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ABSTRACT

Two systems that measure the white noise spectrum of voltage reference
diodes, in the frequency range from 1 kHz to 100 kHz, were analyzed to
determine their accuracy. Limitations to the accuracy of each of
these system were identified. Recommendations were make for improving
the accuracy of these existing systems.

The results of the analysis on these systems show that the system,
which used the HP 3562A Dynamic Signal Analyzer to measure noise, had
an accuracy of one-half percent. The other system, which used the
Fluke 8506A Thermal RMS Multimeter to measure noise, was expected to
have the same, if not slightly better, accuracy.
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Section 1 INTRODUCTION

1.1 Introduction

This thesis is being conducted as part of a research project in

which noise is being used to study the physics of voltage reference

diodes. The noise the diode produces reflects the ratio of tunneling

to avalanche current within the diode. The tunneling and avalanche

mechanisms of these diodes have neutron radiation coefficients of

opposite sign. The goal of the project is to see if it is possible to

correlate the noise characteristics of the diode with its radiation

characteristics.

If correlation between the noise and radiation characteristics

exist, it may be possible to use noise measurements to screen produc-

tion diodes. Assume a manufacturer has a lot of radiation-hard diodes

and wishes to screen these devices to sell only those which meet

certain specifications. The manufacturer makes a measurement of the

noise of all the diodes in the lot. The diodes will be grouped by the

amount of noise they display. Samples from each of the groups will be

radiated and their radiation characteristics will be determined. The

manufacturer will check to see if diodes from the same group exhibit

the same radiation characteristics. If this is true, the manufacturer

can assume that the other diodes from the group, which were not

radiated, will display the same radiation characteristics. Diodes

from different groups are not expected to have similar radiation char-

acteristics. The manufacturer will sell only diodes from groups that

meet the specifications.
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To be able to group diodes using their noise characteristics and

determine if there is correlation between noise and radiation charac-

teristics, it will be necessary to make accurate noise measurements.

At this point, it is uncertain how accurate the noise measurements

must be; however, one opinion suggests the measurements must be highly

accurate. In any case, it will be necessary to determine the accuracy

of our noise measurements.

Measuring noise to a high degree of accuracy is quite difficult.

The most accurate noise measurements to date were performed by W.

Lukaszek as part of his doctoral thesis at the University of Florida

in 1974.[1] His measurements, which we consider state-of-the-art, had

two percent accuracy in the sense that he could measure noise from

resistors and determine their accuracy to two percent based on the

noise measurements.

This thesis will look at the problems of obtaining accurate

noise measurements, particularly with the measurement systems built

for this project. Two different noise measurement systems will be

evaluated. The limitations of noise measurements will be explored.

Various methods of noise measurement will be studied. Thus, the goal

of the thesis is threefold: to determine the accuracy of two systems;

to identify which system makes the most accurate measurements; and to

recommend changes to the existing systems which would improve the

accuracy of their measurements.
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1.2 Organization of Thesis

Section 2 presents the necessary background material for this

thesis. There are five major topics covered in this section. First,

more detail about the tunneling and avalanche mechanisms of diodes is

presented. Second, the limitations of noise measurements along with

ways to overcome these limitations are presented. Third, several

noise measurement methods are discussed. Fourth, the difference

between conventional and state-of-the-art noise measurements is

explained. Fifth, a more detailed description of the state-of-the-art

noise measurements conducted by Weislaw Lukaszek [1] is presented.

In section 3, descriptions of the two noise measurement systems,

to be studied in this thesis, can be found. The description of each

system begins with a generalized description of the block diagram of

the system and proceeds to more detailed descriptions of the circuit

portion of the system, the commercial equipment used in the system and

the measurement procedure used with the system. Included in these

descriptions are explanations of why a particular type of circuit or

piece of equipment is used in the system. any of these explanations

reflect low-noise design considerations and techniques. In the case

of commercial equipment, pertinent specifications as well as brief

explanations of how the device is used are given.

In section 4, the accuracy of the two measurement systems is

determined. The accuracy of the first system is discussed separately

from that of the second system. The discussion of the accuracy of

each system begins with analysis of various aspects of the measurement

12.



system that could affect the measurement accuracy. These aspects

include design, measurement and calibration procedures, averaging and

sampling time. Through these analyses, the limitations to measurement

accuracy for the system are identified. A number that describes the

accuracy of the system is then determined. Finally, recommendations

for improving the accuracy of the system are presented.

In section 5, a generalized discussion of accuracy of noise

measurements is presented. Common limitations to accurate noise

measurements and recommendations for overcoming some of these limita-

tions are briefly discussed. The section concludes by making an

estimate of how accurately an arbitrary noise signal can be measured.

Section 6 summarizes the important conclusions reached about the

accuracy of noise measurements made with each system and in general.

Recommendations for further study of the accuracy of noise as well as

suggestions for other noise measurement systems are included in this

section.

A number of appendices is included to describe certain topics in

more detail and provide other necessary information. Appendix A. con-

tains a glossary of noise related terms used in the thesis. Appendix

B. presents the noise models for the most common circuit components

and describes how they are used. Computer programs used with the two

measurement systems are included in Appendix C. Appendix D. contains

the specifications for the Hewlett-Packard 3562A Dynamic Signal Ana-

lyzer and the Fluke 8506A Thermal True RMS Multimeter. Appendix E.

contains the specifications for selected components used in the

13.



circuit portion of both systems. A step-by-step calculation of the

noise produced by portions of the circuits used in both systems

appears in Appendix F.
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Section 2 BACKGROUND

2.1 Tunneling and Avalanche Breakdown -

A diode or p-n unction is said to break down and conduct large

currents when a sufficiently high field is applied to the Junction.

If a diode is reverse-biased there are two different mechanisms of

breakdown: tunneling and avalanching.

Tunneling breakdown, also referred to as Zener breakdown, since

it is the type of breakdown that occurs in Zener diodes, takes its

name from the quantum mechanical tunneling process that is occurring

within the diode. When tunneling occurs, the covalent bonds between

neighboring atoms in the depletion region are broken, generating holes

and electrons. Valence band electrons "tunnels through the energy gap

as they move from the valence to conduction band. Electron-hole pairs

are produced by this process and increase the reverse current of the

diode.

The second type of reverse breakdown is avalanche breakdown.

Avalanche breakdown occurs when the field applied to the junction

speed up the mobile carriers in the space charge layer, so that colli-

sions between the carriers and the lattice of the semiconductor occur.

These collisions knock electrons from the covalent bonds free, produc-

ing holes and electrons. These new carriers increase the reverse

* References [4] through 71 were used in writing this section.
Consult these references for more detailed information about tunneling
and avalanche breakdown.
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current of the diode. The new carriers may also produce more free

electrons and holes through collisions of their own. With each new

carrier knocking out more carriers, the reverse current of the diode

is increased or multiplied and can become quite large. Because of

this multiplication, avalanche breakdown is sometimes called avalanche

multiplication.

When referring to reverse breakdown in diodes, a reverse break-

down voltage is often mentioned. This is the voltage at which break-

down begins to occur in the diode. The type of mechanism that causes

the breakdown of the diode can be predicted by the range into which

the reverse breakdown voltage falls. For silicon diodes breaking down

at reverse biases less than 5 volts, the breakdown mechanisms is tun-

neling. If the diodes breaks down at voltages between 5 and 7 volts,

the breakdown mechanism is a combination of tunneling and avalanching.

Finally, if the diode breaks down at a voltage of greater than 7

volts, the breakdown mechanism is avalanching. Semiconductors, other

than silicon may have different voltages for the boundaries of these

ranges.

In some instances it is desirable to know the amount of current

produced by tunneling breakdown and the amount produced by avalanche

breakdown. One instance where knowing this ratio may be useful is in

the processing of radiation-hard diodes. Tunneling breakdown and

avalanche breakdown do have some distinguishing characteristics.

These mechanisms have temperature and radiation coefficients of oppo-

site signs. Tunneling has a negative temperature coefficient, while

16.



avalanching has a positive temperature coefficient. The noise ratio

(See Appendix A for definition) of the diode may be used to dis-

tinguish between tunneling and avalanche currents.

2.2 Limitations of Noise Measurements

Measuring noise is different from and often more difficult than

measuring other types of electric signals. There are several limita-

tions or problems that one faces in measuring noise that one does not

encounter in other types of measurements. In most cases, certain

precautions and/or measurement schemes can be used to overcome or to

minimize these problems. This section will briefly describe the

limitations of noise measurements and propose some ways in which these

problems may be surmounted.

The nature and characteristics of noise are responsible for

several of the limitations in measuring it. First one must be sure

that the noise being measured does not exhibit 1/f noise or low fre-

quency noise. 1/f noise has a spectral density that increases without

limit as the frequency decreases and is undesirable to measure because

of the inaccuracies it contributes to the average value of the noise.

To avoid the problem of 1/f noise, the noise must be measured in a

region in which its spectrum is flat. This means that the low fre-

quency components of the signal to be measured have to be eliminated

through some type of bandlimiting or filtering. Second, the amplitude

of noise is small, usually in the nanovolt range for a noise voltage.

So the signal must be amplified to be detected by a meter. Third, the

17.



white or broadband nature of noise requires that the signal be band-

limited (filtered) in some-stage of the measurement system as well as

averaged over a long period of time to insure accurate measurement of

the noise signal.

Bandlimiting is a necessary requirement for a noise measurement

system because it eliminates the 1/f noise and more importantly com-

pensates for the white nature of noise. The white noise signal is

spread out in the frequency domain, with energy beyond frequencies

where noise amplifiers perform well. One has to chose a frequency

domain, so that measurements have acceptably low sensitivity to poorly

controlled parameters such as stray capacitance and operational

amplifier gain-bandwidth. The way to insure that measurements are

made only over a certain range of frequencies is through bandlimiting.

Bandlimiting is achieved by filtering the signal to be measured so

that only the portion of the signal within the chosen frequency range

reaches the system output. Problems with bandlimiting arise from the

filters that are necessary to achieve it. The filters may add noise

to the system, so care must be taken when building them to limit the

amount of noise they contribute to the system. Another problem with

filters is their stability. The frequency range that they are band-

limiting or the passband gain can shift slightly due to drift in the

components used to make them.

Other limitations encountered in measuring noise are a result of

noisy measurement systems. Both custom built circuits as well as com-

mercial equipment, used in measurement system produce noise of their

own. If this noise is large as compared to the signal being measured,

inaccurate measurements could result.

18.



As noted, electronic components, even if they are low-noise,

exhibit some noise. The noise they produce will contribute to the

overall noise of the measurement system and to the noise being

measured at the output of the system. In any measurement system one

must understand what one is measuring. One must verify that the final

noise estimate is limited to only the noise of the device that you

wish to measure. So in some manner, the noise of the measurement

system must be subtracted from the noise measured at the output of the

system. This should leave ust the noise of the device being tested,

the quantity that is desired.

Along the same line as component noise is commercial equipment

noise. Since commercial equipment is made from electronic components,

it too will be a noise source. Usually the noise of meters is not a

problem, because they are designed to insure the noise of the meter

does not cause inaccuracies in measurements. Other commercial equip-

ment, like a preamp could significantly add to the noise of the

system. Most equipment comes with noise specifications so one has a

rough estimate of the extra noise contributed by the equipment.

However, when one needs to make accurate noise measurements, like we

wish to do, one must measure the noise of equipment exactly. This

will insure that the correct amount of noise is subtracted from the

total noise.

The last limitation to be discussed, is calibration. A calibra-

tion procedure is often used with measurement systems. In the case

of a noise measurement system, a calibration process could be used to

estimate the system noise. The noise of a DUT may be determined by the

19.



difference in output when a DUT is placed in the system and when a

calibration signal is applied to the system. Problems with calibra-

tion arise from several sources. First, one must insure the accuracy

and stability of the calibration. Inaccuracy or drift in such a

signal degrades the measurements. The accuracy and stability of a

signal can be verified by observing such a signal over time. A second

problem with calibration is consistency with the calibration process.

One must take care that the exact same steps in the exact same order

are taken for each calibration. If such a procedure is not followed

measurements could be inaccurate.

2.3 Methods of Measuring Noise

There are several methods for measuring noise. Most of these

methods were developed to measure the signal-to-noise ratio of a

system. Knowing the signal-to-noise ratio (SNR) is desirable, espe-

cially in communication systems, since it tells how much the signal

being transmitted through the system is degraded by the noise. Even

if one wants to measure a noise parameter other than SNR, these

methods can still be useful, since all the methods measure either the

equivalent input or output noise of the system. These two parameters

are related by the gain of the system. Other noise parameters, like

noise spectral density and noise ratio may be derived from the output

noise of the system. This section will describe three noise measure-

ment methods: the sine wave; the noise generator; and the correla-

tion. Although bandlimiting is not mentioned in any of these methods,

20.



it will be necessary for making noise measurements. The noise

quantities measured by these methods are n units of Volts. If spec-

tral density is desired, divide the measured quantity by the square-

root of the noise equivalent bandwidth.

2.3.1 Sine Wave Method of Noise Measurement

To illustrate how the sine wave method of noise measurement

works, the procedure for measuring the equivalent input noise, as

described by Motchenbacher and Fitchen [2], will be used. To

determine the input noise with the sine wave method, the output noise

and the gain of the system must be measured. The exact procedure for

finding the input noise is as follows.

1. Measure the transfer voltage gain Kt.

2. Measure the total output ncise Eno.

3. Calculate the equivalent input noise Eni by dividing the

output

noise by the transfer voltage gain. [2]

Figure 2.3.1 shows the block diagram for measuring the input

noise. Vs represents the input sine wave signal or sine wave genera-

tor. Eni is the equivalent input noise, which is being measured. Zs

is the source impedance. The system is represented by the amplifier

symbol. The equivalent output noise, Eno, and the output sine wave

signal, V are measured at the output terminal of the system.

21.



z 

Source: [2.274]

Figure 2.3.1 Sine Wave Method of Noise Measurement

The gain of the system, Kt, is equal to

Kt - Vo (2.3.1)
Vi

The gain is measured by inserting the sine wave voltage generator, V,

in series with the source impedance, Z, at the input of the system.

The resulting sine wave is measured at the output terminal. The gain

is found using equation (2.3.1).

The output noise of the system, Eno is measured by removing the

signal generator, Vs, and replacing it with a shorting plug. The

source impedance, Zs, is not removed. The noise at the output of the

system is measured with an rms voltmeter. Finally, the equivalent

input noise is found using the following equation

Eni Eno (2.3.2)
Kt

The advantage of the sine wave method of measuring noise is that

it uses readily available equipment, just a sine wave generator and a

rms voltage meter. It is useful, for noise measurements at various

22.



frequencies, since the measurement procedure remains the same at all

frequencies. The gain of the system at different frequencies is

obtained by applying sine waves of different frequencies to the

system. This method can be used for low frequency noise measurements.

The method may be useful for determining the noise and especially the

gain of our noise measurement system.

2.3.2 Noise Generator Method of Noise Measurement

Measurement of the equivalent input noise of a system, will also

be used to demonstrate how the noise generator method of noise

measurement works. Once again Motchenbacher and Fitchen [2] will be

consulted for their description of this measurement method. The input

noise measurement procedure is as follows:

1. Measure the total output noise.

2. Insert a calibrated noise signal at the input to increase

the

output noise voltage by 3 dB.

3. The noise generator signal is now equal to amplifier equiva-

lent

input noise. [2]

Figure 2.3.2 shows the block diagram for the noise generator

method. Es, a calibrated noise source is placed in series with a

sensor resistor, Rs. Eni represents the equivalent input noise of the

system, the quantity that will be found using this procedure. Zi is

the input impedance of the system or amplifier. Eno is the output

23.



noise of the amplifier and the noise of the generator. An alternative

setup for this method is to replace the calibrated noise generator Ens

with a high-impedance noise current generator in parallel with the

source impedance Rs. Then the equivalent input current noise Ini may

E ni
DI

Ens

Source. 2.2881

Figure 2.3.2 Noise Generator Method of Noise Measurement
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be calculated.

In the noise generator method, the output of the system is

measured twice, one time with the noise generator in place and the

other with the generator disconnected. The first step in the measure-

ment is to measure the noise at the output of the system with the

noise generator disconnected. Then attach the generator to the

system. Adjust the output of the generator until the output noise of

the system is twice the value it was before, or in other word, 3 dB

higher than before. Now measure the output of the noise generator.

This value is equal to the equivalent input noise of the system.

The advantage of the noise generator method is the ease of the

measurement, just attaching a noise generator to the system and

adjusting its value until the output is doubled. Another advantage is

that the method is inexpensive, because a low cost diode could be used

as the noise generator.

There are disadvantages to this method as well. It is not well

suited to low frequency measurements because long measurement times

are required. Also pickup of additional noise at the input terminals

is more likely to occur in this method, because of the system con-

figuration.

2.3.3 Correlation Method of Noise Measurement

The correlation method of noise measurement is especially useful

for measuring very small noise signals. Unlike the other two methods

of measurement, this method does not measure or calculate the equiva-

25.



lent input noise or gain of a system. Instead it measures a noise

signal. It could be used to measure the output noise of a system, but

other methods would have to be employed to find the input noise and

gain of the system.

The best description of the correlation method is given by A.

van der Ziel [3]. Figure 2.3.3 shows the measurement setup for this

method and was taken from A. van der Ziel's book, Noise in Solid State

Devices and Circuits. The first step in the measurement is to feed

the signal to be measured, Vn, through parallel amplifiers and

filters. The amplifiers are represented by A's in the figure and the

filters by F's. The resulting signals, V1 and V2 are both amplified

and filtered. V1 and V2 are then put into a crosscorrelator. (See

Figure 2.3.3.) The crosscorrelator multiplies the two signals

together and its output is the product of the signals, V1V2. This

signal is then averaged over a certain period of time by the averaging

circuit. (See Figure 2.3.3.) The output of the averager is V1V 2.

When the signal is averaged, the noise of the two amplifiers dis-

appear, since they are uncorrelated. The signal that remains, V1V2,

r1T I -

. I M 

I i{~~~~~~[ A [7 J-~V 2

(I:)V n

0

Correlator
V V 2

Averaging
VI V2

Source: 13:53]

Figure 2.3.3 Correlation Method for Noise Measurements.
A, Amplifier F, Filter 2626.
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that remains, V1V2 , is equal to the signal being measured.

