2 < m and 1 < jl <j 2 < n,

a[il, j] + a[i2, j2] a[i, j 2] -t a[i2 ,jl] .

In other words, if we consider any 2 x 2 subarray of A, corresponding to any two rows and any

two columns, then the sum of the upper left and lower right entries is always at most the sum

of the upper right and lower left entries. Figure 1.1 depicts an array with this property.

Monge arrays take their name from the French mathematician Gaspard Monge (1746-1818).

He is associated with such arrays because of work done by Hoffman [Hof63] on easily-solved

special cases of the transportation problem. Hoffman showed that if the cost array associated

with a transportation problem is an m x n Monge array, then a simple greedy algorithm solves

the transportation problem in O(m + n) time. Hoffman applied Monge's name to such arrays

because, as Hoffman remarked, "the essential idea behind [the crucial observation exploited in

Hoffman's paper] was first noticed by Monge in 1781!" (See Appendix A for more information

on Hoffman's work.)

We study Monge arrays in the thesis for two mutually dependent reasons.

First, the structure of Monge arrays allows us to locate certain entries in a Monge array

without having to examine all the array's entries. For example, we need only examine O(m + n)

of the mn entries in an m x n Monge array to find the array's smallest entry. (This result, due

to Aggarwal, Klawe, Moran, Shor, and Wilber [AKM+87], is described in Section 2.1.)

1



INTRODUCTION

J,1 2

10 17 13 28 23 38 49
17 22 16 29 23 35 45
24 28 22 34 24 33 40

ii 11 13l 17 7 21
45 44 32 37 23 28 32
36 33 19 21 6 7 10

i2 73 66 * 53 34 30 31

62 52 32 32 13 9 6
77 66 45 43 21 15 8

Figure 1.1: Consider the 9 x 7 array A = {a[i,j]} shown above, which is drawn so that the entry
a[l, 1] = 10 appears in the upper left corner. This array is Monge, since for any two rows i < i2 and
any two columns j < j2, the sum of a[i1 , jil and a[i2 , j]2 is at most the sum of a[il , j2] and a[i2 , jl] For
example, if we set i = 4, i2 = 7, j = 3, and j2 = 6, we find a[4, 3] and a[7, 6] (the entries in white
boxes) sum to 36, while a[4, 6] and a[7, 3] (the entries in black boxes) sum to 66.

P:

PI

\ / / 
- i Q4

qi, q

Figure 1.2: For il < i2 and jl < j2, d(pi,,qj,) + d(p 2, qj2) > d(pi,,qj 2) + d(Pi2, qj,).

Second, many algorithmic problems from theoretical computer science and related areas can

be reduced to finding certain entries in Monge arrays. Moreover, combining these reductions

with efficient algorithms for searching in Monge arrays often yields new and improved algorithms

for the original problems.

As an example of such a reduction, consider the following closest-pair problem from com-

putational geometry. Suppose we are given a convex polygon that has been broken into two

convex chains P and Q (containing m and n vertices, respectively) by the removal of two edges,

as is shown in Figure I.2. Furthermore, let p,...,Pm, denote the vertices of P in clockwise

order and let q,..., q, denote the vertices of Q in counterclockwise order. The problem we

2



INTRODUCTION

The trading of options and the The trading of options and the scientific
scientific study of options both have long study of options both have long histories,
histories, yet both underwent yet both underwent revolutionary changes
revolutionary changes at virtually the same at virtually the same time in the early
time in the early 1970s. These changes, 1970s. These changes, and the subsequent
and the subsequent events events to which they led, have greatly
to which they led, have greatly increased increased the practical value of a thorough
the practical value of a thorough understanding of options.
understanding of options.

(a) (b)

Figure 1.3: Two different ways of forming a left- and right-justified paragraph from the same sequence
of words.

want to solve is that of finding a vertex pi of P and a vertex qj of Q minimizing the Euclidean

distance d(pi, %q) separating pi and qj.

This closest-pair problem can be reduced to a Monge-array problem as follows. Let A =

{a[ij]} denote the m x n array where a[i,j] = d(pi,qj). This array is Monge. To see why,

consider any two rows i and i2 and columns jl and i2 such that 1 < i < i2 < m and

1 < j < j2 < n. As indicated in Figure 1.2, the entries a[iI,jI] and a[i2, j2] correspond to

opposite sides'of the quadrilateral formed by Pi1 , pi2, qj,, and qj, , and the entries a[i, j2] and

a[il,j 2] correspond to diagonals. By the quadrangle inequality (which states that the sum of

the lengths of the diagonals of any quadrilateral is greater than the sum of the lengths of any

pair of opposite sides), we have

d(pi,,qj,) + d(pi,,qj,) < d(p,,,qj,) + d(pi,2,ql,) .

Thus, A is Monge, and we have reduced our closest-pair problem to the problem of finding the

smallest entry in a Monge array.

As a second (more natural) motivating example (borrowed from Hirschberg and Larmore

[HL87]), consider the following simple paragraph-formation problem. We are given a sequence

of n words wl, w2,..., wn, where the ith word wi has length li, and we want to form a left- and

right-justified paragraph from these words, so that each line of the paragraph (except the last)

has a length that in as close to an ideal line length L as possible. Figure 1.3 shows two different

ways of forming a paragraph from the same sequence of words.

More precisely, let B denote the length of the ideal spacing between two words, and for

3



INTRODUCTION

1 i < j n, let lij denote the natural length of a line containing words wi through wj_l,

i.e., let

ii, = (EEm) + (j- i-1)B .m=i

Furthermore, for 1 i < j < n + 1, let w(i,j) denote the penalty assigned to a line containing

words wi through wj-l. Presumably, this penalty function is chosen so that w(i,j) is small

when £ij is close to L and large when eij is significantly smaller or larger than L. For example,

we might have

(tij-L)2 ifj<n,
w(i, j) = if j = n + 1 and li j L

+oo iffj = n+ 1and ij > L.

Now forming the sequence of words wl,..., w, into a paragraph is equivalent to choosing a

number of lines p and a sequence of line breaks b[l], b[2],..., b[p, b[p + 1], where 1 = b[1] <

b[2] < ... < b[p] < b[p + 1] = n + 1 and the paragraph's ith line consists of words wb[i]

through Wb[i+l]-l. Thus, the optimal paragraph-formation problem is that of choosing p and

b[1], b[2],..., b[p] so that

Ew([k]b[k + 1])
k=1

is minimized.

The optimal paragraph-formation problem has a natural dynamic-programming formula-

tion. Specifically, for 1 j < n + 1, let E(j) denote the penalty of the minimum-penalty

breaking of words wl, ... , twj- into lines. We can then write

0 if j=l,
E(j) =

min {E(i)+ w(i,j)} if 2 < j < n +l.l i<j

Note that computing E(2),..., E(n + 1) in the naive fashion gives an O(n2)-time algorithm for

the optimal paragraph-formation problem.

So where is the Monge array lurking in this problem? Consider the n x (n + 1) array

4



INTRODUCTION

A = {a[i,jl} where

[,] = E(i) + w(i,j) if i < j,
+oo if i > j.

As we shall see in Section 1.1, this array is Monge for many natural penalty functions w(-, .).

Moreover, for 2 < j < n + 1 E(j) is the minimum entry in column j of A.

In this thesis, we will undertake a detailed study of Monge arrays and their applications. The

goal of the thesis is to demonstrate both the power and generality of the Monge-array techniques

developed herein. We will concentrate, of course, on this author's own research, but several

fundamental algorithms due to other researchers will also be covered in detail. Furthermore, in

several places, we will recast others' work in terms of the Monge-array framework developed in

this thesis.

We conclude this introduction with an outline of the thesis. The body of this thesis is divided

into two parts. Part I describes the basic Monge-array abstraction, while Part II investigates

its diverse applications.

Part I consists of four chapters. In Chapter 1, we define several different types of Monge

and Monge-like arrays and present a number of properties of such arrays. We also introduce a

computational framework for manipulating Monge arrays. Then, in Chapters 2 through 4, we

develop algorithms for searching in Monge arrays. In particular, Chapter 2 contains sequential

algorithms for computing minimal entries in Monge arrays. Joint work with Aggarwal [AP89b]

is included, along with results due to Aggarwal, Klawe, Moran, Shor and Wilber [AKM+87]

and Larmore and Schieber [LS91]. (Additional algorithms due to Klawe and Kleitman [KK90]

are also mentioned for use in Part II.) Chapter 3 gives more sequential algorithms, this time

for selection and sorting in Monge arrays. It contains joint work with Kravets [KP91] and with

Mansour, Schieber, and Sen [MPSS91]. Finally, Chapter 4 presents parallel algorithms for com-

puting minimal entries in Monge arrays. The algorithms given in this chapter represent collab-

orative work with Aggarwal [AP89a]. (We also mention algorithms due to Apostolico, Atallah,

Larmore, and McFaddin [AALM90], Atallah [Ata90], and Atallah and Kosaraju [AK91].)

Part II also consists of four chapters. Chapter 5 centers around convex polygons in the

plane; it considers several problems involving the distances separating a convex polygon's ver-

tices, as well as the maximum-perimeter inscribed d-gon problem and minimum-area circum-

5



INTRODUCTION

scribing d-gon problem. The results presented in the chapter represent work by Aggarwal,

Klawe, Moran, Shor, and Wilber [AKM+87] and joint work with Aggarwal [AP89b], Kravets

[KP91], and Mansour, Sen, and Schieber [MPSS91]. The next two chapters focus on applica-

tions of the Monge-array abstraction to problems involving dynamic programming. Chapter 6

uses Monge-array techniques to obtain efficient algorithms for a special case of the traveling

salesman problem and a family of dynamic-programming problems satisfying the quadrangle

inequality studied by Yao in [Yao80]. The former application was first described in [Par91],

while the latter application represents joint work with Aggarwal [AP89b]. Chapters 7, which

again covers joint work with Aggarwal [AP91], provides efficient algorithms for several variants

of the economic lot-size problem from operations research. The last chapter of Part II, Chap-

ter 8, begins by presenting a parallel shortest-paths algorithm based on the parallel algorithms

of Chapter 4. This algorithm is then used to provide parallel algorithms for string editing and

surface reconstruction from planar contours. This chapter represents joint work with Aggarwal

[AP89a].

Following the body of this thesis is Appendix A, which provides a comprehensive overview

of the Monge-array abstraction and its many applications. This appendix is organized as a list

of problems and includes many results not discussed elsewhere in this thesis.

6



Part I

The Abstraction

7



Li



Chapter 1

Preliminaries

The Monge-array abstraction may be decomposed into two conceptual parts: the mathematical

notion of a Monge array and the algorithmic machinery for searching in such arrays. The

former part will be the focus of this chapter. (We will postpone the discussion of algorithms

for searching in Monge arrays to Chapters 2 through 4.)

This chapter is organized as follows. In Section 1.1, we define a two-dimensional Monge

array and present several basic properties of such arrays. Then, in Section 1.2, we generalize

the notion of Mongeness to d-dimensional arrays, where d > 2. We also present several

properties of d-dimensional Monge arrays and describe several important subclasses of such

arrays. Section 1.3 briefly describes the following related concepts: totally monotonicity, the

quadrangle inequality, submodular functions, and partial Monge arrays. Finally, Section 1.4

introduces our computational model.

1.1 Two-Dimensional Monge Arrays

In this section, we discuss two-dimensional Monge arrays and their basic properties. We begin

with our primary definition of a two-dimensional Monge array.

1Leo Guibas has proposed instead the term Mongiti.

9



PRELIMINARIES

Definition 1.1 An m x n two-dimensional array A = {a[i,j]} is Monge if for all i, j, k, and

e such that 1 < i < k < m and 1 < j < Ie n, we have

a[i,j] + a[k,e] < a[i,t] + a[k,j] .

The requirements of this definition are actually stronger than they need to be. Specifically,

we have the following lemma.

Lemma 1.1 Let A = a[i,j]} denote an m x n array. If

a[ij] + a[i + l,j + 1] a[i,j + 1] + a[i + l,j]

for all i and j such that 1 < i < n and 1 < j < m, then A is Monge.

Proof Suppose

a[s,t] +a[s+ 1, t 1] a[s, t + 1] + a[s + 1,t]

for all s and t such that 1 < s < n and 1 < t < m, and consider any i, j, k, and I sch that

1 < i < k < n and 1 j < I m. For 1 < t < m,

k-1

Z(a[s, t] + a[s + 1,t + 1])
$=i

k-1
< (a[s, t + 1] + a[s + 1, t]) .

$=i

Canceling identical terms from both sides of this inequality, we obtain

a[i,t] + a[k, t + 1] a[i, t 1 + a[k, t] .

Consequently,
t-1
,(a[i, t] + a[k, t + 1])
t=j

t-1
< (a[i,t

t=j
+ 1] + a[k,t]) .

Again canceling identical terms, we obtain

a[i,j] + a[k, ] < a[i, + a[k, j] 

This implies A is Monge. I

10 CHAPTER 1.



1.1. TWO-DIMENSIONAL MONGE ARRAYS

Since

a[i,j] + a[k, ] a[i, e] + a[k,j] 

for 1 < i < k < m and 1 < j < < n implies

a[i,j]+a[i+ 1,j+ 1] a[i,j+ ]+a[i+ 1,j]

for 1 < i < m and 1 < j < n, the following

array is equivalent to Definition 1.1.

alternate definition of a two-dimensionul Monge

Definition 1.2 An m x n two-dimensional array A = {a[i,j]} is Monge if for all i and j such

that 1 < i < m and 1 < j < n, we have

a[i,j] + a[i+ ,j+ 1] a[i,j+ 1] + a[i+ 1,jl .

Definition 1.3 An m x n two-dimensional array A = {a[i,j]} is inverse-Monge if for all i, j,

k, and e such that 1 < i < k < m and 1 < j < < n, we have

a[i,j]+a[i+ l,j+ 1] a[i,j+ 1]+a[i+ 1,j].

Definition 1.4 An m x n two-dimensional array A = {a[i,j]}

and j such that 1 < i < m and 1 < j < n, we have

is inverse-Monge if for all i

a[i,j] + a[i + 1,j + 1] a[i,j + 1] + a[i + 1,j] .

We will now give ten useful properties of two-dimensional Monge arrays. (Analogous proper-

ties hold for inverse-Monge arrays.) We begin with two very simple but fundamental properties.

Property 1.1 Let A = {a[i,j]} denote an m x n array. If A is Monge, then for all indices i,

j, and L satisfying 1 < i < m and 1 < j < £ < n,

1. a[i,j] < a[i,t] implies a[k,j] < a[k,.e] for all k satisfying 1 < k < i,

2. a[i,j] < a[i,] implies a[k,j] < a[k,] for all k satisfying 1 < k < i,

1.



CHAPTER 1. PRELIMINARIES

3. a[i, j] > a[i, C] implies a[k, j] > a[k, ] for all k satisfying i < k < m, and

4. a[i,j] > a[i, ] implies a[k, j > a[k, e] for all k satisfying i < k < m.

Equivalently, if A is Monge, then for all indices j and e satisfying 1 j < i < n, there exist

indices I and 12 satisfying 0 < I < I12 < m such that

1. a[i,j] < a[i,I] for all i satisfying 1 < i I,

2. a[i,j] = a[i,t] for all i satisfying A1 < i < I2, and

3. a[i,j] > a[i,£] for all i satisfying I < i < m.

Property 1.2 Let A = {a[i,j]} denote an m x n array, and let B denote a subarray of A

corresponding to a subset of A's rows and columns. If A is Monge, then B is Monge. U

An important consequence of Property 1.1 is the following property.

Property 1.3 Let A = {a[i,j]l denote an m x n array, and for 1 < i < m, let j(i) denote

the column of A containing the leftmost minimum entry in row i, so that

a[i,j(i)] = min a[i,j].

If A is Monge, then

j(1) j(2) < .. < j(n).

The next seven properties relate to the construction of Monge arrays.

Property 1.4 Let A = {a[i,j]) denote an m x n array, and let B = {b[i,j]} denote the n x m

transpose of A, so that b[i,j] = a[j, i]. If A is Monge, then B is Monge. 

Property 1.5 Let A = {a[i,j]} and B = {b[i,j]} denote m x n arrays, and let C = {c[i,j]}

denote the entry-wise sum of A and B, so that c[i,j] = a[i,j] + b[i,j] for 1 i < m and

1 j < n. If both A and B are Monge, then C is Monge. 

12



1.1. TWO-DIMENSIONAL MONGE ARRAYS

Property 1.6 Let A = {a[i,j]} denote an m x n array, let B = {b[i]} denote an m-vector, and

let C = {clj]} denote an n-vector. If a[i,j] = b[i] for 1 < i < m, then A is Monge. Similarly, if

a[i, j] = cj] for 1 < j < n, then A is again Monge. 

The following property relates Monge arrays and concave functions. A function f(-) mapping

real numbers to real numbers is called concave if

f(z + ) - f(x) f(y + z)- f(y)

for all z > 0 and all x > y.

Property 1.7 Let f(.) denote a function mapping real numbers to real numbers, let B =

{b[i]} denote an m-vector, and let C = {c[j]} denote an n-vector. Furthermore, let A = {a[i,j]}

denote the m x n array where a[i,j] = f(b[i] + c[j]). If

1. f(-) is concave,

2. b[1] < b[2] <.. - < b[m], and

3. c[l] c[2] < < c[n],

then A is Monge.

Proof Consider any i and j such that 1 < i < m and 1 < j < n, and let x = b[i] + cj + 1],

= b[i]+c[j], and z = b[i+l]-b[i]. Clearly, a[i,j] = f(y), a[i,j+1] = f(z), a[i+1,j] = f(y+z),

and a[i + 1,j + 1] = f(x + z). Moreover, x > y and z > 0. Thus, by the definition of a concave

function,

a[i,j] + ai + 1,j + 1] = f(y) + f(x + z) f(x) + f(y + z) = a[i,j + 1] + a[i + 1,j],

which implies A is Monge. 

As an example of why these rather simple observations are useful, consider the following

lemma, which follows from Properties 1.6, 1.5, 1.7.

Lemma 1.2 Let B = {b[i]} and D = d[i]} denote arbitrary m-vectors, and let C = c[j]}

and E = e[j]} denote arbitrary n-vectors. Furthermore, let A = a[i,j]} denote the m x n

13



CHAPTER 1. PRELIMINARIES

array where a[i, j] = b[i]c[j] + d[i] + e[j]. If b[l] < b[2] < -. < b[m] and c[1] > c[2] > ... > c[n],

then A is Monge.

Proof Let A' = {a'[i,j]) denote the m x n array where a'[i,j] = b[ilc[j], and consider the

concave function f(x) = -2, the m-vector B' = {b'[i]} where b'[i] = log2 b[i], and the n-vector

C' = {c'[j]} where c'[j] = - log2(c[j]). Clearly, a'[i,j] = -f(b'[i] - c'[j]), and the entries of B'

and C' are both in increasing order; thus, by Property 1.7, A' is Monge. Furthermore, since

a[i,j] = a'[i,j] + d[i] + e[j], A is also Monge, by Properties 1.6 and 1.5. 0

Note that even if the entries of B and C in the above lemma are not sorted, we can still make

the array A Monge by permuting its rows and columns. Specifically, if we find permutations 3

and such that b[i,(1)] < b[/P(2)] < ... < b[Pf(m)] and c[?(1)] > c[7(2)] > --. > c[y(n)], then

the array A" '= {a"[i,j]} where

a"[i,j] = b[/3(i)]c[(j)] + d[P(i)] + e[7(j)] = a[i3(i), 7(j)]

is Monge.

Property 1.8 Let A = {a[i,j]} denote an m x n array. Furthermore, for 1 < i < m and

1 < j < n, let

L(i,j) = I(j' 1 < j' < j and a[i,j'] < a[i,j]})

and

R(i,j) = j{j': j j' < m and a[i, j'] < a[i, j]}l 

If A is Monge, then for 1 < j < n,

L(1,j) > L(2,j) > ... > L(m,j)

and

R(i, j) R(2, j) < .. < R(m,j).

Proof For any two rows i and k such that 1 < i < k < m and any column j such that 1 <

j < n, suppose a[k,j'] < a[k,j] for some j' such that 1 < j' < j. By Property 1.1, this implies

14



1.1. TWO-DIMENSIONAL MONGE ARRAYS

a[i,jl < a[i,j]. As this is true for any j' such that 1 j' < j, we must have L(i,j) > L(k,j).

Similarly, if a[i,j'] < a[i,j] for some j' such that j < j' < m, then a[k,j'] < a[k,j]. Thus,

R(ij) < R(k,j). 

Property 1.9 Let A = {a[i,j]} denote an m x n

B = {b[i,j]} denote the m x (n - 1) array where

a[i, j]

be[i,j] = min{a[i, £], a[i, +

a[i,j + 1]

array. Furthermore, for 1 < I < n, let

if 1 < j < e,

1]} ifj=e,

if I < j < n,

for 1 _< i < m and 1 < j < n. (Intuitively, B is A with columns I and e + 1 replaced by a new

column formed from the row minima of the m x 2 subarray of A corresponding to columns 

and + 1.) If A is Monge, then for all e between 1 and n - 1, Bt s Monge.

Proof We will prove B

1 < i < m and 1 j < n-

iI =

and let

is Monge using Definition 1.2. Consider any i and j such that

1. Let

i

j+l
j+l

if j < ,

if j = I and a[i+ 1,j] a[i + ,j + 1],

if j = and a[i + 1,j] > a[i + 1,j + 1],

if j >e,

j+l
j+l
j+2
j+2

if j + 1 < e,

if j + 1 = e and a[i,j + 1] < a[i,j + 2],

if j + 1 = and a[i,j + 1] > a[i,j + 2],

ifj+1 >e.

Clearly, j' < j", bt[i, j + 1] = a[i,j'] and b[i + 1, j] = a[i + 1, j. Moreover, bt[i,j] < a[i, j'] and

b[i + 1,j + 1] < a[i + 1,j"]. (We may have bt[i, j] < a[i, j'] if j = e, a[i + 1, j] > a[i + 1,j + 1],

and a[i,j] < a[i,j + 1], and, similarly, we may have bt[i + 1, j + 1] < a[i + 1,j"] if j + 1 = ,

15

I

I



CHAPTER 1. PRELIMINARIES

a[i,j + 1] < a[i,j + 2], and a[i + 1,j + 1] > a[i + 1,j + 2].) Thus, since A is Monge, we have

b[i,j]+b[i+ 1,j+ 1] a[i,j']+a[i+ l,j' a[i,j' +a[i+ 1,jl = b[i,j+ 1]+be[i + 1,j],

which implies Bt is Monge. U

The above property, though not used in this thesis, is used by Aposolico, Atallah, Lar-

more, and McFaddin [AALM90] and Atallah and Kosaraju [AK91] to obtain efficient parallel

algorithms for computing the row minima of a Monge array.

Property 1.10 Let B = {b[i,j]} denote an m x n Monge array, where m > n. If each column

of B contains a least one row maximum, then each row of B is bitonic, i.e., for 1 < i < m,

b[i, 1] C ... b[i,c(i)-1] < b[i, c(i)]

and

b[i,c(i)] > b[i,c(i)+ 1] > *. > b[i,n],

where c(i) denotes the column containing the maximum entry in row i.

Proof Suppose each column of B contains at least one row maximum, but some row of B is

not bitonic. This means there exist indices i, jl, and j 2 such that 1 i < m, 1 jl < j2 n,

and either

(1) jl < j2 < c(i) and b[i, jl] > b[i, j2], or

(2) c(i) < ji < j2 and b[i,j1 ] < b[i,j2].

We consider only the first possibility; the proof for the second possibility is analogous. Since

each column of B contains at least one row maximum, there exists an i' such that c(i') = j2. We

must have i' < i, since Mongeness implies monotonicity. Now consider the 2 x 2 subarray of B

corresponding to rows i' and i and columns ji and j2. (This subarray is depicted in Figure 1.1.)

Since b[i',c(i')] is the maximum entry in row i', we have b[i', jl] < b[i', c(i')]. By assumption

(1), b[i,jl] > b[i, c(i')]. This contradicts the Mongeness of B. 

16



1.2. HIGHER-DIMENSIONAL MONGE ARRAYS

i'

i

i i2 = c(i') c(i)

Figure 1.1: If the maximum entry in row i' lies in column j2, then by the Mongeness of B, we cannot
have b[i,j] > b[i, j2]

1.2 Higher-Dimensional Monge Arrays

In this section, we generalize the definition of a two-dimensional Monge array given in Section 1.1

to d-dimensional arrays, d > 2, and present a number of fundamental properties of such arrays.

We also describe several important subclasses of d-dimensional Monge arrays.

We begin with our primary definition of a d-dimensional Monge array.

Definition 1.5 For d > 2, an nl x n2 x ... x nd d-dimensional array A = {a[il, i2, ..,id]}

is Monge if for all il,i2,...,id and jil j2**, id such that 1 < i < nk and 1 < jk < nk for

1 < k < d, we have

a[sl~,s2, .. d] + a[ , t, . . , td] < a[il, i2, . .,id] + ajl , j2, ., jid] 

where for 1 < k < d, sk = min{ik,jk} and tk = max{ik, jk}.

Note how this definition reduces to Definition 1.1 when d = 2.

As was the case with our first definition of a two-dimensional Monge array, the requirements

of this definition are again stronger than they need to be. Specifically, we have the following

lemma.

Lemma 1.3 Let A = {a[i, i2,..., id]} denote an nl x n2 x ... x nd d-dimensional array. If

every two-dimensional subarray of A corresponding to fixed values of d - 2 of A's d indices is

Monge, then A is Monge.

17



CHAPTER 1. PRELIMINARIES

Proof We use an induction on d to show that this lemma holds. For the base case of d = 2,

the lemma follows imL. 3diately from the definition of a two-dimensional Monge array.

Now suppose the lemma holds for all (d- 1)-dimensional arrays, and consider a d-dimensional

array A = {a[il,i 2,...,id]} and any two entries a[ii, i2,... ,id] and a[jl,j 2,...,jd] from A. We

must show that

a[sl, 2,...,sd] + a[tl,t2, ...,td]< a[i, i,, id] + al[ ,js,.,jd] ,

where for 1 k < d, sk = min{ik,jk} and tk = max{ik,jk}.

Without loss of generality, we assume il < j, i.e., s = i and t = jl. The proof then

breaks down into two cases.

Case 1 For all k between 2 and d, ik > jk (i.e., k = j and tk = i).

Consider the (d - l)-dimensional subarray of A containing those entries whose second co-

ordinate is i2 and the (d - l)-dimensional subarray of A containing those entries whose second

coordinate is j 2. If every two-dimensional subarray of A corresponding to fixed values of d- 2 of

A's d indices is Monge, then every two-dimensional subarray of a subarray of A is Monge. Thus,

we can invoke the inductive hypothesis on the (d - l)-dimensional subarrays corresponding to

i2 and j2 and obtain

a[il, i,j3, d] i3 id]< [ii,. i, id] + a, i, i, , id] [i, i, i, , id+ aj, i2,j3, ... ,jd]

and

a[il,j2, j,. ., jd] + alj 2, ia, . , id] a[il,j2,i3, i . , id] + ajls2,j3, . .,jd] l

Similarly, we can invoke the inductive hypothesis on the two-dimensional subarray containing

those entries whose third through d-th indices are i3 ,...,id, respectively, and on the two-

dimensional subarray containing those entries whose third through d-th indices are j3, ... id,

18



1.2. HIGHER-DIMENSIONAL MONGE ARRAYS

respectively. This gives us 

a[i,ji2, i, ..., id] + a[j, i2, i, . .., id] < a[il, i2, i, . , id] + a[lj,j2, i3, ..., id]

19

and

Summing these four inequalities and canceling, we find

2a[il,j2,j,. ..,jd] + 2ajl, i2 i3, . ., id] < 2a[ii, i, i3,. .,id] + 2a[jl,j2,j3 ,. . ,jd] .

Since s1 = il, tl = jl, and for 2 < k < d, sk = ji and tk = i, this gives the desired result.

Case 2 There exists an 1, 2 < I < n, such that i < j (i.e., sa = i and t = jl).

Consider the (d - l)-dimensional subarray containing those entries whose first coordinate

is il and the (d - l)-dimensional subarray containing those entries whose first coordinate is jl.

By applying the inductive hypothesis to these subarra) s, we obtain

a[il ,s32, 33,... sd] + a[il, t2, , ] < a[i, i2, i3, .. , id] + a[il j, j,. . . , jd]

and

Similarly, by applying the inductive hypothesis to the (d - l)-dimensional subarray containing

those entries whose -th coordinate is i and to the (d - 1)-dimensional subarray containing

those entries whose I-th coordinate is j,, we obtain

a[il, 82, 3s,..., ,Sd + ajl, i, i3s,. ., id] < a[il, i2, i3 ,.., id] + ajl, 82, 3s,..., d]

a[ij, i, j, -· ·, id] + aj iv, , d] < alir, i, jv 9 id] + aj, i, j9 ... i i] ,

a(il -) 8 8 ---, 8d + a fZ t, ·... td] a i2 iv ,id] + U,, i2 j3, , id] 



CHAPTER 1. PRELIMINARIES

and

a[il2,j,,.. ., jd] + a[l,t2, t3 ,... td] < a[i, t2, t3,..., td] + alj2 j3 j,...,jd] ·

Summing these four inequalities and canceling, we find

2a[ijs, 8s,... 9d] + 2aUj,t2, t3, ..., td] > 2a[i1 i2, i, , id] + 2a[jl, j,,. . jd] 

Since sl = i and tl = jl, this gives the desired result. U

Now suppose an nl x n2 x -- x nd d-dimensional array A = {a[il,i 2,...,id]) is Monge in

the sense of Definition 1.5, i.e., for all il ,i2,..,id and jl,J2,...,jd such that 1 _ ik c nk and

1 ijk n for 1 < k < d, we have

a[s~l 8, ., sd] + a[tl,t2,. . t < a[il, i2, - -, id] + a[jlj2, . . d] 

where for 1 < k < d, Sk = min{ik,jk and tk = max{(i,jk}. This clearly implies every two-

dimensional plane of A is Monge. Thus, the following alternate definition of a d-dimensional

Monge array is equivalent to Definition 1.5.

Definition 1.6 For d > 2, an n x n2 x * x nd d-dimensional array A = {a[il,i, ... , i]} is

Monge if every two-dimensional subarray of A corresponding to fixed values of d - 2 of A's d

indices is Monge.

Higher-dimensional inverse-Monge arrays are defined in an analogous fashion.

We now give five important properties of higher-dimensional Monge arrays.

Property 1.11 Let A = {a[il, 2, ..., id]} denote an n x n2 x ... x n d-dimensional array.

Furthermore, for 1 il < nl and 2 < k < d, let ik(il) denote the k-th index of the minimum

entry in the (d - 1)-dimensional subarray of A corresponding to those entries whose first index

is il, so that

a[i,,i2(il),...,id(il)] = min a[i, i2, , id] 
s.t. 1 < ik nk

for 2 < k < d

20



1.2. HIGHER-DIMENSIONAL MONGE ARRAYS 21

If A is Monge, then for 2 < k < d,

ik(l) < i(2) < ... < i(nl).

Property 1.12 Let A = {a[il, i2,..., id]} denote an nl x n2 x ... x nd d-dimensional array.

Furthermore, for 1 _< i < n, 1 < i2 < n2, and 3 < k < , let i(il,i2) denote the k-th index

of the minimum entry in the (d - 2)-dimensional subarray of A corresponding to those entries

whose first index is il and whose second index is i2, so that

min
iS. 3 ,i

s.t. 1 < ik < nk
for 3-< k d

If A is Monge, then for 1 < i2 < n2 and 2 < k < d,

ik(l,i2) < ik(2, i2) < < i(nl, i2)

and for 15 il nl and 2 < k < d,

ik(il,1) < i(il, 2) "' < ik(il, n2) .

U

Let A = {a[il,..., id}

sum of A and B (written

where

and B = {b[il,..., id]} be nl x -.. x nd d-dimensional arrays. The

A + B) is the nl x .-x nd d-dimensional array C = {c[il,...,id]}

c[il,...,sid] = a[il, .. , id] + b[il,..., id] ,

for all il,...,id.

Now let E = {e[il,...,id] be an nl x ... x nd d-dimensional array. For any dimension k

between 1 and d + 1 and any size fi, the

nl x ... x nl x fi x nk x 'k- X nd

a[ij, i2, i3(il, i2), - --, id(il, i0l = al[il, i,i 3, · - , id] 



CHAPTER 1. PRELIMINARIES

(d + 1)-dimensional array F = {f[il,...,id+1]} is an extension of E if

f[il, . . .i-, ik, i l,. , id+l] = e[il,. *..,ik-l, ik+1, ... i+lj 

for all il,...,id+l. (F is just fi copies of E, each one a plane of F corresponding to some

fixed value of F's k-th coordinate.) Furthermore, any extension of an extension of E is also an

extension of E.

Property 1.13 The sum of two d-dimensional Monge arrays is also Mollge. 

Property 1.14 For all d' > d, every d'-dimensional extension of a d-dimensional Monge array

is Monge. 

An important subclass of d-dimensional Monge arrays consists of what we call Monge-

corposite arrays. As one might expect, an array is Monge-composite if it is composed of

two-dimensional Monge arrays. More precisely, we have the following definition.

Definition 1.7 A d-dimensional array is Monge-composite if it is the sum of d-dimensional

extensions of two-dimensional Monge arrays and inverse-Monge-composite if it is the sum of

d-dimensional extensions of two-dimensional inverse-Monge arrays.

From these definitions, it is clear that each entry of a d-dimensional Monge-composite array

A = a[il,..., id]}) may be written

a[il, . . ., id] = Wk,l[ik, i],
k<1

where for all k < I, the nk x n array Wk,, = {wk,l[ik, it]) is a Monge array.

Property 1.15 Every Monge-composite array is Monge, and, similarly, every inverse-Monge-

composite array is inverse-Monge. 

Proof Let A denote a Monge-composite array. We must show that all two-dimensional planes

of A, corresponding to fixed values of d - 2 of A's d coordinates, are Monge. To see why this is

true, consider any such plane. This plane is the sum of a two-dimensional Monge array, some

vectors, and some scalars; thus, the plane is Monge.

22



1.3. RELATED CONCEPTS

A similar argument shows that every inverse-Monge-composite array is inverse-Monge. 

We conclude with two special cases of Monge-composite arrays.

Definition 1.8 An n x n2 x x nd d-dimensional array A = (a[i,i 2,...,id]} is path-

decomposable if for all d-tuples il, i2,..., id such that 1 < ik < nk for 1 < k < d, we have

a[il,. . ., id] = 1,2[il, i2] + w2,3 [i2, i3] + + Wd-l,d[id-1, id] ,

where for 1 < k < d, Wk,k+1 = Wk,k+l[ik,ik+l] is an n x n+l two-dimensional Monge array.

Definition 1.9 An n x n x ... x nd d-dimensional array A = {a[il,i,...,id]} is cycle-

decomposable if for all d-tuples il, i,..., id such that 1 i < nk for 1 < k < d, we have

a[il, *id* ] = W1,2[il, i2] + w2,*i2, i3] + + d-,d[id-1, id] + Wd,l[id, ii]

where Wd,1 = {wd,1[id, i]} is an nd x n two-dimensional Monge array and for 1 < k < d,

Wk,k+ = {Wk,k+l[ik, ik+l]} is an nk x nk+l two-dimensional Monge array.

1.3 Related Concepts

In this section, we introduce several concepts related to the notion of Monge arrays.

A two-dimensional array A = {a[i, j]} is called totally monotone if for all il < i2 and jl < ia,

a[iI,jI] < a[il,j 2j implies a[i2,jl] < a[i2 ,j 2]. Every inverse-Monge array is totally monotone,

but not vice-versa.

A interval function f(-, ) is said to satisfy the quadrangle inequality if for all i, i', j, and j'

satisfying 1 < i < i' < j < ' < n, we have

f(i,j) + f(i',j') f(i,j') + f(i',j) .

Similarly, f(.,-) is said to satisfy the inverse quadrangle inequality if for all i, i', j, and i'

satisfying 1 < i < i' < j < j' < n, we have

f(i,j+i,) + f(i',j') > f(i,j') + f(i',j) .

23



CHAPTER 1. PRELIMINARIES

A fun:tion f(.,.) satisfies the quadrangle inequality if and only if the n x n array A = {a[i,j]}

where

a[i,j = { (i,j) ifij,
+oo if i>j,

is Monge.

Higher-dimensional Monge arrays are closely related to sub- and supermodular functions.

A function f(.) mapping subsets of some set S to real numbers is called submodular if for all

A, B C S,

f(A) + f(B) f(A n B) + f(A U B) .

Similarly, f(.) is called supermodular if for all A, B C S,

f(A) + f(B) f(A n B) + f(A U B) .

We can view a 2x2x .. .x 2 d-dimensional Monge array A = {ali, i2 , ... , id]} as a submodular

function f(-) on subsets of {1,2,..., d} if we let f(S) = a[il, i2 , ., id], where for 1 < k < d,

ik = 1 if k S and i = 2 if k E S. (See [Lov83] for an overview of the theory of sub- and

supermodular functions.)

A two-dimensional array A = {a[i,j]} is called a partial Monge array if

1. only some of its entries are "interesting," and

2. every 2 x 2 subarray containing four "interesting" entries satisfies the Monge condition.

There are several varieties of partial Monge arrays. A m x n partial Monge array A = {a[i,j]}

is called a v-array if every column's "interesting" entries form a contiguous subcolumn. Sim-

ilarly, A is called an h-array if every row's "interesting" entries form a contiguous subrow. A

skyline-Monge or stalagmite-Monge array is a v-array such that the "interesting" entries in

any particular column end in row m, and a stalactite-Monge array is a v-array such that the

"interesting" entries in any particular column start in row 1. Finally, a staircase-Monge array

has the property that if a[i, j] is "interesting," then so are a[i, ] and a[k, j] for all e > j and all

k > i.

24



1.4. THE COMPUTATIONAL MODEL 25

1.4 The Computational Model

In this section, we discuss our computation model.

We model a Monge array as function that returns any entry in constant time.

We can assume all the entries in a VMonge array are distinct.

We often use +oo's in the Monge arrays we construct, We define +oo + z = +oo or all z.





Chapter 2

Minimization Algorithms

This chapter is the first of three presenting algorithms for searching in Monge and Monge-like

arrays. In this chapter, we focus on sequential algorithms for computing minimal entries, while

Chapter 3 presents sequential selection and sorting algorithms, and Chapter 4 describes parallel

minimization algorithms.

In Section 2.1, we consider the problem of computing the minimum entry in each row of

a two-dimensional Monge array. We call this the row-minimization problem for A. We show

that the row-minimization problem for an m x n Monge array A can be solved in O(n) time if

m < tn'and in 0(n(1 + lg(m/n))) time if m > n, provided any entry of A can be computed in

constait time. We also prove that these time bounds are optimal (up to constant factors). This

result is due to Aggarwal, Klawe, Moran, Shor, and Wilber [AKM+87]. Note that computing

the row maxima of A is no harder than computing its row minima; we need only negate the

entries of A and reverse the ordering of its columns to convert back and forth between the two

problems.

In Section 2.2, we consider an on-line variant of the row-minimization problem. Specifically,

we focus on n x (n + 1) arrays A = {a[i,j]} where for 1 < i < j < n, a[i,j] = +oo, and

for 1 j < i n, a[i,j] depends on the minimum entry in row j of A, i.e., the j-th row

minimum of A must be computed before a[i, j] can be evaluated. We call the row-minimization

problem for such an array A an on-line row-minimization problem. (By way of contrast, the

row-minimization problem for an array A = a[i,j] is called off-line if any entry a[i,j] of A can

always be evaluated in constant time.) We show that the on-line row-minimization problem

27



CHAPTER 2. MINIMIZATION ALGORITHMS

Problem Type Array Type Time Theorem

off-line Monge O(n) 2.4

staircase-Monge O(na(n)) 2.14

on-line Monge 3O(n) 2.6

staircase-Monge O(na(n)) 2.15

Table 2.1: Results for off-line and on-line row minimization in an n x n Monge or partial Monge array.

for an n x n Monge array can be solved in 0(n) time. The algorithm that we describe for this

problem is due to Larmore and Schieber [LS91].

In Section 2.3, we consider a generalization of the off-line row-minimization problem to the

higher-dimensional Monge arrays of Section 1.2. Given an n x n2 x -.. x nd d-dimensional

array A = {[il, i2,..., id]}, d > 2, the plane-minima problem for A is that of computing the

minimum entry in each (d - 1)-dimensional plane of A, where the i-th plane of A consists of

those entries of A whose first index is i. In other words, the i-th plane minimum of A is

min a[il, i2, , id] 
s.t. I < ik < N

for 2 <k < d

We show that the plane-minima problem for an n1 x n2 x ... x nd d-imensional array A can be

solved in O((nl + n2 +.g+ nd)lg nl g n2 - lg nd-2) time. We also show that, in contrast to the

two-dimensional case, the plane-maxima problem for A is significantly harder than the plane-

minima problem; specifically, computing the plane maxima of A requires f/((nln 2 ... nd)/(nl +

n2 + - * * + nd - d)) time. Finally, we show that if A is a path-decomposable Monge-composite

array then the plane minima of A can be computed in O(nl + n2 + ... + nd) time, and if A

is cycle-decomposable, then its plane minima can be computed in O(nl + (n2 + . - + nd) lg n 1)

time. All of these results represent joint work with Aggarwal that first appeared in [AP89b].

Finally, in Section 2.4, we turn to row minimization problems involving the partial Monge

arrays of Section 1.3. We briefly mention two algorithms due to Klawe and Kleitman [KK90].

Tables 2.1 and 2.2 summarize the algorithms given in the chapter for computing minimal

entries in Monge and stalagmite-Monge arrays.

28



2.1. TWO-DIMENSIONAL MONGE ARRAYS

Problem Type Array Type Time Theorem 

minimization general O(dn lgd- 2 n) 2.7

cycle-decomposable O(dn Ig n) 2.10

path-decomposable O(dn) 2.9

maximization general Qf(nd '1'/d) 2.11

O(n d - l) 2.13

Table 2.2: Results for plane minimization and maximization in an n x n x ... x n d-dimensional Monge
array.

2.1 Two-Dimensional Monge Arrays

This section presents an optimal sequential algorithm for computing the minimum entry in each

row of a two-dimensional Monge array. This algorithm was developed by Aggarwal, Klawe,

Moran, Shor, and Wilber [AKM+87]. It is of central importance to the study of Monge arrays,

and we will use it repeatedly in this thesis. To save time and space, we will adopt the convention

of Wilber [Wil88] and call this algorithm the SMAWK algorithm. (Wilber coined the name

SMAWK by permuting the first letters of the algorithm's originators' last names.)

The SMAWK algorithm was originally developed for the related problem of computing the row

maxima of a two-dimensional totally-monotone array. However, as every inverse-Monge array

is totally monotone and negating the entries of a Monge array gives an inverse-Monge array

whose maximal entries are the original array's minimal entries (see Section 1.1), the original

algorithm given by Aggarwal et al. is easily transformed into an algorithm for computing the

row minima of a Monge array.

Before describing the SMAWK algorithm, we present a simpler divide-and-conquer algorithm

for computing the row minima of a Monge algorithm. We include this algorithm for two reasons.

First, the SMAWK algorithm uses this simpler algorithm as a subroutine when m is larger than

n. Second, the algorithm illustrates a very simple but useful approach to array searching that

works by identifying subarrays of a Monge array that cannot contain minimal entries. (We will

use variations of this approach in Section 2.3 and Chapter 4.) This simpler row-minimization

algorithm is given in the following lemma and its proof.

Lemma 2.1 The row minima of an m x n Monge array A can be computed in O(n(l+lg m))

29



30 CHAPTER 2. MINIMIZATION ALGORITHMS

1 j(l 1) n
I

r-,

Fia

Figure 2.1: If the black square in the m x n Monge array A shown above denotes the minimum entry
in row rm/21 of A, then the remaining row minima of A lie in the shaded regions.

time.

Proof Let j(i) denote the column of A containing the minimum entry in row i of A. To

obtain j(1),..., j(n) in O(n(l +Ig m)) time, we use a simple divide-and-conquer approach. If

n = 1, no work is necessary, as j(1) = j( = ) = 1. Otherwise, we begin by computing

j(rm/21), the location of the minimum entry in row [m/21 of A. This computation takes

0(n) time. Now, since the row minima of A are monotone (by Property 1.3), we know that

for i < rn/21, we must have j(i) < j(r[m/2]), and similarly for i > [rm/21, we must have

j(i) > i( rm/21). Thus, we need only consider entries in the two subarrays depicted in Figure 2.1

- one ([m/21- 1) x j(rm/21) and the other m/2j x (n - j([m/2]l)+ 1)- in computing the

remaining row minima of A. These minima we compute recursively.

If we let T(m, n) denote this algorithm's running time in computing the row minima of an

m x n Monge array, then T(m, 1) = 0, T(1, n) = O(n), and for n > 2 and m > 2,

T(m,n) = (n) + max {T(rm/21 - 1,n') + T(m/2J,n - n' + 1)} .l<n'<n

r: ..:i.. ...... ..... -:, .,'.. .

:
I :

· · � · � · ·- ·
.� : .... :..;:.·. .:.;.ii.... i :
.. ,.:

·:·-- i�-.
'''

·: :
'':� ' :":

�'···r. · ·
.;.·r· ·i· ·· · :·
..:�:;`·.' '·:··i·`·:

· ·· · :··r�···..
.:·

-' · ·- ,

I�::iiiiii�i·.':j�:�.r·.·; ·;:·.·:.. ::...·:z :.;:: ;.. ...�:
·.· �.. r·2: sr:·i:.·If \��:y: ���;f� - · · · :!�:'':�:�:::�:�'';'.;:i�·'�:�;:-::�:�::i ':�:::".'�'·�:·5

·.· ·:� .�....:.. :.·.I 5�·

·i:.·:·:i · ,ii·
�i:�:i�i:�:: ......... .....�i:
·�i�

·:· . ilii·: ':···: ::·..i·i:ii::�:�::·�;:"·':;:':··s
.:.2::·5::I� · ·..'" f:.1ii .. .. ,:...., �

.r�·:' ·: .�
.2.�

:·,i:i'·'i,:·:.....:··it.·.:.:.�:::zI· :c:·.:..:''':. ·.- '�� ·:.:::i��:.:·�::. ':'·· · ·:. ·:

.i



2.1. TWO-DIMENSIONAL MONGE ARRAYS

To prove that this recurrence has the desired solution, we will show, by induction on m, that

T(m,n) cl(n- 1)(1 + Ig m),

where cl is a constant independent of m and n. (This inequality is our inductive hypothesis.)

The base case of m = 1 is easy. If n = 1, then T(m, n) = 0; otherwise, T(m,n) < c2n for

some constant c2. Thus, in both cases, T(m, n) _ cl(n - 1)(1 + g m) so long as c2 2 2cl. Now

assume that the inductive hypothesis holds for all values of m < M. If n = 1, then clearly

T(M, n) = 0 < cl(n - 1)(1 + Ig M). Otherwise, by the recurrence for T(m, n), we have

T(M, n) c2n + cl (n' - 1)(1 + lg ( M/21 - 1)) + cl (n - n')(1 + lg LM/2J)

c2n+cl(n-l1)lgM

This last term is at most cl(n - 1)(1 + g M) provided c2n cl(n - 1) or cl > 2c2. Thus, we

have shown that the inductive hypothesis also holds for m = M. 

At the heart of the SMAWK algorithm are two complementary techniques for reducing the

size of a Monge-array row-minima problem. The first aiows us to eliminate rows from the

Monge array whose row minima we seek, whereas the second permits us to eliminate columns.

The following two lemmas summarize these techniques.

Lemma 2.2 Given the minimum entry in each even-numbered row of an m x n Monge array

A = {a[i, j]}, the remaining row minima (i.e., those in the odd-numbered rows) can be computed

in O(m +n) time.