There are several advantages of the correlation method. First,

the method allows measurements of very small noise signals. Second,

the measurement system for this method is more stable against drift,

because the system noise is eliminated from the output noise. For our

needs the method may be useful, if the signal we are measuring is

small. The method may also be useful, if stability of our measurement

system limits the accuracy of our measurements.

2.4 Typical versus State-of-the-Art Noise Measurements

Due to the limited applications, precision noise measurement is

not a common area of study. One need for noise measurements is the

classification of semiconductor devices. Semiconductor manufacturers

often produce low noise components. Applications for these components

include systems with low level inputs, audio systems and noise

measurement systems. When a manufacturer says a component is low

noise, they usually mean that the component is designed to have low

noise and that the product sold has a noise level around a value

specified on the data sheet. The manufacturers need to perform noise

measurements to verify the noise level predicted by design, to

determine the average noise level for the component and to screen out

any component that does not have the specified noise level.

The noise measurements that manufacturers conduct on their com-

ponents is what I refer to in this paper as a typical noise measure-

ment. Some manufacturers use special equipment designed to measure

27.



noise to perform their measurements. One such device is the Quan-Tech

Model 5173 Semiconductor Noise Analyzer. With all available attach-

ments, this device is able to measure noise in a variety of semi-

conductor devices especially transistors (FETs and bipolars), diodes

and operational amplifiers. By inserting a device into the

appropriate fixture, a user receives the noise level of the device at

five frequency regions (10 Hz, 100 Hz, 1 kHz, 10 kHz and 100 kHz).

This particular device is considered state-of-the-art for production

screening, but its accuracy is not specified. Resolution is to 3 1/2

digits per reading. The accuracy or more precisely the resolution of

the Quan-Tech is not good enough to detect slight differences in the

noise levels of similar semiconductors. The ability to detect such a

change is necessary for our project.

State-of-the-art noise measurements were conducted by Wieslaw A.

Lukaszek in 1974, for his PhD. thesis from the University of Florida

[1]. He used noise measurements to investigate the transition from

tunneling to avalanche breakdown in silicon p-n junctions. Lukaszek

built his own noise measurement system by combining circuitry he built

with commercial equipment. We consider his measurements and measure-

ment system state-of-the-art because we know of no diode noise

measurements with better accuracy. He characterized the accuracy of

his system using resistor noise measurements. The resistance values

predicted from noise measurements were within 2 of values obtained

from precision bridge measurements.
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2.5 Lukaszek's Noise Measurements

For his doctoral research at the University of Florida, Weislaw

Lukaszek investigated the transition from tunneling to avalanching in

silicon p-n junctions. [1] To study this transition he measured the

electric noise produced by the diode (p-n Junction). The noise level

of the diode reflects the ratio of tunneling to avalanche current

within the diode. Lukaszek used V-I measurements to pinpoint the

transition between the two types of breakdown as well as to calculate

the multiplication factor for avalanche breakdown. The noise easure-

ments he made are the most accurate noise measurements to date.

For our project, we are interested in Lukaszek's noise measure-

ments more than his experimental conclusions for several reasons.

First, we are interested in knowing the ratio of tunneling to avalan-

che current within the diode. Second, the 2 accuracy of his measure-

ments is interesting, because we need to make highly accurate noise

measurements. These measurements may have to be better than 2X

accurate, but at least by following some of Lukaszek's ideas for

measurement we should be able to achieve the 2 degree of accuracy.

Improvements in technology in the fifteen years between the measure-

ments may make our measurements more than 2 accurate. Third, since

Lukaszek's measurements are also conducted on diodes his work can be

used as a reference to see if our system is working as it should.

In this section, Lukaszek's noise measurement system will be

described. His measurement procedure will be outlined. In addition,

noise ratio and how it can be used to distinguish tunneling from

avalanche breakdown will be discussed.
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2.5.1 Lukaszek's Noise Measurement System

The system that Lukaszek used to make his noise measurements may

be seen in Figure 2.5.1. The General-Radio 1381 Random Noise Genera-

tor along with the Hewlett-Packard 350-D attenuator is used to provide

a white noise calibrated signal to the system. The 600 n resistor,

located after the attenuator, is used to provide an impedance match

between the attenuator and te rest of the system. The capacitor and

resistor in series provide DC and impedance isolation from the rest of

the circuit. This isolation is necessary to maintain a constant

impedance at the attenuator output terminals regardless of the diode

bias network and to convert the noise calibration network into a high

impedance current-like source that will not load the diode. The diode

bias network is a variable current source. Low noise wire wound

resistors, Rb, may be switched in and out of the circuit to provide a

range of bias currents to the diode. At the output of the diode is a

specially designed preamplifier circuit that utilizes a low noise

JFET. After this preamplifier is a selectable gain amplifier which is

used to amplify the noise signal so it may be detected by the General-

Radio 1925-1926 Real Time Spectrum Analyzer. This instrument consists

of 45 third-octave filters, ranging in center frequencies from 3.15 Hz

to 8 kHz. The output of each filter is sampled for up to 32 seconds

and the rms voltage of each filter, in units of dB, is computed and

displayed on the General-Radio 1926 or printed out on the MDS 800 tape

printer.
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Figure 2 5 1 Lukaszek's Noise Measurement System

2.5.2 Measurement Procedure

Lukaszek used the following procedure to make his noise measure-

ments. First, he removed the noise calibration signal provided by the

General-Radio 1381 and the attenuator from the system by disconnecting

the attenuator. He placed a 600 resistor in parallel with the 600 n

resistor already in the circuit. The diode was biased at a specified

reverse current. Then a series of five, 32 second, measurements of

the diode noise were made. The next step was to take the second 600 

resistor out and reattach the attenuator to the system. The attenua-

tion level was adjusted so that the output noise was 20 dB higher than

the diode noise output alone. Another set of five, 32 second,

measurements were made. From his noise model for his system and the

measurement he made, Lukaszek was able to determine the noise current

spectral density, Sid, for the diode.
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Lukaszek verified the accuracy of his system by measuring

resistors in place of diodes. He followed the same procedure as out-

lined above. Using diodes in the range from 200 n to 2 M he was able

to predict resistance values from the noise data, that agreed to

better than 2 with values obtained by precision bridge measurements.

2.5.3 Noise Ratio

Lukaszek calculated the noise ratio (See Appendix A for defini-

tion) for each diode from the noise and reverse current data he

measured. The noise ratio indicates whether the breakdown of the p-n

junction is caused by tunneling or avalanching. A single step tunnel-

ing process has a noise ratio of exactly unity. Multiple step tunnel-

ing processes have a noise ratio of less than unity. Noise ratios

larger than unity indicate that there is some avalanche breakdown. As

one can see from Lukaszek's thesis, noise ratio can be used as an

indicator of the transition from tunneling to avalanche breakdown

within diodes.
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Section 3 DESCRIPTION OF THE NOISE MEASUREMENT SYSTEMS

3.1 The First Measurement System

3.1.1 Block Diagram

The block diagram for the first noise measurement system may be

seen in Figure 3.1.1.1. The system has two components, a circuit and

Circuit
(Current source, DuT. amplifiers, filter)

Figure 3.1.1.1 Block Diagram for the First Noise Measurement System

the Hewlett-Packard 3562A Dynamic Signal Analyzer (HP 3562A). The

system is not as simple as it appears because each component has

several parts and plays several roles in the overall measurement.

More detailed descriptions of the components are contained in the fol-

lowing sections. A brief outline of the system is presented here.
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The circuit portion of the system has three major parts; a

current source, the device under test (DUT), and a noise amplifier.

The current source is variable and is used to bias the DUT. The noise

amplifiers, as their name suggest, amplify the noise signal produced

by the DUT. Amplification is necessary to make the noise signal large

enough so that the noise measuring device (in this system the HP

3562A) may detect the signal.

The Hewlett-Packard 3562A Dynamic Signal Analyzer performs

several tasks within this measurement system. First, it provides

bandlimiting for the system by allowing the user to choose the band-

width of the noise measurement. Second, the HP 3562A is used in the

calibration process for the system. In particular, the HP 3562A sup-

plies a signal to the circuit and makes a measurement of the frequency

response of the circuit. The gain of the circuit may be determined

from this frequency response. Third, the frequency response measure-

ment capability of the HP 3562A is used to determine the incremental

resistance of the DUT. Finally, the HP 3562A is used to measure the

noise signal at the output of the circuit portion of the system.

3.1.2 Circuit Description

The circuit portion of the first system consists of a variable

current source, a calibration input, a socket for the DUT, three noise

amplification stages and a filter. All of these sections are con-

tained in one box. The circuit diagrams for this portion of the
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system may be seen in Figures 3.1.2.1 through 3.1.2.4. Figures

3.1.2.1 through 3.1.2.3 show sections of the circuit, while Figure

3.1.2.4 shows the complete circuit. Each section will be described in

further detail in the following paragraphs.

The bias circuit was designed to have several features. The

circuit has constant power dissipation, independent of bias current.

Bias current is insensitive to the voltage of the DUT. The bias

current needs a temperature controlled reference voltage for the input

in a feedback configuration so it is stable. It is also easy to

filter out high frequency noise from this circuit.

The bias circuit may be seen in Figure 3.1.2.1. A National

Semiconductor LM399 voltage reference provides a constant voltage of 7

Volts to the bias circuit. The purpose of the complex circuitry that

follows the voltage reference is to keep the voltage from the output

of the U2 op amp to the noninverting input of the U3 op amp (From

points A to B on Figure 3.1.2.1) constant. In other words, the

voltage across the bias resistor network is kept constant. Resistor

values within this network range in from 499 Qf to 2 Mn. These

resistors may be switched into the circuit to produce a variety of

bias currents for the DUT. The selected bias current then flows

through a 100 resistor used to measure bias current and into the DUT

itself.

The next two parts of the circuit may be seen in Figure 3.1.2.2.

They are the cal(ibration) input and the DUT socket. The CAL input as

its name implies is the point in the circuit where a calibration

signal is applied. The signal is attenuated and filtered before it
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passes into the amplification stages at the top of the DUT. Since

diodes are the type of devices being measured in this system, the DUT

socket is one that accommodates such a device. The cathode of the DUT

is attached to the 1000 resistor and the anode is attached to ground.

The DUT is reversed biased.

There are three noise amplification stages within the circuit.

When designing a noise amplification stage one must design a low noise

amplifier because you do not want the noise of the amplifier to swamp

the noise signal you are amplifying. To keep the noise of the

amplifier down, one can use low noise operational amplifiers, which

have low input noise voltages and currents. These low noise opera-

tional amplifiers are especially critical in the first amplification

stage where the input signal is very small. In this circuit, the

Linear Technology LT1028 low noise operational amplifier is used in

the first and second amplification stages.

The three amplification stages may be seen in Figure 3.1.2.3.

The input of the first amplification stage is the sum of the noise of

the DUT and any calibration signal. The first stage has a gain of

approximately 101. The second stage also has a gain of approximately

101. The last stage is not only an amplifier, but also a filter. The

gain of this stage is 3.16. The filter is a second order low pass

filter with a cutoff frequency at about 263.6 kHz. The amplified

noise signal passes though a simple high pass filter with a cutoff at

7 Hz. This filter eliminates any DC signal. Then the amplifier

signal goes to the output terminal of the circuit.
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3.1.3 Commercial Equipment

There is only one piece of commercial equipment used in this

measurement system. This is the Hewlett-Packard 3562A (HP 3562A).

This piece of equipment is used to calibrate the system, measure the

gain of the system, and measure the noise of the system. From the

range of functions the HP 3562A performs, it can be seen that this is

a very versatile piece of equipment. In this section, the measurement

procedures for frequency response and power spectrum measurements with

the HP 3562A will be described in detail. Pertinent specification for

the HP 3562A will also be presented.

The HP 3562A is capable of making a frequency response measure-

ment on a system. This measurement, sometimes called a transfer func-

tion, is the ratio of the system's output to input. From this

measurement, the gain and phase shift of the system may be determined.

The basic setup for the frequency response measurement may be

seen in Figure 3.1.3.1. The source output terminal of the HP 3562A is

I - CH 1 OF P3562A

OF, 
H352- 

j
50JRCE OF HP 3562A INPUT OUTPUT CH 2 OF HP3562A

SYSTEM

Figure 3. 1.3.1 Setup for Frequency Response Measurement
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attached to its own channel one and the input of the system. The

output of the system is attached to channel two of the HP 3562A.

The HP 3562A offers four types of measurement modes; linear

resolution, log resolution, swept sine, and time capture. Frequency

response measurements may be made with the first three modes. For our

measurement purposes, we conduct frequency response measurements in

only the linear resolution and swept sine modes.

In the linear resolution mode, time data is sampled until a

data buffer called the 'time record' is filled with a fixed number of

time samples. Once a time record is filled, the fast Fourier trans-

form of the record is computed and the frequency spectrum is dis-

played." [9:9] In this mode each channel has 801 lines of frequency

resolution. The resolution ranges from 125 Hz for a full (100 kHz)

frequency span to 12.8 pHz for the smallest (10.24 mHz) frequency

span.

In the linear resolution frequency response, a signal is applied

by the HP 3562A through its source terminal to the input of the

system. There are five types of source signals to select from;

random noise, burst random noise, periodic chirp, burst chirp, and

fixed sine. The random noise and fixed sine are the most common

selections. The source level may also be selected. The range of

levels depend on the type of signal being applied.
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The averaging capabilities of the HP 3562A may also be used with

this measurement. There are four types of averaging available; stable

(mean), exponential, peak hold, and continuous peak. We use only the

stable (mean) type of averaging. Any number of averages between 1 and

32,767 samples may be selected . The HP 3562A makes a number of

measurements equal to the number of averages selected. It averages

these measurements and displays the average value.

The frequency span of the measurement may also be selected. The

frequency span of the HP 3562A is from 0 Hz to 100 kHz. Various

smaller frequency spans may be selected. If the frequency span of the

system being measured is known, it should be used as the measurement's

frequency span. If the frequency span of the system is unknown, it is

best to use the full 100 kHz span.

Once the HP 3562A completes the frequency response measurement,

it will display the magnitude (gain) versus frequency on the screen.

The scale and units of the display may be changed. The cursors and

special marker capabilities of the HP 3562A may be used to determine

certain values, like the gain at certain frequencies. If the HP 3562A

is attached to a plotter a copy of the screen may be produced.

Frequency response measurements are also made with the swept

sine mode. In this mode, the HP 3562A is reconfigured as a full-

function DC to 100 kHz frequency response analyzer." [9:15] This type

of product is traditionally used in low frequency network analysis.

These products perform the same measurement as a tuned network ana-

lyzer, but instead of using low frequency filters they "perform a time

domain integration of the input signals to mathematically filter
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signals at very low frequencies. Measurement results are usually dis-

played as point-by-point numerical values or on an x-y plotter."

[9:15]

In a swept sine frequency response, the source that is applied

to the system is a sine wave with a fixed amplitude, that the operator

selects, and a varying frequency. The initial frequency of the sine

wave is called the start frequency. The frequency of the wave changes

at a certain rate called te sweep rate. The final frequency is equal

to the start frequency plus the frequency span. The start frequency,

sweep rate and frequency span may all be selected by the operator.

The operator also has to choose between a linear or log sweep. The

difference between the two is that the frequency is either linear or

logarithmic. The frequency response for each frequency within the

span is calculated and displayed on the screen. The frequency

response is drawn on the screen a point at a time.

The swept sine measurement is like the linear resolution method

in several ways. Averaging can be utilized, where in this mode

measurements at a single frequency are averaged and then displayed.

The scale and units of the measurement can be easily changed with a

touch of a button. The cursors and special markers may also be used

with the measured waveform.

The other type of measurement made with the HP 562A is the

power spectrum measurement. This measurement may be make in the

linear resolution and log resolution modes. In our system we only

make the measurement in the linear resolution mode. The power spec-
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trum measurement displays the input signal in the frequency domain.

It is computed by taking the FFT of the input signal and multiplying

it by complex conjugate of the FFT.

To make this measurement, attach the signal to be measured to

either one of the HP 3562A channels. Then check to make sure the

channel is activated. Display the power spectrum of the channel on

the screen. Select the frequency span of the measurement. Decide if

averaging is desired and if so select the number of averages to be

made. Start the measurement.

Once the measurement is completed, the power spectrum is dis-

played on the screen. The units and scale can be changed so the

desired spectrum is displayed. The cursor and special markers can be

utilized to record more detailed data. Since the power spectrum

measurement is used to measure the noise of the system, the units of

Volts2/Hertz is selected. If these units are used the displayed

waveform is equal to the spectral density of the noise signal.

This section has just briefly described two types of measure-

ments made with the HP 3562A. Along with these descriptions, some of

the specifications of the HP 3562A have been given. A complete

listing of the specification of this device may be seen in Appendix D.

The specifications will be discussed again in section 4, when I

evaluate the accuracy of measurements made with this equipment.

45.



3.1.4 Measurement Procedure

A calibration procedure is part of the overall measurement pro-

cedure. The calibration procedure measures the gain of the system as

well as the noise of the system for three calibration resistors (10,

100 and 1,000 ohms). This data is then fed into a computer program

which returns several constants. The constants are ultimately used to

determine the dynamic resistance and the noise ratio associated with

the DUT.

The circuit and the HP 3562A are the components involved in the

calibration procedure. The capabilities of the HP 3562A are utilized

in this calibration procedure. In particular, the HP 3562A is used to

make frequency response and noise (power spectrum) measurements. The

mathematical functions as well as source capabilities are used in con-

junction with these measurements.

The first step in the calibration procedure is to measure the

frequency response correction waveform. This correction waveform is

necessary for measurements made outside the original measurement band-

width, a bandwidth in which the frequency response of the system was

adjusted to be flat. It was discovered that some of the devices being

measured by the system displayed 1/f noise above 5 kHz. To measure

the noise of such devices, without added 1/f noise, it was necessary

to use other bandwidths. A technique, which employs a correction

waveform, allows the frequency span to be moved without modifying the

hardware of the system.
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The setup for the measurement of the correction waveform may be seen

in Figure 3.1.4.1. The source of the HP 3562A is attached to the

SOURCE OF HP 3562A CAL COUTPUT -- C 2 OF HP3562A
INPUT

CIRCUIT

CH I OF P3562A -- VOLTAGE

Figure 3.1.4.1 Setup for Correction Waveform Measurement

CAL input of the circuit. The VOLTAGE terminal of the circuit is

attached to channel 1 of the HP 3562A, while the OUT terminal of the

circuit is attached to channel 2.

The 1 k calibration resistor is used as the DUT in the correc-

tion waveform measurements. The 16 k bias resistor is put into

place, producing a bias voltage of around 0.4 mV. The HP 3562A is set

for a sweep sine frequency response measurement using state 3, which

may be seen in Figure 3.1.4.2. The frequency range in this state must

be adjusted so it corresponds to the range which will be used in

future noise measurements. A series of ten sweep sine measurement,

with HP 3562A calibrations between each measurement, is taken. The
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Swept Sine
AVERAGE: INTGRT TIME

50. OmS

FREQ:
START
STOP

5 kHz
55 kHz

SWEEP: TYPE DIRLiner . Up

9 AVGS

SPAN 50.OkHz
RESLTN 31.2 Hz

EST TIME EST RATE
12.1 Mn 68.7 Hz/S

AU GAIN: Off

ENG UNITS
. 0 V/'EU
.0 V/EU

COUPLING
AC (Flt)
AC (Flt)

LEVEL OFFSET
450mVpk 0.0 Vpk

Figure 3. 1.4.2 State 3, Used for Frequency Response Measurement

purpose is to average calibration effects. This series of measure-

ments is easily made by using the auto sequence titled "Start w/Cal",

which may be seen in Figure 3.1.4.3. When all

Auto Seoquence 4
Display ON Lebel: START W/CAL

I START
2 SAVE RECALL: SAVE DATA#
3 CAL: SINGLE CAL
4 ASEQ FCTNS: TIMED PAUSE
5 START
6 MATH: ADD: SAVED 2
7 ASEQ FCTNS: LOOP TO 2. 8
8 MATH: DIV 10

174 Keys Left

2

0 Sec

Figure 3.1.4.3 Autosequence "Start w/Cal"
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ten measurements are displayed the frequency response is displayed on

the screen of the HP 3562A. The frequency response is manipulated to

obtain the absolute magnitude squared gain. The HP 3562A has two

display traces, A and B. A measurement may be displayed in either of

both of these displays. The manipulation of the frequency response

utilizes the dual trace capability of the HP 3562A. First, the fre-

quency response in both trace A and B. Trace A is complex conjugated

and multiplied by trace B. The result is the absolute magnitude

squared gain of the system for a particular bandwidth. This result is

stored in the HP 3562A's memory within Data 1. All future noise

measurements made within this frequency range should be divided by

this correction waveform. By doing this, the noise data is corrected

for any effects of the noise amplifier outside its flat region and is

referred back to the DUT.

The next step in the calibration procedure is to measure the

gain of the noise amplifier from the CAL input to the OUT terminal at

a fixed frequency of 5.2 kHz. The setup for this measurement may be

seen in Figure 3.1.4.4. The source of the HP 3562A is attached to its

i b CH OF HP3562A

SOURCE OF HP 3562A AL OUTPIT CH 2 OF HP3562A
INPUT

CIRCUIT

Figure 3 1 .44 Setup for Measuring Gain at a Fixed Frequency

49.



own channel 1 and to the CAL input of the circuit. The OUTPUT termi-

nal is attached to channel 2 of the HP 3562A.

The 1 k calibration resistor remains as the DUT. The source

level of the input sine wave is adjusted so that the sine wave at the

output of the circuit is around 1.6 V. This is ust a conventional

value and does not have to be exact. The HP 3562A is set up for a

linear resolution frequency response measurement using state 2, which

may be seen in Figure 3.1.4.5. Using the auto sequence "Start w/Cal"

a series of ten

Linear Resolution
MEASURE: CHAN CHAN 2

Freq Resp Freq Resp

WINDOW: CHAN CHAN 2
Henning Henning

AVERAGE: TYPE # AVGS OVERLAP TIME AVG
Stable 10 0x Off

FREQ: CENTER SPAN BW
5.2 kHz 200 Hz 375mHz

REC LGTH At
4.0 S 3.91mS

TRIGGER: TYPE LEVEL SLOPE PREVIEW
Freerun 0.0 Vpk Poe Off

INPUT: RANGE ENG UNITS COUPLING DELAY
CH 1 AutoRng 1.0 V/EU AC (Gnd) 0.0 S
CH 2 AutoRng i.0 V/EU AC (Gnd) 0.0 S

SOURCE: TYPE FREQ LEVEL OFFSET
Fxd Sin 5.2kHz 2.25 Vpk 0.0 Vpk

Figure 3.1.4.5 State 2, Used to Measure the Gain at a Fixed Frequency
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measurements with calibrations in between are taken and averaged.

This average frequency response should be displayed on the screen and

the value at 5.2 kf should be recorded. This is the gain from the CAL

input to the OUT terminal.

The third step in the calibration procedure is to measure the

noise of the 1 k calibration resistor using the HP 3562A. The system

may be left in the frequency response setup that was seen in Figure

3.1.4.4. The source is not used in this case and only channel 2 is

activated. The HP 3562A is set up for this noise (power spectrum)

measurement using state 1, which may be seen in Figure 3.1.4.6. The

Inear Resout oon

?.iE;SUii: CHAtr. CICA?. 2
Of f Power Spec

W I: i:O: CoAt; - CHANt 2
Hnning Henning

AV'F RAGF: TYPF * . GS OV'F;4' - .:i:. AVG
StbaC '000 OX Off

'. Q: CF-: .-. ;4 S;=&,t v,'^
90 PO'.: 20.0 .'- 37. i!-.
iFIC .GTH ,At
40. OmS 39. !.S

T;4GG'F:i: TYPE '. F','F:. St OPF- PiV:'/I F-W'
Frecrun 0.0 Vk Po* Off

I:;; U: f;:: G . Fi : G U:IIS COUPI.. I.G DF.: a' '
C' ' : Auto;4ng : .O '.'F:U C (Gnd) O.O S
Ci -; uto;.ng ' . 'I,'U ;.C (Gndc) 0.0 5

SOLURCF.: T',; i- LE" '':L. OF; 'S: T
Of: . .I. '. D;

Figure 3. 1.4.6 State 1, Used to Measure Noise,

frequency range must be moved to the appropriate frequency bandwidth.

The autosequence "Start w/Cal" is used with this measurement setup so

a series of ten measurements with calibrations in between are made and

averaged. The result is divided by the correction waveform stored in
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the HP 3562A memory. The special marker ave value' is pressed to

display the average value of the noise for the 1 k calibration

resistor. This value is in units of Volts2 /Hertz.

The fourth step in the calibration is to estimate the resistance

of the 1 kgl calibration resistor. This is done by measuring the

voltage across the resistor and the current through it with a meter.

We use a Fluke 8506A digital volt meter for this job. The voltage is

measured at the voltage terminal of the circuit and the current is

measured at the current terminal of the circuit. The resistance of

the 1 k resistor is estimated using the following formula.

RDUT - TA * Rs (3.1.4.1)
CURRENT

Rs is the sum of the resistor which the current is measured across,

which has a resistance of 100 , and the resistance of the wire, which

has a resistance of 0.0110.

Steps two through four of the calibration procedure are repeated

with a 10 and a 100 calibration resistor used as the DUT. After

these measurements are complete, a four terminal resistance measure-

ment is made with the Fluke 8506A on all calibration resistors. The

gain and noise data obtained from the three calibrations along with

the corresponding calibration resistance are fed into the program

cal.bas. A copy of this program may be seen in Appendix C. The

program solves three linear equations for the calibration constants,

Cr, G and Kr. The program also solves three linear equations for the
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calibration constants A, B, and C. These six constants are used with

noise measurement data obtained for diode DUTs to determine the

dynamic resistance and noise ratio of the DUTs.

Once a calibration is made, noise measurements on various DUTs

can be conducted. The data from the calibration is used to solve for

noise ratio and other parameters. Another calibration is not neces-

sary for several months or until something is changed in the circuit.

If changes are made to the circuit a calibration should be performed

before the system is used again for noise measurements.

The -- asurement procedure used with this system begins with the

installation of a DUT. The DUT is usually a diode, The DUT is biased

at a certain current by switching in bias resistors until the desired

current is reached. The bias voltage is measured with the Fluke 8506A

at the VOLTAGE terminal of the circuit. The bias current is measured

at the CURRENT terminal of the circuit. Actually the voltage across a

100 n resistor is measured. The bias current is obtained by dividing

this voltage by 100 . The bias voltage and current data will be used

later in the project to determine if there is correlation between

noise and radiation characteristics of the diodes.

The next step in the measurement procedure is to measure the

gain from the CAL input to the OUT terminal. This measurement is made

at a fixed frequency of 5.2 kHz using state 2 (see Figure 3.1.4.5).

This fixed gain is recorded and used along with the three calibration

constants, G, Kr, and Cr, to find the admittance, Gd, which is equal

to the DUT resistance in parallel with the bias resistors. Gd is

found using the following equation.
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cd r - G (3.1.4.2)

If the resistance is desired, it may be easily obtained by inverting

this admittance (Rd - 1/Gd).

The last measurement made in this procedure is a measurement of

the output noise of the circuit with the HP 3562A. A measurement of

the noise spectral density, Sv, is made by performing a power spectrum

measurement using state 1 (see Figure 3.1.4.6) on the output of the

circuit. Sv is a noise voltage spectral density in units of

Volts2/Hertz. It contains a noise contribution of the circuit and the

DUT. Dividing the spectral density by the correction waveform refers

the noise back to the DUT.

Once the three measurement steps have been completed there is

enough information to calculate the noise ratio of the DUT. See

Appendix A for a definition of and formula for noise ratio. To calcu-

late noise ratio the noise voltage spectral density referred to the

DUT, Sv, will have to be converted into a current spectral density,

consisting of only the DUT noise, Sid.

The first step in this conversion is to subtract away the noise

contributed by the circuit. The noise contributed by the circuit is

dependent upon the impedance seen at the input of the noise amplifica-

tion stage of the circuit. From the calibration process three con-

stants, A, B, and C were found. These constants are the coefficients

of an equation that can be used to predict the noise at the DUT node
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produced by the system. In the case of a diode DUT, the impedance

seen at the input of the noise amplifier is the resistance, Rt. Rt is

described by the following equation.

Rt - (1/Rd + G) 1 (3.1.4.3)

Substitute the value for Rt into the following equation

e02 A + B * Rt + C * R2 (3.1.4.4)

allows one to predict the noise of the system, eo. This output noise

is subtracted from S .

Recall that the noise measured was a voltage spectral density.

For noise ratio calculations, one needs a current spectral density.

To obtain the current spectral density ust divide by the resistance

seen at the DUT node, Rt. squared.

When the predicted noise e 2 was subtracted from S, e 2

included noise contributed by the incremental resistance of the diode.

But this resistor is, by convention, modeled as noise free. So, we

follow convention by adding a thermal noise current spectral density

equal to

it2 - 4kT/Rd (3.1.4.5)

to Sid,
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Thus the overall conversion of Sv to Sid may be summarized with

the following formula.

Sid - e 2 + it2 (3.1.4.6)

Now with the spectral density, Sid, and the bias current, Ir, known,

noise ratio may be found using equation (A.6) from Appendix A.
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3.2 The Second Measurement System

3.2.1 Block Diagram

The block diagram for the second noise measurement system may be

seen in Fig% >nents; a circuit, a

rcult
JT, amprn iers. fIl:er)

Filter

Figure 3.2. 1.1 Block Diagram for the Second Noise Measurement System

filter, the Fluke 8506A Thermal RMS Multimeter (Fluke 8506A), the IBM

Personal Computer (IBM PC) and the IBM Proprinter (printer). Once

again, more detailed descriptions of the components are contained in

the following sections. The more generalized description appears in

this section.

The noise amplifier circuit used in this system is the same one

that is used in the first measurement system. It has four parts; a

current source, the DUT, noise amplifiers, and a filter. This

measurement system contains an additional filter because the Fluke

8506A does not have built in bandlimiting capabilities and has a very
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wide measuring bandwidth in the order of megahertz. The filter

provides the bandlimiting that is necessary for obtaining noise

measurements with the Fluke 8506A that can with accuracy be related to

power spectral density.

The Fluke 8506A is used in this system to measure the noise at

the output of the filter. The Fluke 8506A was selected to measure the

noise because of its capability to measure rms values of random

signals very accurately. An additional feature allows for

measurements made with the Fluke 8506A to be controlled by a computer

program.

The IBM PC is used in this system to run a BASIC program, I wrote,

which controls the noise measurements made by the Fluke 8506A. The

IBM PC also stores the measurement data for the system. The printer

is used to produce a paper copy of the measurement data for the

system.

3.2.2 Circuit Description

There are two circuits that are used in this second noise

measurement system. The first is the same circuit that was used with

the first measurement system. It contains a bias current source and

noise amplifiers as well as the socket for the DUT. This circuit has

been described in detail in section 3.1.2. The second circuit used in

this system is the filter. The filter is necessary to bandlimit the

noise signal so that the noise may be measured accurately by the Fluke

8506A, which does not have bandlimiting capabilities. The filter will

be described in detail in the following paragraphs.
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The filter used in this measurement system was designed as an

anti-aliasing filter for a digital system designed, to measure noise,

by Lenny Sheet for his combined bachelor and master's thesis from

M.I.T. The filter was designed with noise measurement in mind, so it

has a low frequency cutoff of 1 kHz. Since most devices that we will

measure will not have 1/f noise above 1 kHz, the filter will prevent

the measurement of 1/f noise. The filter has a bandwidth of 29 kHz

from 1 kHz to 30 kHz. Some type of bandlimiting is required for noise

measurements, but as long as the filter cuts off the 1/f noise, the

selection of the high frequency cutoff and bandwidth is arbitrary.

With this consideration in mind, the filter described here will be

fine for our application.

The filter is a fifth order Chebyshev filter. Since it is of a

high order it has sharp frequency rolloffs. As noted above it has a

bandwidth of 29 kHz, form 1 kHz to 30 kHz. It has a gain of

approximately -14 dB with a 1 dB ripple in the passband. A frequency

response of the filter, taken with the HP 3562A, may be seen in Figure

3.2.2.1. X3.2.2 60. 083kHZ Y--4. 067 Y46.53 d
Ya--60.553 dB
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The filter consists of five stages all of the same basic design.

This design may be seen in Figure 3.2.2.2. Table gives the exact

RI

R3

R4

Figure 3 2 2.2 Circuit Diagram for Filter Stage

resistor and capacitor values for the components in each of the five

Table 1 Component Values for the Five Filter Stages

I Stage j R1 R2 I R3
I (k ) I ( ) I (kO)

I I I I11 5 . 110 60.400 1 l0.000
I 2 I 4.688 | 52.300 I 10.000

3 1 4.546 1 14.000 I 10.000

4 1 6.049 I 19.109 1 10.000

5 I 2.543 1 3.320 I 10.000

I R4

I (k)

I
I 1.180

I
I 1.400

1 2.890

I
I 2.808

I1
1 1.922

I I
I Cl I

I (nF) I

I I

I 0.301 I

I I
I 10.100oo I

I I
I 0.983 I

I I

I 9.910 I

I I

I 10.000 I

I I
C2 I C3 I

(nF) I (pF) I

I _ _ i
0.301 I47.000 I

I I
10.100 I 47.000 I

I I
0.983 147.000 I

I I
9.910 I 47.000 

I I
10.000 I 47.000 I
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stages. The filter is built so that the signal applied to the filter

passes through stage five first, proceeds through the other stages in

descending numerical order, exiting from stage one.

When the second measurement system was first assembled and

tested, some of the smaller signals from the circuit were so

attenuated by the filter that they could not be distinguished from the

noise of filter. To eliminate this problem, it was necessary to add

another gain stage to the system. Since there were everal sockets

available in the box containing the filter, the gain stage was placed

in the box, preceding the filter.

The circuit diagram for this gain stage may be seen in Figure

3.2.2.3. The circuit was designed so that a wide range of signal

Oa
awl

5.X4 Fi5.3

Figure 3.2.2.3 Circuit Diagram of he First Gain Stage
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amplitudes could be accommodated. When the amplitude of the signal

from the circuit is high the gain stage may be switched out of the

circuit. This prevents saturation of the operational amplifiers and

allows the signal from the circuit to go directly into the filter.

For lower amplitudes, the gain stage can be switched into the circuit.

The gains of 5.34 and 47.84 were chosen by looking at the lowest

amplitude that was measured by the first system and the noise of the

filter with no input. The criteria for choosing the gain was to

amplify the smallest signal so that it was sufficiently above the

noise of the filter. Thus the gain of approximately 50 was selected.

The gain of approximately 5 was selected because it was a factor of

ten below the other gain. It can be used for the intermediate

amplitudes that need some amplification to be measured precisely, but

not as much as the very low signals.

After further testing of the filter circuit, a problem with

capacitive loading was found. To eliminate this problem, another gain

stage was added at the output of the filter to act as a buffer. A

circuit diagram for this gain stage may be seen in Figure 3.3.2.4.

The gain of 6 was selected to boost the signal to approximately the

same level it was at before going through the filter, negating the

one-sixth attenuation of the filter. The gain of 18 was selected to

allow further amplification of very small signals.
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Output of FIter

6

Figure 3.2.2.4 Circuit Diagram of the Second Gain Stage

3.2.3 Commercial Equipment

The Fluke 8506A Thermal RMS Digital Multimeter (Fluke 8506A)

along with the IBM Personal Computer (IBM PC) and Proprinter (printer)

are the commercial equipment used in the second measurement system.

The Fluke 8506A is used to measure the noise output of the system.

The Fluke is a thermal rms meter. It measures waveforms by measuring

the heat produced when they pass though a resistor. So it is

insensitive to waveform shape. The Fluke 8506A measures the AC signal

in units of root-mean-square (rms) Volts. Since the conventional

noise units are rms Volts per root Hertz, the signal measured by the

Fluke can be easily converted to these units by dividing by the square

root of the bandwidth of the measurement system.