Proof Let j(i) denote the column of A containing the minimum entry in row i of A. Fur-

thermore, let j(0) = 1, and let j(m + 1) = n. (These values may be interpreted as de-

scribing "dummy" rows 0 and m + 1 of A such that a[0,1] < a[0,2 < .. < a[0, n] and

a[m + 1, 1 > a[m + 1, 2] > . . > a[m + 1, n]; such rows can be added without affecting the

Mongeness of A.) By Property 1.3, the row minima of A are monotone, i.e., j(i) < j(i + 1) for

0 < i < m. Thus, for all i in the range 0 < i < [m/21, the minimum entry in row 2i + 1 of A

31



CHAPTER 2. MINIMIZATION ALGORITHMS

1 j(2 j(2i +2) 'n

I " :::
2i 

2i + 2 

2~~m.

Figure 2.2: If the black squares denote the row minima in the even-numbered rows of a Monge array,
then the row minima in the odd-numbered rows must lie in the shaded regions. In particular, if the
minimum entry in row 2i lies in column j(2i) and the minimum entry in row 2i + 2 lies in column
j(2i + 2), then the minimum entry in row 2i 1 must lie in one of columns j(2i) through j(2i + 2),
inclusive.

is the minimum of the j(2i + 2) - j(2i) + 1 entries a[2i + 1, j(2i)],..., a[2i + 1,j(2i + 2)]. as

suggested in Figure 2.2. Consequently, the minimum entry in row 2i + 1 can be computed in

O(j(2i + 2) - j(2i) + 1) time, and all the row minima in odd-numbered rows can be computed

in

r al-
E (j(2i + 2) - j(2i)+ 1)
i=O

= 0 (2 1)i()+1)
= (m+n)

time. U

Lemma 2.3 Given an m x n Monge array A = {a[i,j]} such that m < n, we can identify

n - m columns of A that do not contain row minima in O(n) time.

Proof Our algorithm for identifying columns that do not contain row minima consists of m

steps, where in the jth step, we process column j of A. This processing is centered around a

stack S holding columns of A that may contain row minima.

During the course of the algorithm, two important invariants are maintained. First, after

32



2.1. TWO-DIMENSIONAL MONGE ARRAYS

j i

columns in stack S columns in stack S

(a) (b)

Figure 2.3: (a) If a[s, S[s]] > a[s, j], we can eliminate a column. (b) On the other hand, if a[s, S[s]] <
a[s, j], we' can push column j on the stack.

step j, S always contains a subsequence of 0,1,...,j, i.e., 0 < S[1] < S[2] < ... < S[s] j,

where S[r] denotes the rth element in the stack, and s denotes the size of the stack, and S[s]

denotes the topmost element in the stack. Moreover, for any j' in the range 1 < j' < j, j' 0 S

implies column j' cannot contain any row minima. Second, S always satisfies the following

staircase condition: for 1 < r < a - 1, air, S[r]] < air, Sir + 1]].

To handle boundary conditions, we add two "dummy" rows 0 and m + 1 to A and one

"dummy" column 0, such that a[O, 0] < a[O, 1] < .. < a[O,n] < a[O,n + 1], aim + 1,0] >

a[m + 1, > . > am + 1,n] > a[m + 1, n + 1], a[i,0] > a[i, 1] for 1 i < m. Note that

these rows and columns can be added without destroying the Mongeness of A or changing the

row minima in rows 1 through m. (We add these "dummy" rows and columns to simplify the

presentation of this algorithm.)

Initially, the stack S contains column 0. Since s = 1, the staircase condition is trivially

satisfied.

For j = 1,..., m, we process column j as follows. We begin by comparing a[s, S[s]] and

a[s, j]. If a[s, S[s]] > a[s,j], as in Figure 2.3(a), then by Property 1.1, a[i, S[s]] > a[i,j] for all i

in the range s < i < m. Furthermore, by the staircase condition, a[s- 1, S[s- 1]] < a[s- 1, S[s]].

This last inequality implies a[i, S[s - 1]] < a[i, S[s]] for all i in the range 1 < i < s - 1, again by

33



CHAPTER 2. MINIMIZATION ALGORITHMS

Property 1.1. Thus, column S[s] of A cannot contain any row minima. This observation allows

us to pop S[s] from the stack. We then compare column j to the new top of the stack, i.e., we

compare a[s, S[s]] and a[s, j].

We continue in the manner until a[s, S[s]] < a[s, j], as in Figure 2.3(b). We then push j on

the stack. Note that the staircase condition is maintained.

Column 0 and row 0 of A insure that S never empties, and row m + 1 insures that S never

contains more than m + 2 columns. Thus, after at most n steps, we eliminate n - m columns

from A.

To analyze the running time of the above procedure, we bound the total number of com-

parisons performed. We begin with a little notation. Let T denote the total of comparisons

performed in eliminating (n - m) columns. Furthermore, for 0 < t < T let d denote the total

number of columns eliminated by the first t comparisons, and let st denote the size of stack S

after tth comparison. Clearly, do = 0, dT = n - m, so = 1, and T < m + 2. Moreover, since the

tth comparison either (1) pops a column from the stack and eliminates it from consideration,

or (2) pushes a column on the stack, a simple inductive argument shows that 2dr + st > t for

all t in the range 0 < t < T. Thus,

T < 2(n-m)+m+2

= 2n-m+2.

As this last term is O(n), we are done. U

We can now describe the SMAWK algorithm of Aggarwal, Klawe, Moran, Shor, and Wilber

for computing the row minima of an m x n Monge array A.

Theorem 2.4 (Aggarwal, Klawe, Moran, Shor, and Wilber [AKM+87]) The row

minima of an m x n Monge array A can be computed in O(n) time if m < n and in O(n(l +

lg(m/n))) time if m > n. Moreover, these time bounds are asymptotically optimal.

Proof This theorem's upper bounds are achieved as follows. We begin by assuming A is

square, i.e., m = n. The SMAWK algorithm then works as follows. First, we apply Lemma 2.3

34



2.1. TWO-DIMENSIONAL MONGE ARRAYS

to the Lm/2J x m subarray of A consisting of A's even-numbered rows. This computation takes

O(m) time and produces an lm/2J x Lm/2J array B whose row minima are the row minima

of A's even-numbered rows. Then, we recursively compute the row minima of B. Finally, we

apply Lemma 2.2 to compute the remaining row minima of A in O(m) additional time. If we

let T(m) denote the time used by the SMAWK algorithm in computing the row minima of an

m x m Monge array, then

0(1) if m = 1,
T(m) =

T(2 ) +O( m ) if m>2.

The solution to this familiar recurrence is, of course, T(m) = O(m), i.e., the SMAWK algorithm's

running time is linear for square Monge arrays.

Now suppose m < n. Using Lemma 2.3, we can identify, in O(n) time, an m x m subarray of

A containing all of A's row minima. This subarray's row minima (and hence A's row minima)

can then be computed in O(m) additional time, which gives the entire algorithm an O(n)

running time.

Finally, suppose m > n. For this case, let B denote the n x n subarray of A consisting of rows

1, r + 1, 2r + 1,..., (n - 1)r + 1 of A, where r = r/ni. Furthermore, let j(i) denote the column

of A containing the minimum entry in row i of A, and let j(nr + 1) = n. Since B is Monge (by

Property 1.2), we can locate its row minima (i.e., compute j(1),j(r + 1),j(2r + 2),...,j((n -

1)r + 1)) in 0(n) time. Now, for 1 < t < n, let A, denote the (r - 1) x (j(tr + 1) - j((t - 1)r + 1)

subarray of A consisting of rows (t - 1)r + 2 through tr and columns j(tr + 1) through j((t - 1)r

of A. (The last subarray An may actually contain fewer than r - 1 rows, but for simplicity, we

will ignore this detail.) Since the row minima of A are monotone, the remaining row minima

of A are entries of Al,..., A,. Moreover, for 1 < t < n the row minima of At can be computed

in O((j(tr + 1) - j((t - 1)r + 1) lg r) time using the algorithm of Lemma 2.1. Since

n

y(j(tr+1)-j((t-1)r+l)lgr < (j(nr+1)-j(1))lgr+nlgr
t=l

< (2n- 1)lgr

= O(n(l + lg(m/n))),

35



CHAPTER 2. MINIMIZATION ALGORITHMS

the entire algorithm has an O(n(1 + lg(m/n))) running time.

To prove that the SMAWK algorithm's running time is optimal, we use a slight generalization

of the argument given in [AKM+87] for totally monotone arrays. We begin by proving an Q(n)-

time bound that works for all values of m and n. Let C = {c[j]} denote any vector of n real

numbers, and let A = {a[i,j]} denote the m x n array given by a[i,j] = c[j]. By Property 1.6,

A is Monge. Moreover, to compute the row minima of A, we must determine the minimum

entry in C, which requires examining at least one entry in each column of A. Thus, computing

the row minima of an m x n Monge array requires fl(n) time.

The previous bound applies for all m and n, but for m > n, the bound is not tight.

Specifically, we will now show that computing the row minima of an m x n Monge array

requires l(n(1 + lg(m/n)) time when m > n.

We begin with the n = 2 special case of this lower bound. Let i* denote any integer in

the range 0 i < m, and let A = (a[i,j]} denote the m x 2 array where a[i, 11 = 0 and

a[i, 2] = 1 if 1 < i < i and a[i, 1] = 1 and a[i, 2] = 0 if i < i < m. Such an array is depicted

in Figure 2.4(a).

For all i*, the array A is Monge. To see why, observe that for all i and j, a[i,j] = f(b[i]+c[j])

where f(x) = 2,

|1 if 1< i < i*,

2 if i <i<m,

and c[j = -j. Furthermore, f(-) is convex, b[1] < b[2] < ..- < b[m], and c[l] > c[2]. Thus, by

Property 1.7, A is Monge.

To complete the proof of the lower bound's n = 2 special case, we note that computing the

row minima of A requires evaluating rlg(m + 1)1 = 1 + Llg mJ entries of A in the worst case.

Thus, computing the row minima of an m x 2 Monge array requires Qf(lg m) time.

Turning now to the general lower bound, the basic idea here is to embed several independent

copies of A into a larger Monge array A', as suggested in Figure 2.4(b). Specifically, for

1 < k < [n/2J, let i denote any integer in the range 0 < i < r, where r = L2m/nJ.

Furthermore, let A' = {a'[i, j]} denote the m x n array given by a'[i,j] = f(b[i] + c[j]), where

36



2.1. TWO-DIMENSIONAL MONGE ARRAYS

0 1

0 1

t 0 1
1 0

1 0

1 0

1 0

L2m1

m

(a) (b)

Figure 2.4: (a) The array A. (b) The array A' and the subarrays containing its row minima.

It n2
+2+

IO1
10
10

01
0 01
1 0
10

1 0
10
Lt0

01
01
01

10
lO

1I0
1L0

01
01
10
10

A -I -

-- -

37



CHAPTER 2. MINIMIZATION ALGORITHMS

f(z) = 2 ,

2[i/rl - 1 if 1 < i < *

2ri/rl if ii/,lr < i < m,

and c[j] = -j. By Property 1.7, A is Monge. Moreover, the row minima of A' are the row

minima of the n/2J r x 2 subarrays depicted in Figure 2.4(b). Furthermore, only those entries

in rows (k - 1)r + 1 through kr of A contain any information about i. Thus, roughly speaking,

computing the row minima of A' is equivalent to locating the row minima in n/2J unrelated

L2m/nj x 2 Monge arrays. Since each of these smaller problems requires fl1g(m/n)) time to

solve, this last observation gives the f(n lg(m/n)) lower bound on the time to compute the row

minima of an m x n Monge array when m > n. 

We also have the following theorem concerning the time complexity of computing the min-

imum entry overall in a two-dimensional Monge array.

Theorem 2.5 The minimum entry overall in an m x n Monge array A can be computed in

O(m + n) time. Moreover, this time bound is asymptotically optimal.

Proof The upper bound follows immediately from Theorem 2.4, since the minimum of A's m

row minima can be computed in O(m) time.

For the lower bound, let C = {c[j]} denote any vector of n real numbers, and let A = {a[i,j]}

denote the m x n array given by a[i,j] = c[j]. By Property 1.6, A is Monge. Moreover, to

compute the minimum entry in A, we must determine the minimum entry in C, which requires

examining at least one entry in each column of A. Thus, computing the minimum entry of an

m x n Monge array requires fl(n) time. Furthermore, since computing the minimum entry in

an m x n Monge array A is computationally equivalent to computing the minimum entry in

A's n x m transpose AT, the former problem also requires fl(m) time. U

2.2 On-Line Algorithms

In developing a linear-time algorithm for the concave least-weight subsequence problem, Wilber

[Wi188] extended the SMAWK algorithm to a dynamic-programming setting. Specifically, he gave

38



2.2. ON-LINE ALGORITHMS

an algorithm for the following on-line variant of the Monge-array column-minimization problem.

Let W = {w[i,j]} denote an n x n Monge array, where any entry of W can be computed in

constant time. Furthermore, let A = {a[i,j]} denote the n x n array defined by

a[ij] E(i) + [i,j] if i < j,
[i,j] = r

+oo if i > j,

where E(1) is given and for 1 < i < n, E(i) is some function that can be computed in constant

time from the ith column minimum of A. Using the Mongeness of A, which follows from its

definition, Wilber showed that the column minima of A (and hence E(2),..., E(n)) can be

computed in O(n) time. This problem is called an on-line problem because certain inputs to

the problem (i.e., entries of A) are available only after certain outputs of the problem (i.e.,

column minima of A) have been calculated.

In a subsequent paper dealing with the modified string-editing problem, Eppstein [Epp90]

generalized Wilber's result, showing that the column minima of A can be computed in O(n)

time even when his algorithm is restricted to computing E(1),..., E(n) in order, i.e., E(i) can

be computed only after E(1),.. .,E(j - 1) have been computed. This result is significant in

that it allows the computation of E(1),..., E(n) to be interleaved with the computation of

some other sequence F(1),...,F(n) such that E(j) depends on F(1),...,F(j - 1) and F(j)

depends on E(1),..., E(j).

Finally, Galil and K. Park [GP901, Klawe [Kla89], and Larmore and Schieber [LS91] in-

dependently extended Eppstein's result a step further, showing that as long as a[i,j] can be

computed in constant time once the first through ith column minima of A are known, the

column minima of A can still be computed in O(n) time.

In this thesis, we will make repeated use of this last result. Specifically, we will use Larmore

and Schieber's algorithm, which we call the LIEBERalgorithm.

Theorem 2.6 (Larmore and Schieber [LS91]) The on-line row-minima problem for an

n x n Monge array. can be solved in e(n) time. U

39



CHAPTER 2. MINIMIZATION ALGORITHMS

2.3 Higher-Dimensional Monge Arrays

In this section, we will describe several algorithms for computing minima in higher-dimensional

Monge arrays.

For 1 il < nl and 2 < k < d, let ik(il) denote the k-th index of the minimum entry in

the plane of A corresponding to those entries whose first index is il.

Theorem 2.7 For d > 2, the plane minima of an nl x n2 x ... x nd d-dimensional Monge

array A = {a[ii, i2,..., id]} can be computed in

time.

Proof To compute the plane minima of A, we consider two cases.

If d = 2, we simply apply the O(nl + n)-time SMAWK algorithm of Theorem 2.4 to obtain

the row minima of A.

On the other hand, if d > 2, we use a simple divide-and-conquer algorithm. Specifically,

we begin by recursively computing the n2 plane minima of the (d - l)-dimensional plane of

A corresponding to those entries whose first index is 1 = [nl/21. (In other words, for all i2

between 1 and n 2, we compute the minimum entry a[Ii,i 2,i 3 ,...,id] over all (d- 2)-tuples

i3, .. , id where 1 < ikt < nk for 3 < k < d.) We then compute the minimum of these minima in

O(n2 ) additional time to obtain ik(Il) for 2 < k < d.

Now since the plane minima of A are monotone (by Property 1.11), we know that for il < I,

we must have i,(il) < ik(Il) for 2 < k < d, and similarly for il > II, we must have ik(il) > ik([)

for 2 < k < d. Tids means that we need only consider two smaller d-dimensional arrays, one

(I -1) X i2(l) X ... x id(Il) and the other (n, - I,) x (n2 - i2(11) + 1) X ... x (nd - id(I) + 1),

for the remaining plane minima of A. These minima we compute recursively.

If we let Td(nl,n 2 ,..., d) denote our algorithm's running time in computing the plane

40



2.3. HIGHER-DIMENSIONAL MONGE ARRAYS

minima of an n x n 2 x ... x nd d-dimensional Monge array, we then have

Td(n, n2,..., 1rd) =

O(n + n2) if d = 2,

Td,l(n2,...,nd) if d > 2 and nl = 1,

Td -l (n 2 ,..., nd) + 0(n2 )

Td (2 2nd 

t < n( m< n, +- + ,...,nd - n + 1
for 2<i k < d

ifd> 2 and n > 1.

We will show by a double induction, first on d and then on nj, that

Td(l, n2, .nd) < cl(( E -(d-2) (1 +llgnk)) -(nl+ 1),

where cl and c2 are constants independent of d, m, and n. Note that this is not the best

bound possible - for example, T3(nl, n2, n3) is actually O(nl + (n2 + n3) Ig nl), as the proof of

Theorem 2.10 shows - but it is sufficient for our purposes.

We begin with the base case of d = 2. Since T2(nl, n2) < c3(nl + n2) for some constant c3,

we need only choose cl > C2 + c3 to insure T2(nl, n2) < cl(nl + n2) - c2 (nl + 1).

Now suppose

TD(nl, n2,.. ., n) (c n - (D -2)) ( n (1+ lg nkJ)) - 2(nl + 1)
\t~~~~tlk=

41



MINIMIZATION ALGORITHMS

for all D < d. This implies

r
nk) - (d- 3)) l (1 + lg nJ))

-c 2(n2 + 1)

-C (( nk) (d 3)) ((1 + Lg nJ))

- c2 (n2 + 1) + 4 n2

+ max
s.t. 1 <nk nk

for 2 < k < d_ m

'"T (all
Td (Ln2J -
+ Td(LnIJ1, n'2 ..

if n = 1,

}

if nl > 1,

where c4 is some constant.

To show that this last recurrence implies

d-2 ( + [l!-2) II (1 + Llg nkj]))
*=1

- c2(nl + 1)

(and thus complete our first inductive argument), we use a second induction, this time on n l.

The base case of nl = 1 is easy. Since

.n) -(d -
3)) I + LgnkJ)) - C2(n2 + 1)

k=2

and n2 1,

(5C 
(d ) -) (d 2EnA: -(d-2) ]a (1 Lig nJ ) - 2c2k=2 k \=2

follows immediately.

For the inductive step of our second inductive argument, suppose

Td(N, n2,.. ., nd)

42 CHAPTER 2.

\=2

Tdh(nl, 2, ... i 4d) 5 

1), - + 1, .., nd - n'd +

Td(n, n, ... I nd) -< d En -(d

Td(l, n, --nd) IE ~t

Td(1j nui ... I nd)



2.3. HIGHER-DIMENSIONAL MONGE ARRAYS

(, (ir=2 )
- (d- 2) (1 + lg NJ) (1 + LlgnkJ))

k=2
- c2 (nl + 1)

for all N1 < nl. By our last recurrence for Td(nl, n2,.. ., nd), this implies

Td(nl, 2,... , nd)

:5 el nd

max
n,..,nr 

s.t. 1 < n' < n
for2<k d

Ci (r2 1-1

+ Llg nk)) -c 2(n 2 + 1)+ c4n 2

+ (n') (d2))

(1+ g [ 1 -)J )

d-2
n:~ II (1 + Llg n))

- "' 1C2
..

d

+ (nk
k=2

d-2

(+
=2

- C2 [(1

-2))

[lg(nk- nk + 1)J))

+ 1)

+ (C4 - c2)n2

+ cl - 1 +

-c 2 (nl + 1)

+ cl
-+ =

-c2 (n, + 1)

+

1)) - 2(d,(n, +
(=2

+ ( - C2)n2

-(d - 3)) (Llgn j) I (1
b=2

+ LlgnkJ))

43

r

Itn' ) - (d

· ·(( ni)

/d-2
(d- 3') 11 (1

k=2

+ el n,

(1+ g kI

(d- 3)) r(1 + Lg kj)

-2)) (1+~nn /d-2

d-2
< el n6 -(d-3) II (1 + LIg nL.J)

=2

(d -2) rj(+L kj) -C2(n, + 1



CHAPTER 2. MINIMIZATION ALGORITHMS

+ (4 - c2)n 2 -

Since (c4 - c2 )n 2 0 provided we choose c2 > c 4 , this gives the desired result. 

Corollary 2.8 For d > 2, the minimum entry in an nl x n2 x ... x nd d-dimensional Monge

array A = {a[i, i2 ,..., id]} can be computed in

( )d- )

time.

For path- and cycle-decomposable Monge-composite arrays, we can do significantly better.

Theorem 2.9 The plane minima of an nl x x nd d-dimensional path-decomposable Monge-

composite array A can be computed in

time.

Proof We will prove, by induction on d, that the plane minima of an nl x.. x nd d-dimensional

path-decomposable Monge-composite array can be computed in at most

d-1
Clnl + (cl + c2)nk + C2nd + (d - 1)ca3

k=2

time, where cl, c, and C3 are constants from the SMAWK algorithm's running time. (This is

our induction hypothesis.)

The base case of d = 2 follows immediately from Theorem 2.4 of Section 2.1, as this theorem

guarantees the existence of constants c,, c2, and C3 such that the row minima of an m x n two-

dimensional Monge array can be computed in at most clm + c2n + c3 time.

For d > 2, we assume that the induction hypothesis holds for all lower-dimensional path-

decomposable Monge-composite arrays. Since A = {a[il,..., id]} is path-decomposable, we can

44



2.3. HIGHER-DIMENSIONAL MONGE ARRAYS

write
d-I

a[il,...,id] = Wk,+li[ik,ik+l] 
k=1

where for 1 < k < d, Wk,k+ = Wk,k+l[ik, i+l]} is an nk n k+l Monge array. Now consider

the n2 x . . x nd (d - l)-dimensional array B = {b[i2,..., idJ] where

d-i
b[i2 ,..., id] = Wk,k+l[ik, ik+l] 

k=2

By the induction hypothesis, we can find the plane minima of B in at most

d-

cln2 + (cl + c2 )nk + c2nd + (d - 2)c3
k=3

time. Since the minimum entry in the plane of A corresponding to a particular value Ix of the

first index is just

Min Wl,2[,i2+ min . Wkk+l[ik, ik+] ,
n2n i3, J ,i lk=2

we need only find the row minima in the sum of W1,2 and the appropriate two-dimensional

extension of the vector of B's plane minima. Since this sum is a Monge array, we can find its

row minima in at most cn + c2n2 + c 3 time. This gives the entire algorithm a running time

bounded by

cat + (c + C2)nf + C2nd + (d - 2)c3) + (n 1 + C2n2+ C3)
d-I

= Clnl + (cl + C2)nk + C2nd + (d - 1)c3
k=2

which proves the inductive hypothesis for d. 

Theorem 2.10 The plane minima of an na x -.. x nd d-dimensional cycle-decomposable

Monge-composite array A can be computed in

( (=2) )

time.

45



CHAPTER 2. MINIMIZATION ALGORITHMS

Proof Since A = (a[i l ,..., id]}) is cycle-decomposable, we can write

d-1
a[il,..., id] = E Wk,k+l[ik, ik+l] + Wd,[id, il] ,

k=l

where for 1 < k < d, Wk,k+l = {wk,k+l[ik,ik+l]} is an nk x n+l Monge array and where

Wd,l = {Wd,l[id, il]} is an nd x n Monge array. Now consider any (d - 1)-dimensional plane

All = {a, [i2,...,id]} of A, corresponding to a fixed value I of A's first index. If we let

W2, = {W ,3[i2, i]} denote the n2 x n3 array where w', 3[i2 , i3] = w 2,3[i2, i3 ] + W1,2 [11 , i 2], then

W 2 3 is Monge, since it is the sum of a Monge array and a two-dimensional extension of a one-

dimensional vector. Similarly, if we let Wl d = {Wd-ld[id-l,id]} denote the nd-l x nd array

where Wd-l,d[id-,id] = Wd-l,d[id-, id] + Wd,l[id,Il], then Wd_'Id is also Monge. This implies

A,, is a path-decomposable Monge-composite array, since

d-I
a,[i, i3, · , id] = wt,3[i2, i3 ] + Z Wk,k+l[ikk1] + Wldk+[id-k, id] +

k=3

Thus, by Theorem 2.10, we can compute the plane minima of Al, in O(k=2 n,) time. Fur-

thermore, we can compute the minimum of these minima in O(n2) additional time. This means

we can compute any plane minimum of A in at most

d

cl E nk + c2
k=2

time, where cl and c2 are constants.

To compute all the plane minima of A, we use the divide-and-conquer approach of Theo-

rem 2.7. Specifically, we begin by computing the minimum entry in the plane corresponding to

I = [nl/21, which, by the preceding discussion, requires at most

d

C1 E nk + C2

k=2

time. This gives us i(hI) for 2 < k < d. Now since A is Monge (and thus monotone), we

know that for il < I, we must have i(il) < ik(II) for 2 k d, and similarly for il > I, we

must have ik(il) > i(I) for 2 < k < d. Thus, we need only consider two smaller arrays, one

46



2.3. HIGHER-DIMENSiONAL MONGE ARRAYS

(I - 1) x i2(/l) x ... x id(I1) and the other (n, - II) x (n2 - i2(I1) + 1) x * .. x (nd - id(t) + 1),

in searching for the remaining plane minima. If we compute the plane minima of these two

subarrays recursively, then we obtain the following recurrence for the time T(nl, n2, ... , nd) to

compute the plane minima of an nl x n2 x ... x nd cycle-decomposable Monge-composite array:

T(ni, n,.. .,nd)

( 1l [ + C

+ max T ([f1, n n + T (L 2 -n-n + l...nd-nd+l )
2<k<d

where
d

T(1, n2,..., nd) < 1 n + C2 
k=2

To prove that T(nl,..., nd) has the stated asymptotics, we will show, by induction on n l,

that

T(n, n2,,..., nd) < c ((k - 1) (1 + Llgn1) + (c(d - 1) + 2)nl

(This is our inductive hypothesis.) The base case of nr = 1 is easy, since

T(1, n2 , nd) < cl ( nk) + 2 = 1 (•nk-1) + c(d-1) + c2 -

Now assume the inductive hypothesis holds for all values of nl < N1. Then

T(N1, n2 . . ., nd)

< Ce (nk - 1 + cl(d - 1) + c2

+ C (n'- ) (+ g ( 1 )j) + (cl(d -1) + C2) (NF1 -)

+ C = (nk- n)) (1+ [ig [J) + (cl(d -1) + C2) 

Cl ((fn - )) (2+ g [jj) +(cl(d -1) + c2)N

47



CHAPTER 2. MINIMIZATION ALGORITHMS

< C ( - 1)) (1 + Llg NJ) + (cl(d - 1) + c2)N.

Thus, the inductive hypothesis also holds for n, = N1. E

Maximization is harder than minimization when it comes to higher-dimensional Monge

arrays, as the following theorem shows.

Theorem 2.11 For d > 2, computing the maximum entry in an n x n2 x *...x nd d-dimensional

Monge array A = {a[i, i2,..., id]} requires

time.

Proof For d < s c nl +n 2 + ... +n, let A, = {a,[il, i2,..., i]} denote the nl x n x ...x nd

d-dimensional array where

a[i,* i= -((E d) - 2

Using Definitions 1.2 and 1.6, we will show that A, is Monge. Consider any pairs of dimensions

e and I' such that 1 < L < l' < d and any d-tuple il, i, .., id of indices such that 1 < it < n,

1 i < nt,, and 1 < i, nl for 1 < k < d, k $ t, e'. Clearly,

a[i,..., it,.. ., i',. . . , id] + ,il,. . , i + ,. .. , i + 1, .. id]
-a[il, ..., it , ...Ii., i d] a [i,..., it+ 1 ,.. ., ,.id] (21)

3 (il + + id- + 1)2 + (i; +'''+ id- 8 + 1)

- (il + . + id- )2 _ (il + + id- + 2)

-2,

which implies A. is Monge.

48

Si



2.3. HIGHER-DIMENSIONAL MONGE ARRAYS

Now consider any entry a[il, i2,..., id] such that il + i2 + ... + id = s. This entry's value

is 0, and it is clearly a maximum entry of A,. Moreover, if we replace this entry with a 1,

then it becomes A,'s unique maximum entry. Note that this substitution does not affect A.'s

Mongeness, since the value of (2.1) does not changes by more than 1 for any pair of dimensions

and d-tuple of indices. Since we can change any entry a[il, i2, ... , id] such that i+i 2+' '+id = s

to a 1, finding the maximum entry in A, once one entry of this form has been changed to a 1

requires looking at all of these entries. In other words, the number of entries of a[il, i>,..., id]

such that il + i2 + . . + id = is a lower bound on the time to compute this Monge array's

maximum entry.

To bound the number of d-tuples il, i2,. ., id such that i + i2 +... + id = s (and 1 < i < n&

for 1 < k < d) over all a such that d < s nl +n2 +* .+nd, we use an averaging argument. First

note that there are nln2- nd total d-tuples i, i2,...,id such that 1 i < nk for 1 < k < d.

Furthermore, there are nl + n2 +.. + nd - d possible values for s. Thus, there exists an a such

that there are
nl n2 nd

nl + n2 + - + nd - d

d-tuples il, i2,...,id such that il + i2 + ** + id = s and 1 i n for 1 < k < d. This gives

the desired result. X

Corollary 2.12 For d > 2, computing the plane maxima of an nl x n2 x ... x nd d-dimensional

Monge array A = {a[il, i2 ,..., id]) requires

time.

Theorem 2.13 For d > 2, the plane maxima of an nl x n2 x .. x nd d-dimensional Monge

array A = {a[il,i 2, ... , id]} can be computed in

0 (n, +n2) Ink)

49

aE



CHAPTER 2. MINIMIZATION ALGORITHMS

time.

Proof We begin by decomposing A into n3... nd n x n2 two-dimensional arrays. The row

maxima in these subarrays can then be computed in O((nl + n2)n3 ... nd) total time using

the SMAWK algorithm. The maximum entry in any plane of A corresponding to a fixed value

of A's first index is then the maximum of n3. f-nd of these row maxima. This implies the

plane maxima of A can be computed from the nln3 ... nd total row maxima in O(nln 3 .. nd)

additional time, which gives the desired result. I

2.4 Partial Monge Arrays

In this section, we briefly mention several algorithms for computing minima in partial Monge

arrays.

We begin by defining an inverse for Ackermann's function. For i > -1,

L(n) n/2 if i=-1,

min{s: L_l(n) < 1 if i > O.

(For any function f(.) and any integer s > O, f'(.) denotes the function obtained by composing

s copies of f(.), so that f 4 (n) = f(f(f(f(n)))), for example.) Thus, Lo(n) = Plgn], and Ll(n)

is roughly g' n.

In terms of L_ 1(-), Lo(-), l (),..., we then have

o(n) = min{s: L(n) < s}.

The function a(.) is very slowly growing.

Theorem 2.14 (Klawe and Kleitman [KK90]) The off-line row-minimization problem

for an m x n staircase-Monge array can be solved in O(na(m) + m) time. U

Theorem 2.15 (Klawe and Kleitman [KK90]) The on-line row-minimization problem

for an n x n staircase-Monge array can be solved in O(na(m) + m) time. I

50



Chapter 3

Selection and Sorting Algorithms

In the previous chapter, we considered several minimization and maximization problems in-

volving Monge arrays. In this chapter, we turn our attention to two more types of comparison

problems, selection problems and sorting problems.

The basic selection and sorting problems may be defined as follows. Given a set S of n

distinct values al...,a,, the rank r(b, S) in S of some value b is the number of aj E S such

that aj < b. In other words,

r(b, S) = I{j : 1 < i j n and aj b} .

Note that b need not be a member of S. Clearly, 1 < r(ai, S) < n for all ai E S; moreover,

since the elements al,..., an are distinct, the ranks r(al, S),..., r(an, S) are distinct as well.

In terms of ranks, the selection problem for S is that of computing the unique i such that

r(ai, S) = k, i.e., computing the kth smallest element of S. (The integer k is given as part of

the input along with S.) Similarly, the sorting problem for S is that of computing r(ai, S) for

all i between 1 and n, i.e., sorting the n elements in S.

For arbitrary values al,..., an, the selection and sorting problems are well understood: the

general selection problem can be solved in 0(n) time [BFP+73], and the general sorting problem

in O(nlgn) time (see [Knu73], for example). By using the special structure of Monge arrays,

however, it is possible to obtain significantly better results for certain selection and sorting

problems involving two-dimensional Monge arrays than are possible with the classical selection

51



CHAPTER 3. SELECTION AND SORTING ALGORITHMS

and sorting,algorithms. With this goal in mind, we now proceed to an overview of the chapter.

In Section 3.1, we consider the problem of computing the kth smallest entry in each row of

a two-dimensional Monge array A. We call this problem the row-selection problem for A. In

Subsection 3.1.1, we show that the row-selection problem for an m x n Monge array A can be

solved in O(k(m + n)) time. For small values of k, this bound represents a significant improve-

ment over the naive O(mn) bound obtained by applying the linear-time selection algorithm of

Blum, Floyd, Pratt, Rivest, and Tarjan [BFP+73] to each row of the array. In Subsection 3.1.2,

we give another row-selection algorithm; this algorithm solves the row-selection problem for an

m x n Monge array A in O((v/ilg m)(n Ig n) + m Ig n) time. For large values of k, this bound

represents a significant improvement over both the naive O(mn) bound and the O(k(m + n))

bound obtained in the previous subsection. Note that computing the kth largest entry in each

row of A is no harder than computing the kth smallest entry in each row, just as computing

a maximum entry in each row is no harder than computing a minimum entry in each row; we

need only negate the entries of A and reverse the ordering of its columns to convert back and

forth between the two problems.

In Section 3.2, we turn to the problem of computing the kth smallest entry overall in an

m x n Monge array A, i.e., the kth smallest of the mn entries of A. We call this problem

the array-selection problem for A. We show that the array-selection problem for an m x n

Monge array A can be solved in O(m + n + k lg(mn/k)) time. For small values of k, this bound

represents a significant improvement over the naive O(mn) bound obtained by applying the

linear-time selection algorithm of Blum et al. [BFP+73]. Again note that computing the kth

largest entry overall in A is no harder than computing the kth smallest entry overall.

The subject of Section 3.3 is the problem of sorting the rows of a Monge array A. We call

this problem the iow-sorting problem for A. We show that the row-sorting problem for an

m x n Monge array A can be solved in O(mn) time if m > n and in O(mn(l + lg(n/m)) time if

m < n. This bound represents an improvement over the naive O(mn Ig n) bound obtained by

applying a general sorting algorithm to each row of A.

Section 3.4 focuses on the problem of sorting all the entries of a Monge array A. We call

this problem the array-sorting problem for A. We show that the array-sorting problem for

an m x n Monge array A requires l(mn lgt) comparisons (and thus fl(mnlgt) time), where
I

52



3.1. ROW SELECTION

Problem Time Theorem]

row selection O(kn) 3.2

O(n3/21 g2 n) 3.4
array selection 0(n + k lg(n2/k) 3.5

row sorting 0(n 2) 3.6

array sorting O(n2 Ig n) 3.7

Table 3.1: Results for selection and sorting in an n x n Monge array. The selection results are for
computing the kth smallest (or kth largest) entry in each row or overall.

t = min{m, n}. Thus, for m = e(n), the Mongeness of A does not make sorting its entries any

easier than sorting mn arbitrary values.

Finally, in Section 3.5, we conclude with some open problems.

Table 3.1 summarizes the algorithms and lower bounds given in this chapter for selection

and sorting in two-dimensional Monge arrays. All of these results are from a paper cowritten

with Kravets [KP91], except for the second row-selection algorithm, which was developed in

collaboration with Mansour, Schieber, and Sen [MPSS91].

3.1 Row Selection

In this section, we give two very different algorithms for computing the kth smallest entry in each

row of an m x n Monge array. The first algorithm represents joint work with Kravets [KP91]. It

uses the SMAWK algorithm of Section 2.1 and runs in O(k(m + n)) time. The second algorithm,

on the other hand, does not involve the SMAWK algorithm, and its O((v Ilg m)(n lg n)+ m lg n)

running time is independent of k. This latter algorithm represents joint work with Mansour,

Schieber, and Sen [MPSS91].

Neither of these two algorithms dominates the other for all m, n, and k; rather, the first

algorithm is superior for small k, while the second algorithm is better for large k. In particular,

if m = (n), then the first algorithm is more efficient for k = o(V/ilg 2 n), while the second

algorithm dominates if k = w(vilg 2 n).

53



CHAPTER 3. SELECTION AND SORTING ALGORITHMS

3.1.1 Row Selection When k is Small

Given an m x n Monge array A = {a[i, j]} and an integer k between 1 and n, this subsection's

row-selection algorithm computes the kth smallest entry in each row of A in O(k(m + n))

time. The algorithm achieves this time bound by combining two previous results - the SMAWK

algorithm of Section 2.1 and a selection algorithm due to Frederickson and Johnson [FJ82] -

with yet another property of Monge arrays.

We begin by describing Frederickson and Johnson's result. In [FJ82], they considered the

following problem: given an m x n array B = {a[i,j]} whose rows are sorted in ascending order

(i.e., b[i, 1] < b[i, 2] < .-.* < b[i, n] for 1 < i < m), compute the kth smallest of the mn entries of

B. (This problem is just the array-selection problem for the not-necessarily-Monge array B.)

Applying the linear-time selection algorithm of [BFP+73] to either all mn entries of B if k > n

or the mk entries in columns 1 through k of B if k < n solves this problem in O(mt) time,

where t = min({k, n). However, Frederickson and Johnson obtained a significantly better result

in [FJ82], which we summarize in the following theorem.

Theorem 3.1 (Frederickson and Johnson [FJ82]) The kth smallest entry in an m x n

array B whose rows are sorted in ascending order can be computed in O(m + a lg(k/s)) time,

where s = min{k, m}. 

This theorem is actually more general than its needs to be for our purposes, as only the

m = 0(k) special case of Frederickson and Johnson's selection problem is relevant to our row-

selection algorithm. Specifically, we require only an O(k)-time algorithm for computing the kth

smallest element in O(k) sorted lists of length k, which Theorem 3.1 provides.

The property of Monge arrays linking the SMAWK algorithm and Frederickson and Johnson's

result is Property 1.10, which states that if A = {a[i,j]} is an m x n Monge array such that

m > n and each column of A contains at least one row minimum, then each row of A is bitonic.

More precisely, for 1 < i < m,

a[i,] > --. > a[i,c(i)-1] > a[i,c(i)]

and

a[i,c(i)] < a[i,c(i)+ 1] < -.. < a[i,n],

54



3.1. ROW SELECTION

where e(i) denotes the column of A containing the minimum entry in row i of A.

With these preliminaries behind us, we can now prove the following theorem.

Theorem 3.2 The kth smallest entry in each row of an m x n Monge array A = {a[i,j]} can

be computed in O(k(m + n)) time.

Proof Our algorithm for computing the kth smallest entry in each row of A has two parts.

First, we extract from A a sequence of k distinct m-row subarrays B 1,..., Bk. The first subarray

B1 consists of those columns of A that contain row minima of A. If we let Al denote the m-row

subarray of A consisting of those columns of A not in' B 1, then B2 consists of those columns of

Al that contain row minima of Al. In general, for i > 1, Bi consists of those columns of Ai-,

that contain row minima of Ai-l (where we define A = A), and Ai consists of those columns

of Ai-, that do not contain row minima of Ai-,, as is suggested in Figure 3.1. (Equivalently,

Ai consists of those columns of A not in any of B, ... , Bi.)

Using the SMAWK algorithm, we can compute Bi and A (or, more precisely, the columns

forming these arrays) from Ai-,1. Thus, k applications of the SMAWK algorithm give B 1,.. ., Bk

in O(k(m + n)) total time.

Now for 1 < i < k, the definition of Bi implies that each column of Bi contains at least

one row minimum; thus, by Property 1.10, the rows of Bi are bitonic. Furthermore, if an entry

is among the k smallest entries in some row of A, then the entry must be contained in one

of B 1,...,Bk. Thus, to compute the the kth smallest entry in row i of A, we merely need

to compute the kth smallest element in the 2k sorted lists associated with row i. (Each Bi

contributes two sorted lists, the first consisting of those entries in the ith row of Bi to the right

of the ith row's minimum and the second consisting of those entries to the minimum's left.)

By Theorem 3.1, this element can be identified in O(k) time. Since A contains m rows, the

total time for this second part of the algorithm is O(km), which gives the entire row-selection

algorithm a running time of O(k(m + n)). 

As a final observation, we note that Frederickson and Johnson's selection algorithm com-

putes not only the kth smallest entry in B, the m x n array whose rows are sorted in ascending

order, but also the first through (k - 1)st smallest entries. (These entries are not given in sorted

55



CHAPTER 3. SELECTION AND SORTING ALGORITHMS

Ai 

i I
Bi

Figure 3.1: For i > 1, the columns of Ai-, are divided between B and Ai: Bi gets those columns
of Ai-, containing row minima, while Ai gets those columns without row minima. (The darkly shaded
squares represent the row minima of Ai-l; the lightly shaded regions indicate those columns assigned to
As.) Since each column of Bi contains a row minimum, its rows are bitonic.

order, however.) Thus, this subsection's row-selection algorithm is easily modified to output

the first through kth smallest entries in each row of the m x n Monge array A; moreover, this

modification does not affect the asymptotics of our algorithm's running time. We will use this

observation in Section 3.2.

3.1.2 Row Selection When k is Large

For larger values of k, better results can be obtained for the row-selection problem using an

algorithm first described in [MPSS91]. This algorithm's running time is O((/'iiilg m)(n lgn) +

m Ig n), which is independent of k.

At the heart of this subsection's algorithm is the notion of left and right ranks, which we

briefly mentioned in Section 1.1. Given a set S of n distinct values a 1,...,an, the left rank

> <<<» <|<»<<
I " < < < < >> C~s<<<I~'~ I<
~>> <<
> > > > A: <
>>>>> 

>>>> X
Ha>>>>>ii

56



3.1. ROW SELECTION

L(aj, 5) of ad in S is the number of aj such that aj is smaller than ai and j < i, i.e.,

L(ai,S) = {Ij : 1 < j < i and aj < a} .

Similarly, the right rank R(ai, S) of ai in S is the number of aj such that aj is at most ai and

j > l, i.e.,

R(a,S) =I(: i < j n and aj a,}l)

Clearly, the rank r(ai, S) of a; in S is L(a, S) + R(a,, S) for all i. Moreover, computing the

left and right ranks of al, a2,... ,an is no harder than computing their ranks (i.e., sorting S),

as the following lemma demonstrates.

Lemma 3.3 Given a set S of n distinct values al,...,an, we can compute L(ai, S) and

R(a,, S) for 1 < i < n in O(n Ig n) time.

Proof To compute the L(ai, S) and R(ai, S) in O(nlg n) time, we use a divide-and-conquer

approach reminiscent of mergesort. We begin by partitioning S into two subsets S' and S"

so that S' contains the first n/2J values al,..., an/2 j and S" contains the remaining values

alt/2+l,... a,,. We then recursively compute the L(ai,S') and R(ai,S') for 1 < i < [n/2J

and the L(a,,S") and R(ai,S") for Ln/2J < i < n. Then for 1 < i < [n/2J, L(a,S) =

L(ai,S'), and for Ln/2J < i < n, R(a,,S) = R(ai,S"). Furthermore, for 1 < i <- Ln/2J,

R(ai, S) = R(a, S') + r(ai, S"), and for n/2J < i < n, L(ai,S) = L(ai, S") + r(ai, S'). Since

we know the sorted order of al,..., aLn/2J and. the sorted order of aln/2J+1l, . . ,an, we can merge

these two lists in O(n) time, thereby obtaining r(ai, S") for 1 < i < n/2J and r(ai, S') for

Ln/2J < i n. Thus, we obtain the following (familiar) recurrence for the time T(n) to

compute L(al, 5), L(a2, S),..., L(a,, S) and R(al, S), R(a2, S), .. ., R(an, S):

T(n) = T(Ln/2J) + T(rn/21) + O(n) if n 2,

0(1) if n = 1.

As the solution for this recurrence is T(n) = O(n Ig n), we are done. i

As we observed in Section 1.1, the left and right ranks of Monge-array entries are highly

structured. In particular, suppose A = {a[i,j]} is an m x n Monge array. Furthermore,

57



CHAPTER 3. SELECTION AND SORTING ALGORITHMS

let L(i,j) denote the left rank of a[i,j] in row i of A. (In terms of our previous notation,

L(i,j) = L(a[i,j], Si), where Si is the set of entries in A's ith row.) Similarly, let R(i,j) denote

the right rank of a[i,j] in row i of A, and let r(i,j) denote the rank of a[i,j] in row i of A.

Property 1.8 of two-dimensional Monge arrays tells us that for 1 < j < n,

L(1,j) > L(2,j) > ... > L(m,j)

and

R(l,j) R(2 j) < ... < R(m,j).

Using this property, the identity r(i,j) = L(i,j) + R(i,j), and Lemma 3.3, we will now

prove the following theorem.

Theorem 3.4 The kth smallest entry in each row of an m x n Monge array A = {a[i,j]} can

be computed in O((vii lg m)(n lg n) + m g n) time.

Proof If m < 4, we use the linear-time selection algorithm of Blum et al. [BFP+73] to obtain

the kth smallest entry in each row in O(n) time. Otherwise, we use the following divide-and-

conquer approach.

We begin by partitioning A into x subarrays Al,-, A,, where x is a parameter of our

algorithm in the range 1 < < m. (We will later set = [vi] to minimize our algorithm's

running time, but for now, it is simpler to think of z as a parameter.) In particular, for

1 < t < , At consists of rows (t - 1)[m/x]l + 1 through trm/x]l of A. (The last subarray A,

may actually contain fewer than rm/xl rows, but for simplicity, we will ignore this detail.) In

order to simplify the notation, we set

,() = (t- 1)[m/xl + 1;

thus, A includes rows A,(z) through At+l(x) - 1 of A.

We then compute left and right ranks in the first row of each At. Specifically, for 1 < t < z

and 1 < j < n, we compute L(At(),j) and R(,(z),j). By Lemma 3.3, this computation can

be performed in O(nlgn) time per row (i.e., O(xnlgn) total time).

58



3.1. ROW SELECTION

I

AO
i

A,,10

Figure 3.2: Suppose At(z) < i < At+l(z) (i.e., row i of A is in At) and 1 < j < n. Since A is Monge,
we must have L(At(z),j) > L(i,j) L(A+1(z)), j) and R(At(z),j) < R(i,j) R(At+l(z),j). Thus,
the rank r(i,j) of a[i,j] in row i of A must lie between L(At+1(z),j) + R(At(z),j) and L(At(z),j) +
R(A.t+,(),j).

Now, by Property 1.8, for 1 t < , At(z) < i < At+(z), and 1 < j < n, we have

L(At(x),j) > L(ij) > L(A,+lt(),j)

and

(To handle the last row, we define L(Az+l(z),j) = O and R(lA+1(z),j) = n-j+1 for 1 <j < n.)

These bounds are illustrated in Figure 3.2. Since r(i,j) = L(i,j) + R(i,j), this gives us lower

and upper bounds on the rank of every entry a[i,j] in the jth column of At; specifically, for

At,(z) < i < J,+1(z), we must have

a(t,j) < r(ij) < (tj)

where

a(t,j) = L(,+il(z),j)+ R(X,(),j)

A 1

L(;,(x),j)

A, L(ij)

- IV

'L(;t,+(x).j)

A,.
,, ~ ~~~~~~~ , 

a

IvI
,...1
E

'VI

T1

I· Ils l -I M I -·r -I

R (1,(), j)

R(,,j)

59

R(I\t(.T)li) :5 R(i1j) :5 R('\S+l(x)'j) -



CHAPTER 3. SELECTION AND SORTING ALGORITHMS

and

P(t,j) = L(A,( ;) + R(A,,+(z),j).

The above bounds allow us to reduce the size of our row-selection problem. In particular,

for all t in the range 1 < t _< z and all j in the range 1 j < n, we can compute a(t,j) and

f,(t,j) and then delete column j from A, if a(t,j) > k or 8(t,j) < k, as in both these cases,

no entry in column j of At can have rank k in its row. Deleting columns in this manner takes

O(zn) time, since Al,..., A contain xn total columns.