The Fluke 8506A makes its rms measurements in a rather different

manner than most thermal rms meters. Most meters measure the AC

signal by applying the AC signal being measured and a DC voltage to a
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rms sensor until the two signals are equal. Then the meter displays

the DC voltage that was found to be equal to the AC signal. The Fluke

8506A uses a thermal rms sensor and differs from other meters because

it does not adjust the equivalent DC signal to be as close to balance

as possible. Instead it starts the comparison with a DC signal close

to the actual AC signal, by taking the DC equivalent of the sensor's

first output as the first approximation to the AC signal, and then

making one iteration only.

Figure 3.2.3.1 is taken from the Fluke 8506A Instruction Manual

[8] and shows how the rms AC voltage is calculated by the meter. X1

I I

Figure 3.2.3.1 Fluke 8506A Calculation of an AC Signal

is the unknown AC signal and Y1 is the sensor's first output. The

difference between the two signals, the error, is represented by El.

The DC signal applied to the sensor for comparison is X2 and is equal

to Y1 the sensor's first output. This is the first approximation as
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mentioned above. The new (second) output of the sensor is Y2. The

difference between Y2 and X2 is E2. From the figure and this

description one can see that

Y1 - X1 + E1l (3.2.3.1)

Y2 - X2 + E2 (3.2.3.2)

X2 - Y1 (3.2.3.3)

The rms value of the AC signal is then computed by doubling the first

output of the sensor, Y1 and subtracting the second output of the

sensor, Y2. This procedure is shown in the following formula:

rms value - 2Y1 - Y2 (3.2.3.4)

Substituting equations (3.2.3.1) through 3.2.3.3) into

(3.2.2.4) results in the following equation:

rms value - X1 + (El - E2)

equation

(3.2.3.5)

The value that is computed by this equation is the one that is

displayed by the meter as the value of the AC signal.

The Fluke 8506A has three different AC voltage settings to

choose from; high accuracy, enhanced and normal. All of these AC

settings (modes) have eight voltage ranges starting at 100 mV and

ending at 500 V. In addition all three have 5h digits of resolution.
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The high accuracy (hi accur) mode produces the most accurate

measure of the AC signal and is the mode used for our noise

measurements. The mode has a six second reading time for each

measurement. Fluke claims that signalsmay be measured in this mode

to within: 0.012% if the frequency is between 40 Hz and 20 kHz; 0.04%

if the frequency is between 20 kHz and 50 kHz; and 0,2% if the

frequency is between 50 kHz and 100 kHz. The noise signal we are

measuring falls within the two lower frequency ranges, so the exact

accuracy of the measurements will have to be determined.

The enhanced (enh'd) mode takes an initial high accurate

measurement of the signal and uses this to correct all subsequent

measurements. Since noise varies from moment to moment, the enhanced

mode is not suitable for our measurements.

The normal (normal) mode provides faster reading time than the

other two modes but has much less accuracy. Since we need to sample

the noise for many seconds to get accurate results, this mode will

also not be useful to us.

The IBM Personal Computer and the IBM Proprinter are the other

two pieces of commercial equipment used in this system. The IBM PC is

used to run computer programs which control the noise measurements

made with this system. With the installation of a card (in our

computer a Metrabyte card) in the computer, command signals may be

sent through a bus (n our case an IEEE-488 bus) to the Fluke 8506A."

These commands may be cited within computer programs which in turn

tell the Fluke 8506A when to make a measurement and determines the

timing of the measurements. The readings made by the Fluke 8506A are
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transmitted back to the computer via the bus. These readings may be

manipulated like any other data within a program. This feature allows

for easy storage of data as well as mathematical manipulation of the

data. The printer is necessary if a paper copy of the measured data

and any manipulation of such data is desired.

3.2.4 Measurement Procedure

The second measurement system also has a calibration procedure

as part of its measurement procedure. The calibration procedure will

measure the gain and noise of the system for three calibration

resistors (10, 100, and 1000 ohms). This data will be used to

calculate a set of constants. These calibration constants will be

used to determine the dynamic resistance and noise ratio associated

with the DUT.

Due to the choice of gains in the stages preceding and following

the filter there are eight possible configurations for this system.

Cajibrations of each of the eight configurations should be performed.

Only if you know the rough noise level at the output of the circuit

and thus have selected the gains, could you just do a calibration for

one of the configurations. If the noise level is unknown all

configurations will have to be calibrated.

The calibration procedure for this system is similar to the

procedure for the first measurement system for several reasons. Both

system use the same bias circuit and amplification stages. The input
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terminal for the calibration signal (CAL input terminal) are the same

for both systems. The quantities measured in both procedures are the

gain and noise of the system.

The first step in the calibration procedure is to obtain the

frequency response of the system. From this frequency response the

gain of the system from the DUT node to the output may be found. This

gain must be known so that all noise quantities measured at the output

of the system can be divided by this gain so that they are referred

band to the DUT itself.

The best way to find the frequency response of this system is to

determine the frequency response of the circuit and filter separately

and then multiply the two responses together to get the complete

system response. Both of these frequency response measurements will

be performed with the HP 3562A. This instrument was selected for its

ease of measurement, as well as its storage and mathematical

capabilities. It will be possible to make the frequency measurement

on the circuit, save the display, and later multiply it by the

frequency response of the filter to get the complete system response.

The frequency response measurement of the circuit has already

been made in the calibration procedure for the first measurement

system. The correction waveform measurement was a frequency response

measurement for the circuit from the DUT node to the OUTPUT terminal

of the circuit. The frequency range of the second system is different

from the first system, so a new correction waveform measurement will

have to be made. To make this measurement, just follow the procedure

described in section 4.1.4.
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To make a frequency response measurement of the filter, set the

system up in the manner shown in Figure 3.2.4.1. The source of the

SOURCE OF HP 362A

CH OF P3562A

' CH 2 OF P3562A

Figure 3.2.4.1 Setup for Frequency Response Measurement
of Filter

HP 3562A is attached to the INPUT terminal of the filter and to its

own channel one. The OUTPUT terminal of the filter is attached to

channel two of the HP 3562A. The HP 3562A is set for a sweep sine

frequency response measurement using state 3, see Figure 3.1.4.2. The

frequency range of this measurement must be set to observe the

passband of the filter, a range from 100 Hz to 100 kHz will be good

for this filter. A series of ten sweep sine measurements, with a HP

3562A calibration between each measurements, is taken using the auto

sequence "Start w/Cal", seen in Figure 3.1.4.3. After the

measurements are complete the result is displayed on the screen of the

HP 3562A. The mathematical capabilities of the instrument may be

utilized to obtain the absolute magnitude squared gain of the filter.
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This frequency response is then multiplied by the response for the

circuit, which was saved in the HP 3562A, to get the total response of

the system. This total response should be integrated and the largest

value recorded. This is the value that will be used to divide all

noise measurements made with the system, to refer then to the DUT

node. The noise quantities measured by the Fluke 8506A will be in

units of Volts. These quantities should be squared before being

divided by this system gain factor. Since this system gain factor is

in units of Hertz, due to the integration, the noise referred to the

DUT node will be in units of Volts2/Hertz.

The second step in the calibration procedure is to measure the

gain of the noise amplifier from the CAL input to the OUTPUT terminal

of the filter, at a single frequency. This quantity will be used

later, during measurements to find the dynamic resistance of the DUT.

A Fluke 5200A AC Programmable Calibrator (Fluke 5200A) along with the

Fluke 8506A can be used to make this measurement. Since the signal

used in this measurement is a single frequency, the filter is not

necessary for this measurement. It may be advisable to remove the

filter from the system for this measurement. If this is done,

concerns over changes in the gain of the system due to the ripple in

the passband of the filter may be eliminated.

The setup for this measurement may be seen in Figure 3.2.4.2.

The Fluke 5200A is attached to the CAL input. The signal injected by

this calibrator is measured by the Fluke 8506A. The AC signal at the

OUTPUT terminal is also measured by the Fluke 8506A.

70.



FLUKE 8506A

SIGNAL FROM
FLUKE 5200A

FLUKE 8506A

Figure 3.2.4.2 Setup for a Fixed-Frequency Gain Measurement
Using the Fluke 5200A and the Fluke 8506A

The 1 k calibration resistor is used as the DUT. The Fluke

5200A is adjusted to produce a sine wave at 5.2 kHz. The amplitude of

the sine wave is adjusted so that the signal at the OUTPUT terminal is

1.6 V. The amplitude of the input signal and the amplitude at the

OUTPUT terminal of the filter should both be measured by the Fluke

8506A. The gain from CAL input to the OUTPUT terminal of the filter

may be found by dividing the voltage at the OUTPUT by the voltage at

CAL.

The third step in the calibration is to measure the noise of the

1 kn resistor using the Fluke 8506A. The setup for this measurement

may be seen in Figure 3.2.4.3. The OUTPUT terminal of the filter is

attached to the Fluke 8506A. Since this measurement is computer

controlled, the IBM PC is attached to the Fluke 8506A.
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Figure 3.2.4.3 Setup for Noise Measurement

The noise measurement is controlled by the computer using the

BASIC program sys22.bas, which may be seen in Appendix C. This

program makes the Fluke 8506A take a number, from 1 to 1000, of high

accuracy AC voltage readings of the noise signal. The program

computes the average value and standard deviation for these readings

and displays these quantities along with the individual measurements.

For the calibration, 100 readings are selected in the program. The

average value for he noise is record. This quantity is in rms Volts,

it should be squared and divided by the system gain factor found in

the first step of the calibration. This will refer the noise back to

the DUT node and convert it to spectral density units of V2/Hz.

The fourth step in the calibration is to estimate the resistance

of the 1 k calibration resistor. This is done by measuring the

voltage across the resistor and the current through it, with a meter.

These quantities are measured with the Fluke 8506A. The voltage is

measured at the VOLTAGE terminal of the circuit. The signal measured
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at the CURRENT terminal of the circuit is actually a voltage, since

the bias current is measured across a resistor. The resistance of the

1 k resistor is estimated using the following formula,

RDUT - VVOLTAGE Rs (3.2.4.1)

CURRENT

where R is the sum of the resistor which the current is measured

across, which has a resistance of 100 , and the resistance of the

wire, which has a resistance of 0.0110.

Steps two through four of the calibration procedure are repeated

for the 10 and 100 calibration resistors. After these

measurements are complete, four wire resistance measurements of the

calibration resistors are made with the Fluke 8506A. The gain and

noise data obtained through the calibration along with the calibration

resistance are used to-find the calibration constants. The program

cal.bas, found in Appendix C, can be used to find the calibration

constants for this system as well. This is possible because the only

difference between this and the first system is the additional gain

stages and the filter. The calibration measurements of gain and noise

account for these additions to the system. The equations used to find

the calibration constants will not be changed by the addition of the

gain stages and the filter. Cal.bas solves three linear equations for

the calibration constants, Cr, G and Kr . The program also solves

three linear equations for the calibration constants A, B, and C.
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These six constants are used with noise measurements and gain data for

diode DUTs to determine the noise ratio and dynamic resistance of the

DUTs.

Now that the calibration procedure is complete, measurements can

be made with this system. The constants found in this calibration are

valid until things are changed in the system. Then a new calibration

should be conducted. Actually you may want to recalibrate after a

couple of months, even if no changes are made, because the components

in the system could be drifting.

The measurement procedure for the second system is very similar

to that of the first system. The procedure begins by installing the

DUT, which is usually a diode, and biasing it at a certain current by

switching in appropriate bias resistors. The bias voltage and bias

current measurements are made in the same manner as the first system.

(See section 3.1.4 for more details.) The bias voltage and current

data will be used in the study to determine if there is correlation

between the noise and radiation characteristics.

The next measurement to be made is of the gain of the system

from CAL input to the OUTPUT terminal of the noise amplifier. This

measurement is made using a sine wave, from the Fluke 5200A, at a

fixed frequency of 5.2 kHz. Following the procedure described in step

two of the calibration to make this measurement. Record the gain of

the system.

The gain measured in this step is used along with the three

calibration constants, G, Kr and Cr, to find the dynamic admittance,

Gd, of the DUT. This admittance is found using equation 3.1.4.2 The

dynamic resistance, Rd, is obtained by inverting Gd.
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The last quantity to be measured is the noise at the output of

the system. This noise signal is measured by the Fluke 8506A. The

measurement is controlled by the sys22.bas program. One hundred

samples are taken and averaged for each noise measurement. The

quantity, Vo, the average value of the measurements made by the Fluke

8506A, is in units of rms Volts. This quantity should be squared and

divided by the system gain factor calculated in step one of the

calibration. The result is a noise spectral density, S, which is

referred to the DUT node and is in the appropriate units of

Volts 2/Hertz.

Noise ratio is the quantity we wish to calculate for each DUT.

Equation A.6, found in Appendix A, describes noise ratio. The reverse

or bias current along with the current noise spectral density, Sid,

must be known to calculate noise ratio. The bias current was directly

measured. Sid, may be obtained from the quantity S after some

manipulation. The steps that need to be followed to convert S to Sid

have already been described in section 3.1.4. However, now the

calibration constants and measurements used in this conversion must

all be associated with the second measurement system.
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Section 4 EVALUATING THE ACCURACY OF MEASUREMENTS MADE WITH EACH
SYSTEM

To determine the limitations to the accuracy of measurements

made with each of the noise measurement systems as well as the

accuracy itself, various aspects of the systems have to be analyzed.

The design of the circuits used in the systems as well as the design

of the system itself had to be studied to insure that they are

appropriate for measuring noise accurately. Circuit components and

portions of the systems that could contribute excess noise to the

systems and thus limit accuracy have to be identified. The measure-

ment and calibration procedures have to be studied to insure that they

would result in the most accurate measurements. The specifications of

any instruments used in the systems has to be known, because the

accuracy of measurements would be definitely limited by the instrument

accuracy. Other considerations, like sampling time and averaging,

also have to be explored.

This section describes in detail the various aspects of the

systems that I looked at in determining the limitations to the

accuracy and the actual accuracy of noise measurements made with each

of the systems. Section 4.1 concentrates on the first measurement

system, while section 4.2 concentrates on the second measurement

system.
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4.1 The First Measurement System

4.1.1 Accuracy of Commercial Equipment

The accuracy of measurements made with this system depends on

the accuracy of the HP 3562A. The specifications for the HP 3562A,

which may be found in Appendix D, mention several types of amplitude

accuracy. It defines accuracy "as Full Scale Accuracy at any of the

801 calculated frequency points.' [10] It defines the overall

accuracy as "the sum of absolute accuracy, window flatness and noise

level.' [10] Numbers are given for the absolute-accuracy, window

flatness and the noise floor is discussed. For evaluating the

accuracy of noise measurements, the overall accuracy will be used.

Since the window flatness and noise level are small and change the

accuracy only slightly, the overall accuracy will be estimated by the

absolute accuracy alone.

From the specifications, the absolute accuracy is 0.15 dB ±

0.015% of input range, for signals between 24 dBV and -40 dBV, and ±

0.25 dB 0.025% of input range, for signals between -41 dBV and -51

dBV. In this thesis accuracy will be described in terms of percent-

age. Therefore, the accuracy of the HP 3562A must be converted into

percentages. This is conversion is described by the following equa-

tion.

X Accuracy - 100*(0 (x/20) - 1) (4.1.1.1)
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where x is either 0.15 dB or 0.25 dB depending on the range. The

conversion was made assuming that a voltage was being measured, so a

factor of 20, appears in the equation. Using the conversion, the

first range has an accuracy of 1.7Z and the second range has an

accuracy of 2.921.

The percentage of input range was ignored in the conversion.

The major reason for doing this is that the input range is often

unknown. The input range depends on the signal being measured. If

the range of the signal is known, one can set the input range and thus

know its quantity. However, autorange is often used in measurements,

in this case several ranges may be used in the measurements and one

does not know exactly which ones. Another reason for ignoring the

percentage of input range in determining the accuracy is that this

contribution is small. Looking at the smallest and largest allowed

ranges, -51 dBV and 24 dBV respectively, and calculating the percent-

age one finds 0.705 V for the smallest range and 2.38 mV for the

largest range. These additions are small compared to the level of

signal and therefore can be ignored without much effect on the

accuracy.

Actually the specifications for the accuracy of the HP 3562A is

an indication of the worst accuracy one can expect. Most measurements

will achieve better accuracy. A simple experiment illustrates this

point. A 1 V (rms) sine wave at 90 KHz was produced by a Fluke 5200A

AC calibrator. The signal was read by both the HP 3562A and the Fluke

8506A. The HP 3562A was set for a standard noise measurement using a

20 kHz bandwidth from 80 kHz to 100 kHz. The Fluke 8506A read 1.00085
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V (rms), while the HP 3562A read 49.9282 pV 2/Hz (rms). The reading

form the HP 3562A must be converted to V2 by multiplying by the band-

width of the measurement, 20 kHz. The Fluke 8506A can measure AC

signal more accurately than the HP 3562A, so in to calculate the

error, assume the Fluke reading is exact. The error, which is also

the accuracy, is found using the following relation.

%error - HP reading - Fluke reading * 100 (4.1.1.2)
Fluke reading

Substituting the numbers into equation 4.1.1.2 results in

%error - 0.31X

This simple experiment showed that the HP 3562A accuracy to be better

than the expected 1.7 X.

The Fluke 8506A Thermal True RHS Multimeter is used in this

system to measure the voltage and bias current of the DUT. The bias

current will be used in the calculation of the noise ratio. Both the

current and the voltage will be later used in determining if there is

correlation of noise and radiation characteristics. The current is

measured across an 100 resistor, so both measurements are of DC

voltages. According to the specifications of the Fluke 8506A, it is

capable of measuring signals in the 100 mV range to (0.0018 of

reading + 15 counts) in the norm (normal) mode and to (0.0010 of

reading + 8 counts) in the avg (average) mode. In the 1 V range it is
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capable of measuring signals to (0.0008X of reading + 7 counts) in

the norm mode and to (0.0005% of reading + 4 counts) in the avg mode.

The bias voltage and current measurements are usually made in the norm

mode, therefore; the accuracy is (0.0018 of reading + 15 counts)

for the 100 mV range and (0.0008 of reading + 7 counts) for the 1 V

range.

Before proceeding, the term count will be explained by example.

The specifications for the 1 V range is (0.0008Z of reading + 7

counts). In this range, the display should read 1.000000, for a 1 V

input. Seven counts corresponds to an uncertainty of seven in the

last digit or to 0.000007, 7 V, or 0.0007 error at 1 V. The total

accuracy for this range may be written as (0.0008X of reading + 7 pV)

for clarity.

In determining the accuracy of the measurements made with this

system, the worst case accuracy of the HP 3562A will be assumed to be

1.7X for a signal falling between 24 dBV and -40 dBV and 2.92X for a

signal falling between -41 dBV and -51 dBV. The accuracy of the Fluke

8506A will be taken as (0.0018 of reading + 1.5 pV) in the 100 mV

range and (0.0008X of reading + 7 pV) in the 1 V range.

4.1.2 Analysis of the Circuit Portion of the System

The purpose of this section is to look at the design of the

circuit used in this measurement system and determine if there are any

components or sections that add large quantities of noise to the

system. These critical components or sections may be identified
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through a noise model for the circuit. The three sections of the

circuit are modeled and the noise is estimated from the models. In

calculating the estimated noise, dominant noise sources are easily

identified.

Throughout this section there are references to the noise models

for certain components. The noise models for the most common com-

ponents may be seen in Appendix B. Along with each model is a brief

explanation of the model and how to use it.

The bias circuit is the first portion of the system to be

modeled. The circuit diagram for this section was shown in Figure

3.1.2.1. The noise model for this section can be seen in Figure

4.1.2.1. Looking at Figure 4.1.2.1, one will notice not all

components are modeled, while others are not modeled with their

typical noise models shown in Appendix B. These differences are a

result of considering the operation of the circuit while developing

the model.

The National Semiconductor 1M399 voltage reference is modeled as

a voltage noise generator. The two operational amplifiers, U2 and U3,

are modeled using a modified amplifier model. This model differs from

the ones shown in Figure B.3, since it only includes the voltage noise

generator and the current noise generator of the amplifier. The

closed loop gain and not the open loop gain is used with this model.

The FET, at the output of the U2 amplifier, is not modeled because it

is in a position where it will not significantly effect the noise of

the system. All of the resistors are modeled like those in Figure B.1

All capacitors are not modeled, because there is no noise model for
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capacitors, since they do not produce significant noise. The noise

levels for the various components used in this circuit can be found in

their specification sheets located in Appendix E.

The noise of the bias circuit may be calculated from this model.

This is done so by tracing the noise signal from the input to the

output. This method is the same as tracing a signal from the input of

a circuit to the output. The noise model is roughly a small signal

model and all relevant circuit analysis techniques may be utilized.

Please see Appendix F for a step by step analysis of the noise cal-

culation. The noise this portions of the system injects into the node

at the top of the DUT is the quantity we wish to know. This signal

will be amplified by the amplification stages. If this signal is sig-

nificantly larger than the DUT noise, it could swamp the DUT noise and

seriously affect any noise measurements.

From the step-by-step noise calculation for this portion of the

circuit, found in Appendix F, several noisy components have been iden-

tified. The National Semiconductor L1399 voltage reference contrib-

utes a very significant amount of noise, but this noise is effectively

attenuated by the filters following it. The input voltage and current

noise of the OP-27, although not terribly large, are amplified by the

U2 amplifier. This noise at the output of the U2 amplifier is

attenuated by a low pass filter to the point of insignificance. The

only significant noise terms are the thermal noise of the bias

resistors. Since the bias resistance is varied, this noise is also

varied, but in any case it has to be considered.
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The noise calculation for this part of the circuit has shown

that the current noise injected at the DUT node is several orders of

magnitude less than the shot noise of the DUT. This injected noise

will be combined with the shot noise and the combined noise will be

amplified by the circuit. In later calculations of the noise of the

DUT, we must be careful that this injected noise is eliminated from

the results so that the measurement will be correct and the accuracy

of the measurement is not hurt. This injected noise will be discussed

later in this paper, in the section dealing with limitations.

The next portion of the circuit to be modeled is that around the

DUT node (socket). A simplified circuit diagram for this section may

be seen in Figure 4.1.2.2. The noise model for this section may be

seen in Figure 4.1.2.3. At the frequencies of operation the

capacitors may be considered shorts. It will also be assumed that no

calibration signal is being applied at the CAL input. This input will

be shorted to ground. With these considerations in mind, one can see

that the resistors, (RBIAS + R6), R1 0, Rll and R1 2, are all in paral-

lel. Since they are all in parallel they may be represented as one

resistor, Rx , which can be modeled in the usual way. RDUT , is in

parallel with Rx, but will not be combined with it since this is the

noise source we are trying to measure and we want to compare all other

noise sources to it.

The exact calculation of the noise of this section may be found

in Appendix F. The calculation shows that the thermal noise of the

parallel combination of resistors, although not larger than the DUT

noise, is still large enough to be considered. In calculations of the
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noise of the DUT, this thermal noise have to be eliminated from the

measurements to insure the correct results. This will be discussed

later in this paper.

The last part of the system to be modeled is the three

amplification stages. The circuit diagram for this section may be

seen in Figure 3.1.2.3. The noise model for this section may be seen

in Figure 4.1.2.4. There are only three types of components used in

this section; resistors, capacitors and op amps. Only the resistors

and op amps are modeled. The resistors are modeled with their tradi-

tional model shown in Figure B.1. The op amps are modeled with the

modified amplifier noise model, discussed above.
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The input noise signal to this part of the circuit is Ey2 , which

was calculated above. This input noise is amplified by the three

stages. At the same time, the noise of each of these stages is added

to this input noise. This sum of amplified noise and the noise of the

three stages is the noise that is measured at the output of the

circuit. All this may be seen in the step-by-step calculation of the

noise which can be found in Appendix F.

The step-by-step calculation of the noise identified two criti-

cal components, the input noise voltage of the first LT1028 and the

thermal noise of R3, a 10 [1 resistor. Of these two critical com-

ponents, the input noise of the LT1028 is the biggest contributor to

the output noise of the two. The noise calculation also showed that

the second and third stages contributed no noise to the overall noise,

because the noise after the first amplification stage was larger than

anything added to it after this point. The input noise to the

amplification stages, which contains the DUT noise and the thermal

noise of the parallel resistance combination, appears at the output of

these stages, significantly amplified but added to an additional noise

term. This additional noise term consists of the noise of the two

critical components, mentioned above, all amplified. The calculation

showed that the amplified input noise was smaller than the additional

noise term, but was large enough not to be swamped by it. So it

appears that these amplification stages have amplified the noise as

they had been designed to do. They have done this without adding sig-

nificant noise themselves. Two of the significant noise sources, the

thermal noise of the parallel combination, R, and the thermal noise
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of R3, can be calculated precisely if the resistance and temperature

are known. The other significant term, the input noise of the LT1028

is also a well known quantity. Therefore, the excess noise should be

easy to eliminate from any calculations of the noise of the DUT

itself.

4.1.3 Analysis of the Calibration and Measurement Procedures

The calibration and measurement procedures used with the first

measurement system were described in section 3.1.4. In the first part

of this section, both procedures will be discussed in light of the

common noise measurement methods discussed in section 2.3. Both of

these procedures have to be reviewed to determine if they lead to

accurate measurements. The results of these reviews are presented in

the second part of this section.

Neither the calibration procedure nor the measurement procedure

can be described exactly as a sine-wave, noise generator or correla-

tion method of noise measurement. The calibration procedure resemble

the sine-wave method the most, but it also resembles the noise genera-

tor method. The measurement procedure has the closest resemblance to

the sine-wave method, but also resemble the noise generator method in

one case.

There are several parts of the calibration procedure that are

similar to the sine-wave method. The sweep sine frequency response

measurement used to find the correction waveform also uses sine waves

as the calibration signal. This correction waveform is equal to the
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magnitude of the gain squared. The output noise is measured with the

calibration source set to zero. This is equivalent to having the CAL

input shorted to ground. In the sine-wave method, a shorting bar is

put at the input when the output noise is measured. Finally, the

noise measured at the output is referred bck to the DUT by dividing

by the correction waveform. In the sine-wave method, the equivalent

input noise is found by dividing the output noise by the gain squared.

Noise is measured at the output of the circuit. Then this noise

is divided by the correction waveform, found in the calibration proce-

dure, to refer the noise to the DUT node. Since the correction

waveform equals the magnitude of the gain squared, this procedure is

like the sine-wave method where the equivalent input noise is found by

dividing the output noise by the gain squared. The gain from the CAL

input to the OUT terminal is measured in the same way as in the

calibration procedure, with the source amplitude adjusted to make the

output 1.6 .V.

It should also be noted that in both the calibration and

measurements procedures, voltage and current measurements are made

along with the noise and gain measurements. These voltage and current

measurements will be used in the correlation of noise characteristics

to the radiation characteristics of the diodes.

In the previous section, several different components and sec-

tions of the circuit were identified as noisy and potential problems.

One of the things a calibration procedure should do in a noise

measurement system is to characterize the system's noise. This char-
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acterization may eliminate the concerns about added noise if the noise

of the system is a well known quantity and can easily be subtracted

from measurements made with the system.

Part of the calibration procedure for this first measurement

system consists of taking a gain and noise measurements for three

resistors, 10 0, 100 and 1 kO. The data from these measurements is

used to find six calibration constants. It is through these measure-

ments and calculations that the system is characterized.

Three of the constants, A, B, and C, found in the procedure, are

used to calculate the output noise given the resistance for the DUT.

In this equation the extra noise injected at the DUT node from the

bias circuit is accounted for. This calculated output noise is sub-

tracted from the measured output noise in the calculation of noise

ratio. In this manner, the extra noise sources are eliminated from

the measured noise. Therefore, the calibration procedure achieves its

goal of characterizing the noise of the circuit so that concerns over

noisy components can be alleviated.

The other part of the calibration procedure is to calculate a

correction-waveform. The system was designed to have a flat frequency

response within the bandwidth from 5 kHz to 55 kHz, where it was

expected to operate. However, the system has been used in other fre-

quency bandwidth to avoid 1/f noise in some DUTs. In these other

ranges the frequency response is not necessarily flat. So the

correction-waveform compensates measurements made in other frequency

bandwidths for the non-flat nature of the response. Although this

part of the calibration does not directly involve noise measurements,
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it is necessary for producing accurate noise measurements with this

system. If the measurements were not corrected the non-flat frequency

response could seriously affect the accuracy of the measurements.

A measurement procedure will be declared appropriate for a

system as long as it is consistent with any related calibration proce-

dure. It should also make all the measurements required by the

project. The measurement procedure for the first system meets both of

these criteria.

There are four quantities that are measured, the gain from the

CAL input to the OUT terminal, the noise at the OUT terminal. the

voltage and current at the DUT. The first two quantities coordinate

with the calibration procedure and are used with the calibration con-

stants to find the dynamic resistance of the DUT and predict the noise

at the output of the circuit, assuming the device is ust a resistor.

This output noise calculation takes care of the non-DUT noise in the

system. In this case, the measurement procedure is consistent with

the calibration procedure and utilizes all constants calculated in

that procedure. All four of the quantities measured in this procedure

will later be used directly or indirectly in the project to determine

correlation between noise and temperature and radiation character-

istics of the DUTs. In this case, the measurement procedure makes all

the necessary measurements for the overall project.
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4.1.4 Discussion of the Effect of Sampling Time and Averaging on
Accuracy

In this section the relationship between sampling time, averag-

ing and accuracy of noise measurements will be discussed. The first

half of the section will discuss accuracy equations which relate these

quantities. The second half will discuss the sampling time and aver-

aging considerations of the first measurement system.

Due to its nature, it is only possible to measure the

instantaneous value of a noise signal. However, if the power of the

signal is averaged over time it becomes possible to measure an average

value for the noise. If the meter used to measure noise has a short

time constant, it will try to measure the instantaneous value of the

noise signal instead of an average value. The result is fluctuating

readings. These fluctuations affect the accuracy of the noise

measurement.

An equation relating accuracy to the noise equivalent bandwidth

a system and the time constant of the meter used in the system has

been developed. [2]13] The equation for a square law detector, one

that measures power, is

A- I1 (4.1.4.1)

rJ- relative accuracy

r- time constant of meter

Af noise equl-;alent bandwidth
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This equation was published before digital instruments and computers

were common. For a measurement system that averages power for time T,

77- _¢ (4.1.4.2)

According to Motchenbacher and Fitchen, the accuracy, }a, is equal to

=the ratio of the rms value of the meter fluctuation to the average

meter reading." [2:296

After studying this equation, one will realize that better

accuracies at narrow bandwidth are achieved if long time constants or

integration times are used. At higher bandwidths, a short sample time

may be used to achieve relatively good accuracy. To achieve better

accuracy you can change either the bandwidth or the time constant.

Usually the bandwidth of system can be changed. However, in noise

measurements one must be careful that the low end of the bandwidth

used does not contain any 1/f noise, and the high end is limited by

equipment, device capacitance, or something. The time constant of a

meter is usually fixed. But the number of readings taken by a modern

instrument under computer control is limited only by the time avail-

able to make a measurement.

The HP 3562A is an integrating instrument, so equation 4.1.4.2

should be used with the first measurement system to find its accuracy.

To calculate the accuracy of the noise measurements made with the

first measurement system, we must know the noise equivalent bandwidth

of the system and the integrating time of the HP 3562A. The noise
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equivalent bandwidth is the frequency span or bandwidth that the oper-

ator selects for the measurement. The number of averages, which is

need to determine the integrating time is also selected by the opera-

tor. The only quantity that is left is the time per measurement of

the HP 3562A. This quantity can be obtained from the operating manual

[10]. Before presenting the value of the time, it will be useful to

discuss how the HP 3562A makes a measurement, because the time per

measurement was determined by the way the measurement is made.

The HP 3562A samples the signal being measured and converts it

to digital. Any necessary digital filtering is performed and then an

FFT is performed on the digital signal. After that averaging is done.

The result is prepared for the display by converting it to the correct

units, etc.

The HP3562A displays a maximum frequency of 100 kHz. To avoid

aliasing, its A/D samples at a frequency of 256 kHz. This value meets

the Nyquist criteria, since it samples at twice the highest frequency.

Sampling at a frequency of 256 kHz is equivalent to saying 256,000

samples are taken per second or that a sample is taken every 3.91 s.

The HP 3562A always takes enough data to compute a display that

will fill the 100 kHz span, even when a smaller span is selected. If

a smaller span is selected, this is called a zoom measurement if the

lowest frequency is larger than 0 Hz, the HP 3562A, digitally filters

the data to fit the selected span. Although the data is filtered, the

sample rate for each point is not altered.

To make its measurements, te HP 3562A works with a time record.

This time record consist of 2048 points, if the full span of 100 kHz

is selected, and 1024 points, if a smaller span is selected. Each of
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these points are either sampled at 3.91 ps or are selected from a

larger number of points coming out of a digital filter, that

eliminated high frequencies. Therefore, the total measurement time is

equal to the number of points per record multiplied by the time for

one point. For a 2048 point record that goes to 100 kHz, the total

measurement time is 8 ms, while for a 1024 point record that goes to

100 kHz, the total measurement time is 4 s.

When averaging is selected, a series of records, converted to

the frequency domain by FFTs, are averaged together. For example,

consider the case where two is selected as the number of averages.

Two time records are consecutively made, filtered and converted to the

frequency domain. These records are then added together and the sum

is divided by two to get the average which will be displayed. In

light of this information, the effective integration time for the HP

3562A will equal the number of averages multiplied by the individual

measurement time, 4 ms for a 50 to 100 kHz span for example.

4.1.5 Summary of the Limitations on the Accuracy of the System

The purpose of the preceding four sections was to identify pos-

sible limitations to the accuracy of this noise measurement system.

These limitations will be summarized in this section and some addi-

tional constraints will be discussed. All the limitations will be

ranked to show which affects the accuracy the most.

In most cases, the presence of noisy components and/or circuit

sections, would limit the accuracy of the measurements. In section

4.1.2, several noisy components and circuit sections were identified.
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However, in section 4.1.3, the evaluation of the calibration procedure

showed that the stationary noise produced by these components were

eliminated from the measured noise, through the calibration procedure.

Thus, noisy components are not a limitation to the accuracy of the

first system's measurements to the extent that the noise they produce

is predictable.

The specifications for the HP 3562A present several limitations

to the measurement accuracy. First, this analyzer may only measure

signals to 1.71 accuracy, if the signal falls between 24 dBV and -40

dBV, and 2.92Z accuracy, if the signal falls between -40 dBV and -51

dBV. These numbers are a worst case, so the actual accuracy should be

better, but there still will be some limit on the systems accuracy

produced by the HP 3562A accuracy. Second, the HP 3562A also has a

fixed sampling rate,of one sample every 3.91 ps and a fixed record

length of 1024 points for frequency spans less than 100 kHz. This is

the type of span that will be used in these measurements. Together

these quantities fix the time record length at 4 as. Third this time

can be extended by using the averaging capabilities of the HP 3562A,

but there is a limit to the number of averages that can be selected,

32,767. Fourth, the maximum bandwidth of the HP 3562A and thus of the

whole measurement system is restricted to 100 kHz. Recall that the

two variables in the accuracy equation are bandwidth and the time con-

stant, the specifications of the HP 3562A put a lower limit on the

accuracy of the system.

The bandwidth of the measurement system is further constrained

by the concerns for 1/f noise. To eliminate the 1/f noise from the

measurements, a low frequency cutoff must be set. Depending on the
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device, these cutoffs range from 5 kHz to 80 kHz. Considering that

measurements can only be made to 100 kHz, the bandwidth of the system

can range from 20 kHz to 95 kHz. This reduction in bandwidth will

further constrain the accuracy of the system.

This section has shown there are three limitations to the

accuracy of the system. These limitations are the accuracy of the HP

3562A, the bandwidth of the system and the fixed intergration time of

the HP 3562A. It is inappropriate to rank these three limitations

because they should all affect the accuracy equally.