Now let Al denote the subarray of A, consisting of those columns not deleted, i.e., those

columns j such that

ci(t, j) < k < (t, j)

The kth smallest entry in each row of At is the kith smallest entry in each row of A', where

k, = k- j : 1 < j < n and (t,j) < k} .

Thus, since A', A 2,.. ., A' are all Monge (by Property 1.2), we need only recursively solve z

smaller row-selection problems to obtain the kth smallest entry in each row of A. This completes

the description of our row-selection algorithm.

To analyze the above this algorithm's running time, we must bound the number of columns

eliminated from Al, A2 ,., A. Intuitively, the more columns eliminated, the smaller the prob-

lems that remain and the better the running time of our algorithm.

Before proving any bounds, we first introduce a little notation. Let n denote the number

of columns in A, i.e.,

n, = I{j: a(t,j) k </3(t,j)}l I

In terms of this new notation, our algorithm spends O(xn Ig n) time reducing one row-selection

problem of size m x n to z row-selection problems such that the tth problem has size [m/zl x n,.

(Since the bound we want to prove on our algorithm's running time does not depend on k, we

can ignore the change from looking for the kth smallest entry in each rovw of A to looking for

the kth smallest entry in each row of A,.) In what follows, we derive a bound on ,<t<, nt,

60



3.1. ROW SELECTION

which we then use to bound the running time of our algorithm.

To bound l_,<,<, nt, we first select z representative rows I, 12,..., .,, one from each of the

At. (I, may take any value from A,(z) to A+(z)- 1.) Then for 1 t z and 1 j n,

consider the difference r(I,,j)- a(t,j). This difference is always nonnegative, since a(t,j) is a

lower bound on r(It,j). Moreover, since r(I,,j) is at most n,

(r(It, j) - a(t, j)) < 2.
1<t<r

However, we can prove a tighter O(n 2) bound on this sum as follows.

From the definition of a(t,j), we have

E a(t,j) = R(s()
l<tir l<t,( 1<l<zltj6<sn 1 i3jn 1e

( E (L(A,(z),j)+ R(A (R i)))
2<t<x

( I,<r(t(x)j)) +

(This last inequality follows from the identity r(i,j) = L(i,j) + R(i,j), our convention that

L(A.+l(z),j)-= 0, and the bound R(Al(x),j) > 1.) Furthermore, for all rows i,

E r(i,j) = 1+2+-+n
n(n + 1)

2

61



CHAPTER 3. SELECTION AND SORTING ALGORITHMS

Thus,

E (r(I, j)- (t,j)) 
Ij n

n(n- 1)
2

In a similar fashion, we can show that

n(n - 1)
2

(3.2)
1<1<:
13j n

Now let Nl denote the total number of entries a[I, j] in rows II, I2,.. ., I such that r(I, j) <

k < 3(t,j), and let N2 denote the total number of entries a[It,j] in rows 11 I2,..., I: such that

ct(t,j) $ k < r(It,j). Since column j of At is a column of A' if and only if

a(t,j) < k < O(t,j) ,

we must have

n = + N 2 + .

(The z term in the above expression comes from the unique column

r(I,,j) = k.)

An upper bound on N1 follows from (3.2). Since the entries in rows

r(lt,j) < k < /(t, j) are a subset of all the entries in rows 1, I2,..., I

E
a.. r(t,j)<k5nd)

in each A such that

I1, I2,..., Is satisfying

we must have

((t, j) - r(I, j)) < ((t,j) - r(I, j)) -
l<<jn

Furthermore, for any rank R in the range 1 < R < n, there are exactly z entries a[l,,j] such that

r(I, j) = R. Thus, for any positive d, there are at most zd entries a[I,j] in rows II, I, ... Is

such that r(I, j) < k < 3(t,j) and /3(t,j)- r(I,j) < d. Picking ql and r so that N1 = qz'+ rl

n(n + 1) n(n + ) n
2 2

(3.1)

62



3.1. ROW SELECTION 63

and 0 r < z, this last observation implies

E1 (P(t,j) - r(It,j)) > z +rl(q +)l<fiz (=1 ) +rl+l

Q: + 2 r)(q +1)

> 
2z

Combining the preceding two inequalities with (3.2), we find

N?2 < n(n-1)

n 2

< 2

or

N1 • n.

By a similar argument, we can show

N2 < Vn.

Thus, the total number of columns in A', A2 ,..., A' is at most 2,an + z.

Given the above upper bound on the number of columns in A, A 2,..., A', we can now

write down a recurrence relation describing the running time of our algorithm (as a function of

z). Let T(m, n) denote the time to compute the kth smallest entry in each row of an m x n

Monge array. Then, for m > 4,

T(m,n) = O(xnlgn)+ max lT([m/, n,).n i n., ....,n =1
S.t. nl+-t+n,<24n+ t=l
and I<nn for it ss

To obtain the desired running time for our algorithm, we use z = [VI-]. The above

recurrence then yields T(m, n) = O((vi/lg m)(n Ig n) + m Ig n).



CHAPTER 3. SELECTION AND SORTING ALGORiTHMS

To prove this last claim, we will argue by induction on m that for m > 4,

T(m,n) clv/m(lgm- )(n- )lgn + 2(m- /m )lgn ,

where c and 2 are constants independent of m and n. For simplicity, we will assume that

m = 22' for some positive integer z, so that m2- ' is integral for all positive integers y < z. This

assumption allows us to dispense with the ceilings around Vi-.

The base case of m = 4 is easy. Since T(4, n) < c3 n for some constant c3, we need only

choose cl > c3/2 and c2 > cl to insure that T(4, n) < 2cl(n - 1) Ig n + 2c2 Ig n.

For the inductive step of our argument, we assume

T(M, n) < clv-M(lg M - )(n - 1)lgn + c(M - OM)lg n

for M < m. By the recurrence for T(m, n), we know that

T(m,n) < c4vinlggn + max T(v/,nt)
n i ,n2,..-,nr/-~=1

s.t. n+-+ne;;;2ml/4n+ml/29
and 1<nl<n for l<t ,/fm

for some constant C4. Thus, by our inductive hypothesis,

T(m, n)

< c4 n lgn

+ max (clml/ 4(lg m'/ 2 - )(n, - 1)lg n + c2(m1/2 - m1/ 4)lgn,)
S.t. u1+4...-g;r-~mllr. ml12 

and IZSl for <<,v

< c4ml/2nlgn

+ cIm/4((1/2) Igm - 1)(2ml/4n + m'/2)lg n - m'/2(clm'/ 4((1/2) Igm - 1)lg n)

+ m/2(c2(ml/2 - m1/ 4) lg n)

= 4m/2n lg n

+ clml/2(lgm- 2)nign + clm3/4((1/2)gm - 1)lgn - clm3 /4((1/2)lgm - 1)lgn

+ c2 m lg n - c2m3/ 4 Ig n

64



3.1. ROW SELECTION

= c4m1/2n lgn

+ cm'/ 2 (lg m - 1)nlgn - clml/ 2nlgn

+ c2m g n - c2m3/4 lg n

= Clm'2(lgm - 1)(n - 1)lgn + c2(m - m/ 2) gn

+ (c4 - cl)m'/2nlgn + (clm/2(lg m- 1) + c2m1/2 - c2m3/4 )lgn .

Now

(c - cl)ml/ 2n lg n 0

provided cl > C4, and

(clml/2(lgm - 1) + c2m1/ 2 - c2 m3/ 4) lgn < (cl(lgm - 1) - c2(m1/4 - 1))m/ 21g n

< 

provided ec > cl/( V- 1) and m > 4. Thus,

T(m, n) < cm 1/ 2(g m - 1)(n - 1)lg n + c2 (m - m'/ 2)lgn ,

as we needed to show. U

At the end of the previous subsection, we observed that our first row-selection algorithm

is easily modified to compute not only the kth smallest entry in each row of an Monge array

but also the first through (k - 1)st smallest entries in each row. This subsection's row-selection

algorithm can also be modified for this same task (with no change in the asymptotics of its

running time.) Roughly speaking, whenever we remove some column j of subarray At from

consideration bcause the upper bound 13(t, j) is strictly less than k, we output this column (or,

more precisely, its location in the original array A), as each entry in this column is among the

k smallest in its row. In this manner, we obtain the km total entries that we seek, represented

as a collection of subcolumns of A.

65



CHAPTER 3. SELECTION AND SORTING ALGORITHMS

3.2 Array Selection

In this section, we describe an algorithm for the array-selection problem. This algorithm, which

first appeared in [KP91], uses the row-selection algorithm of Subsection 3.1.1 as a subroutine.

Theorem 3.5 The kth smallest entry overall in an m x n Monge array A = a[i,jl} can be

computed in O(m + n + k lg(mn/k)) time.

Proof In this proof, we actually prove a stronger result: we show that O(n + n + k lg(mn/k))

time suffices for computing not only the kth smallest entry overall in A but also the first through

(k - 1)st smallest entries.

We first present an algorithm for those values of k that are greater than or equal to both

m and n and then show how to modify this algorithm to handle smaller values of k.

To compute the k smallest entries of A when max m, n} < k mn, we begin by checking

the relative magnitudes of k and mn. If k > mn/2 (the "easy" case), we use the linear-time

selection algorithm of [BFP+73] to compute the k smallest entries of A in O(k) time. If, on the

other hand, k < mn/2, we consider two subcases.

If m > n, we use the row-selection algorithm of Subsection 3.1.1 to compute the [2k/ml

smallest entries in each row of A in 0( r2k/ml (m+n)) = 0(k) time. Let bi denote the r2k/mlth

smallest entry in row i of A. Using the linear-time selection algorithm of [BFP+731, we can

compute the rm/2]th smallest of bl,..., b, in O(m) time. Let b denote this [m/21th smallest

bi, and let B denote the [m/21 x n subarray of A consisting of those rows i such that bi > b.

Furthermore, let L denote the list of [2k/ml [m/2J = O(k) entries formed from the r2k/ml

smallest entries of each row of A not in B. Now if row i of A is not in B, i.e., bi < b, then the

n- r2k/ml smallest entries in row i are all smaller than b, which means they are all smaller

than the [2k/ml smallest entries in each row of B. Since B has [m/21 rows, this means that

the n - r2k/ml smallest entries in row i are all smaller than at least [2k/m [m/21 > k other

entries, i.e., these entries need not be considered as candidates for the kth smallest entry overall

of A. Thus, if we recursively compute the k smallest entries in B and then use the linear-time

selection algorithm of [BFP+73] to compute in O(k) time the k smallest of these entries and

the O(k) entries of L, we obtain the k smallest entries in A.

66



3.2. ARRAY SELECTION

If m < n, we apply the procedure described in the last paragraph to A's transpose AT rather

than A. (By Property 1.4, AT is also Monge.) This computation requires O(k) time plus the

time needed to recursively compute the k smallest entries in an m x n/21 subarray of A.

Letting T(k, m, n) denote the algorithm's running time in computing the k smallest entries

in an m x n Monge array A when max{m, n} < k < imn, we have

O(k) if k > mn/2,

T(k, m, n) = T(k, m/21,n)+ O(k) if k < mn/2 and m > n,

T(k, m, n/2])+ 0(k) if k < mn/2 and m < n.

The solution to this recurrence is

T(k, m, n) = O(klg(mn/k)) .

Now suppose k < m. We can eliminate all but k of A's rows from consideration as follows.

In 0(m + n) time, we can compute the row minima of A using the SMAWK algorithm. Then,

using the linear-time selection algorithm of [BFP+73], we can select the k smallest of these

minima in an additional O(m) time. Now consider the in - k rows of A corresponding to the

m- k largest row minima. The entries in these rows are all larger than the k smallest row

minima, which means they are not among the k smallest entries of A. Thus, we can eliminate

these m - k rows from consideration. Similarly, if k < n, we can eliminate all but k of A's

columns in 0(m + n) time.

Once the number of rows in A has been reduced to k or less and the number of columns

in A has been reduced to k or less, we can apply our O(klg(mn/k))-time selection algorithm

for arrays with m k rows and n < k columns. This observation gives an algorithm for

computing the k smallest entries in A that works for all values of k between 1 and mn and runs

in O(m + n + klg(st/k)) time, where s = min{m, k} and t = min{n, k}.

We can simplify the above expression for our algorithm's running time by observing that

m + n + k g(st/k) = 0(m + n + k lg(mn/k)) for all m, n, and k such that 1 < k < mn. To see

why this claim holds, first note that m + n + k lg(st/k) = O(m + n + k lg(mn/k)), since s < m

67



CHAPTER 3. SELECTION AND SORTING ALGORITHMS

and t < n. Now suppose m + n + k lg(st/k) = o(m + n + k lg(mn/k)). This assumption implies

lg(st/k) = o(lg(mn/k)) (3.3)

and

m + n = o(klg(mn/k)) . (3.4)

Clearly, (3.3) implies k is smaller than at least one of m and n. Thus, if we assume without loss

of generality that m < n, only two possibilities need be considered: m < k < n and k < m < n.

If m < k < n, then s = m and t = k. (3.3) then implies Ig m = o(lg(mn/k)), which implies

lg m = o(lg(n/k)). This last relation implies k lg(mn/k)= (k lg(n/k)). Since klg(n/k) n,

we then have klg(mn/k) = O(n), which contradicts (3.4).

If k < m n, then s = k and t = k. (3.3) then implies lgk = o(lg(mn/k)), which

implies lg k = o(lg(mn)). This last relation implies k is less than any polynomial in mn. Thus,

k lg(mn/k) is also less than any polynomial in mn. In particular, k lg(mn/k) = o(ria), which

again contradicts (3.4). 

3.3 Row Sorting

In this section, we describe an algorithm for sorting the rows of an m x n Monge array in O(mn)

time if m > n and in O(mn(1 + lg(n/m))) time if m < n. This result again represents joint

work with Kravets [KP91].

Theorem 3.6 The entries in each row of an m x n Monge array A = {a[i,j]} can be sorted

in O(mn) time if m rn and in O(mn(1 + lg(n/m))) time if m < n.

Proof We begin by describing a more basic O(mn + n2)-time algorithm for the row-sorting

problem and then show how this second algorithm's running time can be reduced to O(mn(l +

lg(n/m))) when m < n.

For 1 < i < m and 1 < R < n, let CR(i) denote the column of A containing the entry in row

i of A with rank R in row i. In other words, CR(i) is the unique column of A such that

r(i, CR(i)) = R.

68



.3. ROW SORTING

Furthermore, for 1 < R n, let CR(O) = R. (These values may be interpreted as describing a

"dummy" row 0 of A such that a[O, 1] < a[O, 2] < .. < a[O, n]; s,c' a row can be added without

affecting the Mongeness of A.)

Our basic algorithm consists of m phases, where in the ith phase, we sort row i of A by

computing cl(i),c 2(i),...,c,(i) using cl(i - 1),c2(i - 1),...,cn(i - 1). Specifically, we use an

insertion sort (such as the one described in [Knu73]) to sort row i, inserting first a[i, cl(i - 1)],

then a[i, c2(i - 1)], then a[i, c3(i - 1)], and so on through a[i, c,(i - 1). To insert a particular

entry a[i,j] in the sorted list of previously inserted entries from row i, we first compare a[i,j]

to the largest previously inserted entry, then to the second largest, then to the third largest,

and so on, until an entry smaller than a[i,j] is found and a[i,j]'s place in the sorted list of

previously inserted entries thereby ascertained.

Clearly, the order in which we insert the entries of row i affects the time spent sorting these

entries. In particular, as noted in [Knu73], sorting N values with the insertion sort described

above takes O(N + I) time, where I is the number of inversions separating the insertion order

and the final sorted order for the values. An inversion is a pair of values (, y) such that z is

inserted before y but z > y. In the worst case, a sequence of N values may contain (2) = f1(N 2)

inversions; however, we will argue that the total number of inversions encountered in sorting all

m rows of an m x n Monge array is O(n2 ).

Given the order in which we insert the entries of row i, an inversion encountered while

sorting row i corresponds to a pair of columns ji and j2, such that a[i - 1,j] < a[i - 1,j2]

and a[i,jl > a[i,j2] (where, by convention, a[O,jl] < a[O,j2] if and only if jl < j2). Since A is

Monge, Property 1.1 implies that for each pair of columns jl and j2, there exists at most one

row index i such that a[i - 1,jl] < a[i - 1,j2] and a[i,jl] > a[i, j 2]. (In fact, such a row index

exists only if jl < j2.) Thus, in sorting all the rows of A, we can encounter at most O(n2) total

inversions, one for each pair of columns. This bound gives our basic algorithm a running time

of O(mn + n2).

To obtain an algorithm that runs in O(mn) time if m > n and in O(mn(1 + lg(n/m))) time

if m < n, we first note that if m > n, the basic algorithm described above already has the

desired running time. On the other hand, if m < n, we need to modify the basic algorithm

69



CHAPTER 3. SELECTION AND SORTING ALGORITHMS

as follows. First, we partition A into n/ml subarrays of size at most m x m. Then, using

our basic algorithm, we sort the rows of these subarrays in O(m2 ) time per subarray or O(mn)

total time. Finally, we merge the [n/ml sorted subrows corresponding to each row of A in

O(n(1 + lg(n/m))) time per row or O(mn(1 + lg(n/m))) total time. U

Note that the size of our algorithm's output, mn, is not necessarily a lower bound on the

time required for the row-sorting problem. Just as the k smallest entries in each row of an

m x n Monge array A can be specified in o(km) space when k is large (see Subsection 3.1.2),

there may be a more concise representation for the m permutations ordering by magnitude the

entries in each of A's rows.

3.4 Array Sorting

As a final variation on this chapter's theme, we consider the problem of sorting all the entries of

an m x n Monge array. Unlike the three array problems we considered in Sections 3.1 through

3.3, the array-sorting problem is not significantly easier than the general problem of sorting

man arbitrary values, which takes O(mn lg mn) time. Specifically, we can prove the following

theorem (a variant of which first appeared in [KP91]).

Theorem 3.7 All the entries in an m x n Monge array A = a[i,j]} can be sorted in

O(mnlgmn) time. Furthermore, sorting all the entries of an n x n Monge array requires

fQ(mnlgt) comparisons and thus fl(mn Ilgt) time, where t = min{m, n}.

Proof The upper bound follows immediately from any general O(N Ig N)-time algorithm for

sorting N arbitrary values. Note that first sorting the rows of A using the row-sorting algorithm

of the previous section and then merging these sorted rows (in O(mn lg m) time) does not yield

an asymptotically faster algorithm, since for m > n, mn Ig m = e(mn Ig mn), and for m < n,

mn(1 + lg(n/m)) + mn lg m = e(mn Ig mn).

For the lower bound, first consider the n x n array A = {a[i,j]} such that a[i,j] = -(i + j)2 .

By Property 1.7, this array is Monge, since f(x) = -x 2 is concave. Moreover, for all i in the

range 1 < i < m and all j in the range 1 < j < n,

(a[i,j + ] + a[i + 1,j])-(a[i,j] + a[i + 1,j + 1]) = -2(i + j + 1)2 + (i + j)2 + (i + j + 2)2

70



3.5. OPEN PROBLEMS

= 2.

This last observation is significant because it implies that A remains Monge even if we slightly

perturb the entries of A. More precisely, the m x n array A' = a'[i,j] given by a'[i,j =

a[i, j] + 4ei, j] is Monge so long as -1/2 < e[i, j] < 1/2 for all i and j.

Now for 1 < a < m + n - 1, consider the sth diagonal of A, which consists of those entries

a[i, j] such that i + j = s - 1, and let d. denote the number of entries in this diagonal, so that

s if 1<8< t,

do t if t<s<m+n-t,

m+n-s if m+n-t<s<m+n-1,

where t = minm,n}). All the entries in this diagonal have the same value, -(a - 1)2; thus,

by perturbing these entries slightly, their relative magnitudes may be reordered in any of d,!

different ways without destroying the Mongeness of A. Furthermore, since the entries in different

diagonals can be reordered independently, we can obtain

m+n-1

d = (!)m+n 2 +((t- 1)!)2((t - 2)!)2...--((1)!)

different total orderings for all A's entries. Thus, in a linear-decision-tree model of computation,

lg ((t!)m+n-2+1((t- 1)!)2((t- 2)!)2...((1)!) = 1l(mnlgt)

comparisons re necessary (in the worst case) to solve the array-sorting problem for an m x n

array Monge- array. 

3.5 Open Problems

In this chapter, we explored two fundamental comparison problems - selection and sorting - in

the context of two-dimensional Monge arrays. We provided simple but efficient algorithms for

the row-selection, array-selection, and row-sorting problems, algorithms that take advantage

71



CHAPTER 3. SELECTION AND SORTING ALGORITHMS

of the structure of Monge arrays to obtain significantly better results than are possible for

arbitrary arrays. We also showed that Mongeness does not help much with the array-sorting

problem.

We conclude with a few of the more interesting questions left unresolved by this chapter:

1. In Subsection 3.1.2, we gave an algorithm that identifies the k smallest entries in each

row of an m x n Monge array in O((v/ilg m)(nIgn) + m Ig n) time. For large values of

k, this running time is o(km), even though km entries are identified. This observation

leads naturally to the question of whether there exists an algorithm for the row-selection

problem that runs in o(km) time when k is smaller.

2. In Section 3.2, we used the row-selection algorithm of Subsection 3.1.1 to obtain an

efficient algorithm for the array-selection problem. It remains open whether our other

row-selection algorithm can be used in a similar fashion.

3. The only array-searching problem considered in this chapter for which we obtain matching

upper and lower bounds is the array-sorting problem discussed in Section 3.4. (The bounds

for array-sorting are matching when m = 0(n).) It remains open whether the algorithms

for row selection, array selection, and row sorting given in Sections 3.1 through 3.3 can be

improved or nontrivial lower bounds for these problems obtained. (Lower bounds might

follow from the sizes of the various problems' search spaces. For example, a lower bound

of fl(S) on the number of different combinations of row ranks possible for the entries of

a Monge array would imply an f(lg S) lower bound on the time necessary to sort the

array's rows in a linear-decision-tree model.)

72



Chapter 4

Parallel Algorithms

In this chapter, we present parallel algorithms for computing minimal entries in two- and three-

dimensional Monge arrays. We consider three models of parallel computation: the CREW-

PRAM model, the CRCW-PRAM model, and Valiant's comparison model. Algorithms in all

three models are analyzed in terms of both the number of processors and the amount of time

used. A PRAM ("Parallel Random-Access Machine") consists of a number of processors, each

with its own local memory, and a shared global memory, accessible to all the processors. Time is

measured as for sequential RAMs. In the CREW ("Concurrent-Read, Exclusive-Write") version

of the PRAM model, concurrent reads of the same global memory location are allowed, but

concurrent writes to the same location are not. In the CRCW ("Concurrent-Read, Concurrent-

Write") version, both concurrent reads and writes are allowed, but if multiple processors attempt

to write to the same location at the same time, only one of the processors will succeed, and it

may be any one of the processors. In Valiant's comparison model, time is measured in terms of

comparisons only. In other words, each processor may perform only one comparison per time

step, but an unlimited number of noncomparison operations. Issues such as access to global

memory and processor allocation can thus be ignored in this model.

This chapter is organized as follows. In Section 4.1, we mention several parallel algorithms

for general minimization and merging that our Monge-array algorithms use as subroutines.

Then, in Section 4.2, we discuss parallel algorithms for finding row minima in two-dimensional

Monge arrays. Finally, Sections 4.3 and 4.4 consider parallel plane and tube minimization,

respectively, in three-dimensional Monge arrays. With the except of three algorithms due to

73



CHAPTER 4. PARALLEL ALGORITHMS

Apostolico, Atallah, Larmore, and McFaddin [AALM90], Atallah and Kosaraju [AK91], and

Atallah [Ata90] that are mentioned briefly in Sections 4.2 and 4.4, the results presented in this

chapter represent joint work with Aggarwal that first appeared in [AP89a].

4.1 Preliminaries

In finding minimal entries in a Monge array, we often need to solve two more fundamental

problems: given a list, compute its minimum element, and given two sorted lists, merge these

lists into a single sorted list. Both of these problems are well understood in all three of the

parallel models we consider. We summarize relevant results for these problems in the following

four lemmas.

Lemma 4.1 (Kruskal [Kru83]) In the CREW-PRAM model, the minimum of n numbers

can be computed in O(lg n) time using n/lg n processors. Also, two sorted lists containing a

total of n elements can be merged in O(lg n) time using n/ g n processors. U

Lemma 4.2 (Shiloach and Vishkin [SV81]) In the CRCW-PRAM model (and thus in

Valiant's comparison model as well), the minimum of n numbers can be computed in O(lg(l/e))

time using nl+'/lg(1/c) processors, for any c > 0. (In particular, the minimum of n numbers

can be computed in O(lg Ig n) time using n/ Ig Ig n processors.) Also, two sorted lists containing.

a total of n numbers elements can be merged in O(lg(1/c)) time using n+t/ lg(1/e) processors,

for any c > 0. 

Lemma 4.3 In the CREW-PRAM model, the row minima of an arbitrary r x n array A =

(ali,j]} can be computed in O(r + g n) time using n processors.

Proof We first describe an O(lg n)-time, n-processor algorithm for computing the minimum

of n numbers al,..., a, on a CREW-PRAM. Assuming (for the sake of simplicity) that n = 2'

for some positive s, we consider the following n-leaf complete binary tree T. Associated with

each leaf of T is one of the ai, and associated with each internal node of T is a processor. Since

T has n - 1 internal nodes, one processor is unused. The processor associated with node u of

T computes bu, the minimum of the ai below u. If v and w are the children of u in T, then

b, is just the minimum of b, and bw (provided we define b, to be the a associated with u if u

74



4.1. PRELIMINARIES

is a leaf). Thus, the processor associated with u can compute bu in one time step once b. and

b, have been computed. Since the depth of T is Ig n, this means that Ig n time steps suffice to

compute the minimum of a, through an.

Note that in the preceding algorithm, only those processors associated with nodes at height

h in T are actually doing anything at time h. This means we can "pipeline" this algorithm to

compute the row minima of A in O(r + Ig n) time - we just "feed" a new row of A to the leaves

of T every time step and the minimum entry in that row "pops out" at T's root Ig n steps later.

Lemma 4.4 In the CRCW-PRAM model (and therefore, in Valiant's comparison model as

well), the row minima of an arbitrary r x n array A = {a[i, j]}, can be computed in O(r +lglg n)

time using n processors.

Proof We first describe an O(lg Ig n)-time, n-processor algorithm for computing the minimum

of n numbers a,...,a, on a CRCW-PRAM. Assuming (for the sake of simplicity) that n =

22' +° -1 for some positive s, we consider the following tree T of height s. Every node at height

h in T has exactly c(h) = 22-'+' children, which implies that the number of nodes at height h

in T is

r 22-1 +1 = 2E-+(2'-'+) = - 22'-2A+a-h
i=h+l

In particular, T has 22 '+ ° - 1 = n leaves. Associated with each leaf of T is one of the a, and

associated with each internal node of T are p(h) = 22T-M processors, where h is the height of

the internal node. Since

E(22-22 +-h) (22-1) = 22 +s-h- = n/2 = n - n/2',
AnL h=l h=1

n/2' processors are unused. The processors associated with node u of T compute b, the

minimum of the ai below u. b, is just the minimum of b. over all children v of u (provided we

define b, to be the as associated with u if u is a leaf). Since (c(h)) 2 = 22X+ 2 = 8p(h), Lemma 4.2

tells us that the processors associated with u can compute bu in constant time once b, has been

computed for all of u's children v. Since the depth of T is s, this means that = O(lglgn)

time steps suffice to compute the minimum of al through a.

75



CHAPTER 4. PARALLEL ALGORITHMS

Note that in the preceding algorithm, only those processors associated with rdes at height

h in T are actually doing anything at time h. This means we can "pipeline" this algorithm to

compute the row minima of A in O(r + Ig g n) time - we just "feed" a new row of A to the

leaves of T every time step and the minimum entry in that row "pops out" at T's root glg n

steps later. I

We also make frequent use of the following theorem, due to Brent [Bre74], in reducing the

processor requirements of our array-searching algorithms.

Theorem 4.5 (Bre74) Suppose T is a p-processor algorithm that runs in time t and per-

forms a total of w operations in either the CREW-PRAM model, the CRCW-PRAM model,

or Valiant's comparison model. Then we can simulate T in time O(t) using w/t processors in

the same model of parallel computation.

4.2 Two-Dimensional Monge Arrays

In this section, we consider the problem of finding the row minima of a two-dimensional Monge

array. We begin with a simple result for Valiant's comparison model.

Theorem 4.6 In Valiant's comparison model, we can compute the row minima of an n x

m Monge array A = a[i,j]} in O(lg n + Ig lg m) time using O((n + m Ig n)/(lg n + Ig lg m))

processors.

Proof We begin by comparing the jth entry in row n/21 of A to the (j + l)st entry of the

same row, for all j between 1 and m. Now, if

a[fn/21, j] > a[[n/21, + 1],

then

a[i, j > a[i,j + 1]

for all i between 1 and rn/21 - 1. This means the entries in column j + 1 and rows 1 through

rn/21 - no longer need be considered as candidates for the row minimum in their respective

76



4.2. TWO-DIMENSIONAL MONGE ARRAYS 77

rows. On the other hand, if

a[rn/21,j] < a[rn/21, j + 11,

then

a[i,j] < a[i,j + 1]

for all i between rn/21 + 1 and n. This means the entries in column j and rows rn/21 + 1

through n may be eliminated from consideration. Now, let A' denote the subarray formed by

taking the top n/21 - 1 rows of A and all the columns of A that still contain candidates for

the minima of these rows. Similarly, let A" denote the subarray formed by taking the bottom

In/21 - 1 rows of A and all the columns of A that still contain candidates for the minima of

these rows. Note that if A' and A" contain m' and m" columns, respectively, then m' > 1,

m" > 1, and m'+ m" = m + 1.

To find the row minima of A, we now need to solve three separate problems in parallel: we

need to find the row minima in the subarray A', the row minima in the subarray A", and the

minimum entry in row n/21. The first two problems we solve recursively. The third we solve

using Lemma 4.2 - this requires O(lg ig m) time and O(m) total comparisons. Thus, if T(n, m)

denotes the time required to solve the row-minima problem for A in Valiant's comparison model,

then

T(n, m) 1 + min {O(lg g m), T([n/21, m'), T(rn/21, m")},
m'+m" =m+ 1

where m'+ m" = m + 1 and T(1, m) = O(lg lg m). The solution to this recurrence is T(n, m) =

O(lg n + Ig Ig m). Similarly, if W(n, m) denotes the total number of comparisons required, then

W(n,m) < O(m) + min {W(rn/21,m') + W(rn/21,m")},
m',m" > 

m'+m"=m+l

where W(1, m) = O(m). The .olution to this recurrence is W(n, m) = O(n + m Ig n). Thus, by

Brent's theorem, O((n + m Ig n)/(lg n + Ig lg m)) processors suffice. U

For m = n, Theorem 4.6 tells us that we can solve the row-minima problem for A with

O(nlgn) total comparisons. However, the sequential algorithm of [AKM+87] uses 0(n) com-

parisons; thus, it remains open whether there exists an O(lgn)-time algorithm for Valiant's



CHAPTER 4. PARALLEL ALGORITHMS

comparison model using o(nlgn) comparisons. Furthermore, the only bound we have on the

time to compute A's row minima in Valiant's comparison model is Q(lglg n) - this bound

follows from the l(lg Ig n) bound on the time to compute the minimum of n numbers [SV81].

Thus, it also remains open whether there exists an o(lg n)-time algorithm for Valiant's compar-

ison model.

We do not know how to convert the algorithm of Theorem 4.6 to a PRAM algorithm, as

it is unclear how to perform processor allocation. However, using two different approaches, we

can obtain both an O(lgn)-time, n-processor CRCW-PRAM algorithm and an O(lgn)-time,

(n Ig n)-processor CREW-PRAM algorithm for computing the row minima of an n x n Monge

array.

Before we present any of our PRAM algorithms, we first prove the following technical lemma.

Lemma 4.7 Given the minimum entry in every rth row of an n x m Monge array A such that

1 < r < n, we can compute the remaining row minima in O(r + Ig m) time on a CREW-PRAM

and in O(r + Ig Ig m) time on a CRCW-PRAM, using (n + m)/r processors in both cases.

Proof For the sake of simplicity, we assume r divides n and m. For 1 < i < n/r, let k(i)

denote the index of the column containing the minimum entry of row ir, and let k(O) = 1. Let

Ai denote the subarray of A containing rows (i - 1)r + 1 through ir - 1 and columns k(i - 1)

through k(i). Since A is Monge, the minima in rows (i - 1)r + 1 through ir - 1 must lie in Ai.

Let c(i) = r(k(i) - k(i - 1) + 1)/ri. We partition A, into c(i) subarrays. Specifically, for

1 < j < c(i), let Sij denote the subarray of Ai containing rows (i - 1)r + 1 through it - 1 and

columns k(i- 1)+(j- 1)r through min{k(i - 1) +jr - 1, k(i)}. This is suggested in Figure 4.1.

Note that each of these subarrays has size at most (r - 1) x r and is Monge. Moreover, since

A,"! k(i) - k(i- 1) < m, we have n/'l c(i) < (n + m)/r, i.e., the total number of subarrays

Sij, is no more than (n + m)/r. Thus, we can assign one processor to each of these subarrays.

To assign processors to subarrays, we construct an (n/r)-element linear array X = {zj},

where zj = k(j)- 1/2 for 1 < j < n/r, and an (m/r)-element linear array Y = {yi}, where

yj = jr for 1 j < mir. Using Kruskal's techniques [Kru83], we can merge these two arrays

in O(lg(n/r)) time on a CREW-PRAM and in O(lglg(n/r)) time on a CRCW-PRAM, using

'/r processors in both cases. Let Z = {z, } be the array we obtain. We assign a processor to

78



4.2. TWO-DIMENSIONAL MONGE ARRAYS

Figure 4.1: Suppose we know the minimum entry in every rth row of A, and that the positions of
these minima are given by the small black squares. Then the remaining row minima of A must lie in the
shaded regions. To find the row minima in these shaded regions, we partition the regions into a number
of subarrays Sij of size at most r x r.

each element of Z. Now, for any j between 1 and (m + n)/r, consider the processor assigned

to the element z. In order to determine its subarray, this processor first determines whether

the element zj was originally in X or Y. (We maintain pointers so that this can be done in

constant time in either model.) If zj corresponds to an element zi from X, then the processor

is assigned to the subarray Si,j. If, on the other hand, z corresponds to an element y from

Y, then the processor first computes i = j - k. i is the last element from X preceding y in

Z. Next, the processor determines the element z in Z corresponding to zi. The processor is

then assigned to the subarray Si.k-,. Note that this procedure results in either c(i) or c(i) + 1

processors being assigned to rows (i - 1)r + 1 through ir - 1. If c(i) + 1 processors are assigned,

then the last one (the one assigned to the nonexistent subarray S.,c(i)+l) does nothing.

Once the processors are assigned, each processor solves the row-minima probiem for its

subarray in O(r) time using the sequential array-searching algorithm of [AKM+87]. Now, for

1 < i n/r, let R. denote the (r - 1) x c(i) array formed from the row minima of Si,l through

Si,,(i). The row minima of Ai (which correspond to the minima in rows (i - 1)r+ 1 through itr- 1

of A) are just the row minima of Ri. Moreover, we have exactly c(i) processors assigned to each

RP. Thus, using Lemmas 4.3 and 4.4, we can compute the row minima of Ri in O(r + lg c(i))

time on a CREW-PRAM and in O(r + g lg c(i)) time on a CRCW-PRAM. Since c(i) < m/r

79



CHAPTER 4. PARALLEL ALGORITHMS

for all i, we obtain the specified time and processor bounds. U

By applying Lemma 4.7 repeatedly, we obtain the following theorem.

Theorem 4.8 For 1 r n, we can compute the row minima of an n x m Monge array A

in O((lg n/ Ig r)(r + Ig m)) time on a CREW-PRAM or in O((Ig n/ Ig r)(r + Ig Ig m)) time on a

CRCW-PRAM, using (n + m)/r processors in both cases.

Proof For the sake of simplicity, we again assume r divides n and m. Form an n/r x m

array B by taking every rth row of A. Recursively compute the row minima of B, using

n/r 2 + mi/r < (n + m)/r processors. Then, by invoking Lemma 4.7, compute the remaining

row minima of A using (n + m)/r processors.

If T(n, m) denotes the time to solve the row-minima problem for A using a CREW-PRAM

and if T'(n, m) denotes the time to solve the row-minima problem for A using a CRCW-

PRAM, then T(n, m) _ T(n /r, m) + O(r + Ig m) and T'(n, m) < T(n/r, m) + O(r + Ig g m).

Since T(r, m) = O(r + Ig m) and T'(r, m) = O(r + Ig Ig m), these recurrences yield the specified

time bounds. I

For m = n and r = n', where > 0 is a constant, this theorem yields an optimal processor-

time product for both CREW- and CRCW-PRAMs. For m = n and r = Ig n, we obtain an

O(lg 2 n/ lglg n)-time, (n/lg n)-processor CREW-PRAM algorithm for computing A's row min-

ima. Finaly, for m = n and r = lglg n, we obtain an O(lgnlglgn/l glglgn)-time, (n/lglgn)-

processor CRCW-PRAM algorithm.

We can obtain even better time bounds (but worse processor-time products) using a divide-

and-conquer approach; for such an approach we need the following lemma.

Lemma 4.9 Given an n x m Monge array A such that mn < n, suppose we know the min-

imum in every [n/mJth row of A. Then, we can compute the remaining row minima of A

in O(lgm) time using n/lgm processors on a CREW-PRAM and in O(lglgm) time using

n/ Iglg m processors on a CRCW-PRAM.

Proof In this proof, we do not assume m divides n - this complicates the proof a little

bit, but it is worth going through these details at least once. For 1 < <i m, let k(i) denote

80



4.2. TWO-DIMENSIONAL MONGE ARRAYS

the index of the column containing the minimum entry of row in/mJ. Also, let k(O) = 1

and let k(m + 1) = n. Furthermore, for 1 < i < m + 1, let Ai denote the subarray of A

containing rows (i- 1)Ln/mj + 1 through min{iLn/mj - , n} and columns k(i - 1) through

k(i). Since A is Monge, the minima in rows (i - 1)Ln/mJ + 1 through min{iLn/mj - 1, n}

must lie in Ai. Using the list merging technique from the proof of Lemma 4.7, we can assign

(Ln/mJ - 1)(k(i) - k(i - 1) + 1) processors to Ai in the specified time and process(,, bounds.

Furthermore, we can find the minimum entry in each row of A, in O(lg(k(i) - k(i - 1) + 1))

time on a CREW-PRAM and in O(lglg(k(i) - k(i - 1) + 1)) time on a CRCW-PRAM, using

k(i) - k(i - 1) + 1 processors in both cases. Since k(i) - k(i - 1) + 1 < 2m + 1, the total

number of processors required and the total number of comparisons used are both

m+l

,([n/mJ - 1)(k(i) - k(i - 1) + 1) = O(n).il
Noting that k(i) - k(i - 1)+ 1 < m for all i, and applying Brent's theorem to reduce the number

of processors, we obtain the specified time and processor bounds. U

Theorem 4.10 We can compute the row minima of an n x n Monge array A in O(lg n) time

using n processors on a CRCW-PRAM.

Proof For the sake of simplicity, we only prove this theorem for the case of n = 22', where 

is some positive integer. Consider the /ii x n array B formed by taking every ,ith row of A.

Partition this array into ii subarrays such that the jth subarray Bj, 1 < j < v/i, contains

columns (j - 1)V/i + 1 through in of B. We assign JiV processors to each Bj and recursively

compute its row minima. Now the row minima of the Bj form a / x n array B', such that

the minimum entry in row i of B' is precisely the minimum entry in row i/' of A. Thus, we

can assign vie processors to each row of B' and compute its row minima in O(lg lg n) time.

For 1 < i < V/n, let k(i) denote the index of the column containing the minimum entry

of row ii, and let k(O) = 1. Since A is Monge, the minimum entries in rows (i - l)v'i + 1

through i/ni - 1 of A must lie in columns k(i - 1) through k(i). For 1 < i < v/i, let

c(i) = [k(i) - k(i- 1) + 1
V/]

81



CHAPTER 4. PARALLEL ALGORITHMS

For 1 < j < c(i), let Sj be the subarray of A that contains rows (i - 1)VJ/ + 1 through i/

and columns k(i- 1) + (j - 1)vi' through min{k(i- 1) +jvii- 1, k(i)- 1). Note that we define

Sij to contain part of row i/i, even though we already know that row's minimum - this is

merely for convenience. Also note that the minimum entries in rows (i- 1)v/i+ 1 through i/in

of A are either in one of the S, or in column k(i), and that Si,l,. .. , Si,c(j)_l are all / x JVn

arrays. Let d(i) = k(ij - k(i - 1)- (c(i) - 1)VJi, and let S'(i) be the subarray formed by taking

every 1Vi/d(i)Jth row of St,C(i). Note that S,¢(i) is a d(i) x d(i) array.

For 1 < i < v/d and 1 j < c(i), we assign V/ processors to Sj, and for 1 < i < v/i, we

assign d(i) processors to S'(,). This can be done in O(lg Ig n) time using the merging technique

described in the proof of Lemma 4.7. Moreover, since

E(c(i)- 1)vni+d(i) = k(i)-k(i- 1) < n,

we have enough processors. We then recursively solve the row-minima problem for these sub-

arrays.

Next, we assign Vi processors to each of S,c(1), S,c(2),... S,(/ ). Then for 1 < i iV,
we use the row minima of Si',¢(i) and Lemma 4.9 to compute the row minima of Si,¢(i) in O(lg Ig n)

time.

Finally, we compute the minimum entry in row , (i - )Vn + 1 < I < ir, by taking the

minimum of the entry in column k(i) and the c(i) values obtained for row I in solving the row-

minima problems for Si,, Si,2... , Si,c(i). To do this, we first spread out the (c(i) - 1)V/i + d(i)

processors originally assigned to Sj,, S,,2,., , Sic(i, assigning at least c(i) - 1 to each of rows

(i - )V/i + 1 through i/Y. The processors assigned to any particular row can then compute

the minimum of the c(i) candidates for the row's minimum obtained from S$,Si, 2,. ..,Si,i)

in O(glglgc(i)) = O(lglgn) time (if c(i) = 1, then no computation is necessary) - this gives

the minimum entry in columns k(i - 1) through k(i)- 1 of the row. Then we reshuffle the

processors once more, assigning one processor to each row of A. For (i - 1)V/; + 1 < l < i/n ,

the processor assigned to row I can then compute the minimum of the entry in column k(i) of

row I and the minimum of the entries in columns k(i - 1) through k(i) - 1 of row I to obtain

minimum entry in row I.

82



4.2. TWO-DIMENSIONAL MONGE ARRAYS

To analyze the time complexity of this algorithm, note that all steps of the algorithm, other

than the recursive calls, can be done in O(lg lg n) time. If T(n) denotes the time complexity of

solving the row-minima problem for A, then the two recursive calls take at most T(V/i) time

apiece. Consequently, T(n) < 2T(v/'i) + O(lg Ig n), which, together with T(1) = 0(1), yields

the required time bound. U

Theorem 4.11 We can compute the row minima of an n x n Monge array A in O(lg n Ig lg n)

time using n/lg lg n processors on a CREW-PRAM.

Proof We first show how to solve the row-minima problem for A in O(lg n lglg n) time by

using n processors on a CREW-PRAM. Then we use Brent's theorem to reduce the number of

processors to O(n/ Ig Ig n).

Our algorithm for a CREW-PRAM with n processors is the same as that given for The-

orem 4.10. A straightforward analysis shows that steps that are not recursive calls can now

be executed in 0(lg n) time. Consequently, if T(n) denotes the time complexity of the row-

minima problem for A, then T(n) < 2T(vJi) + O(lgn) and T(1) = 0(1). This recurrence

yields T(n) = O(lg n Iglg n), which implies n processors can solve the row-minima problem in

O(lg n lglg n) time.

To reduce the number of processors, observe that if W(n) denotes the number of operations

required by this algorithm, then

W(n) = O(n) + viW(vi) + Z{(c(i) - )W(x/i) + W(d(i))},
i=l

which, together with W(1) = 0(1), yields W(n) = O(n lg n). Consequently, by Brent's theorem,

the number of processors required is O(n/ Ig Ig n). 

A superlinear number of processors allows us to obtain even faster algorithms. Specifically,

we have the following theorem.

Theorem 4.12 For any > 0, we can compute the row minima of an n x m Monge array A

in 0((1/c)lg(1/E)) time using (n + m)+' processors on a CRCW-PRAM.

83



CHAPTER 4. PARALLEL ALGORITHMS

Proof Consider the n/ 2 x m array B formed by taking every nl-'/ 2 th row of A. Since

n/ 2ml + '/_ < (n + m) l+C, we can assign ml+'/2 processors to each row of B and then use [SV81]

to obtain B's row minima in O(lg(1/e)) time.

Now, for 1 i < n /1 , let ki) denote the index of the column containing the minimum

entry in row in 1'/1 2 of A, and let k(O) = 1. Let Si denote the subarray of A containing

rows (i - 1)n -'1 2 + 1 through inl'- /2 - 1 and columns k(i - 1) through k(i), and let m(i) =

k(i) - k(i - 1) + 1 be the number of columns in Si. Since A is Monge, the minimum entries in

rows (i - 1)nl-'/ 2 + 1 through in'" /2 - 1 must lie in Si. Thus, we need only recursively solve

the row-minima problems in these subarrays to find the remaining row minima.

To recursively solve the row-minima problem for Si, we need

(n-'2-1 + m(i))

processors. This implies we need a total of

h3e13

E (nl'/2 -1 + m(i))+
i=1

processors. Since
nd/2

e m(i) < n / 2 + m,
i=l

this is less than

(n + m)' +' ,

i.e., we have enough processors. We assign processors to subarrays using the merging technique

given in the proof of Lemma 4.7.

To analyze the running time of this algorithm, we note that, except for the recursive call,

all of the algorithm's steps take O(lg(l/e)) time. Consequently, if T(n, m) denotes the time

necessary to solve the row-minima problem for an nx m Monge array using (n+m)l + ' processors

on a CRCW-PRAM, then

n'/2

T(n, m) < Olg(l/e)) + E T(n'-'/2 , (i)).
i=l

84



4.3. PLANE MINIMA IN THREE-DIMENSIONAL MONGE ARRAYS

Since T(1, m)= O(lg(1/c)), this recurrence yields T(n,m)= O(1/elg(1/e)). 

We conclude this section by mentioning briefly two more algorithms for the row-minimization

problem. The first of these algorithms is due to Apostolico, Atallah, Larmore, and McFaddin

[AALM90].

Theorem 4.13 (Apostolico, Atallah, Larmore, and McFaddin [AALM9O]) The row

minima of an n x n Monge array A can be computed in O(lg n) time using n g n processors on

a CREW-PRAM. U

The second algorithm, due to Atallah and Kosaraju [AK91], reduces the processor complex-

ity of Apostolico, Atallah, Larmore, and McFaddin's algorithm down to n with no degradation

in the running time.

Theorem 4.14 (Atallah and Kosaraju [AK91]) In the CREW-PRAM model, the row

minima of an n x n Monge array A can be computed in O(lg n) time using n processors. U

We remark that in [AK91], Atallah and Kosaraju also gave a more complicated EREW-

PRAM version of their algorithm with the same time and processor bounds. We also note that

both of the two preceding algorithms use Property 1.9.

Table 4.1 summarizes the six algorithms described in the section for computing row minima

in two-dimensional Monge arrays, along with the two additional algorithms from [AALM90]

and [AK91].