4.1.6 The Accuracy of the First Measurement System

The accuracy for the first measurement system can be determined

both theoretically and experimentally. The theoretical prediction of

the accuracy may be obtained by using the accuracy equation discussed

in section 4.1.2.5. The experimental prediction may be obtained by

using a resistor, or several different resistors, as the DUT. The

noise of these resistor DUTs will be measured in the same manner as

any diode DUT. The thermal noise or even the resistance can be calcu-

lated from the measured noise and compared to the expected value for

the device. Thus, the accuracy of the system can be obtained. This

is the procedure W. Lukaszek used to determine the accuracy of this

system. (See section 2.5.2.) Both methods of obtaining the accuracy

will described in more detail in this section. A comparison between

the two methods will be made and the results will be presented.
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The accuracy of a noise measurement can be theoretically

predicted by the accuracy equation discussed in section 4.1.4, as long

as the sampling time and bandwidth are known. As shown in section

4.1.4, both these quantities are known for the first measurement

system. The only thing that must be kept in mind is that the band-

width of the measurements depend on the device being tested, due to

avoidance of 1/f noise. Variations in bandwidth will cause variations

in the accuracy.

All noise measurements made with the HP 3562A use frequency

spans less than the full 100 kHz span and with the low frequency

cutoff larger than 0 Hz. Therefore, all these measurements and have

1024 points in their time record. That means the sample length is 4

ms is the measurement goes to 100 kHz. The typical noise measurement

uses state 1 with the "Start w/cal" autosequence (see section 3.1.4).

That means ten, 1000 average measurements are taken and averaged

together, for a total of 10,000 averages per measurement. Thus the

sample time, the number of averages times the time per single measure-

ment, equals 40 s. Using this time along with the two most common

bandwidths, 20 kHz and 50 kHz, the accuracy of the noise measurements

are calculated below.

For the 20 kHz bandwidth

Jd~- 1
/(40s) (20 Z)

- 1.12e-3 * 100% - 0.112% (4.1.6.1)
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For the 50 kHz bandwidth

Jo - 1
!(40s)(50 kHz)

/'-- 7.07e-4 * 100% -0.071% (4.1.6.2)

The experimental determination of the accuracy is obtained by

making measurements with a set of resistors. Five resistor were

selected with the following values, 10 , 49 , 100 , 499 a, and 1

ki. These resistor DUTs are measured ust like they were a diode,

with the exception that the bias current does not have to be adjusted

to the breakdown value, as in the diode measurements. This measure-

ment procedure was described in detail in section 3.1.4. An addi-

tional measurement, of the temperature inside the box containing the

circuit, is also made. This measurement is achieved by measuring the

resistance of a thermistor located inside the box.

The value of the gain measured for the DUT is substituted into

equation 3.1.4.2 to find the admittance of the DUT. The resistance of

the DUT, Rd may be found by inverting the admittance. The total

resistance seen at the input of the amplification stages, Rt may be

found using equation 3.1.4.3.

The total resistance, Rt, calculated above, is substituted in

equation 3,1.4.3 to predict the noise at the output of the circuit.

In normal measurements, this noise would be subtracted from the output

noise to eliminate the excess noise in the system. This equation was
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determined assuming that the DUT was a resistor. In this measurement

the DUT is a resistor, so subtracting it from the output noise should

result in zero. It is not necessary to calculate the current spectral

density for this DUT to determine the accuracy, because accuracy can

be determined from the voltage spectral density just as easily. The

error of the measurement may be determined from how much the noise

measured at the output differs from the calculated output noise.

Accuracy is equal to the error. This may be illustrated by the fol-

lowing equations.

error - calculated - measured
measured (4.1.6.3)

error - e2 S
eo (4.1.6.4)

The measurement for the five resistors were made in the fre-

quency span of 80 kHz to 100 kHz. This was the frequency range that

the system was set up for and I did not wish to change it to make

resistance measurements. Making the measurements in this range, gives

an opportunity to study the effect of the correction-waveform on the

measurements, since it is needed in this frequency span. The calibra-

tion constants used with this span may be seen in Table 2. The exper-

imental data for the five resistors may be seen in Table 3. The cal-

culated values, of Gd, Rd. e 2, and the error are given in Table 4.
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Table 2 Calibration Constants

I Value

-6.80612e-5
3.88728e-4
3.19929e-2
2.69192e-18
1.63908e-20
1.45490e-23

Table 3 Resistor Measurement Data

Noise

(v 2/Hz)

2.84078e-18

3.51476e-18

4.37363e-18

1.17740e-17

2.09466e-17

n1 I Temp.

I (C)

9.923

49.841

100.015

497.378

999.850

27

26

24

27

27

Constant

Cr
G

Kr
A
B
C

Resistor

10 

49 

100 

499 n

1 ki

V
(mV)

3.054

15.324

30.721

152.753

3070.612

I
(mA)

0.307

0.307

0.307

0.307

0.307

C Gain

0.3163

1.5608

3.0624

12. 9999

22.0575
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Table 4 Calculated Values

Resistor

10 

49 n

100 

499 I

1 kn

Gd
n-i

1.007e-1

2.011e-2

1.006e-2

2.072e-3

1.062e-3

Rd
a

9.93

49.73

99.42

482.561

941.891

V/Hz

2.85545e-18

3.52626e-18

4.39415e-18[

1.17544e-171

2.09083e-171

error

+ 0.52

+ 0.33

+ 0.47

+ 0.17

+ 0.18

Looking at the error column in Table 4, it appears that we are

getting respectable accuracy for our measurement. Of course, we must

consider the fact that two of the resistors, the 100 and the 1 k,

are two of the resistors used to calculate the calibration constants.

Thus, the error for the noise measurements should be zero. The error

is not zero, but these calculation may test the stability of the

system instead of the accuracy, since the calibration was made several

months before these resistor measurements were made. However, the

measurements on the other three resistors should give some indication

of the accuracy of the system. The diode noise measurements, which we

are really concerned with, will be dealing with noise quantities

larger than ust thermal noise of resistors. The system noise will

affect these measurements less, so the accuracy of the measurements

should be better than the approximately 0.5 indicated by these

measurements.
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The theoretical and experimental prediction of the accuracy of

the noise measurements are really not much different form one another.

The major reason for the discrepancy is that in the theoretical cal-

culation, the accuracy _.f he HP 3562A was not considered. The speci-

fications for this device shows that it can only measure signals to a

certain degree of accuracy. Although the percentages given are worst

case values, one must assume that the HP 3562A reading will have some

limit on the accuracy. This limit will probably be higher that the

theoretical prediction of the noise.

The theoretical and experimental calculations of the accuracy of

the noise set the range for where the true accuracy of the system will

fall. Although the experimental prediction will be closer to the

actual value because they inherently include the HP 3562A accuracy

limit and follow all the measurement procedures. With all the data

and predictions in mind, I expect the true accuracy of the measurement

to be between about 0.5 X.

4.1.7 Recommendations for Improving Accuracy

Now that the limitations of the system have been identified and

the accuracy of the system determined, are there any ways to improve

the accuracy of the measurements? In this section an attempt will be

made to answer this question. The answer will take the form of recom-

mendations for improving the accuracy of the first system. Four

recommendations will be presented.
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First, some of the noisy components in the system could be

replaced, reducing the extra noise injected to the system. Although

the calibration procedure took care of this excess noise in the first

measurement system, better performance could be achieved if some of

the components were replaced with low noise components. Most of the

noisy components are resistors. Since the noise produced by these

devices is a thermal noise, the only way to reduce it is to operate at

a lower temperature.

Second, it may be desirable to retune the circuit, especially

the amplifier stages, to make the frequency response flat over dif-

ferent measurement bandwidths. This would eliminated the necessity of

the correction-waveform, since the noise measurements would not be

affected by the flat frequency response. So the noise measurement

should be cleaner and maybe more accurate. Of course, the correction-

waveform serves a dual role in the measurement system, correcting for

the non-flat nature of the response and dividing the measurement by

the gain of the circuit, so that the noise is referred back to the DUT

node. So some type of gain measurement would still be needed to refer

the signal back to the DUT node.

Third, it may be desirable to temperature control the entire

circuit portion of the system. Temperature controls should keep all

thermal noise sources, especially resistors, at a constant value and

make it easier to predict a value for them and eliminated the value

from all calculations, if the component is particularly troublesome.

Temperature control should also cut down on the drift of the circuit

components. That means there will be much more consistence in

measurements.
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Fourth, it may be desirable to take more averages in each

measurement so that the time constant could be made longer. There is

a limit to the number of averages one can select with the HP 3562A,

but this value can be extended by averaging several multi-averaged

measurements together. This is the method followed in the noise

measurements for this system, when a series of ten, 10,000 average

measurements were taken and averaged together resulting in a total of

1000,000 averages. This may not improve the accuracy that much

because the measurements are still constrained by the HP 3562A

measurement accuracy.
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4.2 The Second Measurement System

4.2.1 Accuracy of Commercial Equipment

The Fluke 8506A Thermal True RMS Multimeter will be used in this

system to make the noise, the bias current and bias voltage measure-

ments for the system. Knowing the accuracy to which the Fluke 8506A

can measure these quantities will be quite useful, especially in the

case of the AC noise measurements.

All noise measurements made with the Fluke 8506A will be made

with the high accuracy (hi accur) mode for AC voltage measurements.

(For a discussion of the three AC measurement modes of the Fluke 8506A

see section 3.2.3.) From the specifications of the Fluke 8506A, which

can be found in Appendix D, the accuracy of the these measurements are

dependent on the voltage and frequency range of the input signal. For

an AC voltage in the 100 mV range the accuracy is (0.02% of reading +

5 counts) for a frequency between 40 Hz and 20 kHz, (0.04% of reading

+ 5 counts) for a frequency between 20 kHz and 50 kHz and ±(0.2 of

reading + 0 counts) for a frequency between 50 kHz and 100 kHz. For

an AC signal in the 300 mV range to 10 V range the accuracy is

±(0.012% of reading + 0 counts) for a frequency between 40 Hz and 20

kHz, (0.04Z of reading + 0 counts) for a frequency between 20 kHz and

50 kHz and ±(0.2X + 0 counts) for a frequency between 50 kHz and 100

kHz. The term count was described in section 4.1.1.

The Fluke 8506A will also be used to make the bias voltage and

current measurements necessary for the correlation part of the

project. The current is measured across an 100 resistor, so both
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the current and voltage measurements are of DC voltages. According to

the specifications of the Fluke 8506A, it is capable of measuring

signals in the 100 mV range to (0.0018Z of reading + 15 counts) in

the norm (normal) mode and to (0.0010Z of reading + 8 counts) in the

avg (average) mode. In the 1 V range it is capable of measuring

signals to (0.0008X of reading + 7 counts) in the norm mode and to

±(0.0005Z of reading + 4 counts) in the avg mode. The bias voltage

and current measurements are usually made in the norm mode, therefore;

the accuracy is (0.0018X of reading + 15 counts) for the 100 mV

range and (0.0008X of reading + 7 counts) for the 1 V range.

The noise signal will be bandlimited by a filter with a bandpass

from 1 kHz and 30 kHz, this range falls into two of the frequency

ranges for the Fluke, so I will use the worst accuracy of the two

ranges in determining the accuracy of the measurements made with this

system. Thus the accuracy of the noise measurements will be ±(0.04Z

of reading + 0.5 V) if the voltage is in the 100 mV range and ±(0.04X

of reading) if the voltage is in the 300 mV to 10 V range. The

accuracy of the bias current and voltage measurements will be taken as

±(0.0018X of reading + 1.5 pV) in the 100 mV range and ±(0.0008 of

reading + 7 V) in the 1 V range.

4.2.2 Analysis of the Circuit Portion of the System

The circuit portion of the second measurements system consists

of the circuit of the first system, containing the bias circuit and

the amplification stages, and a filter. The circuit of the first
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system was modeled and analyzed earlier in this section, see section

4.1.2, and will not be discussed again. The filter will be modeled

and analyzed in this section, to identify any noisy components or sec-

tions.

The filter circuit actually contains two gain stages along with

the actual bandpass filter. To determine the noise of the whole

circuit, each stage could be modeled separately or the whole circuit

could be modeled. However, neither the gain stage nor the filter will

be modeled in this section, because the noise signal that will reach

them will be significantly larger than any noise they themselves can

produce. Tracing the signal through a model will ust confirm this.

Even though we know the filter will not add a significant amount

of noise to the signal, it still will add some amount. To determine

this noise contribution of the filter, we will actually measure the

noise of the filter using the HP 3562A. This filter noise measure-

ment, with the input of the filter shorted and the second gain stage

set at 6, may be seen in Figure 4.2.2.1. Looking at this noise spec-

trum one will see two peaks. These peaks are produced by two stages

of the filter. The peak at 1 kHz corresponds to stage 2 of the

filter, while the peak at 30 kHz corresponds to stage 1 of the filter.

recalling that the stages are implemented in reverse order, these are

the last two stages of the filter. The value of the noise may be

obtained from the integral of the spectral density. The result is

133.959 e-9 V2 . This value would be approximately nine times as large
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if the last gain stage was set for a gain of 18.

Since the filter will add some noise to the noise signal to be

measured by the Fluke 8506A, it will be a concern. To insure that the

calculated noise values contain only data for the DUT, all extra noise

contributed by the system will have to be removed. Thus the noise of

the filter will have to be eliminated from all measured noise

quantities. The way in which this is done is described in the next

section.

4.2.3 Analysis of the Calibration and the Measurement Procedures

The calibration and measurement procedures used with the second

measurement system were described in section 3.2.4. These procedures

can be discussed in light of the common noise measurement methods,

discussed in section 2.3. However, due to the similarities of the

procedures for this system and the first system, the discussion in

section 4.1.3 applies to the second system as well, and will not be

repeated here. This section will review the calibration and measure-

ments procedures for this second system and determine if they lead to

accurate measurements.

In the previous section, it was determined that the filter added

some additional noise to the system. From section 4.1.2, we know that

the bias/amplification circuit added some noise to the system. The

major purpose of the calibration procedure is to characterize the

noise of the system, so it can be eliminated from the measurements

made with the system.
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The calibration procedure for this system, like that of the

first system, makes gain and noise measurements on a set of calibra-

tion resistors. The data from these measurements are used to calcu-

late six calibration constants. Three of the constants, A, B, and C,

are used to calculate the noise of the system. The data used in cal-

culating these constants took into consideration the noise and gain of

both the bias/amplification circuit and the filter. So, when this

calculated noise is subtracted from the measured noise, the system

noise is eliminated from this measured noise and the calibration pro-

cedure achieves its goal.

The measurement procedure for this system will be appropriate

for the system if, it coordinates with the calibration procedure and

it makes all measurements that are required for the project. The

first criterion is met by the procedure, since the noise and gain

measurements are made in the same manner as those in the calibration

procedure and appropriate calibration constants are used with the

data. The second criterion is met because bias voltage, bias current,

noise and gain from CAL input to the OUTPUT terminal are all measured.

These quantities are needed directly or indirectly in the project to

determine correlation between noise and radiation characteristics of

the DUT.
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4.2.4 Discussion of the Effect of Sampling Time and Averaging on
Accuracy

In section 4.1.4, it was shown that sampling time and averaging

effect the accuracy of noise measurements. Equations 4.1.4.1 and

4.1.4.n, describe the relationship between the noise equivalent band-

width of a system,the time constant of the meter used to measure the

noise,and measurement accuracy. The time constant for our measure-

ments is replaced by total sampling time per measurement. The effec-

tive time constant equals the number of samples to be averaged multi-

plied by the time it takes for one sample.

To calculate the accuracy of the second system, we first must

know which accuracy equation to use. The Fluke 8506A, like the HP

3562A, is an averaging meter. Therefore, equation 4.1.4.2, will be

used to calculate the accuracy.

To calculate the accuracy of the second measurement system, the

noise equivalent bandwidth, the time per sample of the Fluke 8506A and

the number of averages selected must be known. The noise equivalent

bandwidth of the second system is set by the bandwidth of the filter.

The filter ranges from 1 kHz to 30 kHz, for a bandwidth of 29 kHz.

Thus the noise equivalent bandwidth of the system is 29 kHz. The

Fluke 8506A will be used to make noise measurements. These measure-

ment will be conducted in the AC high accuracy (hi accur) mode, where

the signal being measured is sampled for 3.5 s. So the time constant

for one measurement is 3.5 s. The number of measurements to be aver-

aged is selected by the operator in the sys22.bas program, see Appen-
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dix C, and can range from 1 to 1000. The effective time constant for

the system can range from 3.5 s to 3500 s, depending on the number of

measurements to be averaged that is selected.

4.2.5 Summary of the Limitations on the Accuracy of the System

In the preceding four aections, possible limitations to the

accuracy of noise measurements make with this system were identified.

These limitations will be summarized and additional constraints to the

accuracy will be discussed in the section. The limitations will be

ranked to show which affects the accuracy of the noise the most.

One of the major limitations to the accuracy of the second

measurement system is the frequency range of the filter. The filter

had cutoff frequencies at 1 kHz and 30 kHz, for a bandwidth of 29 kHz.

The real problem with the filter is its low cutoff frequency of 1 kHz.

Most of the devices being measured by this system still have 1/f noise

at 1 kHz, so the filter allows the 1/f noise to reach the meter

reading the noise. That means that the large 1/f noise is averaged

with the smaller broadband noise. The value of the noise measured by

the meter will be dominated by the 1/f noise and not reflect the

average value of the broadband noise, which is desired.

Even if the filter's frequency range did not allow 1/f noise

into the measurement, the bandwidth of the filter would still limit

the accuracy of the measurements. The bandwidth of the filter sets

the noise equivalent bandwidth of the system as a whole. This

quantity is one of the variables in the accuracy equation. If this

quantity is fixed, one of the means of improving accuracy is lost.
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Another concern involving the filter used in this system is its

stability. Drift in the components used to build the filter is the

cause of instability. This drift may cause changes in the bandwidth

and in the gain of the filter. These changes could easily cause

inaccuracies in the measurements because the calibration constants and

gain that was measured before are not valid now.

In section 4.2.2, it was determined that the filter contributed

some noise to the system. The noisy components and sections were

those found in the circuit portion of this system also add to the

system noise. Section 4.2.3 showed that the calibration procedure

adequately accounts for those noise sources. The noise contributed by

these sources is subtracted from all measurements though the predicted

output noise term. So, the noisy components and system sections are

not a limitation to the accuracy of the system, if the noise is sta-

tionary.