4.3 Plane Minima in Three-Dimensional Monge Arrays

In this section, we consider the plane-minima problem for a three-dimensional Monge array in

a parallel context. Specifically, we give CREW- and CRCW-PRAM algorithms that, given an

n x n x n Monge array A = {a[i,j, k]}, for each index i, 1 < i n, find two more indices j(i)

and k(i), 1 < j(i) < n and 1 < k(i) < n, such that

a[i,j(i)jk(i) = min a[i,j, k].
I:i$,,

85



CHAPTER 4. PARALLEL ALGORITHMS

Model _ Time Processors Theorem

Valiant's O(lgn) n 4.6

CRCW O((lg n/ Ig r)(r + Ig Ig n)) n/r 4.8

O(lg n) n 4.10

O((1/) lg(1/E)) n+ 4.12

CREW O((lg n/ lg r)(r + Ig n)) n/r 4.8
O(lgnlglg n) n/lglgn 4.11

O(lg n) n lgn 4.13

O(lg n) n 4.14

Table 4.1: The row minima of an n x n Monge array can be computed using time and processors as
given by this table.

The natural divide-and-conquer approach yields a simple solution for the plane-minima

problem: we merely find the minimum entry in the n/2Jth plane (corresponding to those

entries whose first index i = [n/2J) and then recurse on the two smaller plane-minima problems

that remain. This gives the following lemma.

Lemma 4.15 If we can compute the row minima of an n x n two-dimensional Monge array in

T(n) time using P(n) processors in either the CREW-PRAM or the CRCW-PRAM model, we

can compute the plane minima of an n x n x n three-dimensional Monge array in O(T(n) lgn)

time using P(n) processors in the same model. U

Combining this lemma with Theorem 4.14 gives an O(lg2 n)-time, (n/lglgn)-processor

CREW-PRAM algorithm for computing the plane minima of an n x n x n Monge array. It re-

mains open whether this time complexity can be improved, even for the stronger CRCW-PRAM

model or Valiant's comparison model.

4.4 Tube Minima in Three-Dimensional Monge Arrays

In this section, we consider the tube-minima problem for a three-dimensional Monge array in a

parallel context. Specifically, we describe optimal CREW- and CRCW-PRAM algorithms that,

given an n x n x n Monge array A = {a[i,j, kl]), for each pair of indices (i, k), 1 i < n and

1 < k < n, find a third index j(i, k), 1 < j(i, j) < n, such that a[i, j(i,k), k] = minl<j< a[i,j, k].

86



4.4. TUBE MINIMA IN THREE-DIMENSIONAL MONGE ARRAYS 87

We can obtain a naive solution for the tube-minima problem by noting that the tube minima

of a three-dimensional array are just the row minima of the planes corresponding to fixed

values of the first index. Thus, to compute the tube minima of a three-dimensional n x n x n

Maonge array, we need only find the row minima of n two-dimensional n x n Monge arrays. By

Theorems 4.11 and 4.10, this can be done in O(lg nlglgn) time using n2 /lglg n processors on

a CREW-PRAM and in O(lg n) time using n2 processors on a CRCW-PRAM.

This naive approach gives us an O(n21g n) processor-time product for both CREW- and

CRCW-PRAMs. Using the following lemma, we can reduce this product to O(n 2 ) in both

models. (Note that this is optimal, since an n x n x n arrays has n2 tube minima.)

Lemma 4.16 Suppose T is a CREW-PRAM algorithm that computes the tube minima of an

n x n x n array A = {a[i,j, k]} in T(n) time using n2 processors. Then we can use T to obtain

another CREW-PRAM algorithm that computes the tube minima of A in O(T(n) + g n) time

using n2 /T(n) processors. Similarly, suppose T' is a CRCW-PRAM algorithm that computes

the tube minima of A in T'(n) time using n2 processors. Then we can use T' to obtain another

CRCW-PRAM algorithm that computes the tube minima of A in O(T'(n) + lg lg n) time using

n2/T'(n) processors.

Proof We only prove this lemma for CREW-PRAMs; the proof for CRCW-PRAMs is similar.

Also, for the sake of simplicity, we assume T(n) divides n.

For 0 < e < T(n), let Bf = {bI[i,j, k]} be the (n/T(n)) x (n/T(n)) x (n/T(n)) subarray of

A where b[i,j, k] = a[iT(n),jT(n),k + en/T(n)]. Since there are T(n) subarrays B and we

have n2 /T(n) total processors, we can assign n2/(T(n)) 2 ) processors to each Be. Moreover, the

processors assigned to B can solve the tube-minima problem for Bt in T(n/T(n)) < T(n) time

using the algorithm T.

Now consider the (iT(n),jT(n))-tube of A, where 1 < i < n/T(nj and 1 j < n/T(n).

The minimum entry in this tube is simply the minimum of the corresponding tube minima

in B 0 ,...,BT(n)-l. Thus, we can apply Lemma 4.1 and obtain the minimum entry in every

(iT(n),jT(n))-tube of A in O(lg n) time using n 2/T(n) processors.

Next, consider the n/T(n) planes of A corresponding to those values of A's second index

that are multiples of T(n). In each of these planes, we know the minimum entry in every T(n)th



CHAPTER 4. PARALLEL ALGORITHMS

row (it is one of the tube minima we have already computed). Thus, we can apply Lemma 4.7

and fill in the rest of these planes' row minima in O(T(n) + ig n) time using n/T(n) processors

per plane (i.e., n2/(T(n)) 2 total processors).

Finally, consider the n planes of A corresponding to all possible values of the first index. In

each of these planes, we now know the minimum entry in every T(n)th row. Thus, by again

applying Lemma 4.7, we can fill in the rest of these planes' row minima (corresponding to the

remaining tube minima of A) in O(T(n) + g n) time using n/T(n) processors per plane (i.e.,

n2/T(n) total processors). I

Applying Lemma 4.16 to the naive algorithms for computing the tube minima of an n x n x n

array, we obtain an O(lg n lglg n)-time, (n 2/ Ig n g g n)-processor CREW-PRAM algorithm and

an O(lgn)-time, (n 2/lgn)-processor CRCW-PRAM algorithm. Both these algorithms have

optimal processor-time products. However, as we show in the next two theorems, we can

obtain better time bounds without any deterioration in the asymptotics of the processor-time

product.

Theorem 4.17 In the CREW-PRAM model, we can compute the tube minima of an n x n x n

Monge array A = a[i, j, k]} in O(lg n) time using n2
/ lg n processors.

Proof For simplicity, we assume n - 22° for some positive integer s. By Lemma 4.16, it

suffices to show that n2 processors can compute the tube minima of A in O(lg n) time on a

CREW-PRAM. We first show that n lg n processors are sufficient for computing the minima

in O(lg n) time and then use Brent's theorem to reduce the number of processors to n2. We

use a divide-and-conquer technique similar to that used for Theorem 4.10.

Let B = {b[i,j, k]} be the v/ x /i x n subarray of A where b[i, j, k] = a[iv'i~, jvfd, k]. Since

B has n2 entries, we can apply Lemma 4.1 and compute the tube minima of B in O(lg n) time

using n2/ ig n processors. This yields the minimum entry in the (iV/, jvi)-tube of A for all i

and j between 1 and v/I.

For 1 i < Vi and 1 < j < v/n, let k(i, j) denote the third index of the minimum entry in

the (iv/i,jV)-tube of A. Let k(O,j) = 1 for 0 < j < v/ and let k(i, 0O) = 1 for 0 < i < Vki.

Furthermore, let Cij denote the three-dimensional array formed by taking the entries a[x, y, z]

88



4.4. TUBE MINIMA IN THREE-DIMENSIONAL MONGE ARRAYS

of A such that

(i- 1)v + 1

(j- 1) + 1

k(i- 1,j- 1)

<

<

_<

z < i,

y < jn, and

z < k(i,j).

Since A is Monge, the tube minima of these Cij are precisely the tube minima of A.

Now partition each Cji into c(i,j) subarrays, where

c(i,j) = [k(i,j)-k(i-1,j- 1) + 1

Specifically, for 1 < w < c(i,j), let Si,j,, be the subarray of Ci,j that contains those entries

a[x, y, z] of A such that

(i- 1)V~/+ 1 

(j- 1)V/+ <

k(i- 1,j-1) + (w-1)vi K

x < in,

y j/n, and

z < min{k(i-1,j-1)+ wVn - 1,k(i,j)}.

Note that the arrays Sij,l, Sij,, . ., Si,j,c(i,j)-l are all /d x V/ x n. Let

d(i,j) = k(i,j) - k(i - 1, j- 1) - (c(i,j)- 1)V ,

and let Si',,c(iz) denote the subarray formed by taking every (u, v)-tube of Sij,c(i,j) where u and

v are multiples of [v/f/d(i, j)J; this implies S',j,,(ij) is a d(i,j) x d(i,j) x d(i,j) array.

For 1 < i v, 1 < ji < V/i, and 1 < w < c(i,j), we assign () 2lg(Vfn) = (nlgn)/2

processors to Sij,,. For 1 < i < Vn and 1 < j 5< , we assign (d(i, j)) 2 Ig d(i, j) processors to

Sijic(i,). This assignment of processors can be done using the merging technique described in

the proof of Lemma 4.7; this takes O(lg n) time using n2 Ig n processors on a CREW-PRAM.

89



CHAPTER 4. PARALLEL ALGORITHMS

The total number of processors assigned is

() 2 + (d(i,j))lgd(i,j)) < lg (k(i, j) - k(i - 1,j - 1) + 1).
i= j=l i= j=l

Since A is Monge, we know that for -v/ < I < fVi,

A, (k(i,j) - k(i- 1,j- 1) + 1) < + / - .

i-j=L

Summing over all , we obtain

E j(k(i,j) - k(i- 1,j - 1) + 1) < 2n,/n.
i=1 j=1

Thus, n2 lg n processors suffice.

Once the processors are assigned, we recursively compute the tube minima of the arrays

Simi,Sij.,,c(ij)- and Sj,c(ij) for all i and j. Then we use the tube minima of S'

to compute the tube minima of Sj,c(ij). Specifically, we assign n processors to each Sj

and then consider the d(i,j) planes of Sij,c(ij) corresponding to those values of the second

index that are multiples of L[f/d(i, j)J. In each of these planes, we know the minimum entry

in every LVii/d(i,j)Jth row (it is one of the tube minima of Sj,C(ij)). Thus, we can apply

Lemma 4.9 and fill in the rest of these planes' row minima in O(lg d(i, j)) = O(lg n) time using

/in/lgd(i,j) processors per plane (i.e., vf/d(i,j)/lgd(i,j) < n total processors). Then we

consider the vii planes of Sij,,(ij) corresponding to all possible values of the first index. In

each of these planes, we now know the minimum entry in every L[V/d(i,j)jth row. Thus, by

again applying Lemma 4.9, we can fill in the rest of these planes' row minima (corresponding

to the remaining tube minima of Sjj,,(i,i)) in O(lgn) time using V//lgd(i,j) processors per

plane (i.e., n/ lg d(i,j) < n total processors).

Finally, for 1 < i < v/'d and 1 < j < v, we compute the minimum entry in the (, y)-tube

of A, (i - 1)Vi/ + 1 < x < i/i and (j - 1)Vci + 1 < y < jfi, by taking the minimum of

the c(i,j) entries obtained for this tube in the previous step. If c(i,j) = 1, then we already

90



4.4. TUBE MINIMA IN THREE-DIMENSIONAL MONGE ARRAYS

know the minima for these tubes; otherwise, we spread out the processors originally assigned to

Si.j,, .. ., S.,c(ij), assigning at least c(i, j)- 1 processors to each of the n tubes of A associated

with these arrays. The processors assigned to any particular tube can then compute that tube's

minimum entry from the c(i,j) candidates obtained from Si, ,...,Sj,,(jij) in O(lgc(i,j)) =

O(lg n) time using Lemma 4.1.

Clearly, the above algorithm uses only n2 g n processors. To analyze the time complexity,

observe that all steps of our algorithm, except the recursive call, take O(lgn) time. Conse-

quently, if T(n) denotes the time to compute the tube minima of an n x n x n Monge array,

then the recursive step takes at most T(vn) time, which implies

T(n) < T(V/d) O(ln).

Since T(1) = 0(1), this recurrence has solution T(n) = O(lgn).

Now consider the number of operations required. All the steps of our algorithm, other than

the recursive call, can be done with O(n2) operations. Thus, if W(n) denotes the number of

operations required to compute the tube minima of an n x n x n Monge array,

W(n) O(n2) + E Z((c(i,j) - 1)W(v') + W(d(i,j))).
i=1 j=l

Using our bound on the sum over all i and j of k(i,j) - k(i - 1,j - 1) + 1 and noting that

W(1) = O(1), we obtain W(n) = O(n21gn). Thus, by Brent's theorem, we can reduce the

number of processors to W(n)/T(n) = O(n2 ). 

Theorem 4.18 In the CRCW-PRAM model, we can compute the tube minima of an n x n x n

Monge array A = {a[i, j,k]} in O((lglgn) 2) time using n2 /(lglg n)2 processors.

Proof For the sake of simplicity, we assume n = 22' for some positive integer s. Our algorithm

to compute the tube minima of A consists of Iglg n phases. Each phase will require O(lglg n)

time; thus, the entire algorithm will run in O((lg Ig n) 2) time.

For 0 < e < lglgn, let a(t) = 2- t . Furthermore, let Be = {bI[i,j,k]} denote the nl - (t) x

nl- ( t) x n subarray of A where bj[i, j, k] = a[in (t ), jn ( t) , k]. In the first phase of our algorithm,

91



CHAPTER 4. PARALLEL ALGORITHMS

we compute the tube minima of B 1. Since B 1 contains only n2 entries, we can apply Lemma 4.2

and compute the tube minima of B1 in O(lg lg n) time using n2
/ Ig ig n processors.

In the £th phase of the algorithm, 1 < e < lglg n, we compute the tube minima of Bt using

the tube minima of B . We first consider the planes of B1 corresponding to values of the second

index that are multiples of na(L-' ) . In each of these n1- ( t ) - °(` l- ) planes, we already know the

minimum entry in every rth row, where r = n-Q()/n - (t1- ) = n(t) (it is one of the tube

minima of B-,). Since BL is Monge, this means there are at most (n ( t) - 1)(n + n1- ° (l-l)) <

nl+a ( t) total entries that we need to check for the remaining row minima. Thus, we can assign a

processor to each of these entries (using the merging technique given in the proof of Lemma 4.7)

and compute the remaining row minima in O(lg Ig n) time using nl+a() operations per plane.

Furthermore, by applying Brent's theorem, we can reduce the number of processors required

per plane to nl+(L)/lglg n. Since there are n1- °(t)- o ( t-l) planes, only n2-(L)/ lg lg n total

processors are required.

Next, we consider the planes of Be corresponding to fixed values of the first index. In each

of these n -l °( l) planes, we now know the minimum entry in every n°(t)th row. Using the same

technique we used for the planes corresponding to fixed values of the second index, we can fill

in the remaining row minima in these planes (thereby obtaining the remaining tube minima

of Bl) in O(lgg n) time using nl+()/l Iglg n processors per plane. Moreover, since there are

n1- (l) such planes, 'n2/ Iglg n total processors suffice.

Since Big ,g = A, after Iglgn phases, we will have computed all of A's tube minima. U

Note that we really do require two different techniques for computing the tube minima

of a three-dimensional Monge array, one for CREW-PRAMs and one for CRCW-PRAMs -

applying the approach of Theorem 4.17 to CRCW-PRAMs only gives us an O((lglg n)2 )-time,

(n 21 gn/(lglgn) 2 )-processor CRCW-PRAM algorithm, and applying the approach of Theo-

rem 4.18 to CREW-PRAMs only gives us an O(lg n Ig lg n)-time, (n2 / Ig n lg lg n)-processor

CREW-PRAM algorithm.

Implicit in [AKL+89] and [AALM90] are algorithms for the tube-minima problem; our

results improve their time bounds by factors of Ig n and Ig n/ Ig Ig n without any deterioration in

the processor-time product. In [AP88], we sketch an O(lg n)-time, (n 2 / lg n)-processor CREW-

92



4.4. TUBE MINIMA IN THREE-DIMENSIONAL MONGE ARRAYS

Model ]] Time J Processors Theorem

CREW O(lg n) n 2/ lg n 4.17

CRCW O((lglgn) 2) I n2/(lglgn) 2 4.18

O(lglg n) n2/lglgn 4.19

Table 4.2: The tube minima of an n x n x n Monge array can be computed using time and processors
as given by this table.

PRAM algorithm for the tube-minima problem that uses the cascading divide-and-conquer

technique of [ACG87] - this result was obtained independently in [AALM90].

Note that the time complexity of our CREW-PRAM algorithm is optimal, since just com-

puting the minimum of n numbers requires SI(lg n) time. The time complexity of our CRCW-

PRAM algorithm, on the other hand, does not achieve the lower bound of fi(glg n) we have

on the time necessary to compute the minimum of n numbers with a CRCW-PRAM. However,

this bound is achieved by a CRCW-PRAM tube-minima algorithm due to Atallah [Ata90], who

proved the following theorem.

Theorem 4.19 (Atallah [Ata9O]) In the CRCW-PRAM model, we can compute the tube

minima of an n x n x n Monge array A = {a[i, j, k]} in O(lg g n) time using n2 / Ig Ig n processors.

Table 4.2 summarizes the two tube-minima algorithms described in this section, along with

Atallah's improved CRCW-PRAM algorithm.

93





Part II

The Applications

95





Chapter 5

Convex-Polygon Problems

In this chapter, we present algorithms for a number of problems involving convex polygons in

the plane.

5.1 Intervertex Distances

The vertices of a convex polygon are invariably easier to deal with than arbitrary points in the

plane.

Consider a convex polygon P in the plane with vertices Pi,..., Pn in clockwise order. As

Aggarwal, Klawe, Moran, Shor, and Wilber observed in [AKM+87], the distances separating

pairs of vertices of P form an inverse-Monge array. Specifically, let A = a[i,j]} denote the

n x (2n - 1) array given by the equation

a[i, j] =

-o if 1 <j<i,

d(pi, p) if i j < n,

d(pi,p,-n) if n <j <i+n,

-oo if i + n < j < 2n,

where d(pi,p,) denotes the Euclidean distance between Pi and pj. (We call this array the

distance array for P.) The finite entries in row i of A are precisely the n distances separating

Pi from i,...,- p,; moreover, A is Monge, as the following lemma shows.

97



CHAPTER 5. CONVEX-POLYGON PROBLEMS

ii

i2

ii j2

Pi,

Pi

Pi,

(a) (b)

Figure 5.1: (a) In a totally monotone array, for no il < i2 and jl < j2 is a[il,jl] < a[il,j 2] and
a[i2 ,jl] a[i2 ,j 2 ]. (b) For any quadrilateral with vertices pi,, pi2, p.,, and PJ2 in clockwise order,
d(pi,, pJi ) + d(pi2, p 2) > d(pi., p.J) + d(pi2, p, ).

Lemma 5.1 A is Monge.

Proof Let il and i2 denote any two rows of A, where il < i2, and let jl and j2 denote any

two columns of A, where jl < 2- We must show that

a[il, j l] + a[i2 , j2] < a[il, j2] + a[i2, j] .

We consider three possibilities.

If i < i2 C jil < j2 < i + n, then all four entries a[il,jl], a[il,j 2 ], a[i2 ,jl], and a[i2,j 2]

correspond to distances between pairs of vertices. Moreover, if we let J1 = ((jl - 1) mod n) + 1

and J2 = ((ji - 1) mod n) + 1, then pi, pi,, pi,, and PJ2 are the vertices of a quadrilateral in

clockwise order, as suggested in Figure 5.1(b). This means a[ii,j l] and a[i2,j 2] are the lengths

of the quadrilateral's two diagonals, and a[il,j 2] and a[i2,jl] are the lengths of two opposite

sides. Now the quadrangle inequality tells us that the sum of the lengths of the diagonals of

any quadrilateral is strictly greater than the sum of the lengths of two opposite sides. Thus,

a[il, jl] + a[i2,j2] > a[il, j2] +. a[i2,jl] -

If jl < i2, then a[i2,jl] = -oo. This implies a[il,jl] + a[i2, j2] a[il,j 2] + a[i2 ,jl].

Finally, if il + n < j2, then a[i, j2] -oo. This again implies a[il, j] + a[i2, j2] > [il, j2] +

a[i,jl]. 

98



5.1. INTERVERTEX DISTANCES

Using the row-selection algorithm of Section 3.1, we can solve two selection problems in-

volving convex polygons in the plane. Given a set S = (pl,...,pn} of n points in the plane

and an integer k between 1 and n, the k-farthest-neighbors problem for S is that of computing

k farthest neighbors for each point pi. More precisely, for all i between 1 and n, we must find

a subset Si C S such that Sil = k and for all q E Si and q' E S - Si, d(pi,q) > d(pi,q').

The k-nearest-neighbors problem for S is defined analogously. If the points pl,..., P, are the

vertices of a convex n-gon in clockwise order, then using our algorithm for computing the k

largest entries in each row of a totally monotone array, we can obtain efficient algorithms for

both the k-farthest-neighbors problem and the k-nearest-neighbors problem.

To reduce the k-farthest-neighbors problem for pl,..., p to a row-selection problem, we

use the n x (2n - 1) totally monotone distance array A defined at the beginning of this section.

As the n largest entries in row i of A are the n distances d(p, pi), d(pi,p 2),..., d(pi,p,), we

can use our row-selection algorithm to solve the k-farthest-neighbors problem for pi, . , p, in

O(kn) time.

Theorem 5.2 (Aggarwal, Klawe, Moran, Shor, and Wilber [AKM+87]) Given a

convex n-gon P with vertices vl,..., v,n in clockwise order, the farthest neighbor of each vertex

vi can be computed in O(n) time. Moreover, this time bound is asymptotically optimal. a

Theorem 5.3 Given a convex n-gon P with vertices vl,..., v, in clockwise order and an

integer k in the range 1 < k < n, the kth farthest neighbor of each vertex vi can be computed

in O(kn) time. U

Theorem 5.4 Given a convex n-gon P with vertices vu,..., v, in clockwise order and an

integer k in the range 1 < k < n, the kth farthest neighbor of each vertex vi can be computed

in O(n3/ 2 1g2 n) time. 0

Theorem 5.5 Given a convex n-gon P with vertices vl,...,v,n in clockwise order and an

integer k in the range 1 k < (2), the kth farthest pair of vertices can be computed in

O(n + k lg(n 2/k)) time. U

Theorem 5.6 Given a convex n-gon P with vertices ,., . , in clockwise order, the neigh-

bors of each vi can be ranked by distance from vi in O(n 2) time. U

99



CHAPTER 5. CONVEX-POLYGON PROBLEMS

Theorem 5.7 Given a convex n-gon P with vertices vl,...,v,, in clockwise order and an

integer k in the range 1 < k < n, the kth farthest neighbor of each vertex vi can be computed

in O(n 3/lg 2 n) time. U]

We need to mention Lee and Preparata [LP78].

To solve the k-nearest-neighbors problem for Pi,..., p, we would like to use the distance

array A again; however, to compute the k nearest neighbors of Pi, we need the n - 1 + k

smallest entries in row i, since the n - 1 smallest entries in this row are negative integers that

do not correspond to distances. For 1 < k < n, our upper bound on the time to compute

the n - 1 + k smallest entries in A is O(n2 ). Thus, to obtain an O(kn)-time algorithm for

the k-nearest-neighbors problem, we need a slightly more complicated reduction. (Note that

we cannot circumvent this difficulty by replacing the negative integers in A with large positive

integers, as this destroys the total monotonicity of A.)

In [LP78], Lee and Preparata consider the nearest-neighbor problem (the k 1 special

case of the k-nearest-neighbors problem) for the vertices of a convex n-gon. In obtaining an

O(n)-time solution for this problem, they introduce an interesting property of certain convex

polygons which they call the semicircle property. A convex polygon P with vertices pl,...,p,

in clockwise order is said to possess the semicircle property if P2,... ,Pn- , lie inside the circle

with diameter ppn.

Lemma 5.8 (Lee and Preparata [LP78]) Let P denote a convex polygon with vertices

l,...,p,, in clockwise order. If P satisfies the semicircle property, then for all i satisfying

1 < i < n, the sequence of distances d(pi, p), d(pi,p2 ), . .,d(pi,p,) is bitonic, i.e.,

d(pi,pl) > d(pi,P2) > .. > d(pi,pi-1)

and

d(P,,pi+l) < ... < d(pi,pn-, < d(pi,p,).

Lee and Preparata also showed how to decompose an arbitrary convex n-gon into four

convex polygons possessing the semicircle property. We use a slightly simpler decomposition,

100



5.1. INTERVERTEX DISTANCES

PT

PR

PL

PB

Figure 5.2: Q1, Q2, Q3, and Q4 have the semi-circle property.

due to Yang and Lee [YL79]:

Lemma 5.9 (Yang and Lee [YL79]) Let PL and PR denote vertices of P with minimum

and maximum x-coordinates, respectively, and let PB and PT denote vertices of P with minimum

and maximum y-coordinates, respectively. Let Q1 denote the polygon formed by vertices PT

through pR (i.e., pT, PR, and those vertices between PT and PR in the clockwise ordering of P's

vertices). Similarly, let Q2, Q3, and Q4 denote the polygons formed by vertices PR through PB,

PeB through PL, and PL through PT, respectively, as shown in Figure 5.2. Q1, Q2, Q3, and Q4

possess the semi-circle property. U

Using this decomposition of P (which is easily computed in linear time), we can compute

the k nearest neighbors of each vertex of P. We restrict our attention to the vertices of Q1,

showing that their k nearest neighbors in P can be computed in O(kn) time - the computation

of the k nearest neighbors of the vertices of Q2, Q3, and Q4 is analogous. For each v in Q1. the

k nearest neighbors of v in Q1 can be computed in O(k) time, since by the semi-circle property,

these k nearest neighbors must be within k of v in the original ordering of P's vertices. We

can also compute for each v in Q1 its k nearest neighbors in Q2. To do this, we consider the

IQlI x (1Q21 - 1) array A = {a[i,j]} where a[i,j] is the distance from the i-th vertex of Q1 to

the (j - 1)-st vertex of Q2. (We ignore the first vertex of Q2 -since it is also the last vertex of

101



CHAPTER 5. CONVEX-POLYGON PROBLEMS

Q1.) It is readily verified that A is totally monotone; moreover, the k smallest entries in row

i of A correspond to the k nearest neighbors in Q2 of the i-th vertex of Q1. Thus, using our

row-selection algorithm, we can find the k nearest neighbors in Q2 of all the vertices in Q1 in

O(kn) total time. In a similar manner, we can compute for each v in Q1 its k nearest neighbors

in Q3 and its k nearest neighbors in Q4. We now have 4k neighbors for each v in Q1; using the

linear-time selection algorithm of [BFP+73], we can select the k nearest of these neighbors in

O(k) additional time. This gives the k nearest neighbors in P of each v in Q1 in O(kn) total

time.

Using the array-selection algorithm of Section 3.2, we can solve two more selection problems

involving convex polygons in the plane. Given a set S = {Pi,...,pn} of n points in the plane

and an integer k between 1 and (), the k-farthest-pairs problem for S is that of computing

k largest valtues of d(pi,pj) over all unordered pairs (pi,pj) of points. The k-nearest-pairs

problem for S is defined analogously. If the points P1,..., p, are the vertices of a convex n-gon

in clockwise order, then using our algorithm for computing the k largest entries overall in a

totally monotone array, we can obtain efficient algorithms for both the k-farthest-pairs problem

and the k-nearest-pairs problem.

To reduce the k-farthest-pairs problem for pl,...,Pn to a row-selection problem, we use a

subarray of the n x (2n- 1) distance array A defined at the beginning of this section. Specifically,

we use the subarray corresponding to all n rows of A and its first n columns. Since the ()

largest entries overall in this subarray are the () distances corresponding to all unordered

pairs of vertices, and since both the subarray and its transpose are totally monotone (because

A and its transpose are totally monotone), we can use our array-selection algorithm to solve

the k-farthest-pairs problem for Pi,... ,pPn in O(n + k lg(t2 /k)) time, where t = minfn, k}.

Similarly, to solve the k-nearest-pairs problem for p,..., p,, we use nearly the same re-

duction that we used for the k-nearest-neighbors problem, except that here we must again

insure that for all unordered pairs (pi,pj) of points, only one of d(pi, pj) and d(pj, pi) is among

the distances we consider. Applying our array-selection algorithm then allows us to solve the

k-nearest-pairs problem for pi,...,pn in O(n + klg(t2 /k)) time, where t = min{n, k}.

As an application of the row-sorting algorithm given in Section 3.3, we consider the neighbor-

ranking problem: given a set S = {pl,... ,p,) of n points in the plane, for each pi, sort the

102



5.2. MAXIMUM-PERIMETER INSCRIBED D-GONS

other vertices of S by distance from p i.

If pi,...,p,, are the vertices of a convex polygon P in clockwise order, then we can solve

the neighbor-ranking problem for P using the n x (2n - 1) totally monotone distance array

A = {a[i,j]} defined at the beginning of this section. Specifically, the i-th row of A contains

the distances d(pl, pi),. . ., d(pi, pn), along with n- 1 negative entries; thus, sorting the rows of A

using our row-sorting algorithm gives an O(n2 )-time solution to the neighbor-ranking problem

for P.

Theorem 5.10 Given a convex n-gon P with vertices vl,..., vn in clockwise order, the nearest

neighbor of each vertex vi can be computed in O(n) time. Moreover, this time bound is

asymptotically optimal. 

Theorem 5.11 Given a convex n-gon P with vertices v,...,v, in clockwise order and an

integer k in the range 1 < k < n, the kth nearest neighbor of each vertex vi can be computed

in O(kn) time. U

Theorem 5.12 Given a convex n-gon P with vertices vl,...,v, in clockwise order and an

integer k in the range 1 < k < (), the kth nearest pair of vertices can be computed in

O(n + k lg(n2/k)) time. U

5.2 Maximum-Perimeter Inscribed d-Gons

In this section, we apply the Monge-array abstraction to the problem of finding maximum-

perimeter inscribed polygons. Given an n-vertex convex polygon P and an integer d between 3

and n, we want to find a maximum-perimeter convex d-gon Q contained in P. Note that each

of Q's d vertices must be vertices of P.

The maximum-perimeter inscribed d-gon problem as been widely studied. We should

mention Boyce, Dobkin, Drysdale, and Guibas [BDDG85] and Aggarwal, Klawe, Moran, Shor,

and Wilber [AKM+87]. We present the latter result as an algorithm for searching in cycle-

decomposable Monge-composite arrays.

In describing our algorithm for finding maximum-perimeter inscribed d-gons, we use the

following conventions. For any convex m-gon R, we let viR,..., v R and e,.. .,el denote R's

103



CHAPTER 5. CONVEX-POLYGON PROBLEMS

vertices and edges, respectively, in counterclockwise order, where eR connects vR and V(i+l)modm .

We use the letter P for the convex n-gon given as input to the problem and the letter Q for

convex d-gons inscribed in P.

We also need the following definition. Two inscribed polygons Q and Q' interleave if the

vertices of Q and Q' alternate. In other words, between every two consecutive vertices of Q

(in the counterclockwise ordering of vertices and edges of P) is a vertex of Q' (perhaps one of

the two consecutive vertices of Q). Similarly, between every two consecutive vertices of Q' is a

vertex of Q.

We will now describe an algorithm for finding a maximum-perimeter inscribed d-gon Q.

Recall the second Monge distance array A' = {a[i, j]} defined in the previous section.

By summing d-dimensional extensions of A' and its transpose, we obtain the d-dirnensional

array B = {b[il, i2 ,,.., id]), where

b[il, i2,..., id] = a'[il, i2] + a'[i2, i3] + .. + a'[idl, id] + a'[il, id]

B is clearly a cycle-decomposable Monge-composite array. Furthermore, B contains an entry

corresponding to every possible inscribed d-gon. Specifically, the perimeter of the inscribed

d-gon with vertices vP , v ,..., vi, where il < i2 < - < id, is b[i, i,..., id]. Moreover, only

those entries corresponding to inscribed d-gons are finite; thus, to find a maximum-perimeter

inscribed d-gon, we need only find a maximum entry in A.

By applying Theorem 2.10 directly, we can find this entry in O(dn lg n) time. However, this

time complexity can be reduced to O(dn + n Ig n) using a theorem concerning the perimeter of

interleaving d-gons. For every i in the range 1 < i < n, let Qi denote a maximum-perimeter

inscribed d-gon whose first vertex is vf. (In other words, Qi's perimeter is maximum among

all inscribed d-gons whose first vertex is v.)

Theorem 5.13 (Boyce, Dobkin, Drysdale, and Guibas) For all i in the range 1 < i < n

and all i' in the range 1 < i' < n, Qi and Qi, interleave. U

Returning to the problem of finding a maximum-perimeter inscribed d-gon, note that finding

a maximum-perimeter flush inscribed d-gon Q1 whose first vertex is v is equivalent to finding

a maximum entry in first plane of A. This can be done in O(dn) time (since this plane is

104



5.3. MINIMUM-AREA CIRCUMSCRIBING D-GONS

path-decomposable). Let vP , ., vjP be the vertices of Q1 (by definition, jl = 1; by convention,

jd+l = n). These vertices define d intervals I, .. , Id of vertices from P, where Ik = [vP, vP l.

Theorem 5.13 tells us that we need only consider vertices in Ik for the k-th vertex of a maximum-

perimeter inscribed d-gon. In other words, if we let n = jk+l - j. + 1 for all k in the range

1 < k < d, we need only search the nl x n2 x n2 x nd subarray of B containing those entries

ail, ii, ..., id] where jk < ik < jk+l for all k between 1 and d. Since

d

n = (n)
k=1

and every subarray of a cycle-decomposable array is also cycle-decomposable, we can use The-

orem 2.10 to find a maximum entry in this subarray, corresponding to a maximum-perimeter

flush inscribed d-gon, in O(nlgn) additional time. This gives the entire algorithm a time

complexity of 0(dn + n lg n).

Theorem 5.14 (Aggarwal, Klawe, Moran, Shor, and Wilber) Given a convex n-gon

P and an integer d in the range 3 < d < n, a maximum-perimeter d-gon Q contained in

P can be computed in O(dn + n lg n) time. I

5.3 Minimum-Area Circumscribing d-Gons

In this section, we apply the Monge-array abstraction to the problem of finding minimum-area

circumscribing polygons. Given an n-vertex convex polygon P and an integer d between 3 and

n, we want to find a minimum-area d-gon Q containing P. Note that Q must clearly be convex,

and each of its d edges must contact P. Also note that if we can find area-optimal d-gons

circumscribing convex n-gons, then we can also find area-optimal convex d-gons containing

arbitrary sets of points in the plane, since any convex polygon containing a set of points must

contain the points' convex hull.

The minimum-area circumscribing d-gon problem has been widely studied. In [CY84],

Chang and Yap showed that a minimum-area circumscribing d-gon can be found in O(n3 Ig d)

time using dynamic programming. Aggarwal, Chang, and Yap [ACY85] then improved this

result to O(n21gdlgn) time, and it is firther improved to O(n 2 1gd) in [AKM+87]. We should

also mention Klee and Laskowski [KL85] and O'Rourke, Aggarwal, Maddila, and Baldwin

105



CHAPTER 5. CONVEX-POLYGON PROBLEMS

[OAMB86]. We extend (in a non-trivial manner) the techniques of Boyce et al. [BDDG85] for

finding maximum-perimeter inscribed d-gons to obtain an O(dn + n Ig n) time algorithm for the

minimum-area-circumscribing-d-gon problem.

In describing our algorithms for finding minimum-area circumscribing d-gons, we use the

following conventions. For any convex m-gon R, we let v ,..., vn and e,.. ., denote R's

vertices and edges, respectively, in counterclockwise order, where efR connects R and v(i+l)modm.

We use the letter P for the convex n-gon to be circumscribed and the letter Q for convex d-gons

circumscribing P.

We also need the following definitions.

1. If an edge e of a circumscribing polygon Q touches P (which it must, if Q has minimal

area or perimeter), then its contact point is the part of P that it touches. A contact point

is always either an edge or a vertex of P.

2. Two circumscribing polygons Q and Q' interleave if the contact points of Q and Q'

alternate. In other words, between every two consecutive contact points of Q (in the

counterclockwise ordering of vertices and edges of P) is a contact point of Q' (perhaps

one of the two consecutive contact points of Q). Similarly, between every two consecutive

contact points of Q' is a contact point of Q.

3. An edge e? of Q is flush with P if its contact point is an edge. Q itself is flush with P if

all its edges are flush with P.

4. An edge e? of Q is balanced if its midpoint lies on P.

5. An edge e? of Q determines two half-planes; let i denote the half-plane that does not

contain P. e is a c-edge if the lines containing its neighbors e? 1 and eQ+ converge (i.e.,

intersect) in Hi or are parallel; otherwise, eQ is a d-edge. Equivalently, e is a c-edge if

the sum of the two internal angles of Q corresponding to e9's endpoints is greater than

or equal to 7r, and e? is a d-edge if this sum is less than 7r.

Our algorithm for finding a minimum-area circumscribing d-gon has two parts. First, we

restrict our attention to flush circumscribing d-gons and use the techniques of [BDDG85] to

find one with minimal area. Then, we use this minimum-area flush d-gon (and a lemma due to

106



5.3. MINIMUM-AREA IRC'UMSCIBINGU D-GONS 107

Figure 5.3: If rCW intersects rcw, then R,,j is the shaded region between riCW, rjc, and P.

DePano [DeP87]) to obtain a circumscribing d-gon, possibly not flush, whose area is minimal

among all circumscribing d-gons.

5.3.1 Finding the Best Flush d-gon

The techniques given by. Boyce et al. [BDDG85] for finding a maximum-perimeter inscribed d-

gon can also be used to find a minimum-area flush circumscribing d-gon in O(dn lg n + n lg2 n)

time. (This was pointed out in the concluding section of [BDDG85].) Furthermore, the tech-

niques of [AKM+87] reduce the time complexity of this problem to O(dn + n g n). For the sake

of completeness, we will describe this result, recasting it in terms of multidimensional Monge

arrays.

For 1 < i < n, let r w be the ray containing e with v as its origin, and let rW be

the ray containing e with viP+ as its origin. (The superscript of rc' indicates that it is a

counterclockwise "extension" of ef, and the superscript of ri'W indicates that it is a clockwise

"extension.") If rCCW intersects rw, let Rij be the region outside P bounded by rCw rTjC and the

edges e+ ,...efl of P (the shaded region in Figure 5.3). Now consider the two-dimensional

arrays W = {w[i,j]} and W' = {w'[i,j]}, where

area(Rij) if i < j and r w intersects rjcw, and
w[i,j] = 

oo otherwise,

-a



CHAPTER 5. CONVEX-POLYGON PROBLEMS

~rw jrC

CM .. r.

kk

Figure 5.4: Suppose w[i,j], w[i,l], w[k,j], and w[k, l] all correspond to regions outside of P, i.e.,
i < k < j < I and rcCw intersects rw. The region Ri,j bounded by rw and rW contains both the region
Ri,j bounded by rcw and rw (shaded with horizontal lines) and the region Rk,l bounded by r and
rw (shaded with vertical lines). Moreover, the intersection of Rij and R, is exactly the region Rk,
bounded by rCw and rw

and

w'[ij] J area(Ri,j) if i > j and rcw intersects rw, and

0o otherwise.

Lemma 5.15 Both W and W' satisfy the Monge condition.

Proof We only prove the lemma for W; the proof for W' is similar. For I i < k < k < n

and 1 < j < I < n, we must show that w[i, j] + w[k, l] < w[i, l] + w[k, j]. We consider two

cases. If either w[i, l] = oo or w[k,j] = oo, then the Monge condition follows immediately. If,

on the other hand, uw[i,l] and w[k,j] both correspond to regions outside of P (Ri,, and Rkj,

respectively), then w[i,j] and w[k,l] must also correspond to regions outside of P (Rij, and

R,l, respectively), and the four regions must overlap as in Figure 5.4. Now consider the region

RP,j U Rk,:. It has area w[i, j] + w[k, l] - w[k, j], since the intersection of Ri,i and Rk, is exactly

R,,j. Moreover, Rsd U Rk,j is contained in Rij, which implies w[i,j] + w[k, 1] - w[k,j] < w[i, I]

or w[i, j] + w[k, 1] < w[i, l] + uw[k, j]. II

By summing d-dimensional extensions of W and W', we obtain the d-dimensional array

A = {a[il, i2,..., id]}, where

a[il, i2,. . . id = w[il, ia] + w[i2, i3 + . .. + w[idl, id] + W'[id, il] -

108



5.3. MINIMUM-AREA CIRCUMSCRIBING D-GONS

A is dearly a Monge-composite cycle-decomposable array. Furthermore, A contains an entry

corresponding to every possible flush circumscribing d-gon. Specifically, the area of the flush

circumscribing d-gon with contact points e ,e ,. .. ,ep i < < ... < id, is a[i, i2,.. , id] +

area(P). Moreover, only those entries corresponding to circumscribing d-gons are less than oo;

thus, to find a minimum-area flush circumscribing d-gon, we need only find a minimum entry

in A.

By applying Theorem 2.10 directly, we can find this entry in O(dnlgn) time. However,

this time complexity can be reduced to O(dn + n lg n) using a theorem concerning the area of

interleaving d-gons. (The theorem we prove is actually significantly more general than we need

it to be in obtaining an O(dn+n g n) time algorithm for the minimum-area flush circumscribing

d-gon problem, but we will use it again later in this section in the context of two other related

problems.)

Before we can prove this theorem, however, we first need a few more definitions. Let Q,

and Qb denote circumscribing d-gons. We define an edge exchange operation as follows. Let

E denote the union of Qa and Qb's edges. To exchange edges between Qa and Qb, we select

a d-edge subset E' of E, and form two new circumscribing d-gons, the first consisting of the

edges of E' (extended or shortened as necessary to form a circumscribing d-gon) and the second

consisting of the edges of E - E'.

Now let Q aid Qb denote sets of circumscribing d-gons. We will say that Qa and Qb are

closed under edge exchange if for any d-gon Q E Q and any d-gon Qb E Qb, any edge exchange

between Q and Qb produces a d-gon in Qa and a d-gon in Qb.

Theorem 5.16 Suppose two sets Q and Qb of circumscribing d-gons are closed under edge

exchange. Furthermore, suppose that Qa has minimum perimeter among d-gons in Qa and that

Qb has minimum perimeter among d-gons in Qb. Then Qa and Qb interleave.

Proof Suppose Qa and Qb do not interleave. Let a, a2,... ,ad be the contact points of Q.,

and let bl,b2 ,...,bd be the contact points of Qb. Since Q and Qb do not interleave, there

exists at least one pair (ai-l, ai) of consecutive contact points of Q. such that no contact points

of Qb lie between ai- and ai (inclusive) in the counterclockwise ordering of P's vertices and

edges. There also exists at least one pair (, bj+l) of consecutive contact points of Qb such

109



CHAPTER 5. CONVEX-POLYGON PROBLEMS

bk

a.
I

Figure 5.5: The sum of the areas of Q. and Qb (indicated by the dotted lines) is exactly the sum of
the areas of Q' and Q' (indicated by the shaded lines) plus the area of the two shaded regions.

that no contact points of Qa lie between b and bj+l (inclusive). Moreover, there exists such a

pair (ai_, a,) and such a pair (bj, bj+1) separately only by alternating contact points. In other

words, there exist i, j, and k, such that the contact points between ai- and bj+l are (in order)

ai-1, ai, bk, ai+l, bk+l, ai+2, . . ., bj-l, aj-k+i, bj, bj+l 

alternating contact points

Now suppose we exchange edges between Qa and Qb and form a d-gon Q' with contact

points

al, ., ai_-, bk, bk+l,. .., b, aj-k+i+l, . , ad

and a d-gon Q with contact points

bl,. ., bk-1, a, ai+l,..., aj-k+i, bj+l,..., bd .

For any two contact points c and c', let R,,, denote the region outside P bounded by P and

lines through the edges of Qa or Qb touching c and c'. As is suggested in Figure 5.5,

area(Q') + area(Q') = area(Qo) + area(Qb)

- area(Ra,., , ) - area(Rajik+,aik++1 )

- area(Rb, ., bk ) -area(Rbj,b,+, )

110

a._I I



5.3. MINIMUM-AREA CIRCUMSCRIBING D-GONS

+ area(R.j,,b ) + area(Rbj,ajik+.+ )

4+ area(Rb,_,,a) + area(Raj_+,bj+,l) .

Since b,-1 precedes ai-, in the counterclockwise ordering of P's vertices and edges,

area(Rb_l,) + area(R _,bk) < area(Rk_,,b) + area(Ra._.,a),

by the same argument we used in the proof of Lemma 5.15. Similarly,

area(Rai_,+,+,b,f ) + area(Rbj,ai_k+.+l ) < area(Rajk+,,a2 _k+,+ ) + area(Rb&,,ai+) ·

Thus, area(Q') + area(Qb) < area(Q,) + area(Qb). Since Qa and Qb are closed under edge

exchange, one of the new d-gons is in Qa and the other is in Qb. Without loss of generality, we

assume Q. E Q. and Qu' E Qb. Now either area(Qa') < area(Qa) or area(Q^) < area(Qb), both

of which are contradictions. I

Corollary 5.17 Let Qi be a minimum-area flush circumscribing d-gon with e as a contact

point. Every minimum-area flush circumscribing d-gon interleaves Qi.

Proof Any edge exchange between a circumscribing d-gon with e as a contact point and an

arbitrary circumscribing d-gon produces a circumscribing d-gon with e as a contact point and

an arbitrary circumscribing d-gon. Thus, this corollary follows from Theorem 5.16. 

Returning to the problem of finding a minimum-area flush circumscribing d-gon, note that

finding a minimum-area flush circumscribing d-gon Ql with ep as a contact point is equivalent

to finding a minimum entry in first plane of A. This can be done in O(dn) time (since this

plane is path-decomposable). Let e,.. ., e, be the contact points of QI (by definition, jl = 1;

by convention, jd+l = n). These edges define d intervals I,...,Id of edges from P, where

Ik = [e?,e +,]. Corollary 5.17 tells us that we need only consider edges in Ik for the k-th

contact point of a minimum-area circumscribing d-gon. In other words, we need only search

the ni.x n2 x -x nd subarray of A, nt = jk+l- jk + 1, containing those entries a[il, i2, ... , id]

111



CHAPTER 5. CONVEX-POLYGON PROBLEMS

where jk < i < j&+l for all k between 1 and d. Since

d

; n = (n)
k=1

and every subarray of a cycle-decomposable array is also cycle-decomposable, we can use The-

orem 2.10 to find a minimum entry in this subarray, corresponding to a minimum-area flush

circumscribing d-gon, in O(nlgn) additional time. This gives the entire algorithm a time

complexity of O(dn + n lg n).

5.3.2 Using the Best Flush d-gon to Obtain the Best Arbitrary d-gon

In [DeP87], DePano provides the following geometric characterization of minimum-area circum-

scribing d-gons.

Lemma 5.18 ([DeP87]) Let P be any convex n-gon. For 3 < d < n, if Q is a minimum-area

d-gon Q circumscribing P, then either

1. all d edges of Q are flush with P, or

2. d- 1 edges of Q are flush with P, and the non-flush edge is a balanced d-edge.

This lemma allows us to relate minimum-area flush circumscribing d-gons and minimum-area

arbitrary circumscribing d-gons. Specifically, we have the following corollary to Theorem 5.16.

Corollary 5.19 Let Q' be a minimum-area flush circumscribing d-gon. Every minimum-area

circumscribing d-gon Q interleaves Q'.

Proof Let Q' denote the set of all flush circumscribing d-gons, and let Q denote the set of all

circumscribing d-gons whose first d- 1 edges are flush with P and whose d-th edge is a balanced

d-edge. By Lemma 5.18, every minimum-area circumscribing d-gon is in Q U Q'. Moreover,

every minimum-area circumscribing d-gon has minimal area among d-gons in Q U Q'.

Now, Q' and Q U Q' are clearly closed under edge exchange. Thus, by Theorem 5.16, every

minimum-area circumscribing d-gon must interleave every minimum-area flush circumscribing

d-gon. 

112



5.3. MINIMUM-AREA CIRCUMSCRIBING D-GONS

Now suppose we have found a minimum-area flush circumscribing d-gon Q', using the tech-

niques of [BDDG85]. Let e, . .., e be the contact points of this d-gon. Without loss of

generality, assume jl = 1 (if it is not, we can renumber the edges of P). Also, for notational

convenience, let jd+l = n. The edges e,, ep define d intervals I,..., Id of edges from P,

where Ik = [eP, eji+,j]. Corollary 5.19 tells us that we need only consider edges or vertices in Ik

for the k-th contact p:int of a minimum-area circumscribing d-gon Q. (A vertex is considered

to be in Ik if both the edges incident to it are in Ik.) Furthermore, we can use Lemma 5.18 to

show:

Lemma 5.20 There are at most three intervals that might contain the contact point of the

non-flush edge of a minimum-area circumscribing d-gon Q. Moreover, we can identify these

intervals in O(d) time.

Proof For each edge e of P, let rTCw be the ray containing ep with vP as its origin. Now for

each interval ik, consider the ray r"W associated with the interval's first edge e. Let ck be

r}C,'s angle with respect to rCW, measured in a counterclockwise direction. Clearly,

0 = cal < t2 < * < (ad < 2 .

Now suppose the non-flush edge of Q is e. It must contain an edge or vertex of P in the

interval Ik. Moreover, the contact point of eq_, is an edge e E Ik-l and the contact point of

e?+i is an edge e E Ik+l. Since e lies in Ik1, the angle rCcw forms with rcw is at least ckk-i.

Similarly, since e lies in I,+, the angle rw forms with rW is at most ck+2. Furthermore,

DePano's lemma tells us that eQ is a d-edge, i.e., the lines containing e l and eq+1 intersect on

P's side of the line containing e. This implies (k+2 - ak-l) mod 2r > ir, and this inequality

can hold for at most three values of k.

To identify those intervals that might contain the contact point of the non-flush edge of Q,

we need only compute a, for each interval I and then (ak+2 - Cak-1) mod 22r for each k, which

may be done in O(d) time. U

We can check the possibility of the nonflush edge lying in the interval Ik as follows. Let ep

be any edge of P in Ik-1. Let e be any edge of P in Ik+l. Define Qi, to be the set of all

113



CHAPTER 5. CONVEX-POLYGON PROBLEMS

circumscribing d-gons Q satisfying the following constraints:

1. Q's (k - 1)-st contact point is the edge e,

2. Q's k-th contact point is an edge or vertex in I,

3. Q's k-th edge is a d-edge,

4. Q's (k + 1)-st contact point is the edge e, and

5. for 1 < 1 < k - 1 and k + 1 < I < d, Q's 1-th contact point is an edge in It.

Also define

Qi = U Qi -
i

Lemma 5.21 For any eP E Ik-l, we can find a circumscribing d-gon Qi E Qi of minimal area

in O(n) time.

Proof We begin with a few more definitions (borrowed from [ACY851). An h-sided (i, j)-chain

is a polygonal chain C = {e,..., ec} such that

1. e is flush with ep,

2. e is flush with eP, and

3. for 1 < I < h, eC has a contact point in I(k+)modd.

C is flush if all its edges are flush. The extra area of C is the area of the bounded (but perhaps

disconnected) region between C and P.

For each edge ef E Ik+l, let Ci, be an optimal flush (d - 1)-sided (j, i)-chain (i.e., its extra

area is minimal), and let CiJ be an optimal 3-sided (i,j)-chain. Combining Ci, and C', gives

an optimal circumscribing d-gon Qii from Qi,. Moreover, given Q,j for each ef E IL+i, we can

pick the best of these d-gons in O(n) time to obtain an optimal circumscribing d-gon from Qi.

Thus, if we can find an optimal flush (d- 1)-sided (j, i)-chain and an optimal 3-sided (i,j)-chain

for each ef E Ik+l in O(n) time, we will have established the lemma.

114



5.3. MINIMUM-AREA CIRCUMSCRIBING D-GONS

To find an optimal flush (d - 1)-sided (j, i) chain for each e E Ik+l, we first define the

(d - 2)-dimensional path-decomposab'. array A = {a[i, i2,.. , id-2]}, where

a[il i2,.. , id2] = w[il, i2] + w[i2, i3] + ... + W[id-k-1, id-k]

+ W'[iad-k+1, id-k] + W[id-k+l, id-k+2] + ''' + [id-2, i] 

(We defined the arrays W = {w[i,j]} and W' = {w[i,jl] earlier in this section, in the context

of optimal flush circumscribing d-gons.) Now suppose It = [jl,ji+l] for 1 < I < d. Let

ng = j+l - j + 1, and let A' be the n x n2 x ... x nd_2 subarray of A containing entries

a[ii, i2 , ... , id2] that satisfy j(l+k)modd < tI _< j(l+k+l)modd for 1 I < d - 2. The optimal flush

(d - 1)-sided (j, i) chain corresponds to the minimum entry in the j-th plane of A' (the plane

containing those entries of A' whose first coordinate is j). Since _=- nt = (n), Theorem 2.9

tells us that we can compute these plane minima in O(n) time.

To find an optimal 3-sided (i,j)-chain for each e E lk+, we first recall that Lemma 5.18

tells us we need, only consider 3-sided chains whose middle edge is a balanced d-edge. We will

call this middle edge a closing edge for ep and e.

Now suppose eQ is a balanced closing d-edge for ep E Ik-1 and e E Ik+. e's first endpoint

must lie on the line Li containing ep, and its second endpoint must lie on the line L containing

eP. Moreover, since eQ is balanced, its second endpoint must also lie on the chain C defined

as follows. For each e E Ik, let e_ 1 be the segment on the line containing ep whose first and

second endpoints are twice as far from Li as are ef's first and second endpoints, respectively.

C consists of these segments, plus segments e parallel to Li connecting e and ec +1 for

1 <1 < l Il. This is suggested in Figure 5.6. We will denote the endpoints of ec by C and

VC+1 .

Using what we know about the angles of rays containing e E C and e E Ik+ form with

respect rrw, we can prove the following two lemmas about C and the lines Lj containing edges

in I+1.

Lemma 5.22 For all e E Ik+l, Lj intersects C at most once.

115



CHAPTER 5. CONVEX-POLYGON PROBLEMS

I

C

' 

I%
,,.-.IC

. _ 
01 A;

e.P L.
£ 1

Figure 5.6: Every balanced closing d-edge for a particular e? E I-1 and any eJf E It+l must have one
endpoint on the chain C.

Lemma 5.23 For all ep and ej, in Ik+l, j' > j, Lj intersects C before L;, does, i.e., if Lj

intersects e, then Lj, intersects ec , I' > 1.

The first lemma tells us that there is at most one balanced closing d-edge corresponding to

each ef E Ik+. The second allows us to find all these closing edges in O(n) time. We begin by

computing C, which can be done in 0(n) time. We then check whether the line L containing

the first edge in Ik+1 intersects ec . If L does not intersect this segment, we check whether it

intersects ec. If again there is no intersection, we move on to ec . We continue in this manner

until we find the segment ec that L intersects. This gives us the closing edge for the first edge

of Ik+l Next, we check whether the line L' containing the second edge of Ik+l intersects ec .

If there is no intersection, we move on to segment e+1. We continue in this manner until all

closing edges are found. It is easy to see that only O(n) time is required. Also, Lemma 5.23

guarantees that this approach will find all of the desired intersections, which in turn gives us

the optimal 3-sided (i, j)-chains. U

116



5.3. MINIMUM-AREA CIRCUMSCRIBING D-GONS

To complete our algorithm, we require a third corollary to Theorem 5.16.

Corollary 5.24 For any ep and e in Ik-l, every optimal Qi E Qi interleaves every optimal

Qi, E Qi,-

Proof This corollary follows immediately from Theorem 5.16, since Qi and Qi, are closed

under edge exchange. U

This corollary, together with Lemma 5.21, allows us to find an optimal circumscribing d-gons

for each Qi such that e E k-i in O(n Ig n) total time. We use the natural divide-and-conquer

approach of Theorem 2.7. Let It = [ji,jl+l] for 1 < I < d, and let n = ji+l - j + 1. We first

find an optimal circumscribing d-gon Qi E Qi for i = jk- + nk-l/21. By Corollary 5.24, the

contact point of Qi in interval II, 1 < I < d, splits that interval into two intervals I and I',

such that the contact points of any optimal circumscribing d-gon for Qi,, j-il < i' < i, must

lie in the intervals I,..., Id, and the contact points of any optimal circumscribing d-gon for

Qi,, i < i' < j, must lie in the intervals I',..., Id'. If we recursively solve the two subproblems

associated with the intervals I,..., Id and the intervals I', ... , I', we obtain a recurrence with

solution O(nlg nk-1) = O(n Ig n) for the time required to find an optimal circumscribing d-gon

for each Qi such that e E Ik-.

By choosing the best of the nkl circumscribing d-gons obtained in this manner (which can

be done in O(n) time), we obtain a minimum-area circumscribing d-gon; thus, we have the

following theorem.

Theorem 5.25 Given a convex n-gon P and an integer d in the range 3 < d < n, a minimum-

area d-gon Q containing P can be computed in O(dn + n Ig n) time. U

117





Chapter 6

Two Dynamic-Programming

Applications

In this chapter, we present two applications of the Monge-array abstraction to problems that

can be solved using dynamic programming. (Additional dynamic-programming applications are

described in the following chapter.) These applications show how the on-line LIEBER algorithm

of Section 2.2 can be used to speed up dynamic-programming algorithms.

The first of these applications, which we discuss in Section 6.1, involves a special case

of the n-vertex traveling-salesman problem that can be solved in O(n 2 ) time using dynamic

programming. We show that, under certain circumstances, this running time can be reduced

to O(n) using the LIEBER algorithm. This result was first presented in [Par91].

This chapter's second application, which is described in Section 6.2, concerns a dynamic-

programming recurrence studied by Yao in [Yao80]. Yao identified certain general conditions

under which the O(n 3 ) running time of the straightforward method for solving the recurrence

can be reduced to O(n 2). (These conditions are satisfied by many of the problems giving rise

to her recurrence, including the problem of constructing an optimal binary search tree.) In

this chapter, we describe both Yao's conditions and her O(n 2)-time algorithm, reformulated

in terms of two- and three-dimensional Monge arrays. We also give an alternate O(n2 )-time

algorithm for her problem based on the LIEBER algorithm. This latter result represents joint

work with Aggarwal [AP89b].

119



CHAPTER 6. TWO DYNAMIC-PROGRAMMING APPLICATIONS

6.1 A Special Case of the Traveling-Salesman Problem

This section presents a special case of the n-vertex traveling-salesman problem that can be

solved in O(n) time using the on-line LIEBER algorithm of Section 2.2. We obtain this result by

speeding up a quadratic-time dynamic-programming algorithm for a more general special case

of the traveling-salesman problem.

Given an n-vertex complete directed graph G whose vertices are labeled 1,...,n and an

n x n cost array C = {c[i,j]} such that the cost of traversing arc (i,j) of G is c[i,j], the

traveling-salesman problem is that of computing a minimum-cost tour of G that visits each

vertex exactly once. Though this famous problem is NP-complete for arbitrary C, there exist

several special cases of the traveling-salesman problem, corresponding to restricted sets of cost

arrays, that can be solved in polynomial time. Many of these special cases are listed in a survey

article written by Gilmore, Lawler, and Shmoys [GLS85].

In this section, we will focus on one of the special cases described by Gilmore, Lawler, and

Shmoys. This special case was first considered by V. M. Demidenko; he identified a set A of

cost arrays, such that for any C E A, a minimum-cost traveling-salesman tour through the

directed graph corresponding to C can be computed in O(n 2) time'. The set A consists of all

cost arrays satisfying the following conditions: if 1 < i < j and j + 1 < k < n, then

c[i,j] + c[j,j + 1] + c[j + 1,k] < c[i,j+ 1] + cj + 1,j] + c[j,k]

cl,i] + cli + l,j] + c[k,j + l] c[j + 1, i]+ c[j,j + 1] + c[k,j]

c[i,j]+ c[k,j + 1] c[i,j+ 1] + c[k,j]

c[j,i]+cj+ 1,] c[j+ 1,i]+ c[j,k] .

These conditions, which Gilmore, Lawler, and Shmoys call the Demidenko conditions, are de-

picted graphically in Figure 6.1. Note that every square (i.e. s x s for some s) Monge array

satisfies the Demidenko conditions, as the following lemma shows.

Lemma 6.1 If an n x n array A is Monge, then it satisfies the Demidenko conditions.

'As I do not have easy access to Demidenko's 1979 Russian-language paper describing his result (see [GLS85]
for the reference) nor do I read Russian, this section is based solely on Gilmore, Lawler, and Shmoys's presentation
of the result.

120



6.1. A SPECIAL CASE OF THE TRAVELING-SALESMAN PROBLEM

i j j+l k

si - 4*: * o

j j+l ki

i

i

i j+l

j j+I

k

k

o
i j j+l k i

i

j j+l k

sit- _-

i j j+ k i j+l k

Figure 6.1: The Demidenko conditions require that if 1
four "comparisons" depicted above, the total cost of the
corresponding arcs on the right.

< i < j and j + 1 < k < n, then in each of the
arcs on the left is at most the total cost of the

Proof Consider any i, j, and k such that 1 < i < j and j + 1 < k < n. The third and fourth

Demidenko conditions follow immediately from the definition of a Monge array. As for the first

Demidenko condition, A's Mongeness implies

a[j, j] + a[j + 1,j + 1] < a[j,j+ 1] + a[j + 1,j],

a[i,j]+ a[,j + 1] < a[i,j+ 1] + a[j,j] ,

and

a[j,j + 1] + a[j + 1,k] < a[j,kj] + aj + 1,j + 1].

Summing these three inequalities and canceling yields the first Demidenko condition:

a[i,j]+a[j,j+ 1]+ a[j+ 1,k] a[i,j+ 1]+ aj+ 1,j]+a[j,k].

121

�

:5



CHAPTER 6. TWO DYNAMIC-PROGRAMMING APPLICATIONS

'rhe second Demidenko condition follows in a similar fashion. 1X

To explain why the Demidenko conditions are relevant to the traveling-salesman problem,

we first neea to introduce the notion of a pyramidal traveling-salesman tour. A traveling-

salesman tour T of the graph G is said to be pyramidal if (1) the vertices on the path T follows

from vertex n to vertex 1 have monotonically decreasing labels, and (2) the vertices on the

path T follows from vertex 1 to vertex n have monotonically increasing labels. For example,

if G has fives vertices labeled 1 through 5, then the tours 5 - 2 1 - 3 - 4 -- 5 and

5 -+ 4 - 3 -+ 2 - 1 - 5 are pyramidal, but the tour 5 -- 2 - 3 -, 1 -, 4 -,5 is not.

Pyramidal tours are interesting because a minimum-cost pyramidal tour through G can

always be computed in O(n2 ) time using dynamic programming. Gilmore, Lawler, and Shmoys

obtain this result as follows. For 1 < i <'n, 1 < j < n, and i $ j, let E(i,j) denote the cost

of a minimum-cost pyramidal path from vertex i to vertex j that passes through each vertex'

in {1,...,max{i,j}} exactly once. (A pyramidal path, by analogy with a pyramidal tour, is a

path P that can be decomposed into two subpaths PI and P2 such that (1) the vertices on PI

have monotonically decreasing labels, and (2) the vertices on P2 have monotonically increasing

labels.) Clearly, E(1, 2) = c[l, 2], E(2, 1) = c[2, 1], and the cost of a minimum-cost pyramidal

tour is

min{ E(n - 1, n)+ c[n, n - 1], E(n, n - 1) + c[n - 1, n] .

Furthermore, it is not difficult to see that for i j and maxi, j} > 2,

E(i,j-1) +c[j- l,j] ifi<j-1,

min(E(i,k)+ c[k,j]} if i = j - 1,
E(i,j) I<=kC

min {E(k,j)+ c[i, k]} if i = j + 1,I<k<j

E(i - 1,j)+ c[i, i - 1] if i > j + 1.

This recurrence can be used to compute all the E(i, j) (and hence the cost of a minimum-cost

pyramidal tour) in O(n2) time; moreover, a minimum-cost tour (and not just its cost) is easily

extracted from this computation.

Minimum-cost pyramidal tours and the Demidenko conditions are related by the following

122



6.1. A SPECIAL CASE OF THE TRAVELING-SALESMAN PROBLEM

theorem, which Gilmore, Lawler, and Shmoys attribute to Demidenko.

Theorem 6.2 (Demidenko) Let C denote an n x n cost array, and let G denote the n-vertex

complete directed graph corresponding to C. If C E A, then some minimum-cost traveling-

salesman tour through G is pyramidal. U

This theorem, together with the aforementioned dynamic-programming algorithm for com-

puting a minimum-cost pyramidal tour, gives an 0(n 2)-time algorithm for any instance of the

traveling-salesman problem whose cost array C is a member of A.

With this background behind us, we can now describe this section's Monge-array result.

We will identify another set of cost arrays, denoted r, for which minimum-cost pyramidal tours

can be computed quite quickly. Specifically, for any n x n cost array C in r, the running

time of the dynamic-programming algorithm for computing a minimum-cost pyramidal tour

through the n-vertex graph G corresponding to C can be reduced from O(n 2) to O(n). We

obtain this speedup using the on-line array-searching techniques of Section 2.2. An immediate

consequence of this pyramidal-tour result is an O(n)-time algorithm for any instance of the

n-vertex traveling-salesman problem whose cost array C is a member of A = r n A.

The set r consists of all cost arrays C = c[i,j]} satisfying the following condition: if

1 < i < n, 1 j < n, and either i < j- 3 or i > j + 3, then

c[i, j] + c[i + 1,j + 1 ] + c[i,j + 1] + c[i + 1,j]

Note that r is a superset of the set of all square Monge arrays, since an n x n Monge array C

satisfies the above inequality for all i and j satisfying 1 < i < n and 1 < j < n, including those

i and j such that j - 2 < i < j + 2.

Our algorithm for computing a minimum-cost pyramidal tour is based on a slight variation

of Gilmore, Lawler, and Shmoys' dynamic-programming formulation for the problem. For

1 < j < n, let F(j) denote the cost of a minimum-cost pyramidal path from vertex j to vertex

j+1 that passes through each vertex in 1,..., j+ 1} exactly once. (In terms of Gilmore, Lawler,

and Shmoys' notation, F(j) = E(j,j + 1).) Similarly, for 1 < j < n, let G(j) denote the cost

of a minimum-cost pyramidal path from vertex j + 1 to vertex j that again passes through

each vertex in {1,...,j + 1} exactly once. (In terms of Gilmore, Lawler, and Shmoys' notation,

123



CHAPTER 6. TWO DYNAMIC-PROGRAMMING APPLICATIONS

i

i+

j+ I

1

Figure 6.2: The shortest pyramidal path from vertex j to vertex j+ 1 passing through vertices 1,..., j+l
can be decomposed into three parts: (1) an edge (i,j + 1) such that 1 < i < j, (2) a path from vertex
j to vertex i + 1 passing through vertices i + 1,..., j in strictly descending order, and (3) the shortest
pyramidal path from vertex i + 1 to vertex i passing through vertices 1,..., i + 1.

G(j) = E(j + 1,j).) Clearly, F(1) = c[1,2], G(1) = c[2, 1], and the cost of a minimum-cost

pyramidal tour through G is

mint F(n - 1) + c[n, n - 1], G(n - 1)+ c[n - 1, n]} .

Now consider any pyramidal path P from j to j + 1 that achieves F(j), and let (i,j + 1)

denote the last arc traversed by P. We must have 1 < i < j, as suggested in Figure 6.2.

Moreover, if i + 1 < j, then, since P is pyramidal, the first j - (i + 1) arcs traversed by P must

be (j,j-1),(j- 1,j-2),...,(i+ 2,i+ 1). Thus,

F(j) = miin G(i)+c[i,j + 1]+ E c[e+1e]} .

By a similar argument, we must also have

G(j) = min' F(i) +c[i+,i]+ E c[l, i + 1]

Using this recurrence to compute F(n-1) and G(n- 1) in the naive fashion takes O(n 2) time.

However, if the cost array C is a member of r, then we can apply the on-line array-searching

techniques mentioned in the previous section. To see why these techniques are applicable,

124



6.1. A SPECIAL CASE OF THE TRAVELING-SALESMAN PROBLE.M

consider the (n - 1) x (n - 1) array A = {a[i,j]} where

j-1
G(i) + c[i,j i+ 1] + c[+ 1,£t

a[i,j] = =i+l

+o

if i < j,

if i > j,

and the (n - 1) x (n - 1) array B = b[i,j]} where

j-1
F(i)+ c + l,i]+ Z c[,e+ 1] if i < j,

t=i+l

+00 if i > j.

Clearly,

F(j) = min a[i, j]l<i<m

i.e., F(j) is the jth column minimum of A, and

G(j)= min b[i,j],

i.e., G(j) is the jth column minimum of B. Moreover, C E r implies both A and B are Monge,

as the following lemma shows. (In fact, both A and B are Monge if and only if C E r.)

Lemma 6.3 If C is a member of r, then both A and B are Monge.

Proof To show that A is Monge, first let C = {cl[i,j]} denote the (n - 1) x (n - 1) array

where

c[i,j l] ifi <j,
Cl[i -] =

+oo if i >j.

This array is Monge. To see why, consider any i in the range 1 < i < n - 1 and any j in the

range 1 < j < n - 1. If i + 1 > j, then cl[i + 1, j] = +oo, which implies

125

b[i,j] =

cl~iij + C& + ,j + 1] cl[i,j + 1] + cl& lj .



CHAPTER 6. TWO DYNAMIC-PROGRAMMING APPLICATIONS

On the other hand, if i + 1 < j, then since C is a member of r and since i < j - 2,

ci[i,j] + cl[i + l,j + l] = c[i,j + ] + c[i + l,j+2]
< c[i,j+2]+c[i+l ,j+l1]

= cl[i,j + 1] + cl[i + 1,j].

Next, consider the (n - 1) x (n - 1) array A' = {a'[i,j]} where

j-1 i
a'[i,j] = G(i)+cl[i,j]+ E c[e + 1, e] - c[e+ 1, e]

t=1 t=1

= G(i) - c[t + 1, e] + c[ + 1, ] + [c,[i, j]]
-'1 t=1

Since

a[i,j] a'[i,j] if i<j,
+0o if i > j,

every 2 x 2 subarray of A is either a 2 x 2 subarray of A' or its left- and bottommost entry is

a +oo; thus, if we can show that A' is Monge, then A must also be Monge.

To show that A' is Monge, note that the term G(i) - = c[t + 1, e] in the definition of A'

depends only on i, and the term c[t + 1, £] depends only on j. Furthermore, as we showed

earlier, C1 is Monge. Thus, by Properties 1.5 and 1.6, A' is Monge.

A similar argument shows that C E r so implies B are Monge. 

Now suppese we precompute
j-I
Zc[ + 1, e]
t=l

and
j-1

Zc[e,e+ 1]
t=l

for all j in the range 2 < j < n. This preprocessing requires 0(n) time. Moreover, it allows any

entry a[i,j] of A to be computed in constant time from G(i), the ith column minimum of B,

and any entry b[i, j] of B to be computed in constant time from F(i), the ith column minimum

126



6.1. A SPECIAL CASE OF THE TRAVELING-SALESMAN PROBLEM

of A. Thus, by interleaving the computation of A's column minima with the computation of

B's column minima, as discussed in Section 2.2, we can use the LIEBER algorithm algorithm to

compute F(2),...,F(n- 1) and G(2),...,G(n- 1) in O(n) time.

Since a minimum-cost pyramidal tour (and not just its cost) is easily extracted from the

computation of F(2),. . ., F(n - 1) and G(2),.. .,G(n - 1), we have the following theorem and

corollary.

Theorem 6.4 Let C denote an n x n cost array, and let G denote the n-vertex complete

directed graph corresponding to C. If C E r, then a minimum-cost pyramidal tour through G

can be computed in O(n) time. U

Corollary 6.5 Let C denote an n x n cost array, and let G denote the n-vertex complete

directed graph corresponding to C. If C E r n a, then a minimum-cost traveling-salesman tour

through G can be computed in O(n) time. B

We conclude this section by noting that the proof of Theorem 6.2 given in [GLS85] is, as

the authors admit, rather long and tedious. However, a weaker Monge-array version of theorem

is quite easy to prove. Specifically, Gilmore, Lawler, and Shmoys give a simple one-paragraph

argument in [GLS85] showing that if C is an n x n Monge array, then some minimum-cost

traveling-salesman tour through the n-vertex complete directed graph corresponding to C is

pyramidal. So why mention Demidenko's stronger but harder-to-prove result in this section?

We mention it because the intersection A = r n AL contains potentially interesting nonMonge

cost arrays. For example, consider a convex polygon P in the plane with vertices v,...,v,

in clockwise order. Corresponding to P is a complete directed graph G on P's vertices with

cost array C = {c[i,j]} where c[i,j] is the Euclidean distance between vertices vi and Vj of

P. It is not hard to verify that C is a nonMonge member of A. Thus, the traveling-salesman

problem corresponding to P can be solved in O(n) time. However, for cost arrays of this form,

an O(n)-time algorithm is not particularly impressive, as 1 -- 2 ... -- n - 1 (i.e., the tour

traversing the perimeter of P in clockwise order) is always a minimum-cost traveling-salesman

tour for G.

127



CHAPTER 6. TWO DYNAMIC-PROGRAMMING APPLICATIONS

6.2 Yao's Dynamic-Programming Problem

In [Yao80], Yao developed some very general techniques for speeding up dynamic program-

ming. (These techniques are also discussed in [Yao821.) She considered dynamic-programming

recurrences of the following form: for 1 < i < j < n,

0 if i = j,
E(i,j) = if (6.1)

i w(i,j) + min {E(i,k)+ E(k + 1,j) if i <j.

In this recurrence, we assume the interval function w(i, j) can be evaluated in constant time for

all i and j satisfying 1 < i < j < n, and we want to compute E(i,j) for all i and j satisfying

1 < i < j < n. (In order to be consistent with notation used in the next chapter, our notation

differs slightly from the notation used in [Yao80O] and [AP89b].)

The E(i,j) given by the above recurrence are easily computed in 0(n 3 ) time. We merely

compute E(i,j) for those i and j such that j - i = 1, then for those i and j such that j - i = 2,

then for those i and j such that j-i = 3, and so on, until we finally obtain E(1, n). However, in

[Yao80], Yao identified a special case of this dynamic programming problem that can be solved

in significantly less time. (We call this special case Yao's problem in her honor.) Specifically,

she showed that if the interval function w(., ) satisfies the quadrangle inequality (as defined in

Section 1.3) and it is monotonically increasing on the lattice of intervals (i.e., w(i',j') < w(i,j)

if [i',j'] C [i,j]), then all the E(i,j) can be computed in O(n') time.

In this section, we reformulate Yao's dynamic programming problem and her algorithm

for solving the problem in terms of multidimensional Monge arrays. We also use the on-line

array-searching algorithm of Section 2.2. to obtain an alternate 0(n 2)-time solution for the

problem.

6.2.1 Optimal Binary Search Trees

In this subsection, we present an example of Yao's problem, the optimal-binary-search-tree

problem. (Yao gives several more examples in [Yao80O].) Before we can describe this problem,

however, we need a few definitions.

A binary search tree T is a special kind of labeled binary tree. Associated with each node z

128



6.2. YAO'S DYNAMIC-PROGRAMMING PROBLEM

K1ansa

Byard

F Timmons

Figure 6.3: An example of a binary search tree. Locating "Sonny Clark" requires three comparisons,
while determining that the tree contains neither "Carl Perkins" nor "George Wallington" requires four
and two comparisons, respectively.

in T is a unique key a[x], such that for any node x in T, any node y in the left subtree of z, and

any node z in the right subtree of x, a[y] < a[z] < a[z]. Figure 6.3 gives an example of binary

tree whose nodes are labeled with the names of modern jazz pianists, ordered lexicographically.

Note that there are many different binary search trees associated with any particular set of n

keys.

The binary search tree is a very useful data structure. Given a binary search tree T and a

value A, we can locate a node x in T such that A = a[x] (or determine that no such x exists)

using a simple binary search starting at the T's root. If A = a[x] for some node z, then this

search requires 1 + depth(x) comparisons, where depth(x) denotes the depth of z in T.

Given probabilities pi,..., p, and q0,..., qn, the optimal-binary-search-tree problem is that

of constructing a minimum-cost n-node binary search tree T for keys al,... ,a, such that

al < a2 < ... < an. The cost of T is the expected number of comparisons required to locate

some random value A, where

Pr{A=ail = pi

and

Pr{ai < A < ai+l) = qi 

129



CHAPTER 6. TWO DYNAMIC-PROGRAMMING APPLICATIONS

a.

Figure 6.4: If Tj is an optimal binary search tree for keys ai,..., aj-1 and ak is the key associated
with Tj's root, where i < k < j, then T,j's left subtree Ti,k is an optimal binary search tree for keys
as,...,ak-1, and Tj's right subtree Tk+l,j is an optimal binary search tree for keys ai,...,kal.

(By convention, a0 = -oo and a,+l = +oo.) Equivalently, the cost of T is the tree's weighted

path length.

For 1 < i < j n + 1, let E(i,j) denote the cost of a minimum-cost binary-search tree

for keys ai,...,aj_l. Furthermore, let Ti,j denote any binary-search tree achieving E(i,j) and

let a, denote the key associated with T,j's root. As suggested in Figure 6.4, Ti,j's left and

right subtrees - denoted Ti,k and Tk+lj, respectively - must be minimum-cost binary search

trees for keys ai,..., ak-l and ak+1,. ..,al, respectively, with costs E(i,j) and E(k + 1,j),

respectively. Thus, we must have

E(i,j) = Pk

+ E(i, k)+ qi + pi + qi + + +q- + PL-l + qk

+ E(k + l,j) + qk+l + Pk+l + qk+2 + '''+ qj-1 + Pj- + q

i( P) ( + E(ik)+E(k+1,j)

Setting
j-1 j

w(i,j) = pe + 
t=i t=i

we then obtain (6.1). Moreover, it is not difficult to verify that this weight function satisfies

the quadrangle inequality and that it is monotonically increasing on the lattice of intervals.

130



6.2. YAO'S DYNAMIC-PROGRAMMING PROBLEM

6.2.2 Yao's Algorithm

In this subsection, we reformulate Yao's 0(n 2)-timne algorithm for solving (6.1) in terms of the

Monge arrays defined above. (Mention Knuth [Knu71].)

Thus, Yao's general algorithm solves the optimal-binary-search-tree problem in O(n 2) time;

this result matches the best previous result for the problem, an O(n2)-time algorithm due to

Knuth [Knu71].

We begin with a lemma proved by Yao in obtaining her O(n 2)-time bound.

Lemma 6.6 (Yao [Yao80]) If the interval function w(., ) both satisfies the quadrangle in-

equality and is monotonically increasing on the lattice of intervals, then the interval function

E(., ) satisfies the quadrangle inequality. U

Corollary 6.7 If the weight function w(., ) both satisfies the inverse quadrangle inequality

and is monotonically decreasing on the lattice of intervals (i.e., w(i',j') > w(i,j) if [i',j'] C

[i,j]), then the interval function E(-, ) satisfies the inverse quadrangle inequality. 1

Yao's quadrangle inequality is precisely the Monge condition, except that the functions

w(i,j) and E(i,j) do not correspond to complete arrays. However, if we let W = {w[i,j]}

denote the n x n array where

w(i,j) if i<j,
,i,j] =

00 o ,i~ otherwise,

and we let E = {e[i, j]J denote the n x n array where

e[ij] = f E(i,j) if i < j,

oo otherwise,

then both W and E satisfy the Monge condition. (Note that it is important that we define

tw[i,j] and e[i,j] to be oo when i > j - if we instead define w[i,j] and ei,j] to be -oo

when i > j, as we might want to do if we were maximizing instead of minimizing, then W

and E would not satisfy the Monge condition or the inverse Monge condition.) Yao's dynamic

131



132 CHAPTER 6. TWO DYNAMIC-PROGRAMMING APPLICATIONS

k

r_1 I-! _
1

i-i
i

n+1

Figure 6.5: For any i in the range 1 < i < n, E(i, i + 1) through E(i, n + 1) are the minimum entries
in rows i + 1 through n + 1 of the plane Ai, which correspond to the minimum entries in rows 2 through
n - i + 2 of the subarray Bi.

programming problem then boils down to computing the entries of E. Unfortunately, the results

of [AKM+87] seems inapplicable at this point, at least in a straightforward manner, as we are

neither interested in the row minima of E nor are the entries of E readily available.

Let A = a[i, j, k]} denote the nx (n+ 1) x n array where a[i, j, k] = w[i,j]+e[i, k]+e[k+ 1,j].

Furthermore, for 1 i n, let Ai = {ai[j, k]} denote the (n + 1) x n two-dimensional plane of

A corresponding to those entries whose first coordinate is i, and let Bi = {bi[s, t]} denote the

(n - i + 2) x (n - i + 1) subarray of Ai consisting of row i through n + 1 and columns i through

n of Ai, so that b [s,t] = as + i - 1, t + i - 1]. (One such plane Ai and its subarray Bi are

depicted in Figure 6.5.) Then for 1 < i < j < n,

E(i,j) = min a[i,j,k]
k s.t. <k<n

smin bi[j- i + 1, t],t s.t. <_<n-i+l

i.e., E(i,i + 1),..., E(i, n + 1) are simply row minima of Bi. (To be precise, they are the

minimum entries in rows 2 through n - i + 2 of Bi.) Moreover, since W and E are Monge

arrays, A is a cycle-decomposable Monge-composite array, which implies both Ai and Bi are

Monge for all i in the range 1 < i < n.

"Y- "'. . ..". l
'''::s.': .. ·,.:. i , i', :.; :i

:...... ..... .... ·.i , -*. . ge , : .. ., . · ·..: i, g . s-:

, ',<' t;_s . . > , · · .., a

:' ': .' '.: Y ,'*--* , - ' '',,.''','
'."' . ~ ·:': ',·t" '" ' , -:*, 

. . . -:

B............. ... _ :.

',,. *·i .. · .:;- ~
'.' .'" :' .. .. . . ....



6.2. YAO'S DYNAMIC-PROGRAMMING PROBLEM

Yao's algorithm consists of n stages, each requiring O(n) time. In the Lth stage, we locate

the minimum entry in tube (i,j) of A for all i and j such that 1 i < j < n + 1 and j - i = e.

In other words, we compute E(1, e + 1), E(2, e+ 2), ... , E(n + 1 - e, n + 1).

The first stage is easily completed in 0(n) time, since e[i, i + 1] = w[i, i + 1] for all i in the

range 1 i < n. For > 2, we compute those e[i, j] on the tth diagonal of E as follows. Since

A is Monge, Property 1.12 implies

k(i,i+ I- 1) < k(i,i+ t) < k(i+ ,i )

for all i in the range 1 < i < n + 1 - t. Furthermore, k(i + 1, i + ) and k(i, i + - 1) are

known from the previous stage. Thus, for 1 < i < n + 1 - t, we can compute k(i, i + t) in

O(k(i + 1, i + t) - k(i, i + e - 1) + 1) time, which implies the eth stage takes

n+l--
O O(k(i+ ,i+t)-k(i,i+e-1)+ 1) = O(k(n+2-,n+1)-k(1,)+n+1-t)

i=l
= (n)

total time.

6.2.3 An Alternate Quadratic-Time Algorithm

Our algorithm consists of n stages. In the ith stage, we compute the row minima of Bi, which

gives us E(i,j) for all j such that i < j < n. To compute these row minima, we first observe

that for 1 < t < s < n - i + 2,

bi[s,t] = w[i,s + i - 1]+e[i,t+ i - 1] + e[t + i,s + i - 1]

can be computed in constant time from e[i, t + i - 1] and e[t + i, s + i - 1]. Since t > 1, we have

already computed e[t + i,s + i- 1] = E(t + i,s + i- 1). Moreover, e[i,t + i- 1] = E(i,t + i- 1)

is the minimum entry in row t of Bi. Thus, we can compute the row minima of Bi (and hence

E(i, i + 1),...,E(i, n + 1)) in O(n - i) time using the on-line LIEBER algorithm of Section 2.2.

Since the total running time of the above algorithm is O(n2 ) time, we have the following

theorem.

133



CHAPTER 6. TWO DYNAMIC-PROGRAMMING APPLICATIONS

Theorem 6.8 If the weight function w(.,-) both satisfies the quadrangle inequality and is

monotonically increasing on the lattice of intervals, then Yao's dynamic programming problem

can be solved in 0(n 2) time. l

As a final observation, suppose the weight function w(., ) satisfies the quadrangle inequality

and is monotonically increasing on the lattice of intervals, as before, but we are interested in

maximizing E(i,j) rather than minimizing it. In other words, for 1 < i < j n,

0 ° if i = j,

w(i,j) + k ax (E(i,k)+ E(k + 1,j)} if i < j.

For example, we might want to construct a binary search tree that maximizes the expected

number of comparisons performed by a find operation. Since for i < j,

-E(i,j) = - (w(i,j)+ k max {E(i,k)+ E(k+ 1,j)})

- (-w(ij)) + min {(E(i, k)) + (-E(k + 1,j))}
k s.t. ik<j

this maximizing variant of Yao's problem is equivalent to solving the original minimizing recur-

rence when -w(., -) satisfies the quadrangle inequality and is monotonically increasing on the

lattice of intervals, or, equivalently, when w(-, ) satisfies the inverse quadrangle inequality and

is monotonically decreasing on the lattice of intervals.

By combining the approach of Subsection 6.2.3 with Klawe and Kleitman's on-line algorithm

for computing the row minima of a partial inverse-Monge array of the staircase variety, we can

obtain an O(n 2a(n))-time algorithm for the maximizing variant of Yao's problem.

Theorem 6.9 If the weight function w(.,.) both satisfies the inverse quadrangle inequality

and is monotonically decreasing on the lattice of intervals, then Yao's dynamic programming

problem can be solved in O(n 2a(n)) time.

Proof This proof is identical to that given above for Theorem 6.8 except that the arrays W,

E, and Bi defined above are no longer Monge arrays; instead, they are partial inverse-Monge

arrays. For 1 < i < n, the row-minima problem for Bi is now equivalent to the convex least-

weight subsequence problem considered in [EGG88]. As we mentioned in Section 2.4, Klawe

134



6.2. YAO'S DYNAMIC-PROGRAMMING PROBLEM 135

and Kleitman [KK90] have shown that this problem can be solved in O(na(n)) time. Thus, by

applying Klawe and Kleitman's algorithm n times, we can obtain the entries of E in O(n2a(n))

time. U

It remains open whether the time complexity given in Theorem 6.8 or that given in Theo-

rem 6.9 can be improved.



I



Chapter 7

Dynamic Programming and

Economic Lot Sizing

This chapter presents efficient algorithms for problems related to economic lot-size models.

These algorithms use Monge-array techniques to speed up classical dynamic-programming al-

gorithms for production scheduling. The results covered in this chapter represent joint work

with Aggarwal that was first described in [AP91].

Economic lot-size models typically deal with production and/or inventory systems. A prod-

uct (which could be a raw material, a purchased part, or a semifinished or finished product in

manufacturing or retailing) is produced or purchased in batch quantities and placed in stock.

As the stock is depleted by demands for the product, more of the product must be produced

or purchased. The object of production planning is to minimize the cost of this cycle of filling

and depleting the stock. Since the number of variables affecting production planning is usually

quite large (for example, these variables may include work-force levels, physical resources of

the firm, and external variables such as federal regulations), economic lot-size models typically

make certain simplifying assumptions. Some researchers have studied models with the assump-

tion that the demands on the inventory follow a given probabilistic distribution, while others

have assumed that these demands are deterministic and known in advance. In this chapter, we

study models based on the latter assumption.

The study of economic lot-size models that assume deterministic demands dates to at least

137



CHAPTER 7. DYNAMIC PROGRAMMING AND ECONOMIC LOT SIZING

1915 with F. W. Harris [Har15], who considered a model that assumes demands occur contin-

uously over time. About three decades ago, a different approach was independently provided

by Manne [Man58] and by Wagner and Whitin [WW58]; they divided time into discrete pe-

riods and assumed that the demand in each period is known in advance. Since 1958, the

Manne-Wagner-Whitin model has received considerable attention, and several hundred papers

have directly or indirectly discussed this model; most of these papers have either extended this

model or provided efficient algorithms for production problems that arise in it. (Indeed, Lee

and Denardo [LD86] have provided convincing reasons why the Manne-Wagner-Whitin model

is a reasonable one.) The references given here and those given in [BRG87] provide only some

of the papers related to the Manne-Wagner-Whitin model. Today, even an introductory course

in operations research for managers and economists is likely to include a chapter on the Manne-

Wagner-Whitin model and on some of its extensions. (See, for example, the following books:

[Den82, HC84, JM74, Wag75].) Because of the immense interest in economic lot-size models,

a considerable amount of research effort has been focussed on establishing the computational

complexity of various problems in these models. (In particular, see Florian, Lenstra, and Rin-

nooy Kan [FLR80], Bitran and Yanasse [BY82], Luss [Lus82], Erickson, Monma, and Veinott

[EMV87], and Chung and Lin [CL88].)

This chapter reviews the Manne-Wagner-Whitin model and some of its extensions. It also

provides efficient algorithms for several production planning problems expressed in terms of this

model, all of which assume concave costs. We focus on uncapacitated economic lot-size prob-

lems, i.e., problems without bounds on production, inventory, or backlogging; similar results

for capacitated problems, as well as related problems involving negative demands and shelf-life

bounds, are given in [AP90].

Our algorithms use dynamic programming [Be157] and the on-line array-searching techniques

described in Chapter 2, and they typically improve the running times of previous algorithms

by factors of n and n/ lg n, where n is the number of time periods under consideration; these

improvements are listed in Tables 7.1, 7.2, and 7.3. In many cases, the running times of these

algorithms are optimal to within a constant factor or to within a factor of lg n.

One of the critical contributions of this chapter is our identification of the Monge arrays that

arise in connection with the economic lot-size model; it is these arrays that allow us to apply

138



7.1. BACKGROUND AND DEFINITIONS

the techniques of Chapter 2 and improve the time bounds of previous algorithms for economic

lot-size problems so dramatically. We also raise several unresolved questions regarding the time

complexities of various problems formulated in terms of the economic lot-size model. It is our

hope that these open questions will stimulate interest in the economic lot-size model among

researchers in theoretical computer science and related areas.

Recently, two groups of researchers from the operations research community - Federgruen

and Tzur [FT89, FT90] and Wagelmans, van Hoesel, and Kolen [WvHK89] - have indepen-

dently obtained some of the results presented in this chapter using different techniques. We

will briefly describe their work and contrast it with our own in the final section of this chapter.

The remainder of this chapter is organized as follows. In Section 7.1, we review the Manne-

Wagner-Whitin model and list the main results of this chapter. In Section 7.2, we discuss the

dynamic programming techniques developed by previous researchers for solving economic lot-

size problems with concave costs, and then-in the Sections 7.3-7.5, we combine these techniques

with the array-searching techniques of Chapter 2 to obtain algorithms for three different types

of economic lot-size problems. Finally, in Section 7.6 we discuss several extensions to our work,

relate our results to the aforementioned work of Federgruen and Tzur [FT89, FT90] and of

Wagelmans, van Hoesel, and Kolen [WvHK89], and present some open problems.

7.1 Background and Definitions

7.1.1 The Basic Model

To describe the basic model given in [Man58, WW58], we use the notation employed by Denardo

in [Den82]. Demand for the product in question occurs during each of n consecutive time periods

(i.e., intervals of time) numbered 1 through n. The demand that occurs during a given period

can be satisfied by production during that period or during any earlier period, as inventory

is carried forward in time. (This basic model differs from the backlogging model described

in Subsection 7.1.2 in that demand is not allowed to accumulate and be satisfied by future

production.) Without loss of generality, we assume both the initial inventory (at the beginning

of first period) and the final inventory (at the end of period n) are zero. The model includes

production costs and inventory carrying costs, and the objective is to schedule production so

139



CHAPTER 7. DYNAMIC PROGRAMMING AND ECONOMIC LOT SIZING

as to satisfy demand at minimum total cost.

The data in this model are the demands, the production cost functions, and the inventory-

carrying cost functions. In particular, for 1 < i n,

di = the demand during period i,

ci(z) = the cost of producing units during period i, and

hi(y) = the cost of storing y units of inventory from period i - 1 to period i,

where for the duration of this chapter, we assume di > 0 for all i in the range 1 < i < n.

Furthermore, the model has 2n + 1 decision variables xz,..., ,n and y, ... ,Yn+l, where for

1li < n,

zi = the production during period i,

and for 1 < i < n + 1,

yi = the inventory stored from period i - 1 to period i.

Demand, production, and inventory occur in real quantities, and the problem of meeting demand

at minimal total cost has the following mathematical representation:

minimize E {c,(zi) + hi(yi)}
i=l

subject to the constraints y1 = y,+ = 0

xi > 0 for 1 < i < n, (7.1)

yi 0 for 1 < i < n, and

yi + i = di + yi+l for 1 < i < n.

The first constraint of (7.1) assures that the initial and final inventories are zero, while the

second and third constraints limit production and inventory to nonnegative values. (Requiring

inventory to be nonnegative insures that the demand in period i is satisfied by production

140



7.1. BACKGROUND AND DEFINITIONS

during that period or during earlier periods.) Finally, matter must be conserved, so the fourth

constraint requires that the sum of the inventory at the start of a period and the production

during that period equals the sum of the demand during that period and the inventory at the

start of -the next period.

The production and inventory levels are, of course, interrelated. If one knew the inventory

levels yl,..., y at the beginning of all periods, one could determine the production levels

X1,..., Xn from the conservation-of-matter constraint. Conversely, if one knew the production

levels x1,..., 2, one could determine the inventory levels y, ... , yn from the equation

yi = (dl + ... + di-,) - (1 + ... + Zi-,) . (7.2)

To interpret (7.2), note that the inventory yi at the beginning of period i equals the total

production during periods 1 through i - 1 less the total demand during these periods.

The production levels zl,... , x,n give a production plan or production schedule. We will say

that a particular schedule is feasible if it and the inventory levels determined by (7.2) satisfy

the constraints of (7.1). Moreover, we will say that a particular schedule is optimal if it is a

feasible production schedule that minimizes na- {ci(xi) + hi(yi )) over all feasible production

schedules.

The basic economic lot-size problem can also be formulated as a network-flow problem. (This

formulation was first proposed by Zangwill in [Zan68].) Consider the directed graph depicted

in Figure 7.1. This graph consists of a single source, capable of generating a net outflow of

~~l, di, and n sinks, such that the ith sink requires di units of net inflow. Furthermore, for

1 _ i < n, there is an arc from the source to ith sink with associated cost function ci(.), and for

2 < i < n, there is an arc from the (i - 1)st sink to the ith sink with associated cost function

hi (.). A minimum-cost flow for this graph corresponds to an optimal production schedule for

the associated economic lot-size problem.

If ci(.) and hi(-) are arbitrary functions, then the basic economic lot-size problem is NP-

hard l, as Florian, Lenstra, and Rinnooy Kan showed in [FLR80]. In view of this difficulty, cer-

'Note that if production levels are restricted to integer values, then dynamic programming does yield a
weakly-polynomial algorithm for computing an optimal production schedule, even for arbitrary production and
inventory cost functions. The algorithm's running time is polynomial in n and the total demand D = 'i.l di

141



142 CHAPTER 7. DYNAMIC PROGRAMMING AND ECONOMIC LOT SIZING

d, d, d3 d,

Figure 7.1: The basic economic lot-size problem can be formulated as a network-flow problem.

tain assumptions are often made regarding the structure of the basic economic lot-size model's

costs; we review some of these assumptions below.

1. In their pioneering papers, Manne [Man58] and Wagner and Whitin [WW58] assumed

that for 1 i < n,

O if x=O,
ci(x) { <

c +c'z ifz>O,

and hi(y) = hly, where the c°, cl , and h! are all nonnegative constants 2. (The assumption

that cl > 0 can be dropped, as changing cl affects only the cost of the optimal production

schedule and not its structure.) Wagner and Whitin [WW58] also provided an O(n 2)-time

algorithm for computing an optimal production plan. Note that the set-up costs ci are

what make this problem interesting; if c = 0 for all i, then the problem can be solved

trivially.

2. A function f(-) whose domain is the real line is called concave if for all real numbers z,

y, and z such that z > y and z > 0, we have

f( + )- f(z) < (y + ) - f(y) . (7.3)
but potentially exponential in the size of the input.