The specifications for the Fluke 8506A present several limita-

tions to the accuracy of this system. First, the Fluke 8506A can only

measure the noise signal to (0.04 of reading + 0.5 pV), if the

voltage is in the 100 mV range, and (0.04 of reading), if the

voltage is in the 300 mV to 10 V range. These are worst case errors,

so actually measurements will have less error. The Fluke 8506A has a

fixed sampling time of 3.5 s in the high accuracy mode. This time can

be extended by averaging a number of readings. This can be easily

done by using the sys22.bas program to control the measurements. The

total sampling time will still be fixed at some level. Since the time

is the other variable that constrains the accuracy, the accuracy of

this system is definitely limited.
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After considering all these limitations, have found that some

are more important than others. The most important limitation is the

low frequency cutoff of the bandpass filter. This frequency is low

enough that 1/f noise is entering into the measurements and causing

errors. If this problem was eliminated by changing the frequency

range of the filter, the aoise equivalent bandwidth and effective time

constant of the system, the stability of the system and the accuracy

of the Fluke 8506A measurements would all limit the accuracy.

4.2.6 The Accuracy of the Second Measurement System

The accuracy of the second measurement system could be

determined both theoretically and experimentally. For this system,

the accuracy will only be determined theoretically. The experimental

determination will not be feasible for this system until the filter is

changed and 1/f noise is eliminated from the measurements. Even with

the 1/f noise concerns taken care of, the experimental determination

may not be a true test of the accuracy for several reasons. Thermal

noise of a calibration resistor is smaller than the noise of the diode

that the system will be usually used to measure. The calibration con-

stants are determined using some of the resistors used to determine

the accuracy, so the accuracy experiment may be more of a test of

stability of the system than the actual accuracy. However, the 49 n

and 499 n resistors were not used in the calibration and may give some

indication of the accuracy.
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A theoretical prediction of the noise may be obtained by using

the accuracy equation 4.1.4.2. The time constant of the meter and the

noise equivalent bandwidth of the system are the two quantities needed

to calculate the accuracy of measurements. As shown in section 4.2.4,

both these quantities are known for this system. The noise

measurements made with the system, average 100 Fluke 8506A

measurements of the noise. So the effective time constant is 350 s.

The bandwidth of the second system is dependent on the bandwidth of

the filter and is 29 kHz. Using these quantities in this equation

4.1.4.2, the accuracy of the system is

A- 1_ _

J(350 s)(29 kHz)

J- 3.14 e-4 * 100 - 0.032% (4.1.6.1)

The actual accuracy of the system will probably be larger than

0.032% because the measurement accuracy of the Fluke 8506A is not

considered. If a comparison is make between this accuracy and that of

the first system, one will note that this theoretical accuracy is

better than that found for the first system. The Fluke 8506A can also

measure an AC signal more accurately than the HP 3562A. In light of

these facts, I estimate that the second system will have the same if

not slightly better accuracy than the first system. The estimated

accuracy of this system then should be between one-half to one

percent.
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4.2.7 Recommendations for Improving Accuracy

The limitations to the accuracy of this second system, along

with the accuracy of the second system have been determined in the

preceding sections. This section will look at ways some of these

limitations may be overcome or minimized.

The first way the accuracy of the second system can be improved

is to change the filter used with the system. The filter bandwidth

should be moved to higher frequencies. The lower cutoff frequency

must be moved from 1 kHz to a higher frequency, so that the 1/f noise

of the devices will be eliminated from the signal being measured. The

bandwidth of the old filter is reasonable at 29 kHz, so a change is

not necessary. However, changing the bandwidth slightly, as long as

amplifiers operate well in the range, will not affect the noise

measurement accuracy. It may be desirable to change the gain of the

passband of the filter to unity. The old filter attenuates signals so

that extra gain stages are needed to boost the signal back up to a

reasonable level.

Actually, at this moment a new filter, is being built for this

system. It is a fifth order Chebyshev bandpass filter with frequency

cutoffs at 50 kHz and 80 kHz, for a bandwidth of 30 kHz. The gain of

the passband is approximately unity, but with 0.3 dB ripple. The

gain stages used with the old filter will have to be changed to

account for the change in the gain of the filter.

Two of the recommendations mentioned n section 4.1.7 could also

apply to the second system, since this system utilizes a portion of

the first system. First, noisy components could be replaced in both
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the bias/amplification circuit and the filter. Second, temperature

control of the circuit and filter should fix thermal noise sources at

constant values and cut down on drift of the components. This sugges-

tion is particularly good for improving the stability of the filter

and keeping the gain and bandwidth of it constant.
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Section 5 GENERALIZED DISCUSSION OF THE ACCURACY OF NOISE
MEASUREMENTS

5.1 Common Limitations to Accuracy and Ways to Improve Accuracy

In the analysis for the two noise measurement systems, many

limitations to accuracy were identified. Several of these limitations

would be encountered in any noise measurement system. These include

1/f noise, bandlimiting, sampling time, and added noise from com-

ponents and equipment. A designer of a noise measurement system

should be aware of these limits so he will know what to look at if

problems arise and where care must be taken in designing the system.

In the last section, several recommendations were made for

improving the accuracy of the two systems analyzed in this thesis.

These recommendations address the specific limits of these systems,

but the recommendations could be applied to another system if similar

limits exist. Temperature control, additional averaging to extend

sampling time and some expansion of the noise equivalent bandwidth

will be the most effective of the recommendations mentioned.

5.2 Estimate of How Accurately Noise May Be Measured

After evaluating the accuracy of the two noise measurements

systems, I have concluded that one may not make general statements

about the accuracy of noise measurements. While there are common

limits to accuracy, shared by most noise measurement systems, there

are still many other limits to accuracy that are inherent to a partic-
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ular system. The way a system makes a noise measurement, the way it

is calibrated, the type of equipment used in the system, are just

several things which are unique to system and which may limit the

accuracy of that particular system.

Considering the number of limitations to the accuracy of

measurements that are specific to a measurement system, it is

impossible to predict a numerical answer for the best accuracy that

can be achieved. The best answer that may be given, is that one may

expect to achieve noise measurements, that are accurate to several

percent, as long as certain steps are taken to achieve good accuracy.

These step include designing the system to avoid or minimize common

limits to accuracy, identifying limitations, specific to a measurement

system, which degrade the accuracy and minimizing these limitations,

that are specific to a measurement system, as much as possible.

This thesis has described two noise measurement systems where

steps like these were taken and where reasonable accuracy was

achieved. Anyone trying to make accurate noise measurements could use

similar measurement systems and/or follow the recommendations made in

this thesis for improving measurement accuracy.
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Section 6 CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY

6.1 Conclusions

This thesis has carefully analyzed two different systems for

measuring noise in voltage reference diodes. The limitations to the

accuracy of each of these systems were identified and recommendations

were made for improving the accuracy.

The accuracy of the two systems was found theoretically and the

accuracy of the first system was also found experimentally. The

accuracy of the first system, which used the HP 3562A Dynamic Signal

Analyzer to measure the noise, was determined to be about 0.5%. The

accuracy of the second system which used the Fluke 8506A Thermal RMS

Multimeter to measure the noise, was determined to be 0.5% or better.

The accuracy of this second system is not as well known as the first,

because measurements to predict accuracy could not be conducted

because the filter used in the system allowed 1/f noise into the

signal to be measured. Measurements of this signal would be suspect,

because of the inclusion of 1/f noise.

Some measurements on commercial diodes were conducted with the

first system to determine whether there is correlation between their

noise and radiation characteristics. The noise measurements were

accurate enough to distinguish from one another. No conclusions about

the correlation with radiation characteristics were possible, because

of problems with voltage measurements due to temperature deviations.

Another set of diodes is about to be examined. Much more care will be
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taken with these measurements, including temperature control of the

diodes. Hopefully correlation will be established from the data from

these measurements.

It appears from these experiments that the first system has suf-

ficient accuracy for the purposes of this project. The second system

has the potential to have better accuracy than the first system, so it

too will have sufficient accuracy for this project.

Also included in this thesis, was a more generalized discussion

of noise measurements. Common limitations and possible ways to

improve accuracy were presented. The accuracy of an arbitrary noise

measurements could not be estimated, because accuracy is dependent

upon the system being used to measure the noise. If one is careful in

developing the system and making measurements, they should expect

accuracy of several percent.

6.2 Recommendations for Further Study

An immediate continuation of the work begun by this thesis is a

further study of the second measurement system. Several factors, like

the Fluke 8506A having better accuracy than the HP 3562A and the

longer effective time constant for the second system, make me believe

that the second system will be more accurate. Experiments, even a

rough one which measures the noise of resistors, must be conducted to

see if this assumption is correct. These tests cannot be conducted

until the new filter is completed. This new filter is necessary to

eliminate 1/f noise from the noise signal to be measured.
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Further exploration of the topic of accurate noise measurements

could take the form of developing more accurate noise measurement

systems. This topic could be further divided into systems to measure

noise in diodes and systems to measure noise in other devices. Some

of the recommendations made in this thesis for improving accuracy

could be followed to develop a more accurate measurement system for

voltage reference diodes. The technology discussed in this thesis

could possibly be modified to measure other types of devices.

Transistors are the likely choice for extension of this existing

measurements system. Further work would be necessary for building a

system to measure noise in ICs. Measurements systems for ICs would

probably be device orientated, considering the wide variety of ICs.

The two systems discussed in this system were analog in nature,

with the exception of the meters used to measure the noise. It is

possible to build a digital system to measure noise. Actually the

system would be a mixed analog and digital system, since you still

need analog circuitry for biasing the DUT, amplification of the noise

signal and anti-alias filtering. According to a paper by D. Rod White

[15], the anti-aliasing filter used with this system can be quite

simple, even single pole, because aliasing does not bias noise power

measurements, it ust increases the variance of the measurements.

After the signal passes through the anti-aliasing filter, it is

sampled by an A/D. Then it can be processed by a digital signal pro-

cessing circuit of your design. For examples of such DSP systems, see

the paper by W. Rod White [15]. The major limitations of this new
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system will be the gain of the noise amplifier, the accuracy of the

A/D and bandwidth limitations caused by limitations to the computa-

tional power of the computer.
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Appendix A. GLOSSARY OF NOISE RELATED TERMS

1/f NOISE OR LOW FREQUENCY NOISE

A type of noise whose spectral density increases without limit

as frequency decreases. The causes of 1/f noise are matters of

controversy, one cause ol' 1/f noise in semiconductor devices is

traceable to properties of the surface of the material.

The generation and recombination of carriers in surface energy

states and the density of surface states are important factors.

[2]

NOISE

"Any unwanted disturbance that obscures or interferes with a

desired signal." [2:7] But for out purposes, noise is a random

signal that we believe can provide insight into the operation of

reference diodes.

NOISE BANDWIDTH or NOISE EQUIVALENT BANDWIDTH

"The frequency span of a rectangularly shaped power gain curve

equal in area to the area of the actual power gain versus

frequency curve." [2:302] (See Figure A.1.)

Power
gain

Frequency -- Figure A. 1 Noise Equivalent Bandwidth
(linear cale)
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Noise bandwidth in equation form is represented in the following

manner:

Af - G(f) df (A.f1)
Go J-

G(f) - power gain as a function of frequency

Go - peak power gain

Alternatively, noise bandwidth may be represented in terms of

voltage again squared instead of power gain.

Af Av2(f)] df (A.2)

Av(f) - voltage gain as a function of frequency

Avo - midband voltage gain

NOISE RATIO

A normalization of the diode noise current spectral density,

Sid, with respect to the noise current spectral density of a

saturated themionic diode conducting a DC current equal to the

p-n junction reverse current. [1] In equation form noise ratio

is:

NR - Sid
2qIr

Sid - noise current spectral density

I r - diode reverse curre-t

(A.3)

SHOT NOISE

Noise found in tubes, transistors, and diodes caused by the fact

that current flowing in this devices is not smooth and
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continuous but rather it is the sum of pulses of current caused

by the flow of carriers, each carrying one electronic charge.

[2] Shot noise is described by the foll-aiing equation:

Ish - !2qIrAf (A.4)

q -electronic charge 1.6 e-19

I r - reverse current

Af - noise bandwidth in Hz

SPECTRAL DENSITY

"Term used to describe the noise content in a unit of

bandwidth." [2]

THERMAL NOISE

"Noise caused by the random thermally excited vibration of.

the charge carriers in a conductor." [2] Thermal rms

(root-mean-square) noise voltage has the following value:

En - 4kTRAf (A.5)

k - Boltzmann's constant - 1.38e-23 W-sec/'K

T - temperature of conductor in degrees Kelvin ('K)

R - resistance or the real part of the conductor's
impedance

Thermal rms current voltage has the following value:

In - 4kTaf (A.6)
R

where k, T and R are the same as (A.5)
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Appendix B. NOISE MODELS

A resistor can exhibit both thermal and 1/f noise.

However, the noise model for the resistor only shows the

thermal noise. If one is working at very low frequencies,

1/f noise must be added to the model. The model for a

resistor consists of a noiseless resistor, with the same

value as the resistor being modeled, in series with a

thermal voltage noise generator (See Figure B.1 (a)) or

in parallel with a thermal current noise generator (See

Figure B.1 (b)).

R
P It 4KT t

R

4kT RA

(a) (D)

resistor noise model resistor noise model
with noise voltage with noise current

generator generator

Source: 12:161

Figure B. 1 Resistor Noise Models
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Diode: A diode can exhibit both shot and 1/f noise. As with the

resistor, the noise model does not contain 1/f noise. So, if

one is working at low frequencies, 1/f noise must be added to

the model. There are two diode noise models, one for

forward-biased diodes and one for reverse-biased diodes.

The forward-biased diode noise model may be seen in Figure B.2

(a). The model consists of a shot noise generator in parallel

with a resistor. This resistor is sometimes referred to as

the Schockley emitter resistance. It is equal to kT/qIe and

is the reciprocal of the conductance obtained by

differentiating the diode equation

I e I(exp(qVBE/kT) - 1) (B.1)

Ie - diode current

Io - saturated value of reverse current

VBE - potential across the p-n unction of the diode
with respect to VBE.

ISh 2Qie&T
re'- kT

qle
(noiseless)

Source [2:22)

Figure B.2 (a) Noise Model For A Forward-Biased Diode
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The reverse-biased diode noise model may be seen in Figure B.2

(b). This model consists of a shot noise generator and a

measured resistanceRd. The current used to calculate this

shot oise is the reverse bias current of the diode.

ISh - V2qCri
Rd

(noiseless)

Source 12221

Figure B.2 (b) Noise odel For A Reverse-Biased Diode
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Amplifier: The amplifier model is usually used to model the noise of

an operational amplifier, but it could be used for other

types of amplifiers. The model for the amplifier consists

of a current noise generator, a voltage noise generator

and a noise free amplifier with a gain equal to the gain

of the amplifier being modeled. This model may be seen in

Figure B.3. This model has some additional parts: Rs ,

the impedance of the input to the amplifier; Et, the total

noise of the circuitry that comes before the amplifier;

and V, he input of the amplifier. The actual noise

model is the section to the right of the open circles.

The input impedance of the amplifier, Zi, is also included

in the model and is used to determine the system gain.

The value of the current and voltage generators are

usually given in the specification sheets for the

operational amplifier. If such data is not included,

there are methods and test circuits to measure the value

of these generators. Using this model the equivalent

input noise, Eni 2, of the amplifier is equal to:

,i2 Et2 + 2 + In2Rs2 (B.2)

The equivalent output noise, Eno2 is equal to:

Eno2 _- Ei2Kt 2 (B.3)

where Kt -AvZi/(R s + Z), the system gain.
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Source: [2.30]

Figure B.3 Amplifier Noise Model
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Appendix C. COMPUTER PROGRAMS

This appendix contains the computer programs that were used with

the two noise measurement systems described in this thesis. The pro-

grams appear in the same order that they are mentioned in the thesis.
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Cal.bas

1 'The following program was written by Sumner Brown and calculates

the calibration constants to be used in the analysis of data

obtained by the noise measurement system.

2 'The first three constants, Kr, Cr, and G are related by the

following equation:

Gi * Cr - GAINi * G + Kr + G * Cr - Gi * GAINi. Where Gi

is the admittance of the DUT and bias resistors and GAINi is the

measured gain of the system, for i - 1, 2, and 3.

3 'The second set of constants, A, B, and C are related by the

following equation: eo^2 - A + B + RTi + C * (RTi)^2. Where eo is

the noise measured at the output of the system but referred to the

DUT node and RTi is the equivalent single resistance in the DUT

position, for i - 1, 2, and 3.

4 'For both sets of constants, three sets of data are used to form

three equations. These three equations are solved simultaneously

using Cramer's Rule for the constants.

5 '

99 'Line 100 initializes all arrays to be used in this program.

Arrays R#, GN#, and ESI# are used to store the input data. All

other arrays are intermediate arrays used in calculations.

100 DIM Ll#(2), L2#(2), L3j#(2), R#(2), GN#(2), ES#(2), RI#(2)

298 '

299 'Lines 300-380 ask for three sets of input data.

300 INPUT "RI";R#(0)
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310 INPUT "GAIN 1";GN#(O)

320 INPUT NOISE 1";ES#(O)

330 INPUT "R2";R#(1)

340 INPUT "GAIN 2";GN#(1)

350 INPUT "NOISE 2;ES#(1)

360 INPUT "R3";R#(2)

370 INPUT "GAIN 3;GN#(2)

380 INPUT "NOISE 3";ES#(2)

498 '

499 'Lines 500-660 calculate Kr, Cr, and G.

500 FOR J-0 TO 2: RI#(J)-1/R#(J): NEXT

550 FOR J-0 TO 2: L1I(J)-RI#(J): L2#(J)-GN#(J): L3#(J)-l: NEXT

560 GOSUB 1000

570 D#-DET#

580 FOR J-0 TO 2: L1#(J)-RI#(J)*GN#(J): NEXT

590 GOSUB 1000

600 CRI-DET#/D#

610 FOR J-0 TO 2: L2#(J)-Ll#(J): Ll#(J)-RI#(J): NEXT

620 GOSUB 1000

630 G#--DETJ#/D#

640 FOR J-0 TO 2: L3#(J)-L2#(J): L2#(J)-GNII(J): NEXT

650 GOSUB 1000

660 KR#-DET#/D# - G#*KR#

698 '

699 'Lines 700-810 calculate A, B, and C.