2 We include subscripts on the constants c,c2;... and 1,h,...,. (but not on the constant c) to
indicate that every period's cost functions are defined in terms of a (potentially) different pair of constants c
and hL but the same constant c.



7.1. BACKGROUND AND DEFINITIONS

Furthermore, f(.) is called concave on an interval I of the real line if (7.3) holds for all

z > y and for all z > 0 such that both y and + z are contained in the interval I. Finally,

a. function g(.) whose domain is some interval J of the real line is called concave if it

is concave on its domain J. In [Wag60], Wagner showed that the O(n 2 )-time algorithm

given in [WW58] can still be used if for 1 < i < n, ci(x) is concave (or more precisely, it

is concave on [0, +oo), the relevant portion of its domain), and hi(y) = h y, where the hi

are again nonnegative constants.

3. Zabel [Zab64] and Eppen, Gould, and Pashigian [EGP69] considered a somewhat simpler

cost structure; for 1 < i < n, they assumed that

cix) = 0ci() ={0 ifz=O,c+clx if >0,

and h,(y) = h y, where the c?, cl, and h are all nonnegative constants. (The assumption

that c > 0 for 1 < i < n can be dropped, as changing all the c by the same amount

affects only the cost of the optimal production schedule and not its structure.) For this

cost structure, both Zabel and Eppen, Gould, and Pashigian provided some additional

properties of an optimal production schedule. Both papers also exploited these properties

to obtain algorithms for computing an optimal schedule that run faster in practice but

which still require quadratic time in the worst case.

4. In [Zan69], Zangwill again assumed that

ci () 0 if = 0,

c°+ cz if >0,

for 1 < i < n, but he allowed the hi(.) to be arbitrary concave functions (on [0, +oo)). For

this cost structure, he showed that Wagner and Whitin's approach still yields an 0(n 2 )-

time algorithm for computing an optimal production schedule. (See also Subsection 7.1.2.)

5. Finally, Veinott [Vei63] showed that even if both the c(-) and the hi(.) are arbitrary

concave functions, Wagner and Whitin's approach gives an O(n 2)-time algorithm.

143



CHAPTER 7. DYNAMIC PROGRAMMING AND ECONOMIC LOT SIZING

Table 7.1: A summary of our results for the basic economic lot-size problem. The results are bounds
on the time to find an optimal production schedule, where n is the number of periods.

Observe that if we interpret f(x) as the cost of producing (or storing) z items, then a concave

f(-) implies decreasing marginal costs, or equivalently, economies of scale. Since microeconomic

theories often assume economies of scale, the concave cost structure assumed by Veinott seems

reasonable, which is one of the reasons why the economic lot-size model with linear or concave

costs has received so much attention.

In Section 7.3, we provide efficient algorithms for several of the cost structures discussed

above. The time complexities of these algorithms are listed in Table 7.1. The new algorithms

use dynamic programming and Monge-array techniques.

7.1.2 The Backlogging Model

Until now, we have assumed that the demand for a particular period is satisfied by production

during that period or during earlier periods. In 1966, Zangwill [Zan66] extended the basic model

by allowing demand to go unsatisfied during some period, provided it is satisfied eventually by

production in some subsequent period. (Satisfying demand with future production is known

as backlogging demand.) Zangwill's extension changes the formulation of the economic lot-size

problem given in Subsection 7.1.1 in that it allows the variables Y2 through y, in (7.1) to be

negative. Equation (7.2) still identifies yi as the total production during periods 1 through i- 1

cost structure previous result new result

ci(o) = o o(n2) O(n)
ci(z) = c? + clz for z > 0 [WW58] Theorem 7.4

c > 0 assumed

hi(y) = hy C=C 1

cl < clL + hi

i() = 0 (n2) O(n lg n)
ci(z) = c? + czx for x > 0 [Zab64, EGP69] Theorem 7.5

c° > 0

h,(y) = hy

ci(.) and hi(.) concave O(n2 ) no improvement

[Vei63]

144



7.1. BACKGROUND AND DEFINITIONS

Figure 7.2: The backlogging economic lot-size problem can be formulated as a network-flow problem.

less the total demand during those periods; however, when yi is negative, it now represents a

shortage of -ys units of unfulfilled (backlogged) demand that must be satisfied during periods

i through n. Furthermore, when y is nonnegative, hi(yi) remains equal to the cost of ys units

of inventory at the start of period i, but when yi is negative, hi(yi) becomes the cost of having

a shortage of ys units at the start of period i. For the sake of clarity, we let gi-(-yi) = hi(yi)

in this latter case.

The backlogging economic lot-size problem, like the basic problem, can also be formulated

as a network-flow problem. We use the same single-source, n-sink directed graph as for the

basic economic lot-size problem, except that for 2 < i < n, we add an arc from the ith sink to

the (i- 1)st sink with associated cost function gi-l(). This new graph is depicted in Figure 7.2.

Again, a minimum-cost flow for this graph corresponds to an optimal production schedule for

the associated economic lot-size problem with backlogging.

As is the case for the basic economic lot-size problem (given in Subsection 7.1.1), the

backlogging economic lot-size problem is NP-hard if arbitrary cost functions are allowed. For

this reason, researchers have studied a fair number of restricted cost structures, some of which

are listed below.

1. In [Zan66], Zangwill assumed that the c(.), hi(.), and gi(.) are all arbitrary concave

functions (or more precisely, they are all concave on [0, +oo)), and provided an O(n 3 )-

time dynamic programming algorithm for computing an optimal production plan.

145



CHAPTER 7. DYNAMIC PROGRAMMING AND ECONOMIC LOT SIZING

2. In [Zan69], Zangwill assumed that

0 O ifz =0,
Ci(2) 

c( +c c):r if z>0,

for 1 < i < n (where the c and cl are nonnegative constants) and that the hi(.) and

gi() are arbitrary concave functions. For this cost structure, he provided an O(n 2)-time

algorithm for computing an optimal production plan.

3. Blackburn and Kunreuther [BK74] and Lundin and Morton [LM751 assumed that

f X O if x= 0,
ci(x) { c° + c !X if > 0,

g(z) z and h() h i y, where c°, c, g, h! > 0 for 1 i < n. For this case, they

obtained some characteristics of optimal production schedules; these characteristics are

generalizations of those given by Eppen et al. EGP69] for the basic model (i.e., the one

without backlogging). Both [BK74] and [LM75] also gave algorithms for determining an

optimal production plan, but these algorithms again take quadratic time in the worst

case. Like Eppen et al. [EGP69], however, Lundin and Morton [LM75] argued that their

algorithm runs faster in practice than that of Zangwill.

4. Finally, Morton [Mor78] considered a very simple cost structure in which

0 if x = 0,
c,(x) c if >0,

gi(z) = gz, and hi(y) = hly, where c,cl,gl,hl > 0 for 1 < i < n. For this case,

Morton provided a very simple O(na2)-time algorithm, which seems to run quite efficiently

in practice.

In Section 7.4, we provide asymptotically faster algorithms for most of the cost structures

discussed above. The time complexities of these algorithms are listed in Table 7.2. We again

146



7.1. BACKGROUND AND DEFINITIONS

Table 7.2: A summary of our results for the economic lot-size problem with backlogging. The results
are bounds on the time to find an optimal production schedule, where n is the number of periods.

cost structure previous result new result J
c,(O) = 0 0(n 2 ) O(n)

ci(x) = c + c for x > 0 [Mor78] Theorem 7.8

c0 > 0 assumed

g,(z) = gz cI =C 1

h,(y) = y g9 = g
l < c!: + il h! = hlcil < cLg + h9

ci(o) = o(n2 ) O(n lg n)
ci(z) = c + cx for > 0 [BK74, LM75] Theorem 7.9

C > 0

gi(Z) = gz
hi(y) = hy

c,(O) = 0 O(n 2 ) no improvement

ci(x) = c + cz for > O [Zan69]

hi(-) and gi(') concave

Ci(-), hi(.), and g() concave O(n3 ) o(n 2 )

[Zan66, EMV871 Theorem 7.12

147



CHAPTER 7. DYNAMIC PROGRAMMING AND ECONOMIC LOT SIZING

use both paradigms, dynamic programming and searching in Monge arrays.

7.1.3 Two Periodic Models

Since market demands often display periodic behavior (which may arise, for example, because

of the inherent cyclicity in seasonal demands), Erickson, Monma, and Veinott [EMV87] and

Graves and Orlin [G085] have studied two different variants of the backlogging economic lot-

size problem that assume the planning horizon is infinite, i.e., we are planning for an infinite

number of periods, but the costs and demands are periodic with period n.

Erickson et al. [EMV87] consider the problem of finding an infinite production schedule

with minimum average cost per period, subject to the constraint that the production schedule

also have period n. Equivalently, they want a minimum-cost n-period production schedule for

periods i through i + n - 1, where i is allowed to vary between 1 and n. Their model can be

interpreted in a graph-theoretic sense as the backlogging flow network (given in Figure 7.2)

with two additional arcs - one corresponding to inventory and the other corresponding to

backlogging - between the first sink and the nth sink. For this problem, Erickson et al.

obtained an O(n3 )-time algorithm.

The second periodic variant of the backlogging problem, considered by Graves and Orlin

[G085], is also concerned with finding an infinite production schedule with minimum average

cost per period. However, the schedule is not restricted to have period n; instead, an assumption

is made about the limiting behavior of the gi(-) and hi(). (See Section 7.5 for more details.) For

this problem, Graves and Orlin [G085] give an O(p3 n3 )-time algorithm, where p is a parameter

that depends upon production, inventory, and backlogging costs.

In Section 7.5, we give efficient algorithms for both Erickson, Monma, and Veinott's prob-

lem and Graves and Orlin's problem. The time complexities of these algorithms are given in

Table 7.3.

7.2 Arborescent Flows and Dynamic Programming

As we mentioned in Subsections 7.1.1 and 7.1.2, both the basic and backlogging variants of

the economic lot-size problem can be formulated as network-flow problems. Moreover, if the

148



7.2. ARBORESCENT FLOWS AND DYNAMIC PROGRAMMING

Table 7.3: A summary of our results for the two periodic economic lot-size problems. The results are
bounds on the time to find an optimal production schedule, where n is the periodicity and p is a function
of the ci(-), gi(), and hi(.).

cost functions ci(-), gi(.), and hi(.) assigned to these networks' edges are all concave, then we

need only consider flows of a certain type in finding a minimum-cost flow. Specifically, a flow

in an uncapacitated directed graph G is called arborescent if the directed edges of G carrying

nonzero flow, when viewed as undirected edges, form an undirected acyclic graph on the vertices

of G. As the following theorem shows, we can restrict our attention to arborescent flows in

network-flow problems with concave edge cost functions.

Theorem 7.1 (folklore; see [Zan68, EMV87]) Consider the flow problem associated with

a directed graph G, where each arc e of G is assigned a cost function Ce(.) and the only con-

straint on the flow f, on arc e is fe > 0. If ce(.) is concave on [0, +oo) for all arcs e, then some

minimum-cost flow in G is arborescent. 

This theorem appears (in one form or another) in all of the papers dealing with the economic

lot-size problem that we consider. It is important because it implies that we need only consider

production schedules that supply the demand for period i from at most one of the following

sources: production during period i, inventory from period i-1, or, in the case of the backlogging

model, demand backlogged to period i + 1. Consequently, the basic and backlogging economic

lot-size problems can be formulated in terms of dynamic programming. Specifically, let E(1) =

0, and for 1 < j < n+ 1, let E(j) denote the minimum cost of supplying the demands of periods

problem and cost structure J previous result new result

Erickson, Monma, and Veinott's problem O(n3 ) 0(n 2)

ci(O) = 0 [EMV87] Theorem 7.13

ci(z) = c? + c1z for > 0
c? > 0

hi(.) and gi() concave and nondecreasing

Erickson, Monma, and Veinott's problem 0(n 3 ) no improvement

ci(.), hi(.), and gi(.) concave [EMV87]

Graves and Orlin's problem o(p 3 n3 ) 0(p2 n3 )

ci(.), hi(.), and gi(-) concave [G085 Theorem 7.15

149



CHAPTER 7. DYNAMIC PROGRAMMING AND ECONOMIC LOT SIZING

.

d1 d , di dj l dj

Figure 7.3: Consider any instance of the basic economic lot-size problem, and suppose Pi is a minimum-
cost arborescent production schedule satisfying the demands of periods 1 through j - 1 such that no
inventory is carried forward to period j. Furthermore, suppose Pj 's last production occurs during period
i. Since Pi is arborescent, the demands of periods i through j - 1 must all be satisfied by the production
during period i. Moreover, the subschedule of Pj corresponding to periods 1 through i - 1 (indicated by
the shaded region) must be a minimum-cost arborescent production schedule satisfying the demands of
periods 1 through i- 1 such that no inventory is carried forward to period i.

1 through j- 1 such that the inventory yj carried forward to (or backlogged from) period j

is zero. This definition implies that E(n + 1) is the cost of the desired optimal production

schedule for periods 1 through n. Moreover, as suggested in Figures 7.3 and 7.4, if Pi is an

optimal production schedule achieving E(j), then there exists an i in the range 1 < i < j such

that Pj can be decomposed into (1) a single period of production satisfying the demands of

periods i through j - 1, and (2) an optimal production schedule achieving E(i). Thus, if we let

dij = EiQl dm for 1 < i < j n + 1, then for the basic problem,

E(j) = min E(i) + ci(dc) +l<i<j hm(dj )} 

and for the backlogging problem,

E(j) = min
1 <i<k<j

k-I j-1

E(i)+ck(di,j) + E gm(di,m+) + hm(dmj) ,
m=i m=k +l

provided we view summations of the form E =j(...) as evaluating to 0 if i > j.

150



7.3. THE BASIC PROBLEM

.

d_1 d, dk

Figure 7.4: Consider any instance of the backlogging economic lot-size problem, and suppose P is
a minimum-cost arborescent production schedule satisfying the demands of periods through j - 1
such that no inventory is carried forward to or backlogged from period j. Furthermore, suppose P 's last
production occurs during period k and that i is first period whose demand is satisfied by this production.
Since Pj is arborescent, the demands of periods i through j - 1 must all be satisfied by the production
during period k. Moreover, the subschedule of Pj corresponding to periods 1 through i - 1 (indicated
by the shaded region) must be a minimum-cost arborescent production schedule satisfying the demands
of periods 1 through i - 1 such that no inventory is carried forward to or backlogged from period i.

Note that these dynamic programming formulations for the basic and backlogging economic

lot-size problems give O(n2 )-time and O(n3 )-time algorithms, respectively, for computing the

cost of an optimal production schedule; we merely evaluate E(1), E(2),..., E(n + 1) in the

naive fashion. Furthermore, we can extract an optimal production schedule (not just its cost)

in 0(n) additional time, provided for each E(j) we remember the i such that

j-I
E(j) = E(i) + ci(dij) + E hm(dm,j)

m=i+l

or the i and k such that

k-1 j-1
E(j) = E(i) +c(dij) + E 9(dim+l) + E

m=i m=k+ l
hm(dm,j) .

7.3 The Basic Problem

This section investigates the time complexity of the basic economic lot-size problem under

several different assumptions about the production and inventory cost functions. In Sub-

151



CHAPTER 7. DYNAMIC PROGRAMMING AND ECONOMIC LOT SIZING

section 7.3.1, we consider nearly linear production costs and linear inventory costs, while in

Subsection 7.3.2, we discuss other concave production and inventory cost functions.

7.3.1 Nearly Linear Costs

In this subsection, we give results for instances of the basic economic lot-size problem with

what we will call nearly linear costs. Specifically, for 1 < i < n, we assume

O W if = 0,
ci(x) = { c ifx>O,

c9 +cl if z > 0,

and hi(y) = hy, where c, c, and hi are constants and c > 0. (The restriction on c is

necessary to insure that c,(z) is concave, so that the techniques of Section 7.2 can be applied.)

In the operations-research literature, this cost structure is often described as consisting of fized-

plus-linear production costs and linear inventory costs.

We begin with a special case in Subsubsection 7.3.1: for 1 < i < n, we assume c < c,_l +h.

For this special case of the basic lot-size problem, we give a linear-time algorithm for computing

the optimal production schedule. Then, in Subsubsection 7.3.1, we remove this constraint on

the coefficients of the cost functions, at the expense of an increase in our algorithm's running

time by factor of lg n.

Restricted Coefficients

In this subsubsection, we consider a nearly linear cost structure where the cost coefficients

satisfy ci ciL_ + hi for 1 < i < n. In other words, we assume that the marginal cost of

producing during period i is at most the marginal cost of producing during period i - 1 plus the

marginal cost of storing inventory from period i - 1 to period i. This particular cost structure

subsumes those considered by Manne [Man58] and Wagner and Whitin [WW58]. The latter

paper gave an O(n 2)-time algorithm for computing an optimal production schedule; we improve

this time bound to O(n) for our slightly more general cost structure.

Recall the dynamic programming formulation of the basic economic lot-size problem given

in Section 7.2: if we let E(j) denote the minimum cost of satisfying the demands of periods I

152



7.3. THE BASIC PROBLEM

through j -1 such that the inventory yj carried forward from period j- 1 to period j is 0, then

E(1)= 0 and for 2 _ j 5 n + 1,

E(j) = m<in E(i) + c(di,) + h(dmj)

where dij = di + d,+l + * + djil. Solving this dynamic program in the naive fashion gives the

O(n'2)-time algorithm presented in [WW58].

To compute E(2),..., E(n+ 1) in linear time, we consider the n x (n +1) array A = {a[i, j])

where j-i
E(i) c + cid,,j + E h' dj if i < j,

a[i,j] m=i+l

+oo if i > j.

(Instead, one is tempted to use the n x (n + 1) array B = {b[i, j]} where

E(i) + () + if 

E(i) + ci(dij) + E h,,d,~.i if i < j,
b[i,j] = =i+l

+oo if i > j,

but this array may not be Monge; for example, if d1 > 0, d2 = 0, and d3 > 0, then

b[1,3] + b[2,4]1- b[1,4]- b[2,3] c + (cl - (c + h))d3,

which may be positive if co is sufficiently large.) Now if di_- = 0, then E(j) = E(j - 1). On

the other hand, if dil > 0, then dmj > 0 for all m < j, which implies

E(i)+ (dj)+ h m(dm j) a[i,j]j-I1
m=i+

for all i < j, and

E(j) = min a[i,j].

153



CHAPTER 7. DYNAMIC PROGRAMMING AND ECONOMIC LOT SIZING

Combining these twe observations gives the following recurrence for E(j) when 2 < j < n + 1:

E(j) = E(j j-1) if dj_ =0,

min a[i,j] if dj_t > 0.
l<i<.

At this point, we would like to apply tie on-line LIEBER algorithm described in Section 2.2

to compute the column minima of A (and hence E(2),..., E(n + 1)). Since a[i,j] depends only

on the minimum entries in columns 1 through i of A, all that remains to be shown is that the

array A is Monge and that any entry a[i, j] of A can be computed in constant time given E(i).

Lemma 7.2 'A is Monge.

Proof For 1<i<j n+ 1,

j-1
a[i,j] = E(i) + c? + di+ + hddj

m=i+1
i-1 i

-E(i) + c? + c(d,j - d,) + h dj - E h (dj - d,,)
m= I -nm=1 m=1

- [E(i)+~cjcid+ h'd + [z dndj + i h- d)] dij

Now consider the n x (n + 1) array A' = {a'[i,j]} where

a'[i, j] [E(i) cc+ Z -c.dl, + h[dh + + hd.j [(C, + n djJ

for 1 < i < n and 1 j n + 1. If we can show that A' is Monge, then A must also be Monge,

since every 2 x 2 subarray of A is either a 2 x 2 subarray of A' or its left- and bottommost entry

is a +oo.

To show that A' satisfies the Monge condition, note that the first bracketed term in its

definition depends only on i, the second bracketed term depends only on j, and the third

bracketed term is the product of

1 i

m=1

154



7.3. THE BASIC PROBLEM

which depends only on i, and d1j, which depends only on j. Furthermore,

1

c - Eh
m=1

2

> c 1C h > >
2 m=lm=1

n

-

m= 1

(since, by assumption, ci c,l_ + hi for 1 < i n) and

=(since, d 0 for 1 i ) Thus, dLemma 12, A' is Monge.+

(since, by assumption, di 0 for 1 < i < n). Thus, by Lemma 1.2, A' is Monge. 

Lemma 7.3 Given O(n) preprocessing time, we can compute a[i,j from E(i) in constant

time, for all i and j.

Proof If i > j, then a[i,j] = +oo, i.e., computing the entry is easy. If, on the other hand,

i < j, then

a[ij] = E(i) + ci +
j-1
E h dmj .

m=i+l

Now suppose we precompute dli for 1 < i < n, which takes O(n) time. This preprocessing

gives us any dij in constant time, since di,j = dj - di. Suppose we also precompute

j-

E h'
m=1

for 2 < j < n + 1. This preprocessing again takes O(n) time, and it allows us to precompute

j-1
h dm,j

m=1

for 2 < j < n + 1 in an additional O(n) time, since

j-1
E h, dmj

m=1

j-2
= h dj +

m=1

h' d .-) ·

Moreover, since

j-1

m=i+l

j-1 i
h dmj = E h dm,j - h' dm,i+l

ml m=l
him) di+lj 

155



CHAPTER 7. DYNAMIC PROGRAMMING AND ECONOMIC LOT SIZING

these precomputations allow us to compute a[i,j] from E(i) in constant time. U

Lemmas 7.2 and 7.3 allow us to use the LIEBER algorithm described in Section 2.2 to compute

the column minima of A and hence E(2),..., E(n + 1) in linear time. Consequently, we have

the following theorem.

Theorem 7.4 Given an n-period instance of the basic economic lot-size problem such that

* forl i<n,
ci(x) = O f ifx = ,

c9 + cz if > 0,

where c?° and c are constants and c > 0,

* for 1 < i < n, h,(y) = hi y, where hi is a constant, and

* for 1 < i < n, c < cl + h,

we can find an optimal production schedule in O(n) time. U

Arbitrary Coefficients

In this subsubsection, we remove the constraint that ci < cL_ + hi for 1 < i < n and allow the

c and hi to be arbitrary constants. This cost structure is the one considered by Zabel [Zab64]

and by Eppen, Gould, and Pashigian [EGP69]. Both papers gave O(n2 )-time algorithms for

this variant of the basic economic lot-size problem; we improve this time bound to O(n lg n).

With arbitrary coefficients cI and h/, the array A defined in the last subsection no longer

satisfies the Monge condition, since we no longer have

1 2 n

cl - E h > l- h > * - l hEm1 m1 rn=1

However, we can circumvent this difficulty by reordering the rows of A. Intuitively, we sort the

n quantities r, ... , r,, where

ri = Ci - hm ,
m=

i.e., we find a permutation y such that ra(l) > r( 2) > ... r(n). If we then use 7 to permute

the rows of A, we obtain a new array that is Monge-like.

156



7.3. THE BASIC PROBLEM

We will now give a precise description of our O(n lg n)-time algorithm for the basic economic

lot-size problem with nearly linear costs. The algorithm uses a divide-and-conquer approach,

and it involves solving several subproblems, each corresponding to a range of consecutive peri-

ods. These subproblems are slightly more general than the basic economic lot-size problem, in

that solving the subproblem corresponding to periods through t - 1 involves computing E(j)

for a < i < t, where E(j) corresponds to an optimal production schedule for periods 1 through

j - 1 (rather than periods s through j - 1). In particular, the schedule corresponding to E(j)

may have its last nonzero production occur in some period i < s.

To describe our algorithm in detail, we must first introduce some new notation. For 1 <

s < n and s < j < n + 1, let

F,(j) = min a[i,j].
15i<s

Roughly speaking, F,(j) is the cost of the minimum-cost production schedule satisfying the

demands of periods 1 through j - 1 such that the inventory y carried forward from period j- 1

to period j is 0 and the schedule's last nonzero production occurs in some period i < s. For a

subproblem corresponding to periods s,..., t - 1 and for s < j < t, we then have

-JE(j - 1) if djl =-0,

min F,(j m in a[i,j]} if dj_, > O.

Note that so long as E(s) and F,(s+ 1),..., F,(t) are known, the only entries of A that we need

to consider in computing E(s + 1),..., E(t) are those lying in the subarray of A consisting of

rows s through t - 1 and columns s + 1 through t. This subarray is depicted in Figure 7.5.

For I < s < t < n+ 1, we can now define the subproblem corresponding to periods s through

t - 1 as follows. Given E(s) and F,(s + 1),..., F,(t), solving this subproblem entails

1. computing E(j) for s + 1 < j < t, and

2. sorting r,,.. ., rtl, where

ri = c - hl ,
m=l

157



158 CHAPTER 7. DYNAMIC PROGRAMMING AND ECONOMIC LOT SIZING

ci
_~

S

U-I
U

t-1

Figure 7.5: Given E(s) and F,(s + 1) .. ., F,(t), where 1 < s < t < n + 1, we can compute E(s +
1), .. , E(t) from the entries in rows s through t and columns s + 1 through t + 1 of A.

i.e., finding a permutation a,,t such that

ry,,(1)+r-_ > rT,(2)+,-1 > ' _ r>.,(t-)+- ·

(Our reason for including the computation of ,tg as part of the subproblem will become apparent

in a moment.) Since E(1) = 0 and Fl(j) = oo for 2 < j c n + 1, solving the subproblem

corresponding to periods 1 through n + 1 gives us a solution for the original n-period economic

lot-size problem.

To solve the subproblem corresponding to periods s through t - 1 given E(s) and F,(s + 1)

through F.(t), we first recursively solve the subproblem corresponding to periods s through

u - 1, where u = 1(s + t)/2J. This recursive computation is possible because E(s) and F.(s +

1),...,F,(u) are known. Solving this subproblem gives us E(s + 1) through E(u) and the

permutation ,,u,.

Next, we compute the column minima of the subarray B consisting of rows s through u - 1

and columns u + 1 through t of A. (See Figure 7.5.) To find these column minima, we first

permute the rows of B according to the permutation y,,u obtained by solving the subproblem

corresponding to periods s tbhrough u - 1. This permutation gives the (u - s) x (t - u) array



7.3. THE BASIC PROBLEM
A.@ -

B' = b'[i, j where

b'[i,j = [E(8u(i) + a - 1) + C - , ()+ldl,(i)+ + h- di.m
m=1

+ [Eh 1 dmj+u
m-1

+ [r7,..()+,ldlj+u]

The column minima of B' are the column minima of B. Moreover, the first term in the sum

defining b'[i,j] depends only on i, the second term depends only on j, and the third term is the

product r.,.,(j)+-ldl,+u, where

r~,.(.)+-1 > r .. (2)+,- > " > T..(u-_)+o-l

and

dl,u+l < dl,u+2 < dl,.

Thus, by Lemma 1.2, B' is Monge. Furthermore, using the O(n)-time preprocessing described

in the previous subsubsection, we can compute any entry of B' in constant time, since E(s + 1)

through E(u) are known. Thus, we can apply the off-line SMAWK algorithm of Aggarwal et al.

and obtain the column minima of B in O(t - s) time.

Given the column minima of B, we can now compute Fu(u+ 1),..., Fu(t), since for u < j < t,

F,(j) = min {F;(j),ri<nua[ii]}

and

min a[i,j]
,<i<u

is the minimum entry in the (j - u)th column of B. This computation requires only O(t - u) =

O(t - a) additional time.

Once Fu(u+ 1) through Fu(t) are known, we recursively solve the subproblem corresponding

to periods u through t - 1 using E(u) and F(u + 1),...,Fu(t). This recursive computation

gives E(u + 1) through E(t) and the permutation h,'t.

159



CHAPTER 7. DYNAMIC PROGRAMMING AND ECONOMIC LOT SIZING

As the final step of our algorithm, we compute the permutation 7,, from the permutations

,, and ,t. This computation can be accomplished in O(t - s) time by merging the two sorted

lists of ri's corresponding to 7.,, and y,,,. (We assume that for 1 < i < n,

m='l

has been precomputed, so that any ri can be computed in constant time; this preprocessing

requires only O(n) time.)

The running time T(s,t) of this algorithm for the subproblem corresponding to periods s

through t - 1 is governed by the recurrence

T(s,t) T(s, L(S + t)/2J) + T([(s + t)/2j, t) + o(t - s) if t - s > 1,

0(1) if t - s = 1,

which has as its solution T(s,t) = O((t - s)lg(t - s)). Thus, T(1,n + 1) = O(nlgn), which

gives the following theorem.

Theorem 7.5 Given an n-period instance of the basic economic lot-size problem such that

* for 1 i < n,

cwhere(z) { 0 > O,

where c? ai d cl are constants and co > 0, and

* for 1 i < n, hi(y) = hy, where h is a constant,

we can find an optimal production schedule in O(n Ig n) time. I

7.3.2 Other Cost Structures

In the previous subsection, we assumed nearly linear production costs and linear inventory

costs. These assumptions allowed us to prove that certain arrays arising in the context of the

basic economic lot-size problem were Monge, and it was the Mongeness of these arrays that

allowed us to give improved algorithms for the basic problem with nearly linear costs. If one

160



7.3. THE BASIC PROBLEM

tries to generalize this approach to arbitrary concave production and inventory cost functions

(and improve upon the O(n2)-time algorithm of Veinott [Vei63]), however, one notes that the

corresponding arrays need not be Monge. Consequently, the question of whether it is possible to

obtain a subquadratic algorithm for the basic economic lot-size problem with arbitrary concave

costs remains open. (See Section 7.6.)

Note that even if the array A = {a[i, j]} defined in the last subsection were Monge under less

restrictive assumptions about the production and inventory cost functions, the computation of

its column minima might still take fl(n 2) time. This possibility stems from our need to be able

to compute any entry a[i, j] in constant time, given the minimum entries in columns 1 through

i of A. In fact, there are cost structures where this entry computation time turns out to be a

time bottleneck. Specifically, consider the cost structure studied by Zangwill in [Zan69]. (See

also Subsection 7.4.3 and Section 7.6.) Zangwill assumed that for 1 < i < n,

ci(x) { +cz if = 0,

where c and c are constants, and hi(-) is a nondecreasing concave function. (Note that the

marginal cost of production c is the same for all time periods; this assumption is needed to

insure that the array A defined below is Monge.) If we consider the n x (n+ 1) array A = {a[i,jl}

where j-1
E(i) + c? + c'dij + hm(dm,) if i < j,

a[i,j] = m=i+

+00 if i >j

then A is Monge. This claim follows because

a[i,j]+ a[i + ,j + 1] - a[i,j + 1] - a[i + 1,j] = hi+l(di+,j) - hi+l(di+lj+l)

for 1 < i+ < j < nr+ 1, and the right-hand side of this equation is nonpositive so long as hi+l( )

is a nondecreasing function. However, it is unclear how to compute a[i,j] in constant time, given

the minimum entries in columns 1 through i of A, as a[i,j] depends on ,fi-+i hl (dnj) and

we do not know of any o(n 2)-time preprocessing that would allow us to compute this sum for

161



CHAPTER 7. DYNAMIC PROGRAMMING AND ECONOMIC LOT SIZING

any i and j in constant time.

7.4 The Backlogging Problem

This section investigates the time complexity of the backlogging economic lot-size problem under

several different assumptions about the production, inventory, and backlogging cost functions.

In Subsection 7.4.1, we consider nearly linear production costs and linear inventory and back-

logging costs. In Subsection 7.4.2, we focus on arbitrary concave production, inventory, and

backlogging cost functions. Finally, in Subsection 7.4.3, we discuss arbitrary concave inventory

and backlogging cost functions together with nearly linear production cost functions such that

the marginal cost of production is the same for all periods.

7.4.1 Nearly Linear Costs

In this subsection, we give results for instances of the backlogging economic lot-size problem

with nearly linear costs. Specifically, for 1 < i < n, we assume

0 if = 0,
c,(z) = { 

o cz+C! if > 0,

hi(y) = hly, and g(z) = g(z, where the c°, c, hi, and g~ are constants and c? is restricted to

be nonnegative for 1 < i < n. This problem is similar to the basic problem with nearly linear

costs considered in Subsection 7.3.1, except that here we are faced with a three-dimensional

Monge array rather than a two-dimensional Monge array.

We begin with a special case in Subsubsection 7.4.1: for 1 < i < n, we assume cl < ci l +9'

for 1 < i < n and c I< cL_ + h i for 1 < i < n. For this special case of the backlogging problem,

we give an O(n)-time algorithm for computing the optimal production schedule. Then, in

Subsubsection 7.4.1, we remove the constraint on the coefficients of the cost functions and give

an O(nlg n)-time algorithm for the backlogging problem with nearly linear costs.

162



7.4. THE BACKLOGGING PROBLEM

Restricted Coefficients

In this subsubsection, we consider a nearly linear cost structure where the cost coefficients

satisfy cl < c,1 + gi for 1 < i < n and eil < c + h! for 1 < i < n. This particular cost

structure subsumes the cost structure considered by Morton [Mor78]. Morton gave an O(n 2)-

time algorithm for his problem; we improve this time bound to 0(n) for our more general cost

structure.

Recall the dynamic programming formulation of the backlogging economic lot-size problem

given in Section 7.2: if we let E(j) denote the minimum cost of satisfying the demands of

periods 1 through j - 1 such that yj = 0 (i.e., no inventory is stored from period j - 1 to

period j, nor is any demand backlogged from period j - 1 to period j), then E(1) = 0 and for

2 j < n+ 1,

k-I j-1
E(j) m= min E(i) + ck(dij) + E gm(di,m+l) + E hm(dm,j)

-k-- m=i m=k+l

where dij = di + di+l + - + dj_,l.

To compute E(2),..., E(n + 1) in O(n) time, we consider the n x (n + 1) x n array A 

{a[i, j, k]} where

k-I j-1
E(i) + c + di,j + hdm, if i < k < j,

a[i,j,k] = ,m=i m=k+l

+oo otherwise.

Now if djl = O, then either some optimal production schedule produces during period j - 1,

in which case

j-2 j-1
E(i) + cj-,(dij) + j gm(di,.+i) + E hm(dmj) = a[i,j,j - 1]

m=i m=j

for i < j and

E(j) = min a[i,j,j- 1] E(j- 1),I<i<n

163



CHAPTER 7. DYNAMIC PROGRAMMING AND ECONOMIC LOT SIZING

or some optimal schedule does not produce during period j, in which case

E(j) = E(j-1) < min a[i,j,j- 1].
l<i<n

On the other hand, if djl > 0, then dij > for all i < j, which implies

k-i j-I
E(i)+ Ck(dij,) + E gm(dm+l) + hm(d,,j) = a[i,j,k]

m=i m=k+l

for i < k < j and

E(j) = min a[i,j,k].I<i<n
l<k<n

These observations give the following recurrence for E(j) when

minE(j - 1), mnin a[i,j,j - 1])
E(j) = --

m' min a[i,j,k]
1<i<nI,1nkn

2< j n+1:

if dj, = 0,

if d,_l > 0.

Now observe that the three-dimensional array A define above can be decomposed into two

two-dimensional arrays S and T. (Zangwill uses essentially this same decomposition in [Zan69]

to obtain an O(n 2 )-time algorithm for a variant of this problem.) Specifically, let S = {s[i, kj}

denote the n x n array given by the equation

k-1
| E(i) + c + cl di,, + E 9 di,m+l

s[i,k] = m=

+o0

if i < k,

if i> k,

and let T = {tlk,jl) denote the n x (n + 1) array given by the equation

j-i
F(k) + cdk,j + F h' dm,j

t[k,j] = m=k+l

+00

if k < j,

if k > j.

where

F(k) = min{E(k), min s[i,k]}.

164



7.4. THE BACKLOGGING PROBLEM

Since

min a[i, j, k]l<i<n
1 ZkZn

k-i j-
- min min E(i) + co + cldik + d,m+l + cdk + L hmdmj

jii m=k+l

miing dF(k) + cdkj + E h dmJ}

and

min ai, j, j - 1 1min si, j 1] ,li5in l<i<n

we have

-- F(j - 1) if d- = 0,
E(j) =

mi t[k,j] if dj > .l<kin

Thus, to compute E(2),. ., E(n + 1), we need merely compute the column minima of S and T.

(In terms of the definitions of Section 1.2, the three-dimensional array A is path-decomposable;

this structure is what allows the plane-minima problem for A to be decomposed into two

column-minima problems for two-dimensional arrays.)

Using arguments similar to those used in proving Lemma 7.3, it is not hard to show that,

after linear preprocessing time, any entry s[i, k] of S can be computed in constant time from the

minimum entries in columns 1 through i of T and the minimum entries in columns 1 through

i - 1 of S, and any entry t[k,j] of T can be computed in constant time from the minimum

entries in coiinns 1 through k of S and the minimum entries in columns 1 through k of T.

Furthermore, both S and T are Monge, as the following two lemmas show.

Lemma 7.6 S is Monge.

Proof For < i < k < n,

k-I
s[i, k] = E(i) + ckd,k + d

m=9

165



CHAPTER 7. DYNAMIC PROGRAMMING AND ECONOMIC LOT SIZING

k-1 i-1
= E(i) + c(dl,, - dl,i) + E g,(dl,m+ - dl) - E lm di,+l

m=1l m=1

I '-'= E(i)-Egdim+ + [cdlwk + 9dl,m+l + [ ( + g dl ]m= m=- m'l

Now consider the n x n array S' = {s'[i, k]} where

fr [ik] = [E(i) - g did,m+l + dl.k + E g di.m+li + + 9 d.i]

for 1 < i < n and 1 < k < n. If we can show that S' is Monge, then S must also be Monge,

since every 2 x 2 subarray of S is either a 2 x 2 subarray of S' or its left- and bottommost entry

is a +oo.

To show that S' is Monge, note that the first bracketed term in its definition depends only

on i, the second bracketed term depends only on k, and the third bracketed term is the product

of dl,, which depends only on i, and

- k c+ gm) 

which depends only on k. Furthermore,

O = -d,, < d, 2 < . < d,n

(since, by assumption, di > 0 for 1 < i < n), and

0 1 n-1

m=l m=1 m=l

(since, by assumption, c c+ + gi' for 1 < i < n). Thus, by Lemma 1.2, S' is Monge. 

Lemma 7.7 T is Monge.

Proof The proof for this lemma is very similar to that for Lemma 7.2. 

At this point, we would like to apply he on-line LIEBER algorithm as we did in Subsubsec-

tion 7.3.1. The only complication here is that we now have two arrays, not one, and the arrays'

166



7.4. THE BACKLOGGING PROBLEM

entries depend on each other's column minima. We can get around this difficulty, however,

by interleaving the computation of S's column minima and the computation of T's column

minima, just as we interleaved the computation of A's column minima and the computation of

B's column minima in Section 6.1. Thus, we have the following theorem.

Theorem 7.8 Given an n-period instance of the backlogging economic lot-size problem such

that

* for 1 i<n,

O ifz=0,
Ci() =

ci +ciz ifz>O,

where co and c are constants and c > 0,

* for 1 < i < n, hi(y) = y, where h is a constant,

* for 1 i < n, g(z) = glz, where g! is a constant,

* for 1 < i < n, c < c_ + , and

* for 1< i < n, ' < ci+l +9g,

we can find an optimal production schedule in 0(n) time. U

Arbitrary Coefficients

In this subsubsection, we allow the c, g1 , and h to be arbitrary constants, i.e., we no longer

assume that cl c 1 + 14 for 1 < i n and that c l < c +gi for 1 < i < n. his cost

structure was considered by Blackburn and Kunreuther [BK74] and by Lundin and Morton

[LM75]. Both papers gave O(n 2)-time algorithms for this variant of the backlogging economic

lot-size problem; we improve this time bound to O(n lg n).

As in Subsubsection 7.3.1, if we allow arbitrary coefficients c, g, and h, then it is easy

to verify that the arrays S and T defined in the previous subsubsection no longer satisfy the

Monge condition. However, we can circumvent this difficulty by reordering the rows of S and

T, just as we reordered the rows of A in Subsubsection 7.3.1. Specifically, let

q= - + gmi)
m=l

167



CHAPTER 7. DYNAMIC PROGRAMMING AND ECONOMIC LOT SIZING

for 1 < k < n, and let

ri = - hm
mrn,

for 1 < i < n. If we sort ql,..,q,, and rl,...,r,, obtaining permutations 3 and such

that qp(i) > qp(2) > - > q(n) and r(l) > Tr(2) > ... > r(n), then the finite entries of

S' = {a'[i,k]} where '[i,k] = s[i,f3(k)] and T' = {t'[k,jj} where t'[k,j] = t[y(k),j] satisfy

the Monge condition. Combining this observatidn with- the.divide-and-conquer approach of

Subsubsection 7.3.1, it is straightforward to obtain the following theorem.

Theorem 7.9 Given an n-period instance of the backlogging economic lot-size problem such

that

· for 1 i < n,

O if = 0,
Ci(Z) = {

c9 + cx if x > 0,

where c and c are constants and c > 0,

* for 1 < i < n, gi(y) = gly, where gil is a constant, and

* for 1 < i < n, hi(y) = hly, where h! is a constant,

we can find an optimal production schedule in O(n Ig n) time.

7.4.2 Concave Costs

In this subsection, we consider the backlogging economic lot-size problem with arbitrary concave

costs, i.e., we assume only that the cost functions ci(.), gi(.), and hi(.) are coicave. In [Zan66],

Zangwill gave an O(n3 )-time algorithm for this problem; we reduce this time bound to 0(n2).

Our algorithm for this variant of the backlogging economic lot-size problem is reminiscent of

the algorithm for Yao's problem described in Section 6.2, as we again define a three-dimensional

array whose tube minima we compute one plane at a time. However, this subsection's three-

dimensional array is not Monge (though certain of its two-dimensional planes are), and we use

the off-line SMAWK algorithm (rather than the on-line LIEBER algorithm) to compute the planes'

minima.

168



7.4. TE BACKLOGGING PROBLEM

4-
i

1 .. ·::otO·i:.. :::::4~

`·:yr '' ''B

s i :- ' -. : , : d U ........ .. -

. ' ·' ¢<' >' ,i. ' 

·. .- . : , - . o: U .

, ~~~~~~. . . . . .

, x .'S' :.'.,'S

k

.

.

Figure 7.6: For any k in the range 1 < k < n, the only finite entries in the plane Ak lie in the subarray
B consisting of rows 1 through k and columns k + 1 through n + 1 of Ak; moreover, all the entries in
Bk are finite.

We will now describe our algorithm. Let A = {a[i,j, k} denote the n x (n + 1) x n array

where

a[i,j, k =

I

k- ij-1
E(i) + ck(dij) + 9 gm(d.,m+,) + E hm(dmj) if i < k < j,

m=i m=k+l

+00 otherwise.

Furthermore, for 1 k < n, let Ak = {ak[i,j]} denote the n x (n + 1) two-dimensional plane

of A corresponding to those entries whose third coordinate is k, and let Bk = {bt[s, tJ} denote

the k x (n - k + 1) subarray of Ak consisting of rows 1 through k and columns k + 1 through

n + 1 of Ak, so that bk[s, t] = ak[s, t + k]. (One such plane Ak and its subarray Bk are depicted

in Figure 7.6.) Finally, for 1< k < j < n + 1, let

F(j, k) = min a[i,j,k].
k),F(ksimply t<icolumn<n

F(k+1, k),F(k+2, k),..., F(n+ 1,k) are simply the column minima of Bk, and for 2 < j < n+1,

E(j) = min {F(j, k)} -
I k<j

169



CHAPTER 7. DYNAMIC PROGRAMMING AND ECONOMIC LOT SIZING

Our algorithm consists of n stages, each requiring O(n) time. In the kth stage, we compute

F(k + 1, k), F(k + 2, k),..., F(n + 1, k) and then E(k + 1). For computing E(k + 1), O(n) time

clearly suffices, since E(k + 1) depends only on F(k + 1, 1), F(k + 1, 2), ... , F(k + 1, k) and we

have already computed these values. Thus, all that remains to be shown is that we can compute

the column minima of Bk in 0(n) time given E(1),..., E(k). For such an argument, we need

the following two lemmas.

Lem - tO .Bi-- s- rverse;Monge for all 'kin' the range 1 < k < n.

Proof Consider any entry b[s, t] = ak[s, t + k]'of Bk. Since s < k and t + k > k, this entry is

finite. In particular,

k-i t+k-I

b.[s,t] = E(s)+ c(d,,,+k) + gm(d,.m+,) + E hm(dm,,+k).
nm=s m=k+l

Now observe that the terms E(s) and EL- =gm(d,,m+) in the above depend only on s, and

the term Z"+k-1 hm(dmt+k) depends only on t. Furthermore, Ck(') is a concave function,

d,,+ = dlt+ - dl,., and 0 = dll < dl,2 < -' -< dl,n+L. Thus, by Properties 1.6, 1.5, and 1.7,

Bk is inverse-Monge. 

Lemma 7.11 Given O(n2 ) preprocessing time, we can compute any entry of Bk in constant

time for all k in the range 1 < k < n.

Proof As we observed in the proof of the previous lemma,

k-1 t+k-1

b&[,t] = E(a) + ck(d,,,+k) + E gmi(dm+l) + E hm(dm,,+k)
m=r m=k+l

for all s in the range 1 < s k and all t in the range 1 < t < n - k + 1. Now suppose we

precompute dl,i for all i in the range 1 < i < n, which takes O(n) time. This preprocessing

gives us any dij in constant time, since dij = dlj - dli. Suppose we also precompute

k-I
gm(dim+l )

mri

170



7.4. THE BACKLOGGING PROBLEM

for all i and k satisfying 1 < i < k < n and

j-I
E hm(dmj)

m=k+l

for all k and j satisfying I < k < j < n + 1. This preprocessing takes an additional O(n2) time,

since
k-i k-2

gm(d,m+ , ) = 9gk_(di,k) + E gm(di,m+l )
ms- m=i

and j-1 j-l
E h.(d,j) = h+l(dk+lj)+ hm(dm,j).

m=k+l m=k+2

These precomputations allow us to compute bk[s, t] in constant time, since by the time we

consider Bk, E(s) is known for all s < k. 

Lemmas 7.10 and 7.11 allow us to apply the off-line SMAWK algorithm of Aggarwal et al.

to obtain the column minima of Be from E(1),..., E(k) in O(n) time. Thus, we have shown

that each stage of our algorithm requires only O(n) time, which gives the entire algorithm a

running time of O(n2 ), including the preprocessing time required for Lemma 7.11.

Theorem 7.12 Given an n-period instance of the backlogging economic lot-size problem such

that the ci(-), gi(.), and hi(.) are concave functions, we can find an optimal production schedule

in O(n2) time. U

7.4.3 Other Cost Structures

In [Zan69], Zangwill considered yet another cost structure for the backlogging economic lot-size

problem: he assumed that for 1 i n,

f 0 if x=0,

L c?+ cl Z ifz>0,

where co and are constants and c > 0, and that the hi(.) and gi(.) are nondecreasing concave

functions. (Note that the marginal cost of production c' is the same for all time periods; this

assumption is again needed to insure that the arrays considered below are Monge.) If we

171



CHAPTER 7. DYNAMIC PROGRAMMING AND ECONOMIC LOT SIZING

consider the n x (n + 1) x n array A = {a[i,j, k]} where

k k-1 j-1

E(i) + c + c'dij + E gm(dim++) + E hm(dm.j) if i k < j,
a[i, j, k] m=i nm=+l

+oo otherwise.

then A can be decomposed into two two-dimensional Monge arrays S and T as in Subsubsec-

tion 7.4.1. These arrays are Monge because

1. s[i,k]+s[i+1,k+ 1]-s[i,k+ 1-s[i+,k] = g(di+l,k+l)-g(di.k+1) for 1 < i+ 1 < k < n,

and the right-hand side of this equation is nonpositive so long as g9(-) is a nondecreasing

function, and

2. t[k,j+t[k+ l+]-t,j+ - ,j+ 1]-t[k+ 1,j] = h+l(dk+lj)- h+l(dk+lj+l) for 1 < k+ <

j < n + 1, and the right-hand side of this equation is nonpositive so long as hi+l(.) is a

nondecreasing function.

However, it is unclear how to compute s[i, k] and t[k, j] in constant time given o(n2)-time pre-

processing; thus, we are unable to improve the running time of Zangwill's O(n2)-time algorithm

for the problem.

As a final remark, suppose that for all i and k such that 1 < i < k < n, we knew

k-I
mg.(dim+m) 

m=i

and similarly, for all k and j such that 1 < k < j n + 1, we knew

i-I
E hm(d,yj).

m=k+l

In this case, it is easy to see that any entry in row i of S and T could then be computed in

constant time, given the minimum entries in columns 1 through i of S and T. Consequently,

the column minima of S and T could then be computed in linear additional time using the

approach of Subsubsection 7.4.1. We will use this observation in Subsection 7.5.1, as it helps us

to obtain an improved algorithm for the periodic variant of the backlogging economic lot-size

problem considered by Erickson, Monma and Veinott [EMV87].

172



7.5. TWO PERIODIC PROBLEMS

7.5 Two Periodic Problems

In this section, we present algorithms for two periodic variants of the backlogging economic lot-

size problem. The first was proposed by Erickson, Monma, and Veinott in [EMV87], whereas

the second wuas given by Graves and Orlin in [GO85]. Both problems assume that the planning

horizon is infinite (i.e., we are planning for an infinite number of periods) but that demands

and costs vary periodically over time with period n, so that

di+n = di ,

ci+,rn() = C() ,

hi+,,(') = gi(*) , and

gi+.rn(.) = hi(-),

for 1 < i < n and all positive integers r. Erickson et al. consider the problem of finding a

production schedule of period n with minimum total cost, whereas Graves and Orlin tackle the

more difficult problem of finding a semi-infinite production schedule (starting with period 1,

where the initial inventory is assumed to be 0) with minimum average cost per period.

7.5.1 Erickson, Monma, and Veinott's Problem

Given an infinite planning horizon and periodic demands and costs, Erickson, Monma, and

Veinott [EMV87] considered the problem of finding an infinite production schedule with mini-

mum average cost per period, subject to the restriction that the production schedule must have

period n, i.e., we must have zi+,n = Zi and Yi+,,n = y for 1 < i < n and all positive integers

r. This problem is equivalent to finding the minimum-cost n-period production schedule for

periods i through n + i - 1, where i is allowed to vary between 1 and n. In terms of network

flows, this new problem is obtained from the backlogging economic lot-size problem by adding

two edges to the graph depicted in Figure 7.2, one from the nth sink to the first sink with

concave cost function hi (.) and the second from the first sink to the nth sink with concave cost

function gn(.).

For arbitrary concave costs ci(), gi(), and hi(.), Erickson et al. gave an O(n3 )-time algo-

173



CHAPTER 7. DYNAMIC PROGRAMMING AND ECONOMIC LOT SIZING

rithm for their problem, which they obtained by solving n instances of the n-period backlogging

economic lot-size problem. For the special case where

O if x=0,
Ci(z) =

ci + c 1z if > 0,

and the gi(-) and hi(-) are nondecreasing, we can improve this bound to O(na) time using the

techniques of Subsection 7.4.3: we merely spend O(n 2 ) time to precompute

k-i
E gm(di,m+ )
m=i

for all i and k such that 1 < i < k < 2n and

j-I
E hm(dm,j)

m=k+l

for all k and j such that 1 < k < j < 2n, and then solve n instances of the n-period backlogging

economic lot-size problem in O(n) time each.

Theorem 7.13 Given an instance of Erickson, Monma, and Veinott's economic lot-size prob-

lem with periodicity n such that

* forl< i <n,

c,(x) = { 0c° + c if = 0,
0i( I a OX if0 > 0,

where c? and cl are constants and c > 0, and

* for 1 < i < n, gi (.) and hi(.) are i.ondecreasing concave functions,

we can find an optimal infinite production schedule with period n in O(n2) time. U

7.5.2 Graves and Orlin's Problem

In [G085], Graves and Orlin consider another periodic variant of the backlogging economic

lot-size problem. They assume demands and costs are periodic, as do Erickson, Monma, and

174



N

7.5. TWO PERIODIC PROBLEMS 175

Veinott, and seek an infinite production schedule (starting in period 1, where the initial in-

ventory is assumed to be 0) with minimum average cost per period. Unlike Erickson et al.,

however, they do not restrict the production schedule to have period n. Instead, they assume

lim G(y) = lirn H(y) = oo,

where

G(y) = g(y) + 92(y) + + (y)

and

lH(y) hl(y) + h2(y) + + h(y).

Thie assumption allows them to prove the following lemma.

Lemma 7.14 (Graves and Orlin [GO85]) Let

C = c(dl) + C2(d2) + + Cn(dn)

and let

D = dl +d 2+ +dn -.

Furthermore, let p denote the minimum integer such that C < G(pD) and C < H(pD). (Such

a p exists by our assumption about the unboundedness of G(.) and H(.).) There is an optimal

production schedule (i.e., a production schedule of minimum average cost per period) such

that every interval of 2(p + 1)n consecutive periods contains at least one period with nonzero

production. 

This lemma and Theorem 7.1 (which also applies to infinite graphs; see [GO85]) together

imply every production schedule must repeat after at most 2(p + 1)n 2 periods, since an optimal

production schedule starting from period i must be an optimal production schedule starting

from period i + rn, for all integers r. Thus, there exists an optimal semi-infinite production

schedule consisting of a finite production schedule with length at most 2 (p+ 1)n2 followed by an

infinite periodic production schedule with period at most 2 (p+ 1)n2 . In other words, there exist

integers nl and n2, both between 1 and 2(p + 1)n2, such that the optimal production schedule



CHAPTER 7. DYNAMIC PROGRAMMING AND ECONOMIC LOT SIZING

for periods 1 through nl (with no initial or final inventory and no initial or final backlogged

demand) and the optimal production schedule for periods nl + 1 through nl + n2 (again with no

initial or final inventory or backlogging) together characterize the optimal infinite production

schedule.

In [G085], Graves and Orlin argued that such an optimal semi-infinite production schedule

can be computed in O(p3 n3 ) time. We reduce this bound to O(p2n3) using Monge arrays.

To obtain a faster algorithm, we first compute an optimal production schedule for periods 1

through j, where j is allowed to vary from 1 to 2 (p+ 1)n2 and both the initial and final inventory

and backlogging are required to be 0. Such a schedule can be computed in O(p2n4) time by

applying the techniques of Subsection 7.4.2 directly, i.e., by computing the plane minima of an

O(pn 2) x O(pn 2) x O(pn 2 ) Monge array A. However, we can reduce this bound to O(p 2n3 ) time

if we make use of Lemma 7.14. Specifically, since production in period j implies production in

some period between j - 2(p + 1)n and j - 1, we need only consider those entries a[i, j, k] of A

such that j - 2(p + l)n < i < k < j. Roughly speaking, we can distribute these entries among

O(n) Monge arrays of size O(pn) x O(pn) x O(pn) whose plane minima can be computed in

O(p2n2) time each.

Once we have an optimal production schedule for periods 1 through j for all j between 1 to

2 (p + 1)n2 , we can find the optimal infinite schedule as follows. For 1 < j < 2(p + l)n 2 , we can

identify the periodic and nonperiodic portions of the optimal production schedule for periods

1 through j and compute each portion's average cost per period in O(pn) time per value of j,

i.e., O(p 2n3 ) total time. Then, in O(pn 2) additional time, we can select the value of j giving

the best infinite production schedule, which gives us the following theorem.

Theorem 7.15 Given an instance of Graves and Orlin's economic lot-size problem with pe-

riodicity n, such that the ci(.), gi(.), and hi(.) are concave functions and p is defined as above,

we can find an optimal semi-infinite production schedule in O(p2n3 ) time. U

We should remark here that since p depends upon the production, inventory, and backlogging

costs and may be exponential in n, both Graves and Orlin's algorithm and our algorithm are

weakly polynomial; in fact, obtaining a strongly-polynomial algorithm for this problem remains

open.

176



7.6. SOME FINAL REMARKS

7.6 Some Final Remarks

In this chapter, we presented efficient dynamic-programming algorithms for several variants of

the economic lot-size problem. These algorithms use properties of Monge arrays to improve the

running times of previous algorithms, typically by factors of n and n/ Ig n, where n denotes the

number of periods under consideration. Aside from providing faster algorithms for economic

lot-size problems, a major contribution of this chapter is the identification of the Monge arrays

that arise in connection with economic lot-size problems.

The algorithms given in this chapter can be extended to many other problems related to

economic lot-size models. For example, in his paper on Leontif Substitution systems [Vei69],

Veinott showed that several other problems (including the product-assortment problem, the

batch-queuing problem, the investment-consumption problem, and the reservoir-control prob-

lem) can be transformed into economic lot-size problems (with or without backlogging).

Another model related to the economic lot-size model that deserves special mention is the

capacity-ezpansion model proposed by Manne and Veinott in [MV67]. This model was developed

during Manne's study of four major industries in India between 1950 and 1965 [Man67], and

many researchers have studied problems formulated in terms of this model since then. (See, for

example, [FR75, Lus79, Lus82, Lus86, LL87].) In [MV67], Manne and Veinott gave an O(n 3)-

time algorithm for computing an optimal, feasible plan in their capacity-expansion model.

Since their dynamic-programming algorithm is identical to Zangwill's O(n3)-time algorithm

for solving the backlogging economic lot-size problem with concave costs, the techniques of

Subsection 7.4.2 yield an O(n 2)-time algorithm for their problem. In a similar vein, several of

the algorithms given in Sections 7.3 and 7.4 can be used to speed up various algorithms given

by Luss in [Lua82].

On a different note, this chapter considered only production systems involving a single

type of item and a single stage of production. However, other researchers (see [Gra82, Lus82,

Lus86], for example) have shown that the problem of computing an optimal plan for a multi-

item and/or multi-stage production system can usually be decomposed into simpler problems

using Lagrangian relaxation methods or simple heuristics that work fairly well in practice.

Furthermore, these resulting problems can be expressed as economic lot-size problems. The

only difference between the economic lot-size problems considered in this chapter and those

177



CHAPTER 7. DYNAMIC PROGRAMMING AND ECONOMIC LOT SIZING

that result when computing optimal production schedules for such complex production systems

is that this chapter assumes demands are always nonnegative, whereas in the economic lot-

size problems resulting from Lagrangian relaxation methods or heuristics, the demands may

be negative in certain situations. In other words, some of the demand nodes may in fact be

supply nodes; this supply has no cost, but it must be used up by any feasible production

plan. Now when demands are negative, the arrays that occur in Sections 7.3-7.5 are not always

Monge. Nevertheless, Aggarwal and Park [AP90] have shown that such arrays are often Monge-

like. Consequently, the basic paradigm developed in this chapter can still he applied when the

demands are negative, and the time complexities of the resulting algorithms are quite similar

to those given in this chapter.

In this chapter's introduction, we mentioned some recent work by Federgruen and Tzur

[FT89, FT90] and by Wagelmans, van Hoesel, and Kolen [WvHK891, who have independently

obtained several of the results that we present in this chapter. We will now relate their work

to our own.

In [WvHK89], Wagelmans, van Hoesel, and Kolen present an O(n lg n)-time algorithm for

the basic economic lot-size problem with nearly linear costs. This matches the time bound of

our algorithm for this problem, which we describe in Subsubsection 7.3.1. Wagelmans et al.

also give an O(n)-time algorithm for the special case of the basic economic lot-size problem

with nearly linear costs that we consider in Subsubsection 7.3.1. (For this special case, we

assume cl < cLc + hA for 1 < i < n, i.e., the marginal cost of producing in period i is at most

the marginal cost of producing in period i - 1 plus the marginal cost of storing inventory from

period i - 1 to period i; this cost structure subsumes those considered by Manne [Man58] and

by Wagner and Whitin [WW58].) This result again matches the time bound of our algorithm

for the problem.

These same two results - an O(n lg n)-time algorithm for the basic economic lot-size prob-

lem with nearly linear costs and a linear-time algorithm for the special case of Subs ubsec-

tion 7.3.1 - are independently derived by Federgruen and Tzur in [FT89]. Moreover, Feder-

gruen and Tzur also give an O(n)-time algorithm for the basic economic lot-size problem with

nearly linear costs when setup costs are nondecreasing, i.e., c < c < c in the notation

of Subsection 7.3.1. Furthermore, in [FT90], Federgruen and Tzur give an O(nlgn)-time al-

178



7.6. SOME FINAL REMARKS

gorithm for the backlogging economic lot-size problem with nearly linear costs, matching the

result we give in Subsubsection 7.4.1. They also given a linear-time algorithm for he spe-

cial case of Subsubsection 7.4.1 (again matching our result for this problem), as well as some

additional special cases.

Both Federgruen and Tzur and Wagelmans, van Hoesel, and Kolen use essentially the same

techniques to obtain their results, and these techniques are substantially different from our own.

Roughly speaking, they are computing (in an on-line fashion) the convex hull of n points in

an appropriate two-dimensional space, whereas we are searching in Monge arrays. Note that

neither Federgruen and Tzur nor Wagelmans, van Hoesel, and Kolen are able to obtain results

for the general backlogging economic lot-size problem with arbitrary concave costs comparable

to the results that we present in Subsection 7.4.2, which suggests that our techniques are in

some sense more general.

We conclude with a list of open problems:

1. In Subsubsection 7.3.1, we gave an O(n g n)-time algorithm for the basic economic lot-size

problem when the production and inventory costs are nearly linear, and in Subsubsec-

tion 7.4.1, we gave an O(n Ig n)-time algorithm for the backlogging economic lot-size prob-

lem when the production, inventory, and backlogging costs are nearly linear. It remains

open whether there exists a o(n Ig n)-time algorithm for either of these problems.

2. Veinott [Vei63j showed that Wagner and Whitin's algorithm for the basic economic lot-size

problem can be used even when the production and inventory cost functions are arbitrary

concave functions and that the resulting algorithm still takes O(n 2) time. In this chapter,

we were unable to improve upon this bound (see Table 7.1); thus, obtaining better time

bounds for the basic problem with concave costs remains a challenging open problem.

In fact, as pointed out in Subsection 7.3.2, this problem remains open even for concave

inventory costs and nearly linear production costs such that ci(O) = 0 and ci(z) = c +c1 z

for z > 0, where c > O. (This latter cost structure may greatly simplify the problem,

since here the resulting array is Monge, as observed in Subsection 7.3.2.)

3. In [EMV87], Erickson, Monma, and Veinott gave an 0(n 3)-time algorithm for a periodic

variant of the backlogging economic lot-size problem. We were unable to obtain a faster

179



180 CHAPTER 7. DYNAMIC PROGRAMMING AND ECONOMIC LOT SIZING

algorithm for this problem when the costs are arbitrary concave functions (see Table 7.3);

thus, obtaining a subcubic algorithm for this problem remains open.

4. In [GO85], Graves and Orlin gave an O(p3n3 )-time algorithm for another periodic variant

of the backlogging economic lot-size problem, and in this chapter, we improved this bound

to O(pn 3). However, as mentioned in Subsection 7.5.2, the parameter p in these running

times may be exponential in n. Consequently, obtaining a strongly-polynomial algorithm

for Graves and Orlin's problem remains open. (See [G085] for more details.)



Chapter 8

Shortest Paths in Grid DAGs

In this chapter, we give efficient sequential and parallel algorithms for finding shortest paths in

certain planar acyclic directed graphs. We then use these algorithms to obtain improved results

for string editing and surface reconstruction from planar contours.

The directed graphs that we consider in this chapter are what Apostolico, Atallah, Larmore,

and McFaddin [AALM90] refer to as grid DAGs. An m x n grid DAG G = (V, A) is defined as

follows:

V = { : 1<i<m and j n}

and

A = AH U Av U AD ,

where

Am = {(viJ,vij+:) < i < m and 1 < j < n ,

Av = ((vij,,i,+lj): 1 < i < m and 1 < j n) ,

and

Ao {(Vij, vi+lj+l) 1 < i < m and 1 < j < n} .

For example, Figure 8.1 depicts an 8 x 13 grid DAG. (In reference to their orientations in

Figure 8.1, the arcs of AH, Av, and AD are known as horizontal, vertical, and diagonal arcs,

respectively.) Associated with each arc a E A is a cost c(a).

181



CHAPTER 8. SHORTEST PATHS IN GRID DAGS

vI1

-fr -f -~ -_ - _- __V~

-V

Figure 8.1: An 8 x 13 grid DAG with vertices vl,i, vl,n, vm,,, and v,n labeled.

In [FKU77], Fuchs, Kedem, and Uselton reduced the problem of optimal surface reconstruc-

tion from planar contours to a shortest paths problem in a grid DAG. In a separate paper,

Kedem and Fuchs [KF80] reduced the string editing problem considered in [WF74] to another

grid DAG shortest paths problem. They also reduced the circular string-to-string correction

problem to the shortest paths problem considered in [FKU77]. More recently, Apostolico, Atal-

lah, Larmore, and McFaddin [AALM90] and Mathies [Mat88] have independently provided

parallel algorithms for the string editing and largest common subsequences problems that make

use of these reductions.

This chapter is organized as follows. In Section 8.1, we describe a divide-and-conquer

algorithm solving the two shortest paths problems mentioned above. Then in Sections 8.2 and

8.3 we apply our shortest paths algorithm to several different problems and compare our results

with those given in the literature. The results presented in this chapter represen joint work

with Alok Aggarwal from [AP89a].

8.1 A Shortest-Paths Algorithm

Let G be an m x n grid DAG. We will call vertex vij a source if either i = 0 or j = 0 and a sink

if either i = m - 1 or j = n - 1. If we orient the arcs of G as in Figure 8.1, then the sources of

G are those vertices on its left and bottom boundaries and the sinks are those vertices on its

top and right boundaries. Keeping Figure 8.1 in mind, we let SO, ,m+n-2 denote the sources

182



8.1. A SHORTEST-PATHS ALGORITHM

of G in counterclockwise order and let to,. . ., tm+,,_2 denote the sinks of G in clockwise order,

so that

vMl-io if O < i < m-1,
si =

Vo,i-m+l if m < i < m + n - 2,

and

tj- = -{v _ if < j n- 1,

Vm+n-2-j,.-I if n < j < m + n - 2.

In this section, we consider the problem of computing all (m + n - 1)2 source-to-sink short-

est paths. In the context of array-searching, this is equivalent to computing all the entries of

the (2n - 1) x (2n - 1) distance array DISTG, whose row i, column j entry is the length of the

shortest path from si to t.

We begin with the special case of m = n, i.e., G is an n x n grid DAG. We also assume for

simplicity that n = 2' - 1 for some positive integer r.

Our algorithm takes the natural divide-and-conquer approach. We divide the (2r - 1) x

(2' - 1) grid DAG G into four (2r- 1 - 1) x (2'r - - 1) grid DAGs A, B, C, and D, as shown

in Figure 8.2. Then, in parallel, we recursively compute all source-to-sink shortest paths for A,

B, C, and D, thereby obtaining the four distance arrays DISTA, DISTB, DISTc, and DISTD.

Finally, we perform the following three "merge" steps.

1. We compute DISTAUB from DISTA and DISTB (A U B is the grid DAG obtained by

recombining A and B).

2. We compute DISTCuo from DISTc and DISTD.

3. We compute DISTG from DISTAUB and DISTcuD.

The algorithm we have outlined so far is identical to that given by Apostolico et al. in

[AALM901; our algorithms differ only in the implementation of the three "merge" steps listed

above. Apostolico et al. solve each of these three subproblems directly, whereas we reduce

each of these subproblems to the tube-maxima problem for a particular 0(n) x <(n) x 0(n)

three-dimensional totally monotone array. This allows us to use the array-searching algorithms

we develop in Section 4.4 and improve upon the results given in [AALM90].

183



CHAPTER 8. SHORTEST PATHS IN GRID DAGS

Figure 8.2: The partitioning scheme used by our divide-and-conquer solution to the shortest paths
problem for a grid DAG.

In order to show the three-dimensional arrays we consider in connection with the "merge"

steps described above are totally monotone, we need the following lemma. (Similar lemmas are

given in [FKU77 and [AALM90] - this is essentially the basic observation made by G. Monge

[Mon81] in 1781.)

Lemma 8.1 For any grid DAG GC, DISTG satisfies the Monge condition.

Proof Consider any 2 x 2 minor of DISTG formed by rows i and k and columns j and , where

i < k and j < . Given our ordering of the sinks and sources of G, every path from si to t,

must intersect every path from sk to t. In particular, there must be some vertex v that lies on

both the shortest path from s to t and the shortest path from sk to t, as in Figure 8.3. If we

let (z, y) denote the leagh of the shortest path in G from vertex z to vertex y, then

t(s, ,t)+ t(sk, tj) = t(si,,v)+t (, t,)+ (s, v)+ t(v, tj)

> t(si,,tj) + (s,tl),

which means the 2 x 2 minor corresponding to rows i and k and columns j and I of DIST6

satisfies the Monge condition. U

184



8.1. A SHORTEST-PATHS ALGORITHM

Sk

S.i

tj t

Figure 8.3: The shortest path from si to t and the shortest path from s to tj must intersect at some
veitex v. Thus, the length of the shortest path from si to tl plus the length of the shortest path from
Sk to tj is at least the length of the shortest path from si to tj plus the length of the shortest path from
sk to t.

We now show how to compute DISTAUB from DISTA and DISTB. (DISTcUD and DISTG

can be computed in a similar fashion.) Consider the (2' + 2 - - 1) x (2' + 2' - 1 - 1) distance

array DISTAUB. The sources of A U B can be divided into two types: those that are sources of

A and those that are sources of B. Similarly, the sinks of AU B can be separated into those that

are sinks of A and those that are sinks of B. This divides the array DISTAUB into four different

regions, as is suggested in Figure 8.4. One region corresponds to shortest paths from sources

of A to sinks of A. The entries in this region are known, since they are entries of DISTA. A

second region corresponds to shortest paths from sources of B to sinks of B; the entries in this

region are also known, since they are entries of DISTB. A third region corresponds to shortest

paths from sources of B to sinks of A. As there are no paths from any of these sources to any of

these sinks, all the entries in this region are oo. Finally, there is a (2r - - 1) x (2'- - 1) region

of DISTAUB corresponding to shortest paths from sources of A to sinks of B, whose entries

remain to be computed.

To compute the entries in this last region, we make use of the remaining entries in DISTA

185



CHAPTER 8. SHORTEST PATHS IN GRID DAGS

u-b

A

7
IC

-b

V
4

I/V/

21

/
-b

K

2

/ /

L -a1

A' 7i-a

4
2 2

2

/-ZB
5

g
/5

42 

7

4
2

4
7

//

2
"

2
/
.-

:a
2

A uB DISTA uB

Figure 8.4: The distance array for A U B is composed of entries from DISTA, entries from DISTB, oo
entries, and entries corresponding to the tube maxima of Z.

and DISTB. Specifically, let X = {xij} denote the (2r1- - 1) x (2r-2 _ 1) array obtained by

deleting the first 2r-2 - 1 columns of DISTA. (If the arcs of A U B are oriented as in Figure 8.4,

then X corresponds to shortest paths from vertices on the left and bottom boundaries of A to

vertices on its right boundary.) Similarly, let Y = {Yij} denote the (2r-2- 1) x (2`-1 - 1) array

obtained by deleting the last 2r2 - 1 rows of B. (Again referring to Figure 8.4, the entries of Y

are the lengths of shortest paths from vertices on the left boundary of B to vertices on its right

and top boundaries.) Now consider the (2r - - 1) x (2-2 - 1) x (2r- - 1) three-dimensional

array Z = {Zij,k}, where Zi,j,k = Xij + Yj,k.

Lemma 8.2 Z satisfies the Monge condition.

Proof Consider any two-dimensional plane of Z. This plane is either the sum of a two-

dimensional array satisfying the Monge condition and a one-dimensional vector or the sum of

two one-dimensional vectors. Such sums always satisfy the Monge condition. U

Now the tube maximum of Z are precisely the remaining entries of DISTAUB. (The length

of the shortest path from a source s of A to a sink t of B is just the minimum over all vertices

v on the boundary shared by A and B of the length of the shortest path from s to v plus the

length of the shortest path from v to t.) Thus, we can use the tube maxima algorithms of

Section 4.4 to complete our computation of DISTAUB. Putting it all together, we obtain the

following theorem.

from tube maxima
DISTA of Z

from
DIST B

I

I

I . r

g I 

Z

r gE
I 7

E

186

/ V



8.1. A SHORTEST-PATHS ALGORITHM

Theorem 8.3 All source-to-sink shortest paths in an n x n grid DAG can be computed

1. in (lg 2 n) time using n2 / lg n processors on a CREW-PRAM, and

2. in O(lg lg n lg n) time using n2 / Ig Ig n processors on a CRCW-PRAM.

Proof Let T(n) and P(n) denote the time and number of processors, respectively, required to

compute the lengths of all source-to-sink shortest paths in an n x n grid DAG. From Lemma 8.2

and the algorithm given above, it follows that

T(2' - 1) < T(2r- - 1) + O(T'(2' - 1))

and

P(2' - 1) < max(4P(2 - - 1),O(P'(2 - 1))),

where T(2) and P(2) are constants and T'(n) and P'(n) denote the time and number of pro-

cessors, respectively, required to find the tube maxima of an n x x n x n totally monotone array.

Now from Theorem 4.17, we have T'(n) = O(lgn) and P'(n) = O(n2 /lgn) for a CREW-

PRAM. Consequently, T(n) = O(lg2 n) and P(n) = O(n2 ). Furthermore, we can reduce the

number of processor required by invoking Brent's theorem [Bre74]. If W(n) denotes the number

of operations required to compute the lengths of all source-to-sink shortest paths in an n x n grid

DAG, and if W'(n) denotes the number of operations required to compute the tube maxima of

an x n x n totally monotone array, then W(n) < 4W(n)+ W'(n) and W(2) is a constant. From

Theorem 4.17, we have W'(n) = O(n2 ) for a CREW-PRAM; this means W(n) = O(n2 lg n).

Thus, by Brent's theorem, the number of processors required is O(W(n)/T(n)) = O(n2/ lg n).

In similar fashion, we can obtain the CRCW-PRAM result using Theorems 4.18. 

Above, we showed how to compute all source-to-sink shortest paths in an n x n grid DAG;

these results extend naturally to general n and m. However, in the applications of Section 8.3,

we actually only need to compute a subset of the source-to-sink shortest paths. Specifically, it

is sufficient to compute the shortest path from vi,0 to vj,,_ 1 for all i and j between 1 and m,

i.e., we only have to consider sources on the left boundary of G and sinks on its right boundary.

By restricting our attention to these shortest paths, we can obtain better results when m is

much smaller than n.

187



CHAPTER 8. SHORTEST PATHS IN GRID DAGS

Corollary 8.4 Let G denote an m x n grid DAG where m < n. We can compute the length

of the shortest path from vi,0 to vj,,-1, for all i and j between 1 and m,

1. in O(lgmlgn) time using mn/lgm processors on a CREW-PRAM, and

2. in O(lglg m lg n) time using mn/lg lg m processors on a CRCW-PRAM.

Proof We use essentially the same divide-and-conquer approach taken for the n = m case.

Specifically, we partition the grid DAG G into two m x ( n/2J + 1) grid DAGs X and Y that share

a common m-vertex boundary. We then recursively compute (in parallel) all shortest paths from

the left boundary of X to its right boundary and all shortest paths from the left boundary of

Y to its right boundary. Finally, we compute all shortest paths from the left boundary of G

to its right boundary by solving the tube-maxima problem for a 0(m) x 0(m) x O(m) three-

dimensional totally monotone array whose entries are sums of lengths of shortest paths in X

and Y. (This last step is almost identical to the "merge steps" of our all source-to-sink shortest

paths algorithm).

Now if T(m, n) and P(m, n) denote the time and number of processors, respectively, required

to solve the shortest paths problem in question, and if T'(m) and P'(m) denote the time and

number of processors, respectively, required to find the tube maxima of an n x n x n totally

monotone array, then

T(m,n) < 2T(m, L[n/2J + 1) + O(T'(m))

and

P(m,n) < max{2P(m, Ln/2J + 1),O(P'(m))}.

Using Theorems 4.17 and 4.18 to bound T'(m) and P'(m) and Theorem 8.3 to bound T(m, m)

and P(m, m), we obtain the specified time and processor bounds. a

The following two questions remain unresolved regarding this last shortest paths problem.

First, the best sequential algorithm for computing these shortest paths (given in [FKU77])

requires O(mnlgm) time, whereas the only known lower bound is Q(mn). It seems that

the array-searching framework should be useful in improving the upper bound. Second, the

processor-time product of the results we give in Corollary 8.4 is a factor of Ig n/ lg m away from

the sequential time bound.

188



8.2. STRING EDITING AND RELATED PROBLEMS

8.2 String Editing and Related Problems

The string editing problem (also called the string-to-string correction problem) for input strings

= 1X2 ... x and Y = YY2 ... Yt, s = xi and t = IYl, is that of finding a sequence of edit

operations transforming x to y, such that the sum of the individual edit operations' costs is

minimized. Three different types of edit operations are allowed: we can delete the symbol zxi

at cost D(xi), insert the symbol yj at cost I(yj), or substitute the symbol xi for the symbol yj

at cost S(xi, yj). In [WF74], Wagner and Fischer gave an O(st) time sequential algorithm for

this problem.

The circular string-to-string correction problem is that of transforming x to y when an

initial cyclic shift of x is allowed (at no cost) before any editing takes place. (In other words, we

minimize the cost of transforming xixi+l ... , x 1x2 ... xi_l to y over all i.) The best sequential

algorithm known for this problem is the O(mn g m) time algorithm given by Kedem and Fuchs

in [KF80], where m = min{lxl, yl} and n = max{lxz, lyl}.

In obtaining their result for the circular string-to-string correction problem, Kedem and

Fuchs reduce this problem to a shortest paths problem in a grid DAG. Given strings x and y,

they construct a 2m x (n + 1) grid DAG G, m = min{lx, lyl} and n = max{llx, Iyl}, such that

the minimum cost edit sequences transforming cyclic shifts of x to y are given by the shortest

paths in G from vi,0 to vi+m,, for all i between 0 and m - 1. (In particular, the shortest path

from v,0 to v,,,n corresponds to the minimum cost edit sequence transforming x to y.)

Using this reduction, Mathies [Mat88] and Apostolico, Atallah, Larmore, and McFaddin

[AALM90] independently obtained parallel algorithms for the string editing problem. Specifi-

cally, Mathies gave an O(lg m Ig n)-time, mn-processor CRCW-PRAM algorithm for the prob-

lem, and Apostolico et al. gave an O(lg2 m g n)-time, (mn/l g2 m)-processor CREW-PRAM

algorithm and an O(lg m Ig lg m Ig n)-time, (nn/ Ig m Ig Ig m)-processor CRCW-PRAM algo-

rithm.

Since the shortest paths that must be computed in Kedem and Fuchs' reduction are a subset

of shortest paths covered by Corollary 8.4, we can apply this corollary and obtain the following

theorem.

Theorem 8.5 Both the string editing problem and the more general circular string-to-string

189



CHAPTER 8. SHORTEST PATItS IN GRID DAGS

correction problem for strings x and y can be solved

1. in O(lgmlgn) time using mn/lgm processors on a CREW-PRAM,'and

2. in O(lg l g m lgn) time using mn/lglg m processors on a CRCW-PRAM.

where m = min{l[x, IyI} and n = max{xlz, IyI}. 

This improves the time bound for CRCW-PRAMs that Mathies gave in [Mat88] by a fac-

tor of gm/(lglgm) 2 and the time bounds for CREW- and CRCW-PRAMs that Apostolico,

Atallah, Larmore, and McFaddin gave in [AALM90] by factors of g m and g m/ Iglg m, re-

spectively. Furthermore, our results have the same processor-time product as those given in

[AALM90], and they improve the processor-time product of the result given in [Mat88] by a

factor of lg m. Note that this settles the open question posed at the conclusion of [AALM90]

as to whether any improvements in the time complexities of their algorithms were achievable

at the expense of only a polylogarithmic factor increase in processor complexity.

Very recently, Apostolico, Atallah, Larmore, and McFaddin [AALM90] have independently

obtained an O(lgmlg n)-time, (mn/lgm)-processor CREW-PRAM algorithm for the string

editig, problem, thus matching our CREW-PRAM result. They also give an O((lg Ig m) 2 lg n)-

time, (mn/lglg m)-processor CRCW-PRAM algorithm for the problem. This equals our time

bound but has a processor-time product that is factor of Ig Ig m higher.

8.3 Surface Reconstruction from Planar Contours

In biological research, medical diagnosis and therapy, architecture, and manufacturing design, it

is often useful to reconstruct a three-dimensional solid from a set of cross-sectional contours; this

reconstruction provides insight into the solid's structure and facilitates its automatic manipula-

tion and analysis. For example, the three-dimensional solid might correspond to a human head

and the contours might be those obtained from a CAT ("Computerized Axial Tomography")

scan of the head.

In [FKU77], Fuchs, Kedem, and Uselton propose a procedure for reconstructing the surface

of a three-dimensional solid from a set of planar contours represented by polygons. Between

each pair of consecutive contours, they construct a cylindrical surface from triangular tiles, as in

190



8.3. SURFACE RECONSTRUCTION FROM PLANAR CONTOURS

P6

Po

q5

p4

qo

Figure 8.5: The surface between two adjacent planar contours, the first represented by a simple m-
gon with vertices p,..., p,m- and the second by a simple n-gon with vertices qo,...,qnl, can be
approximated by a sequence of triangular tiles connecting the contours.

Figure 8.5. Given some measure of the appropriateness of a particular triangular tile (its area,

for example), Fuchs et al. find the optimal sequence of tiles for a particular pair of contours

by solving a shortest paths problem in a grid DAG. In particular, if the two adjacent contours

are represented by an m-gon P and an n-gon Q (where we assume without loss of generality

that m < n), Fuchs et al. construct a (2m + 1) x (n + 1) grid DAG G, such that an optimal

sequence of tiles for P and Q is given by the shortest paths in G from vi,0 to vm+i,,n for all i

between 0 and m. They also give an O(mnlgm) time sequential algorithm for this shortest

paths problem.

Since the shortest paths Fuchs et al. compute for the surface reconstruction problem are a

subset of shortest paths covered by Corollary 8.4, we can apply the corollary and obtain the

following theorem.

Theorem 8.6 The optimal surface reconstruction problem for a pair of contours represented

by an m-gon and an n-gon, m < n, can be solved

1. in O(lgmlgn) time using mn/lgm processors on a CREW-PRAM, and

2. in O(lglg mlg n) time using mn/lg lg m processors on a CRCW-PRAM.

II

191





Conclusion

This thesis has developed a body of algorithmic techniques and applied them to a wide variety

of problems from such diverse areas as computational geometry and operations research. These

techniques are centered around a family of highly-structured arrays that we call Monge arrays.

We have shown that Monge arrays capture the essential structure of many practical problems,

in the sense that algorithms for searching in the abstract world of Monge arrays can be used to

obtain efficient algorithms for these practical problems.

We conclude with three open problems:

1. Can the minimum entry in an n x n x n three-dimensional Monge array be computed in

O(n) time? (The best algorithm currently known for this problem takes O(nlg n) time.)

2. Can the row minima of an n x n two-dimensional Monge array be computed in polyloga-

rithmic time with O(n) work? (The best polylogarithmic-time algorithm currently known

for this problem takes O(n g n/ g g n) work.)

3. Can the row minima of an n x n two-dimensional partial Monge array of the staircase

variety be computed in O(n) time? (The best algorithm currently known for this problem

takes O(na(n)) time.)

193





Appendix A

A Monge-Array Compendium

This appendix gives a comprehensive overview of the Monge-array abstraction and its many
applications. This overview takes the form of a list of problems. Each entry in the list consists
of a problem name, a problem statement, and a brief summary of known results for the problem.
Many of the problems and results contained in the list are not covered in the main body of this
thesis; however, if the result is discussed elsewhere in the thesis, a pointer to the appropriate
chapter or section is given.

The problems listed in this appendix are divided among six sections. Section A.1 contains
basic array-searching problems involving Monge arrays, while Sections A.2 through A.6 cover
related problems from other domains, most of which can be transformed into array-searching
problems.

A.1 Array-Searching Problems

Row Minimization
Problem Given an m x n Monge array A, find the minimum entry in each row of A.

Status Aggarwal, Klawe, Moran, Shor, and Wilber [AKM+87] gave an optimal sequential
algorithm for this problem that runs in O(n) time when m < n and in O(n(l +
lg(m/n))) time when m > n. This algorithm, which we call the SMAWK algorithm,
is presented in Section 2.1 along with an argument for its optimality. The best
parallel algorithm for this problem is an O(lg m + g n)-time, (m + n)-processor
EREW-PRAM algorithm due to Atallah and Kosaraju [AK91].

Row Minimization in Partial Monge Arrays

Problem Given an m x n partial Monge array A, find the minimum entry in each row of A.

Status If A is a staircase array, then its row minima can be computed in O(na(m) + m)
time, where a(.) is a very slowly growing inverse of Ackermann's function; the
algorithm achieving this result is due to Klawe and Kleitman [KK90]. Though
it is not known whether the above time bound is tight, Larmore [Lar90] has used
Klawe and Kleitman's algorithm to obtain a potentially improved algorithm for the
staircase-array row-minimization problem whose running time is provably optimal

195



APPENDIX A. A MONGE-ARRAY COMPENDIUM

but unknown. Furthermore, Aggarwal, Kravets, J. Park, and Sen [AKPS90] have
described an O(lg m + Ig n)-time, (m + n)-processor CRCW-PRAM algorithm for
computing A's row minima. This algorithm may be transformed into a CREW-
PRAM algorithm (with the same time and processor bounds) by incorporating
Atallah and Kosaraju's EREW-PRAM algorithm for computing the row minima
of a Monge array [AK91] (see the previous entry). As for the other varieties of
partial Monge arrays mentioned in Section 1.3, we have the following sequential
results. If A is skyline array, then its row minima can again be computed in
O(na(m) + m) time using another extension Klawe and Kleitman's algorithm due
to Klawe [Kla89]. However, if A is a v-array or an h-array, then the best result
known for computing A's row minima is an O(n Ig m + m)-time algorithm due to
Aggarwal and Suri [AS90]. Finally, if A is an n x n v- or h-array whose finite
entries are totally monotone but not necessarily Monge, then Klawe [Kla89] has
shown an Q(na(n)) lower bound on the time needed to find its row minima.

On-Line Row Minimization
Problem Given an n x n Monge array A = {a[i,j]} such that

1. for i < j, a[i, j] = +oo, and
2. for i > j, a[i,j] is available only after the minimum entry in row i has been

computed,
find the minimum entry in each row of A.

Status Three groups of researchers independently obtained O(n)-time algorithms for this
problem: Klawe [Kla89], Galil and K. Park [GP90], and Larmore and Schieber
[LS91]. All three algorithms use the SMAWK algorithm, though in different ways.
Larmore and Schieber's algorithm is described in Section 2.2. If a[i,j] + a[k, ] >
a[i,e] + a[k,j] (rather than <) for all i < k < j < (i.e., A is a partial inverse-
Monge array of the staircase variety), then the row minima of A can be computed
in O(na(n)) time using an algorithm due to Klawe and Kleitman [KK90]. Fur-
thermore, Larmore [Lar90] has again proposed a possibly improved algorithm for
this problem whose running time is provably optimal but unknown.

Row Selection
Problem Given an m x n Monge array A and an integer k in the range 1 < k < n, find the

kth smallest entry in each row of A.

Status The two best results for this problem are an O(k(m + n))-time algorithm, due to
Kravets and J. Park [KP91], and an O((V/mIg m)(n lg n) +m Ig n)-time algorithm,
due to Mansour, J. Park, Schieber, and Sen [MPSS91]. Both these algorithms are
described in Section 3.1. Mansour et al. also gave an O(nlgm)-time algorithm for
computing an approximate median in each row of A; this approximate median is
an entry whose rank in its row lies between n/4J and [3n/41 - 1.

Array Selection
Problem Given an m x n Monge array A and an integer k in the range 1 < k < mn, find

the kth smallest entry in A. ant

196



A.1. ARRAY-SEARCHING PROBLEMS

Status This problem can be solved in O(m+n+klg(mn/k)) time. The algorithm achieving
this time bound, again due to Kravets and J. Park [KP91], is given in Section 3.2.

Row Sorting
Problem Given an m x n Monge array A, sort the entries in each row of A.

Status Kravets and J. Park [KP91] showed that this problem can be solved in O(mn)
time when m > n and in O(mn(1 + lg(n/m))) time when m < n. Their algorithm
is described in Section 3.3.

Array Sorting
Problem Given an m x n Monge array A, sort the entries of A.

Status Section 3.4 proves an (mn lg(min{m, n})) lower bound on the time complexity
of this problem when only comparisons between entries are allowed. (This bound
is slight generalization of a similar bound for totally monotone arrays given in
[KP91].) For m = 0(n), the above bound is tight, since the mn entries of A can be
sorted in O(mn lg mn) = O(mn lg(max{m, n}) time without using the Mongeness
of A.

Plane Minimization
Problem Given an n x n x ... x n d-dimensional Monge array A, find the minimum entry

in each plane of A. (A plane of A is a (d- 1)-dimensional subarray corresponding
to a fixed value of A's first index.)

Status Aggarwal and J. Park [AP89b] gave an O(dn lgd- 2 n)-time algorithm for this prob-
lem. For the special cases of cycle- and path-decomposable Monge-composite ar-
rays, they also gave O(dn lg n)-time and O(dn)-time algorithms, respectively. All
three of these algorithms are described in Section 2.3.

Plane Maximization
Problem Given an n x n x -.. x n d-dimensional Monge array A, find the maximum entry

in each plane of A.

Status For three or more dimensions, maximization in Monge arrays is significantly harder
than minimization. In particular, Aggarwal and J. Park [AP89b] have proved an
f(nd-l/d)-time lower bound on the plane maximization problem. They have also
given a very simple O(nd-1)-time algorithm for the problem. Both these results
are presented in Section 2.3.

Tube Minimization
Problem Given an n x n x n three-dimensional Monge array A, find the minimum entry in

each tube of A. (A tube of A is a one-dimensional subarray corresponding to fixed
values of A's first and third indices.)

Status Apostolico, Atallah, Larmore, and McFaddin [AALM90] and Aggarwal and J. Park
[AP89a] independently obtained optimal O(lg n)-time, (n 2

/ lg n)-processor CREW-
PRAM algorithms for this problem. (These algorithms are asymptotically optimal

197



APPENDIX A. A MONGE-ARRAY COMPENDIUM

both in terms of running time and in terms of processor-time product.) Aggarwal
and Park's algorithm is described in Section 4.4. The best CRCW-PRAM result for
the tube minimization problem is an optimal O(lglg n)-time, (n2 / Ilglg n)-processor
algorithm discovered by Atallah [Ata9O]. Finally, if A is path-decomposable, then
its tube minima can be computed in O(lg n)-time on an (n 2)-node hypercube; this
last result is due to Aggarwal, Kravets, J. Park, and Sen [AKPS90].

A.2 Geometric Problems

All Farthest/Nearest Neighbors for the Vertices of a Convex Polygon
Problem Given a convex polygon P in the plane with vertices v,..., v, in clockwise order,

for each vertex vi, find the vertex vj farthest from or nearest to vi.

Status Aggarwal, Klawe, Moran, Shor, and Wilber [AKM+87j were the first to solve the
farthest-neighbor variant of this problem in 0(n) time; they achieved this result
by reducing the all-farthest-neighbor problem to a Monge-array row-minimization
problem and then applying the SMAWI( algorithm. This reduction is described
in Section 5.1. The all-nearest-neighbor variant of this problem can be solved in
linear time using similar techniques; however, the first O(n)-time algorithm for
computing all nearest neighbors for the vertices of a convex polygon, due to Lee
and Preparata [LP78], predates the SMAWK algorithm by many years. Another
linear-time algorithm for the all-nearest-neighbors variant of this problem can be
obtained using a result due to Aggarwal, Guibas, Saxe, and Shor [AGSS891, who
showed that the (nearest-neighbor) Voronoi diagram for the vertices of a convex
n-gon can be computed in O(n) time.

All kth-Farthest/kth-Nearest Neighbors for the Vertices of a Convex Polygon

Problem Given a convex polygon P in the plane with vertices vl,..., v, in clockwise order
and an integer k in the range 1 < k < n, for each vertex vi, find the vertex vj
whose distance from vi is the kth largest or kth smallest.

Status Using the reduction mentioned in the previous entry, both variants of this prob-
lem can be solved in O(kn) time using the row-selection algorithm of Kravets
and J. Park [KP91] and in O(n3/2 lg2 n) time using the row-selection algorithm of
Mansour, J. Park, Schieber, and Sen [MPSS91].

Neighbor Ranking for the Vertices of a Convex Polygon
Problem Given a convex polygon P in the plane with vertices vl,..., v, in clockwise order,

for each vertex v,, sort the other vertices of P by distance from vi.

Status In [KP91], Kravets and J. Park showed that their Monge-array row-sorting al-
gorithm solves this problem in O(n 2 ) time. (This result is briefly mentioned in
Section 5.1.) They also showed that if vl,..., v, are the vertices of £ different con-
vex polygons in the plane, then 0(n 2 Ig e) time suffices for ranking all the vertices'
neighbors.

198



A.2. GEOMETRIC PROBLEMS

Farthest/Nearest Pair for the Vertices of a Convex Polygon
Problem Given a convex polygon P in the plane with vertices vl,..., v, in clockwise order,

find the (unordered) pair of vertices (vi,vj), separated by the largest or smallest
distance.

Status Both variants of this problem are easily solved in O(n) time using the linear-time
algorithms mentioned earlier for computing the farthest or nearest neighbor of
each vertex of a convex polygon. We remark, however, that the first O(n)-time
algorithm for the farthest-pair variant for this problem, due to Shamos [Sha781,
predates the all-farthest-neighbors algorithm of Aggarwal, Klawe, Moran, Shor,
and Wilber [AKM+87] by many years.

kth-Farthest/kth-Nearest Pair for the Vertices of a Convex Polygon
Problem Given a convex polygon P in the plane with vertices vl, ... ,v, in clockwise order

and an integer k in the range 1 < k < (), find the (unordered) pair of vertices
(vi, vj) separated by the kth largest or kth smallest distance.

Status Both variants of this problem can be solved in O(n + k lg(n 2/k)) time using the
Monge-array array-selection algorithm of Kravets and J. Park [KP91]. (See Sec-
tion 5.1.)

Pair Ranking for the Vertices of a Convex Polygon
Problem Given a convex polygon P in the plane with vertices vi,..., vn in clockwise order,

sort the (2) (unordered) pairs of vertices (vi, v;) by separating distance.
Status No o(n2 Ig n)-time algorithm is known for this problem. Reducing this problem to

a Monge-array problem is unproductive, since sorting all the entries of an n x n
Monge array requires 11(n2 lg n) time.

Maximal Inscribed d-gon
Problem Given a convex polygon P in the plane with vertices vl,..., v, in clockwise order

and an integer d in the range 3 < d < n, find the maximum-perimeter or maximum-
area d-vertex polygon Q contained in P.

Status For the special case of d = 3, Dobkin and Snyder [DS79] gave an optimal O(n)-time
algorithm for the maximum-area variant of this problem. For arbitrary d, the best
results are due to Aggarwal, Klawe, Moran, Shor, and Wilber [AKM+87]; they
showed that both variants of the problem can be solved in O(dn + n lgn) time.
They obtained these results by using the SMAWK algorithm to speed up earlier

O(dn Ig n + n lg2 n)-time algorithms due to Boyce, Dobkin, Drysdale, and Guibas
[BDDG85]. Section 5.2 shows how Aggarwal et al.'s algorithm for computing a
maximum-perimeter inscribed d-gon can be viewed as computing the plane minima
of a d-dimensional cycle-decomposable Monge-composite array.

Minimal Circumscribing d-gon
Problem Given a convex polygon P in the plane with vertices vl, ... , v, in clockwise order

and an integer d in the range 3 < d < n, find the minimum-area or minimum-
perimeter d-vertex polygon Q containing P.

199



APPENDIX A. A MONGE-ARRAY COMPENDIUM

Status The two best results known the minimum-area variant of this problem are an
optimal O(n)-time algorithm for the d = 3 special case of the problem, due to
O'Rourke, Aggarwal, Maddila, and Baldwin [OAMB86], and an O(dn + n lg n)-
time algorithm for the general case of the problem, due to Aggarwal and J. Park
[AP89b]. This latter result is described in Section 5.3; it builds on the tech-
niques developed by Aggarwal, Klawe, Moran, Shor, and Wilber [AKM+87] for
computing a maximum-perimeter inscribed d-gon (see the previous entry). As for
the minimum-perimeter variant of the problem, Aggarwal and J. Park [AP89b]
showed that the d = 3 special case can be solved in O(nlgn) time, again using
Monge-array techniques.

Minimum-Weight Matching for the Vertices of a Convex Polygon

Problem Given a 2n-vertex polygon P in the plane with vertices vl,..., v2n in clockwise
order, find a minimum-weight matching of the vertices of P, where the weight
associated with the edge between vertices vi and vj is the Euclidean distance
d(vi, vj) between them.

Status In [MS91], Marcotte and Suri gave an O(nlgn)-time algorithm for this problem.
The SMAWK algorithm is an important subroutine of their matching algorithm;
it is used to compute nearest neighbors relative to an unusual distance metric.
Whether Marcotte and Suri's matching algorithm is optimal remains open, as
does the question of whether their techniques are relevant to the matching problem
for arbitrary points in the plane. (Currently, the best algorithm known for this
more general problem is due to Vaidya [Vai88] and runs in O(n5/ 21g4 n) time.)
Furthermore, He [He91] has parallelized Marcotte and Suri's result; using Atallah
and Kosaraju's Monge-array row-minimization algorithm, he (He) obtained an
O(lg2 n)-time, n-processor CREW-PRAM for matching the vertices of a convex
polygon.

Optimal Convex-Polygon Triangulation
Problem Given a convex polygon P in the plane with vertices vl,..., v, in clockwise order,

find a triangulation of P minimizing the sum of the lengths of the triangulation's
diagonals.

Status Gilbert [Gil79] and Klinseck [Kli80] independently observed that this problem can
be solved in O(n3) time using dynamic programming. Furthermore, if the polygon
P satisfies the semicircle property (see Section 5.1 for this property's definition),
then this problem can be formulated as an instance of Yao's problem (see entry
below) whose interval function w(-, ) both satisfies the quadrangle inequality and
is monotonically increasing on the lattice of intervals. Thus, this special case of
the optimal-convex-polygon-triangulation problem can be solved in O(n 2 ) time.

Longest Diagonal of a Simple Polygon
Problem Given a simple polygon P in the plane with vertices vl,..., v, in clockwise order,

find the longest line segment connecting a pair of vertices that does not intersect
the exterior of P.

200



A.2. GEOMETRIC PROBLEMS

Status In [AS90], Aggarwal and Suri gave an O(nlg 3 n)-time algorithm for this problem
that uses the SMAWK algorithm to find maximal entries in yet another variety of
partial Monge arrays. For the variant of this problem (known as the "biggest stick"
problem) that does not constrain the line segment's endpoints to be vertices, the
best result is an O(nl' 98)-time algorithm due to Chazelle and Sharir [CS88] that
does not use Monge-array techniques.

All Internal Farthest Neighbors of a Simple Polygon's Vertices
Problem Given a simple polygon P in the plane with vertices vl,..., v, in clockwise order,

for each vertex vi, find the vertex v maximizing the length of the shortest path
between vi and vj that does not intersect the exterior of P.

Status Two O(n Ig n)-time algorithms for this problem are known, one due to Guibas and
Hershberger [GH87] and the othier due to Suri [Sur87]. Both algorithms use the
Mongeness of shortest internal paths, but only [GH87] uses the SMAWK algorithm
directly.

All External Farthest Neighbors of a Simple Polygon's Vertices
Problem Given a simple polygon P in the plane with vertices vl,..., v, in clockwise order,

for each vertex vi, find the point p on P maximizing the length of the shortest
path between vi and p that does not intersect the interior of P.

Status Agarwal, Aggarwal, Aronov, Kosaraju, Schieber, and Suri [AAA+91] gave an
O(nlgn)-time algorithm for this -problem. More precisely, they showed that this
problem can be solved in O(r(n) + 6(n) + n) time, where r(N) is the time required
to find an internal farthest neighbor for each vertex of a simple N-gon (see the
previous entry) and 6(N) is the time required to triangulate a simple N-gon.

Largest Empty Rectangle
Problem Given a rectangle R in the plane containing n points, find the maximum-area or

maximum-perimeter subrectangle R' such that

1. R' lies in the interior of R,

2. the sides of R' are parallel to those of R, and

3. the interior of R' contains no points.

Status Aggarwal and Suri [AS87] gave an O(n lg2 n)-time algorithm for the maximum-
area variant of this problem and an O(n lg n)-time algorithm for the maximum-
perimeter variant. The former algorithm is based on an array-searching algorithm
for computing row minima in certain partial Monge arrays that uses the SMAWK

algorithm as a subroutine.

201



APPENDIX A. A MONGE-ARRAY COMPENDIUM

A.3 VLSI Problems

Minimum
Problem

Separation
Given two VLSI modules P and Q, each modeled as a sequence of n terminals
lying on horizontal line, a fixed horizontal offset of P relative to Q, and a set of
design rules governing the routing of wires, find the minimum vertical separation
of P and Q that permits the routing of n wires satisfying the design rules such
that for 1 < i < n, the ith wire connects the ith terminal of P to the ith terminal
of Q.

Status Provided the design rules governing the routing of wires satisfy certain very gen-
eral concavity conditions, this problem can be reduced to the Monge-array row-
minimization problem. This reduction is due to Siegel and Dolev [SD88]. Thus,
so long as the design rules satisfy Siegel and Dolev's concavity conditions, the
SMAWK algorithm solves this problem in O(n) sequential time and Atallah and
Kosaraju's EREW-PRAM algorithm [AK91] solves this problem in O(lgn) time
using n processors.

Offset Range
Problem Given two VLSI modules P and Q, each modeled as a sequence of n terminals lying

on horizontal line, a fixed vertical separation of P and Q, and a set of design rules
governing the routing of wires, find all horizontal offsets of P relative to Q that
permit the routing of n wires satisfying the design rules such that for 1 < i < n,
the ith wire connects the ith terminal of P to the ith terminal of Q.

Status In [SD81], Siegel and Dolev argued that this problem can also be reduced to the
Monge-array row-minimization problem, provided the design rules satisfy certain
concavity conditions. Thus, the time bounds mentioned in the previous entry apply
to this problem as well.

Optimal Offset
Problem Given two VLSI modules P and Q, each modeled as a sequence of n terminals

lying on horizontal line, and a set of design rules governing the routing of wires,
find a horizontal offset of P relative to Q that minimizes the minimum vertical
separation of P and Q permitting the routing of n wires satisfying the design rules
such that for 1 < i < n, the ith wire connects the ith terminal of P to the ith
terminal of Q.

Status Siegel and Dolev [SD81] showed that if the separation problem can be solved in
(n) sequential time, then the optimal offset problem can be solved in (n)lgn

sequential time. Furthermore, Aggarwal and J. Park [AP89a] observed that this
reduction is easily parallelized. Thus, so long as the design rules governing the
routing of wires satisfy Siegel and Dolev's concavity conditions, the optimal offset
problem can be solved in 0(n Ig n) time on a sequential RAM and in O(lg2 n) time
using n processors on a EREW-PRAM.

202



A.4. DYNAMIC-PROGRAMMING PROBLEMS

A.4 Dynamic-Programming Problems

Least-Weight Subsequence
Problem Given an interval function w(-, .), find an integer t in the range 1 < t < n and a

subsequence io, i, ... , i of 0,1,..., n minimizing

J=1

Status This problem can be solved in O(n2 ) time using a simple dynamic-programming
approach. Moreover, this time bound is optimal for an arbitrary interval function
w(-,.), since we must examine w(i,j) for all i and j satisfying 0 < i < j n.
However, for many applications, w(.,.) satisfies the quadrangle inequality. (Two
such applications are the airplane-refueling problem and the optimal-paragraph-
formation problem that Hirschberg and Larmore study in [HL87]; this latter prob-
lem is briefly described in the introduction.) For this special case of the least-
weight-subsequence problem (often called the concave least-weight-subsequence
problem), Wilber [Wil88] gave an O(n)-time algorithm. His algorithm uses on-
line array-searching techniques such as those described in Section 2.2. Finally, if
w(., ) instead satisfies the inverse quadrangle inequality, then Klawe and Kleit-
man's on-line array-searching algorithm [KK90] (mentioned in Section 2.4) solves
the problem in O(na(n)) time. (This last variant is often called the convex least-
weight-subsequence problem.)

String Editing
Problem Given functions D(.), (.), and S(-,.) with domains {1,...,m}, (l,...,n}, and

(1,..., m} x (1,..., n}, respectively, find the minimum-cost sequence of deletions,
insertions, and substitutions transforming one string a = aa 2-. 'am to another
string b = b1b2 ... bn, where the cost of deleting ai is D(i), the cost of inserting bi
is I(j), and the cost of substituting bj for ai is S(i,j). (We assume without loss of
generality that m < n.)

Status The best sequential result known for this generalization of the longest-common-
subsequence problem is an O(mn)-time algorithm due to Wagner and Fischer
[WF74]. Kedem and Fuchs [KF80] considered a variant of the string-editing
problem that allows the string a to be rotated at no cost prior to any editing.
(In other words, they sought a rotation i from the range 1 i < m minimiz-
ing the cost of transforming aai+l- -..al ... ai-, to b.) For this problem, Ke-
dem and Fuchs gave an O(mn lgm)-time algorithm. Eppstein Epp90O] consid-
ered yet another variant of the string-editing problem that allows any substring
aai+l ... ak_.1 of a to be deleted at cost D(i, k) and any substring bjbj+l .. .b-l of
b to be inserted at cost (j, t). For certain functions D(-, ) and I(., .), Eppstein
showed that the naive O(mn 2 )-time dynamic-programming algorithm for this vari-
ant of the string-editing problem can be sped up using an on-line Monge-array
row-minimization algorithm. As for parallel results, both the basic string-editing

203



204 APPENDIX A. A MONGE-ARRAY COMPENDIUM

problem and Kedem and Fuch's variant can be reduced to the grid-DAG-shortest-
paths problem described below. (We discuss this reduction in Section 8.2.) Com-
bining this reduction with parallel algorithms for the grid-DAG-shortest-paths
problem gives three results: an O(lg m lg n)-time, (mn/lg m)-processor CRCW-
PRAM algorithm, an O(lg g m lg n)-time, (mn/ Ig Ig m)-processor CREW-PRAM
algorithm, and an O(lg m lg n)-time algorithm for an mn-node hypercube.

Surface Reconstruction from Planar Contours
Problem Given an m-vertex convex polygon P and an n-vertex convex polygon Q such that

P and Q lie in parallel planes in three-dimensional space, use triangular tiles to
construct a minimum-cost cylindrical surface joining P and Q, where the cost of
a surface is the sum of the costs some triangle-weighting function assigns to the
triangular tiles forming the surface. (We assume without loss of generality that
min< n.)

Status In [FKU77], Fuchs, Kedem, and Uselton reduced this problem to an instance of
the grid-DAG-shortest-paths problem described in the next entry. We discuss this
reduction in Section 8.3.

Shortest Paths in Grid DAGs
Problem Given an 2m x (n + 1) grid DAG (as defined in Chapter 8) where m < n, find the

shortest path from vijl to Vm+i,n+l for all i in the range 1 < i < m.

Status Fuchs, Kedem, and Uselton [FKU77] gave an O(mnlgm)-time sequential algo-
rithm for this problem. As for parallel results, Apostolico, Atallah, Larmore, and
McFaddin [AALM90] reduced this problem to several instances of the Monge-
array tube-minimization problem. (This reduction is described in Section 8.1.)
Combining this reduction with the best known parallel tube-minimization re-
sults gives an O(lgnlgm)-time, (mn/lgm)-processor CREW-PRAM algorithm,
an O(lg n g Ig m)-time, (mn/l Ig lgm)-processor CRCW-PRAM algorithm, and an
O(lg m lg n)-tine algorithm for an mn-node hypercube.

Waterman's Problem
Problem Given an interval function w(.,.) and values E(O,0), E(l,0),...,E(n,0), and

E(O,1),...,E(O,n), compute E(i,j) for all i and j satisfying 1 < i < n and
1 < j < n from the recurrence

E(i,j) = min {F(i',j') + w(i' + j', i + j)} ,

where F(i, j) is some function that can be computed in constant time from E(i,j).

Status This problem arises in the prediction of RNA secondary structure [Wat78, WS86].
If w(-, ) satisfies the quadrangle inequality, then Waterman's problem can be solved
in O(n 2 ) time using the on-line LIEBER algorithm of Section 2.2. This result is due
to Larmore and Schieber [LS91]. Larmore and Schieber also gave an O(n2 a(n))-
time algorithm for the case where w(., ) satisfies the inverse quadrangle inequality;



A.4. DYNAMIC-PROGRAMMING PROBLEMS

this latter algorithm is based on Klawe and Kleitmanr's on-line array-searching
algorithm [KK90], which is briefly mentioned in Section 2.4.

Huffman Coding
Problem Given probabilities pl,... ,P, such that pl + --+p, = 1, construct a prefix code for

characters al,..., a, minimizing the expected length of the code for the character
b, where b is selected at random so that

Pr{b= ai} = Pi 

Status Huffmar [Huf62] gave a simple greedy O(n Ig n)-time algorithm for this problem.
(This running time can be reduced to O(n) if pl,..., p, are given in sorted or-
der.) Furthermore, Atallah, Kosaraju, Larmore, Miller, and Teng [AKL+89] re-

-duced this problem to O(lgn) instances of the Monge-array tube-minimization
problem, thereby obtaining an 0(lg 2 n)-time, (n2/ lg n)-processor CREW-PRAM
algorithm and an O(lg n lg lg n)-time, (n 2 / lglg n)-processor CRCW-PRAM algo-
rithm for Huffman coding.

Optimal Binary Search Trees
Problem Given probabilities pl,..., Pn and q0,..., q, such that Pl+- +p, +qo+" +qn = 1,

construct a binary search tree for keys a, < a2 < -. - < a minimizing the expected
number of comparisons performed by a find operation whose argument b is selected
at random so that

Pr{b = ai = pi

and
Pr{ai < b < ai+l} = qi

(By convention, a = -oo and an+l = +oo.)

Status The asymptotically fastest algorithms known for this problem run in O(n 2) time.
Knuth gave such an algorithm in [Knu71]. Yao [Yao80] showed that an instance
of this problem can be reduced to an instance of Yao's problem (see the following
entry) whose interval function w(., ) both satisfies the quadrangle inequality and is
monotonically increasing on the lattice of intervals. (This simple reduction is given
in Section 6.2.) Thus, the algorithms of Yao [Yao80] and Aggarwal and J. Park
[AP89b] mentioned below give alternate O(n 2)-time algorithms for the optimal-
binary-search-tree problem. Furthermore, Larmore [Lar87] gave a subquadratic-
time algorithm for approximating an optimal binary search tree. For any constant
r > 1/(1 + lgb) ~ 0.59023, where 0 is the "golden ratio" (1 + V5)/2, Larmore's
algorithm finds, in O(nl+') time, a binary search tree for al,..., an whose expected
number of comparisons per find operation differs from the optimal expected number
of comparisons per find operation by o(1). An important subproblem solved by
Larmore's algorithm involves computing the row minima of a two-dimensional
Monge array. Finally, Atallah, K3saraju, Larmore, Miller, and Teng [AKL+89]
reduced a variant of Larmore's approximately-optimal-binary-search-tree problem
to O(lg n) instances of the Monge-array tube-minimization problem.

205



APPENDIX A. A MONGE-ARRAY COMPENDIUM

Yao's Problem
Problem Given an interval function w(-, .), compute E(1, n + 1) from the recurrence

0 if i = j,
E(iXj) {= (i, j)+ min {E(i, k)+ E(k + 1,j)} if i < j.

Status For an arbitrary interval function w(-,-), the best result known for this problem is
the O(n3)-time algorithm obtained by evaluating the E(i, j) in the straightforward
manner. However, if w(-, ) both satisfies the quadrangle inequality and is mono-
tonically increasing on the lattice of intervals, then Yao [Yao80] showed that this
problem can be solved in O(n 2) time. Furthermore, Aggarwal and J. Park [AP89b]
gave an alternate O(n2 ) algorithm for this special case that uses the SMAWK al-
gorithm as a subroutine. Finally, Aggarwal and Park also showed that if w(., .)
both satisfies the inverse quadrangle inequality and is monotonically decreasing on
the lattice of intervals, then Yao's problem can be solved in O(n 2a(n)) time using
Klawe and Kleitman's on-line algorithm for computing the row minima of a partial
inverse-Monge array of the staircase variety. These last two results are described
in Section 6.2.

Optimal Matrix-Chain Multiplication
Problem Given a sequence of n + 1 dimensions Po, Pi,... ,n, compute an optimal parenthe-

sization for the matrix product A1A2 ... An, where for I < i < n, Ai is a Pi- x Pi
matrix. (We assume that the p x r matrix product of a p x q matrix and a q x r
matrix requires pqr time to compute.)

Status No way of using Monge arrays to solve this problem efficiently is known, despite
the problem's superficial similarity to Yao's problem (see the previous entry). The
best result for this problem is an O(nlgn)-time algorithm due to Hu and Shing
[HS82, HS841.

A.5 Problems from Operations Research

Economic Lot Sizing
Problem Given an n-period production system characterized by demands d1,...,dn, pro-

duction cost functions cl(),..., c,(-), and inventory cost functions h2(),-...,hn(-),
find a minimum-cost production schedule x,..., Xn such that

1. Xl ...+X=d+...+ d,, and

2. for 2 < i < n, the excess inventory

i-1 i-1
Yi = Zx-tY d

t=1 1=1

carried from period i- 1 to period i is nonaegative,

206



A.5. PROBLEMS FROM OPERATIONS RESEARCII

where the cost of a production schedule (and the inventory quantities it induces)
is given by

n n

E Ci(Xi) + E hi(yi) 
i=1 i=2

Status For arbitrary production and inventory cost functions, this problem is NP-hard, as
Florian, Lenstra, and Rinnooy Kan showed in [FLR80]. However, if the production
and inventory cost functions are all concave on [0, +oo), then Veinott [Vei63] has
shown that a minimum-cost production schedule can be found in 0(n2 ) time using
dynamic programming. Furthermore, if for all i in the range 1 < i < n,

ci(X) = { 0
c + cX

if = 0,

if z > 0,

and hi(y) = hy, where c, cl, and h are nonnegative constants, then O(nlgn)
time suffices to find an optimal production schedule. Finally, if we assume that
the constants c and h given above also satisfy c < c. + h for 1 < i < n,
then the problem can be solved in O(n) time. These last twl results were obtained
independently by Aggarwal and J. Park [AP91], Federgruen and Tzur [FT89],
and Wagelmans, van Hoesel, and Kolen [WvHK89]. Only Aggarwal and Park use
Monge-array techniques; their approach is described in Chapter 7.

Economic Lot Sizing with Backlogging
Problem This problem is identical to basic economic-lot-sizing problem given in the previous

entry, except that here we allow the inventory yi carried from period i- 1 to period
i to be negative for 2 < i < n. (Such negative inventory is called backlogged
demand.)

Status If the production cost functions are all concave on [0, +oo) and the backlog-
ging/inventory cost functions are all concave on (-oo,0] and on [0, +oo), then
Aggarwal and J. Park [AP91] have shown that a minimum-cost production sched-
ule can be found in O(n2 ) time using Monge-array techniques. Furthermore, if for
all i in the range 1 i n,

(X) 0 if = 0,
co+ cx if x>0,

9g(y) = giy, and hi(y) = hy, where c, c, g l, and hi are nonnegative constants,
then O(nlgn) time suffices to find an optimal production schedule. Finally, if we
assume that the constants c,, g, and hi given above also satisfy c < c+ l + gl for
1 < i < n and c < ci_, + hi for 1 < i < n, then the problem can be solved in
O(n) time. These last two results were obtained independently by Aggarwal and
J. Park [AP91] and Federgruen and Tzur [FT90]. Again only Aggarwal and Park
use Monge-array techniques; their approach is described in Chapter 7.

207



APPENDIX A. A MONGE-ARRAY COMPENDIUM

Economic Lot Sizing with Capacities
Problem This problem is identical to economic-lot-sizing problem with backlogging de-

scribed in the previous entry, except that here we are also given bounds x,..., x L,
ZXu,. ,Zu, y,..., y, and y2, ... ,yu on production and backlogging/inventory,
such that the production schedule we seek (and the inventory quantities it induces)
must satisfy x ,L < i < xU for 1 < i < n and yL <yi <y for 2 < i < n.

Statu. For arbitrary upper bounds xv on production, Florian, Lenstra, and Rinnooy Kan
[FLR80] showed that this problem is NP-hard, even if we assume that

1. c,(-) is concave on [, fU] for 1 < i < n,

2. h(.) is concave on [yL, 0] and on [0, y/V] for 2 < i < n, and

3. LC = 0, yL = -oo, and yU = +oo for 1 < i < n.

However, if we also assume that all the upper bounds on production are the same
(iLe., xU = xU for 1 < i < n), then Florian and Klein [FK71] proved that an optimal
production schedule can be computed in O(n4 ) time. Furthermore, Aggarwal and
J. Park [AP90] showed that if

1. c,(.) is concave on [, xv ] for 1 < i < n,

2. h,(.) is concave on [yL, 0] and on [0, y/V] for 2 i < n, and

3. there are no bounds on production, i.e., xL = 0 and zx = +oo for 1 < i < n,

then O(n 2a(n)) time suffices for computing an optimal production schedule. Fi-
nally, if for 1 < i < n, we also assume yL = 0,

c(x) 0 if x = 0,
{c c + cz if >0,

and h(y) = hy, where c, cl, and h are nonnegative constants, then Aggarwal
and Park showed that this problem can be solved in O(nlgna(n)) time. These
last two results build on the work of Love [Lov73] and use Monge-array techniques
similar to those employed in Chapter 7.

A.6 Graph-Theoretic Problems

Weighted Bipartite Matching
Problem Given an m x n cost array C = {c[i,j]} such that m > n, find a minimum-cost

n-edge matching for the complete undirected bipartite graph G = (U U V, E) given
by U = {Ulu 2,. .-.,Um, V = ({v,v 2,.. .,vn}, and E = U x V, where the edge
(ui, vj) has cost c[i,j].

Status For an arbitrary array C, the best known algorithm, due to Kuhn [Kuh55], takes
O(n3 ) time. However, if C is a Monge array, then the problem is much simpler. In
particular, if m = n, then {(ui, vi) : 1 < i < m} is a minimum-cost matching, and
if m > n, a simple dynamic-programming algorithm finds an optimal matching in
O(m(n - m)) time.

208



A.6. GRAPH-THEORETIC PROBLEMS

Traveling-Salesman Tour
Problem Given an n x n cost array C = {c[i,j]}, find a minimum-cost tour through the

n-vertex complete directed graph G = (V, A) given by V = {vl , v2 ,..., v,} and
A = V x V, where the cost of traversing arc (vi, vj) is c[i,j]. (A tour through G is
a cycle that passes though each of G's n vertices exactly once.)

Status In general, this (very famous) problem is NP-hard. However, if the cost array
C is Monge, then J. Park rPar91] has shown that the on-line Monge-array row-
minimization algorithm of Section 2.2 can be used to find a minimum-cost tour
in O(n) time. This result is described in Section 6.1. Furthermore, Gilmore and
Gomory [GG64] have described an O(nlgn)-time algorithm for another special
case of the traveling salesman problem corresponding to a set - of cost arrays
with the property that, for any C E , some permutation of C's columns yields
a Monge array. (Note that this result does not hold for every C such that some
permutation of C's columns yields a Monge array; in fact, as Gilmore, Lawler, and
Shmoys proved in [GLS85], the traveling salesman remains NP-hard for some such
C.)

Uncapacitated Transportation
Problem Given an m x n cost array C = {c[i,j]}, a vector A = {a[i]} of m supplies, and a

vector B = {b[j]} of n demands, where a[1]+a[2]+.- .+a[rn] = b[l]+b[2]+.- +b[nJ,
find a minimum-cost flow in the complete uncapacitated directed bipartite graph
D = (UUV, A) given by U = {u,u 2 , ..., um} V = {vv 2, .. .,vn},and A = UxV,
where each vertex ui E U is a source supplying a[i] units of flow, each vertex vj E U
is a sink demanding b[j] units of flow, and the cost of sending one unit of flow across
the arc (ui,Uj) is c[i,j]. (We assume without loss of generality that m < n.)

Status The best result known for the general case of this problem is an O(mn 2 lg n +
n21g2 n)-time algorithm due to Orlin [Or188]. (Orlin's algorithm is the fastest
strongly-polynomial algorithm known for the minimum-cost flow problem, to which
this problem is easily reduced.) However, if the cost array C is Monge, then, as
Hoffman observed in [Hof63], the uncapacitated transportation problem can be
solved in O(m + n) time with a simple greedy algorithm. More generally, Hoffman
defined a Monge sequence for a cost array C to be an ordering of the arcs of D
such that for any two sources ui and uk and any two sinks v and t, whenever
(i,j) precedes both (i, ) and (j,k), C satisfies c[i,j] + c[k,e] < c[i, ] + c[k,j]. He
then proposed an O(mn)-time greedy algorithm that selects the lexicographically
first feasible flow according to some ordering a of D's arcs and proved that such a
greedy algorithm produces a minimum-cost flow for all supply and demand vectors
A and B if and only if a is a Monge sequence for C. More recently, Alon, Cosares,
Hochbaum, and Shamir [ACHS89] discovered an O(m 2n lgn)-time algorithm that
constructs a Monge sequence for a particular cost array C, provided such a se-
quence exists. Furthermore, Shamir and Dietrich [SD90] generalized these ideas to
bipartite graphs D that are not complete, i.e., A C U x V. Finally, Bein, Brucker,
and Pathak [BBP90] considered a d-dimensional generalization of the uncapaci-
tated transportation problem with d-dimensional cost arrays and identified a class
of Monge-like cost arrays for which this problem can be solved efficiently.

209





Bibliography

IAAA+91] P. K. Agarwal, A. Aggarwal, B. Aronov, S. R. Kosaraju, B. Schieber, and S. Suri.
Computing external-farthest neighbors for a simple polygon. Discrete Applied Math-
ematics, 1991. To appear. An earlier version of this paper appears as Research
Report RC 15119, IBM T. J. Watson Research Center, October 1989.

[AALM90] A. Apostolico, M. J. Atallah, L. L. Larmore, and H. S. McFaddin. Efficient parallel
algorithms for string editing and related problems. SIAM Journal on Computing,
19(5):968-988, 1990.

[ACG87] M. J. Atallah, R. Cole, and M. T. Goodrich. Cascading divide-and-conquer: A
technique for designing parallel algorithms. In Proceedings of the 28th Annual IEEE
Symposium on Foundations of Computer Science, pages 151-160, 1987.

[ACHS89] N. Alon, S. Cosares, D. S. lIochbaum, and R. Shamir. An algorithm for the de-
tection and construction of Monge sequences. Linear Algebra and Its Applications,
114/115:669-680, 1989.

[ACY85] A. Aggarwal, J. S. Chang, and C. K. Yap. Minimum area circumscribing polygons.
The Visual Computer, 1(2):112-117, 1985.

[AGSS89] A. Aggarwal, L. J. Guibas, J. Saxe, and P. W. Shor. A linear-time algorithm for
computing the Voronoi diagram of a convex polygon. Discrete and Computational
Geometry, 4(6):591-604, 1989.

[AK91] M. J. Atallah and S. R. Kosaraju. An efficient parallel algorithm for the row
minima of a totally monotone matrix. In Proceedings of the 2nd Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 394-403, 1991. Submitted to Journal of
Algorithms.

[AKL+89] M.- J. Atallah, S. R. Kosaraju, L. L. Larmore, G. Miller, and S. Teng. Constructing
trees in parallel. In Proceedings of the Ist Annual ACM Symposium on Parallel
Algoriihms and Architectures, pages 421-431, 1989.

[AKM+87] A. Aggarwal, M. M. Klawe, S. Moran, P. Shor, and R. Wilber. Geometric applica-
tions of a matrix-searching algorithm. Algorithrnica, 2(2):195-208, 1987.

[AKPS90] A. Aggarwal, D. Kravets, J. K. Park, and S. Sen. Parallel searching in generalized
Monge arrays with applications. In Proceedings of the 2nd Annual A CM Symposium
on Parallel Algorithms and Architectures, pages 259-268, 1990.

211



BIBLIOGRAPHY

[AP88] A. Aggarwal and J. K. Park. Notes on searching in multidimensional monotone
arrays. In Proceedings of the 29th Annual IEEE Symposium on Foundations of
Computer Science, pages 497-512, 1988.

[AP89a] A. Aggarwal and J. K. Park. Parallel searching in multidimensional monotone ar-
rays. Research Report RC 14826, IBM T. J. Watson Research Center, August 1989.
Submitted to Journal of Algorithms. Portions of this paper appear in Proceedings
of the 29th Annual IEEE Symposium on Foundations of Computer Science, pages
497-512, 1988.

[AP89b] A. Aggarwal and J. K. Park. Sequential searching in multidimensional monotone
arrays. Research Report RC 15128, IBM T. J. Watson Research Center, November
1989. Submitted to Journal of Algorithms. Portions of this paper appear in Pro-
ceedings of the 29th Annual IEEE Symposium on Foundations of Computer Science,
pages 497-512, 1988.

[AP90] A. Aggarwal and J. K. Park. Algorithms for economic lot-size problems with bounds
on inventory and backlogged demand. Unpublished manuscript, September 1990.

[AP91] A. Aggarwal and J. K. Park. Improved algorithms for economic lot-size problems.
Operations Research, 1991. To appear. An earlier version of this paper appears as
Research Report RC 15626, IBM T. J. Watson Research Center, March 1990.

[AS87] A. Aggarwal and S. Suri. Fast algorithms for computing the largest empty rectangle.
In Proceedings of the rd Annual ACM Symposium on Computational Geometry,
pages 278-290, 1987. Submitted to SIAM Journal on Computing.

[AS90] A. Aggarwal and S. Suri. Computing the longest diagonal of a simple polygon.
Information Processing Letters, 35(1):13-18, 1990. Also published as IBM Research
Report 14775, July 1989.

[Ata90] M. J. Atallah. A faster parallel algorithm for a matrix searching problem. In G. Goos
and J. Hartmanis, editors, Proceedings of the 2nd Scandinavian Workshop on Al-
gorithm Theory, pages 192-200, New York, NY, 1990. Springer-Verlag. Submitted
to Algorithmica.

[BBP90] W. W. Bein, P. Brucker, and P. K. Pathak. Monge properties in higher dimensions.
Technical Report CS90-11, University of New Mexico, October 1990.

[BDDG85] J. E. Boyce, D. P. Dobkin, R. L. Drysdale, and L. J. Guibas. Finding extremal
polygons. SIAM Journal on Computing, 14(1):134-147, 1985.

[Bel57] R. E. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ,
1957.

[BFP+73] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds for
selection. Journal of Computer and System Sciences, 7(4):448-461, 1973.

[BK74] J. D. Blackburn and H. Kunreuther. Planning horizons for the dynamic lot size
model with backlogging. Management Science, 21(3):251-255, 1974.

212



BIBLIOGRAPHY

[Bre74] It. P. Brent. The parallel evaluation of general arithmetic expressions. Journal of
the ACM, 21(2):201-206, 1974.

[BRG87] H. C. Bahl, L. R. Ritzman, and J. N. D. Gupta. Determining lot sizes and resource
requirements: A review. Operations Research, 35(3):329-345, 1987.

(BY82] G. R. Bitran and H. H. Yanasse. Computational complexity of the capacitated lot
size problem. Management Science, 28(10):1174-1186, 1982.

[CL88] C.-S. Chung and C.-H. M. Lin. An O(T 2 ) algorithm for NI/G/NI/ND capacitated
lot size problem. Management Science, 34(3):420-426, 1988.

[CS88] B. M. Chazelle and M. Sharir. An algorithm for generalized point location and its
applications. Technical Report ?, Computer Science Department, Courant Institute
of Mathematical Sciences, New York University, 1988.

[CY84] J. S. Chang and C. K. Yap. A polynomial solution for potato-peeling and other
polygon inclusion and enclosure problems. In Proceedings of the 25th Annual IEEE
Symposium on Foundations of Computer Science, pages 408-416, 1984.

[Den82] E. V. Denardo. Dynamic Programming: Models and Applications. Prentice-Hall,
Inc., Englewood Cliffs, NJ, 1982.

[DeP87] N. A. A. DePano. Polygon Approximation with Optimized Polygonal Enclosures:
Applications and Algorithms. PhD thesis, Department of Computer Science, The
Johns Hopkins University, Baltimore, MD, 1987.

[DS79] D. P. Dobkin and L. Snyder. On a general method for maximizing and minimiz-
ing among certain geometric problems. In Proceedings of the 20th Annual IEEE
Symposium on Foundations of Computer Science, pages 9-17, 1979.

[EGG88] - D. Eppstein, Z. Galil, and R. Giancarlo. Speeding up dynamic programming. In
Proceedings of the 29th Annual IEEE Symposium on Foundations of Computer Sci-
ence, pages 488-496, 1988.

[EGP69] G. D. Eppen, F. J. Gould, and B. P. Pashigian. Extensions of the planning horizon
theorem in the dynamic lot size model. Management Science, 15(5):268-277, 1969.

[EMV87] RI E. Erickson, C. L. Monma, and A. F. Veinott, Jr. Send-and-split method
for minimum-concave-cost network flows. Mathematics of Operations Research,
12(4):634-664, 1987.

[Epp90] D. Eppstein. Sequence comparison with mixed convex and concave costs. Journal
of Algorithms, 11(1):85-101, 1990.

[FJ82] G. N. Frederickson and D. B. Johnson. The complexity of selection and ranking
in X + Y and matrices with sorted columns. Journal of Computer and System
Sciences, 24(4):197-208, 1982.

[FK71] M. Florian and M. Klein. Deterministic production planning with concave costs
and capacity constraints. Management Science, 18(1):12-20, 1971.

213



BIBLIOGRAPHY

[FKU77] Ii. Fuchs, Z. M. Kedem, and S. P. Uselton. Optimal surface reconstruction from
planar contours. Communications of the ACM, 20(10):693-702, 1977.

[FLR80] M. Florian, J. K. Lenstra, and A. H. G. Rinnooy Kan. Deterministic production
planning: Algorithms and complexity. Management Science, 26(7):669-679, 1980.

[FR75] C. O. Fong and M. R. Rao. Capacity expansion with two producing regions and
concave costs. Management Science, 22(3):331-339, 1975.

[FT89] A. Federgruen and M. Tzur. A simple forward algorithm to solve general dynamic lot
sizing models with n periods in O(n log n) or O(n) time. Working paper. Graduate
School of Business, Columbia University, New York, NY, 1989.

[FT90] A. Federgruen and M. Tzur. The dynamic lot sizing model with backlogging: A sim-
ple O(n log n) algorithm. Working paper. Graduate School of Business, Columbia
University, New York, NY, 1990.

[GG64] P. C. Gilmore and R. E. Gomory. Sequencing a one state-variable machine: A
solvable case of the traveling salesman problem. Operations Research, 12(5):655-
679, 1964.

[GH87] L. J. Guibas and J. Hershberger. Optimal shortest path queries in a simple polygon.
In Proceedings of the 3rd Annual ACM Symposium on Computational Geometry,
pages 50-63, 1987.

[Gi179] P. D. Gilbert. New results on planar triangulations. Technical report, Coordinated
Science Laboratory, University of Illinois, 1979.

[GLS85] P. C. Gilmore, E. L. Lawler, and D. B. Shmoys. Well-solved special cases. In E. L.
Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, editors, The
Traveling Salesman Problem, pages 87-143. John Wiley & Sons, Inc., New York,
NY, 1985.

[GO85] S. C. Graves and J. B. Orlin. A minimum concave-cost dynamic network flow
problem with an application to lot-sizing. Networks, 15(1):59-71, 1985.

[GP90] Z. Galil and K. Park. A linear-time algorithm for concave one-dimensional dynamic
programming. Information Processing Letters, 33(6):309-311, 1990.

[Gra82] S. C. Nrttves. Using Lagrangian techniques to solve hierarchical production planning
problems. Manage-ent Science, 28(3):260-275, 1982.

[Har15] F. W. Harris. What quantity to make at once. In Operation and Costs: Planning and
Filling Orders, Cost-KIeeping Methods, Controlling Your Operations, Standardizing
Material and Labor Costs, volume 5 of The Library of Factory Management, pages
47-52. A. W. Shaw Co., Chicago, IL, 1915.

[HC84] A. C. Hax and D. Candea. Production and Inventory Management. Prentice-Hall,
Inc., Englewood Cliffs, NJ, 1984.

214



BIBLIOGRAPHY

[He91] X. He. An efficient parallel algorithm for finding minimum weight matching for
points on a convex polygon. Information Processing Letters, 37(2):111-116, 1991.

[HL87] D. S. Hirschberg and L. L. Larmore. The least weight subsequence problem. SIAM
Journal on Computing, 16(4):628-638, 1987.

[Hof63] A. J. Hoffman. On simple linear programming problems. In V. Klee, editor, Con-
vezity: Proceedings of the Seventh Symposium in Pure Mathematics of the AMS,
volume 7 of Proceedings of Symposia in Pure Mathematics, pages 317-327. American
Mathematical Society, Providence, RI, 1963.

[HS82] T. C. Hu and M. T. Shing. Computation of matrix chain products, part I. SIAM
Journal on Computing, 11(2):362-373, 1982.

[HS84] T. C. Hu and M. T. Shing. Computation of matrix chain products, part II. SIAM
Journal on Computing, 13(2):228-251, 1984.

[Huf52] D. A. Huffman. A method for the construction of minimum-redundancy codes.
Proceedings of the IRE, 40(9):1098-1101, 1952.

[JM74] L. A. Johnson and D. C. Montgomery. Operations Research in Production Planning,
Scheduling, and Inventory Control. John Wiley & Sons, Inc., New York, NY, 1974.

[KF80] Z. M. Kedem and H. Fuchs. On finding several shortest paths in certain graphs. In
Proceedings of the 18th Annual Allerton Conference on Communication, Control,
and Computing, pages 677-686, 1980.

[KK90] M. M. Klawe and D. J. Kleitman. An almost linear time algorithm for generalized
matrix searching. SIAM Journal on Discrete Mathematics, 3(1):81-97, 1990.

[KL85] V. Klee and M. C. Laskowski. Finding the smallest triangles containing a given
convex polygon. Journal of Algorithms, 6(3):359-375, 1985.

[Kla89] M. M. Klawe. A simple linear time algorithm for concave one-dimensional dynamic
programming. Technical Report 89-16, University of British Columbia, Vancouver,
1989.

[Kli80] G. T. Klinseck. Minimal triangulations of polygonal domains. Annals of Discrete
Mathematics, 9:121-123, 1980.

[Knu71] D. E. Knuth. Optimum binary search trees. Acta Informatica, 1:14-25, 1971.

[Knu73] D. E. Knuth. The Art of Computer Programming, Vol. 3: Sorting and Searching.
Addison-Wesley Publishing Co., Reading, MA, 1973.

[KP91] D. Kravets and J. K. Park. Selection and sorting in totally monotone arrays. Math-
ematical Systems Theory, 1991. To appear. An earlier version of this paper appears
in Proceedings of the st Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 494-502, 1990.

215



BIBLIOGRAPHY

[Kru83] C. P. Kruskal. Searching, merging, and sorting. IEEE Transactions on Computers,
C-32(10):942-946, 1983.

[Kuh55] H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research
Logistics Quarterly, 2:83-97, 1955.

[Lar87] L. L. Larmore. A subquadratic algorithm for constructing approximately optimal
binary search trees. Journal of Algorithms, 8(4):579-591, 1987.

[Lar90] L. L. Larmore. An optimal algorithm with unknown time complexity for convex
matrix searching. Information Processing Letters, 36(3):147-151, 1990.

[LD86] C.-Y. Lee and E. V. Denardo. Rolling planning horizons: Error bounds for the
dynamic lot size model. Mathematics of Operations Research, 11(3):423-432, 1986.

[LL87] S.-B. Lee and H. Luss. Multifacility-type capacity expansion planning: Algorithms
and complexities. Operations Research, 35(2):249-253, 1987.

[LM75] R. A. Lundin and T. E. Morton. Planning horizons for the dynamic lot size model.
Operations Research, 23(4):711-734, 1975.

[Lov73] S. F. Love. Bounded production and inventory models with piecewise concave costs.
Management Science, 20(3):313-318, 1973.

[Lov83] L. Lovasz. Submodular functions and convexity. In A. Bachem, M. Grotschel, and
B. Korte, editors, Mathematical Programming: The State of the Art, Bonn 1982,
pages 235-257. Springer-Verlag, New York, NY, 1983.

[LP78] D.-T. Lee and F. P. Preparata. The all nearest-neighbor problem for convex poly-
gons. Information Processing Letters, 7(4):189-192, 1978.

[LS91] L. L. Larmore and B. Schieber. On-line dynamic programming with applications
to the prediction of RNA secondary structure. Journal of Algorithms, 1991. To
appear. An earlier version of this paper appears in Proceedings of the Ist Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 503-512, 1990.

[Lus79] H. Luss. A capacity expansion model for two facility types. Naval Research Logistics
Quarterly, 26(2):291-303, 1979.

[Lus82] H. Luss. Operations research and capacity expansion problems: A survey. Opera-
tions Research, 30(5):907-947, 1982.

[Lus86] H. Luss. A heuristic for capacity expansion planning with multiple facility types.
Naval Research Logistics Quarterly, 33(4):685-701, 1986.

[Man58] A. S. Manne. Programming of economic lot sizes. Management Science, 4(2):115-
135, 1958.

[Man67] A. S. Manne, editor. Investments for Capacity Epansion; Size, Location, and
Time-Phasing. MIT Press, Cambridge, MA, 1967.

216



BIBLIOGRAPHY

[Mat88] T. R. Mathies. A fast parallel algorithm to determine edit distance. Technical
Report CMU-CS-88-130, Carnegie-Mellon University, April 1988.

[Mon81] G. Monge. Deblai et remblai. M6moires de l'Acadmie des Sciences, 1781.

[Mor78] T. E. Morton. An improved algorithm for the stationary cost dynamic lot size model
with backlogging. Management Science, 24(8):869-873, 1978.

[MPSS91] Y. Mansour, J. K. Park, B. Schieber, and S. Sen. Improved selection in totally
monotone arrays. Submitted to the Eleventh Conference on Foundations of Software
Technology and Theoretical Computer Science, New Delhi, India, May 1991.

[MS91] 0. Marcotte and S. Suri. Fast matching algorithms for points on a polygon. SIAM
Journal on Computing, 1991. To appear. An earlier version of this paper appears
in Proceedings of the 30th Annual IEEE Symposium on Foundations of Computer
Science, pages 60-65, 1989.

[MV67] A. S. Manne and A. F. Veinott, Jr. Optimal plant size with arbitrary increasing time
paths of demand. In A. S. Manne, editor, Investmentsfor Capacity Expansion; Size,
Location, and Time-Phasing, pages 178-190. MIT Press, Cambridge, MA, 1967.

[OAMB86] J. O'Rourke, A. Aggarwal, S. Maddila, and M. Baldwin. An optimal algorithm for
finding minimal enclosing triangles. Journal of Algorithms, 7(2):258-268, 1986.

[Or188] J. B. Orlin. A faster strongly polynomial minimum cost flow algorithm. In Proceed-
ings of the 20th Annual A CM Symposium on Theory of Computing, pages 377-387,
1988.

[Par91] J. K. Park. A special case of the n-vertex traveling-salesman problem that can be
solved in O(n) time. Submitted to Information Processing Letters, April 1991.

[SD81] A. Siegel and D. Dolev. The separation for general single-layer wiring barriers.
In H. T. Kung, B. Sproull, and G. Steele, editors, Proceedings of the CMU Con-
ference on VLSI Systems and Computations, pages 143-152, Rockville, MD, 1981.
Computer Science Press, Inc.

[SD88] A. Siegel and D. Dolev. Some geometry for general river routing. SIAM Journal on
Computing, 17(3):583-605, 1988.

[SD90] Rt Shamir and B. Dietrich. Characterization and algorithms for greedily solvable
transportation problems. In Proceedings of the 1st Annual A CM-SIAM Symposium
on Discrete Algorithms, pages 358-366, 1990.

[Sha78] M. I. Shamos. Computational Geometry. PhD thesis, Department of Computer
Science, Yale University, New Haven, CT, 1978.

[Sur87] S. Suri. The all-geodesic-furthest neighbors problem for simple polygons. In Pro-
ceedings of the 3rd Annual ACCM Symposium on Computational Geometry, pages
64-75, 1987.

217



BIBLIOGRAPHY

[SV81] Y. Shiloach and V. Vishkin. Finding the maximum, merging, and sorting in a
parallel computation model. Journal of Algorithms, 2(1):88-102, 1981.

[Vai88] P. M. Vaidya. Geometry helps in matching. In Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, pages 422-425, 1988.

[Vei63] A. F. Veinott, Jr. Unpublished class notes. Program in Operations Research, Stan-
ford University, Stanford, CA, 1963.

[Vei69] A. F. Veinott, Jr. Minimum concave-cost solution of Leontief substitution models
of multi-facility inventory systems. Operations Research, 17(2):262-291, 1969.

[Wag60 H. M. Wagner. A postscript to "Dynamic problems in the theory of the firm". Naval
Research Logistics Quarterly, 7(1):7-12, 1960.

[Wag75] H. M. Wagner. Principles of Operations Research, with Applications to Managerial
Decisions. Prentice-Hall, Inc., Englewood Cliffs, NJ, second edition, 1975.

[Wat78] M. S. Waterman. Secondary structure of single-stranded nucleic acids. In G.-C.
Rota, editor, Studies in Foundations and Combinatorics, volume 1 of Advances in
Mathematics: Supplementary Studies, pages 167-212. Academic Press, Inc., New
York, NY, 1978.

[WF74] R. A. Wagner and M. J. Fischer. The string-to-string correction problem. Journal
of the ACM, 21(1):168-173, 1974.

[Wi188] R. Wilber. The concave least-weight subsequence problem revisited. Journal of
Algorithms, 9(3):418-425, 1988.

[WS86] M. S. Waterman and T. F. Smith. Rapid dynamic programming algorithms for
RNA secondary structure. Advances in Applied Mathematics, 7:455-464, 1986.

[WvHK89] A. Wagelmans, S. van Hoesel, and A. Kolen. Economic lot-sizing: An O(nlog n)-
algorithm that runs in linear time in the Wagner-Whitin case. Report 8952/A,
Econometric Institute, Erasmus University Rotterdam, Rotterdam, The Nether-
lands, 1989.

[WW58] H. M. Wagner and T. M. Whitin. Dynamic version of the economic lot size model.
Management Science, 5(1):89-96, 1958.

[Yao80] F. F. Yao. Efficient dynamic programming using quadrangle inequalities. In Proceed-
ings of the 12th Annual ACM Symposium on Theory of Computing, pages 429-435,
1980.

[Yao82] F. F. Yao. Speed-up in dynamic programming. SIAM Journal on Algebraic and
Discrete Methods, 3(4):532-540, 1982.

[YL79] C.-C. Yang and D.-T. Lee. A note on the all nearest-neighbor problem for convex
polygons. Information Processing Letters, 8(4):193-194, 1979.

218



BIBLIOGRAPHY 219

J[Zab64] E. Zabel. Some generalizations of an inventory planning horizon theorem. Manage-
ment Science, 10(3):465-471, 1964.

[Zan66] W. I. Zangwill. A deterministic multi-period production scheduling model with
backlogging. Management Science, 13(1):105-119, 1966.

[Zan68] W. I. Zangwill. Minimum concave cost flows in certain networks. Management
Science, 14(7):429-450, 1968.

[Zan69] W. I. Zangwill. A backlogging model and a multiechelotl model of a dynamic eco-
nomic lot size production system - a network approach. Management Science,
15(9):506-527, 1969.



I