700 FOR J-0 TO 2: Ll#(J)-l: L2(J)-(GN#(J)-CR#)/KR#:
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L3# (J)-L2#(J)*L2 (J) :N EXT

710 GOSUB 1000

720 D#-DET#

730 FOR J-0 TO 2: L1(J)-ES#(J): NEXT

740 GOSUB 1000

750 A#-DET#/D#

760 FOR J-0 TO 2: Ll#(J)-l: L2#(J)-ES#(J): NEXT

770 GOSUB 1000

780 B#-DET#/D#

790 FOR J-0 TO 2: L2#(J)-(GN#(J)-CR#)/KR#: L3#(J)-ES#(J): NEXT

798 '

799 'The values of the constants are returned.

800 GOSUB 1000

810 C#-DET#/D#

900 PRINT "CR -" CR#

910 PRINT G -"G#

920 PRINT "KR -" KR#

930 PRINT "A -" A#

940 PRINT 'B -" B#

950 PRINT "C -" C

990 END

998 '

999 'The following subroutine calculates the determinant of a three by

three matrix

1000 DET#-Ll#(O)*(L2#(1)*L3#(2)-L2#(2)*L3#(1))-L2#(0)*(Ll#(l)*L3#(2)

-L3#(1)*Ll(2) )+L3#(0)*(Ll#(l)*L2#(2)-Ll#(2)*L2#(1))
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1010 RETURN
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Sys22.bas

10 'SYS22.BAS

20 'JUDY FURLONG

30 'DECEMBER 20, 1989

40 REM- THIS PROGRAM TAKES NOISE HEASUREMENTS FROM THE FLUKE 8506A

50 CLS

60 KEY OFF

70 DIM VRMS(1000)

80 N-O:SUM - 0

90 GOSUB 2000 'Initialization of GRIB Board

100 GOSUB 2500 'Triggering

110 GOSUB 3000 'Initialization of Fluke

120 FOR T- 1 TO 3000: NEXT T

130 CLS

140 GOSUB 3500 'Initial Input

150 GOSUB 4000 'Taking a Reading

160 GOSUB 6500 'PRINT AVE AND STD

180 END

200 '

2000 'Initialization of the GRIB Board

2010 DEF SEG -&HCOOO

2020 REM-IBM Address - 3, Controller in Charge - 1, Number of GRIB

Boards - 1, Base Address - &H300

2030 CMD$ - "SYSCON MAD - 3, CIC - 1, NOB - 1, BAO - &H300"

2040 IE488 - 0
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2050 A - 0: FLG - 0: BRDX - 0: RD$ - SPACE$ (20)

2060 CALL IE488 (CMD$, A%, FLGX, BRDX)

2070 IF NOT FLGZ THEN 2090

2080 PRINT MetroByte Error:'; HEX$ (FLGZ): END

2090 CLS

2100 PRINT SYSTEM GRIB SETUP COMPLETED"

2110 FOR T - 1 TO 1000: NEXT T

2120 CLS

2130 RETURN

2140 '

2500 'Triggering

2510 CMD$ - REMOTE 17": TRG$ - "TRIGGER 17"

2520 CALL IE488 (CMD$, A, FLG%, BRDX)

2530 CMD$ - "TIMEOUT 15'

2540 CALL IE488 (CMD$, A, FLGX, BRDX)

2550 FOR T- 1 TO 500:NEXT T

2560 RETURN

2570

3000 'Initialization of Fluke

3010 FLKIN$ - ENTER 17[$]": FLKOUT$ - "OUTPUT 17[$+]": MSF$ - "?":

RDF$ - SPACE$(20)

3020 X$ - "

3030 CALL E488 (FUKOUT$, X$, FLG%, BRDX)

3040 FOR I - 1 TO 3000: NEXT I: BEEP

3050 X$ "DOLOBOVA2R," 'DO LO BO - DISPLAY ON, PANEL ON, ASCII OUTPUT

VA2 - AC HIGH ACCURACY VOLTAGE, AUTO RANGE
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3060 CALL IE488 (FLKOUT$, X$, FLGX, BRDX)

3070 IF FLGX THEN PRINT "Fluke Error, MetroByte Code: ";HEX$(FLGX):

GOTO 3020 ELSE PRINT "Fluke DVM Initialized."

3080 RETURN

3090

3500 'Initial Input

3520 INPUT Please enter today's date. (In mo/day/yr form): , DA$:

PRINT

3530 INPUT "Please enter the DUT's ID number. (8 chars. max):",

DUTID$: PRINT

3540 INPUT Please enter a filename. (8 chars. max):" , FLNAME$: PRINT

3550 ON ERROR GOTO 3580: OPEN FLNAME$+ ".Al" FOR INPUT AS #1

3560 CLOSE #1

3570 BEEP: PRINT "Do you want to overwrite the file "; FLNAME$+ ".Al";

? (0/1):" ;: INPUT "", XX: IF XX THEN KILL FLNAME$+

".Al":PRINT:GOTO 3590 ELSE PRINT: GOTO 3540

3580 RESUME 3590

3590 OPEN FLNAME$+ ".AI" FOR APPEND AS #1:PRINT #1, "*":PRINT #1, " N

VRMS "

3600 CLOSE #1

3610 INPUT 'Please enter the number of readings (1000 max):" ,K:PRINT

3620 CLS

3630 RETURN

3640 '

4000 'TAKING A READING

4010 CLS
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4020 PRINT DA$; SPC(61); "ID "; DUTID

4030 PRINT:PRINT: PRINT N VRHS":PRINT

4040 LPRINT DA$; SPC(61); "ID ; DUTID$

4050 LPRINT:LPRINT:LPRINT N VRMS": LPRINT

4060 CALL IE488 (TRG$, X, FLG, BRD%)

4070 FOR L - 1 TO 8000:NEXT L

4080 IF N < K THEN N - N + 1 ELSE RETURN

4090 CALL E488 (TRG$, XI, FLGX, BRDX)

4100 FOR M - 1 TO 4000:NEXT n

4110 CALL IE488 (FLKIN$, RDF$, FLG%, BRDX)

4120 CALL IE488 (FLKIN$, RDF$, FLG%, BRDX)

4130 VRMS(N) - VAL(RDF$)

4140 GOSUB 4500 'SAVING DATA

4150 GOSUB 5000 'SCREEN PRINTOUT

4155 GOSUB 6000 'AVE

4160 GOTO 4080

4170 '

4500 'Saving Data

4510 F$ -" ##.t###t#AA^^^ "

4520 OPEN FNAME$+ .A1' FOR APPEND AS #1

4530 PRINT #1, N;:PRINT #1, USING F$; VRMS(N)

4550 CLOSE 1

4560 RETURN

4570 '

5000 'SCREEN PRINTOUT

5060 PRINT N;:PRINT USING F$; VRMS(N)
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5090 'Output on Printer

5140 LPRINT N; :LPRINT USING F$; VRMS(N)

5170 RETURN

5180 '

6000 'AVE

6010 SUM - SUM + VRMS(N)

6020 RETURN

6030 '

6500 'PRINT AVE AND STD

6510 AVE - SUM / K

6520 PRINT "AVERAGE: ";:PRINT USING F$; AVE

6525 LPRINT "AVERAGE: ";:LPRINT USING F$; AVE

6530 T- 0

6540 FOR Z - 1 TO K

6550 T - T + (VRMS(Z) - AVE)^2

6560 NEXT Z

6570 B - K - 1

6580 D - T / B

6590 SIGMA - SQR(D)

6600 PRINT "STANDARD DEVIATION: ;:PRINT USING F$; SIGMA

6605 LPRINT STANDARD DEVIATION: ";:LPRINT USING F$; SIGMA

6610 RETURN
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Appendix D. HP 3562A AND FLUKE 8506A SPECIFICATIONS

This appendix contains the specifications for the Hewlett-

Packard 3562A Dynamic Signal Analyzer. These specifications were

found in the Operating Manual 10] for this piece of equipment. Also

included in this appendix is the specifications for the Fluke 8506A

Thermal True iS Multimeter. These specification were found in the

Instruction Manual [8] for this piece of equipment.
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Appendix C

A SPECIFICATIONS

Specifications describe the instrument's warranted perform-
ance. Supplemental characteristics are intended to provide
information useful in applying the instrument by giving typi-
cal, but non-warranted, performance specifications Supple-
mental characteristics are denoted as 'typical,"' 'nominal,'
or 'approximately.'

Frequency

Measurement Range: 64 ;Hz to 100 kHz, both channels,
single- or dual-channel operation
Accuracy: ± 0.004% of frequency reading
Resolution: Span/800, both channels, single- or dual-
channel operation, Linear Resolution mode
Spans: Baseband Zoom
# of spans 66 65
min span 10.24 mHz 20.48 mHz
max span 1 00 kHz 100 kHz
time record (Sec) 800/span 800/span

Window Functions: Flat Top, Hann, Uniform,
nential and User-Defined

Force, Expo-

Window Parameters: Flat Top Hann Uniform

Noise EquivBW 0.478 0.188 0.125
(/ of span)

3 dBBW 0.45 0.185 0.125
(o/ of span)

Shape factor 26 91 716
(60 dB BW/3 dB BW)

Typical Real Time Bandwidths:
Single-channel, single display
Single-channel, Fast Averaging
Dual-channel, single display
Dual-channel, Fast Averaging
Throughput to CS/80 disc

Singlechannel ·
Dual-channel

Amplitude
Accuracy: Defined as Full Scale Accuracy at any of the 801
calculated frequency points. Overall accuracy is the sum of
absolute accuracy, window flatness and noise level.
Absolute Accuracy:
Single Channel (Channel 1 or Channel 2)
± 0.15 dB ± 0.015% of input range (+ 27 dBV to - 40 dBV,
input connections as specified in Cases 1 and 2 below)
± 0.25 dB ± 0.025% of input ra'nge (- 41 dBV to - 51 dBV,
input connections as specified in Cases 1 and 2 below)
DC Response: Auto-Cal and Auto-Zero on

Input Range (dBV rms) dc Level
+27 to - 35 >30 dB below full scale
- 36 to - 51 > 20 dB below ful scale

Frequency Response Channel Match:
± 0.1 dB, ± 0.5 degree (input connections as specified in
Cases 1 and 2 below)
Input Connections:
Cases 1 and 2 are the recommended input connections.
For these cases, the amplitude accuracy specified above is
applicable.

Case 1

v v Input ChannelL ''a, 2 BNC Connector

6) Input Signal

2.5 kHz
10 kHz
2 kHz
5 kHz

Case 210 kHz
5 kHz

vN-~·~ A Input Channel

% Input Signal

Common
M) ode
Signal 
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Specifications

Cases 3 and 4 are input connections which degrade ampli-
tude accuracy. For these cases, the amplitude accuracy speci-
fied above must be modified with the accuracy adders stated
below.

Case 3

Input Channel
BNC ConreiorCornmm

Mode
Signal

Case 4

Input Signal A

Inpu Channel
Common t < ) BNC Connector
Mode 

gnal Input Signal B 

Accuracy Adder: Single-channel, inputs connected as
shown in Cases 3 and 4 above.
Add 0.35 dB and ± 4.0 degrees to the absolute accuracy.
Accuracy Adder: Dual-channel measurements
Add ± 0.35 dB and ± 4.0 degrees once for each input con-
nected as shown in Cases 3 and 4 above.

Window Flatness:
Flat Top: + O, - 0.01 dB
Hann: + 0, - 1.5 dB

Uniform: + 0, - 4.0

Phase
Accuracy: Sinqle channel, input connections as specified
above in Cases 1 and 2, referenced to trigger point.
< 10 kHz ± 2.5 degrees
10 kHz to 100 kHz ± 12.0 degrees

lnputs
Input Impedance: 1 MDO 5% shunted by < 100 pF
Input Coupling: The inputs may be ac or dc coupled; ac
robloff is <3 dB at 1 Hz
Crosstalk: - 140 dB (50 source, 50 input termination,
input connectors shielded)
Common Mode Rejection:

0 Hz to 66 Hz 80 dB
66 Hz to 500 Hz 65 dB

Common Mode Voltage: dc to 500 Hz

Input Range (dBV rms) Maximum (ac + dc)

+ 27 to - 12 ± 42.0 Vpeak
- 13 to - 51 ± 18.0 Vpeak'

*For the - 43 to - 51 dBV input ranges, common mode signal
levels cannot exceed ± 18 Vpeak or (Input Range) + (Common
Mode Rejection), whichever is the lesser level.

Common Mode Voltage: 500 Hz to 100 kHz. The ac part of
the signal is limited to 42 Vpeak or (input Range) + (10 dB),
whichever is the lesser level.

Common Mode Distortion: For the levels specified, distor-
tion of common mode signals will be less than the level of the
rejected common mode signal.
External Trigger Input Impedance: Typically 50 k: ±: 5%
External Sampling Input: TTL compatible input for signals
<256 kHz( nominal maximum sample rate).
External Reference Input:
Input Frequencies: 1, 2, 5 or 10 MHz ± 0.01o/
Amplitude Range: 0 dBm to + 20 dBm (50 0)

Noise Floor: Flat top window, 50 source impedance,
- 51 dBV range
20 Hz to 1 kHz (1 kHz span) < - 126 dBV (-134 dBV//Hz)
1 kHz to 100 kHz (100 kHz span) < - 116 dBV
(-144 dBV/,/Hz)
Dynamic Range: All distortion (intermodulation and har-
monic), spurious and alias products _ 80 dB below full scale
input range (16 averages) < 1 OKO termination
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Specifications

Trigger

Trigger Modes: Free Run, Input Channel 1, Input Channel 2,
Source and External Trigger. Free Run applies to all Measure-
ment Modes; Input Channel 1, Input Channel 2, Source and
External Trigger apply to the Linear Resolution, Time Capture
and Time Throughput measurement modes
Trigger Conditions:
Free Run: A new measurement is initiated by the completion of
the previous measurement.

Input: A new measurement is initiated when the input signal to
either Channel 1 or Channel 2 meets the specified trigger con-
ditions. Trigger Level range is + 100%of Full Scale Input
Range; Trigger Level is user-selected in steps of (Input Range
in volts)/128.

Source: Measurements are synchronized with the periodic sig-
nal types (burst random, sine chirp and burst chirp).
External: A new measurement is initiated by a signal applied
to the front panel External Trigger inout. Trigger Level range is
: 10 Vpeak; Trigger Level is user selected in 80 mV steps.
Trigger Delay:
Pre-Trigger: The measurement can be based on data from 1 to
4096 samples (1/2048 to 2 time records) prior to trigger condi-
tions being met. Reso'lution is 1 sample (1/2048 of a time
record).
Post-Trigger: The measurement is initiated from 1 to 65,536
samples (1/2048 to 32 time records) after the trigger conditions
are met. Resolution is 1 sample (1/2048 of a time record).

General

Specifications apply when AUTO CAL is enabled, or
within 5C and 2 hrs of last internal calibration (except for
transient environmental changes).
Ambient temperature: 00 to 550 C.
Relative Humidity: 95% at 400 C.
Altitude: 4,572 m (15,000 ft)

Storage:
Temperature: - 40 ° to + 750 C.
Altitude: < 15,240m (50,000 ft)
Power:
115 VAC + 10% - 25%, 48 to 440 Hz
230 VAC + 10% - 25%, 48to66 Hz
450 VA maximum
Weight:
26 kg (56 lbs) net
35 kg (77 Ibs) shipping
Dimensions:
222 mm (8.75 in) high
426 mm (16.75 in) wide
578 mm (22.75 in) deep
HP-IB:
Implementation of IEEE Std 488-1978
SH1 AH1 T5 TEO L4 LEO SR1 RL1 PPO DC1 DT1 CO
Supports the 91XX and 794X families of HP disc drives as
well as Hewlett-Packard Graphics Language (HP-GL)
digital plotters.

Source
Band limited, band translated random noise, burst random,
sine chirp, burst chirp, as well as fixed sine and swept sine
signals are available from the front panel Source output. DC
Offset is also user-selectable.

Output Impedance: 50 (nominal)
Output Level: ; : 10 Vpeak (ac + dc) into a > 10 k,
< 1000 pF load. Maximum current = 50 mA.
AC Level: ±5 Vpeak(> 10), < 1000 pF load)
DC Offset: 10 Vpeak in 100 mV steps. Residual offset at 0 V
offset 10 mV.
% In-Band Energy: (1 kHz span, 5 kHz center frequency)
Random Noise: 700/%
Sine Chirp: 850

Accuracy and Purity: Fixed or Swept Sine
Flatness: 1 dB (0 to 65 kHz),

+1, -1.5 dB (65 kHz to 100 kHz)
Distortion: (including subharmonics)
dc to 10 kHz - 60 dB
10 kHz to 100 kHz - 40 dB

I'l .



8506A

Section 1

Introduction & Specifications

1-1. INTRODUCTION
1-2. This eight-section manual provides comprehensive
information for installing, operating and maintaining
your Fluke digital mult-ireter. Complete descriptions and
instructions are included for the instrument mainframe,
for all modules necessary in making thermal true-rms and
dc volts measurements, and for any optional modules
ordered with the instrument. Appropriate sectionalized
information is included with any optional modules
subsequently ordered and may be inserted in Section 6.

1-3. DESCRIPTION
1-4. The multimeter features 6-1/2 digit resolution, full
annunciation and simplicity of operation. Modular
construction, microprocessor control, and a bus structure
provide excellent flexibility. Memory programming from
the front panel (or through a remote interface) controls all
measurement parameters, mathematical operations and
special operations. The standard hardware configuration
allows for measurement of thermal true-rms volts on
eight ranges and dc volts in five ranges. An averaging
mode is available to automatically optimize display
resolution and stability for each range in dc volts,
resistance, and dc current functions. Extended resolution
is also available in the ac volts function. Optional
modules are available for dc current (five ranges), and
resistance (eight ranges) in two-wire or four-wire
arrangements.

1-S. Thermal True-RMS Conversion
1-6. The thermal true-rms feature allows the operator to
measure the true-rms value of an ac signal at accuracies of
up to .012% with a reading rate of one every six seconds.
This response time compares favorably with that of
existing thermal transfer standards which can take up to
five minutes to complete a measurement.

1-7. Modular Construction
1-8. Considerable versatility is realized through unique
modular construction. All active components are
contained in modules which plug into a mainframe

motherboard. This module-to-motherboard mating,
combined with bus architecture and microprocessor
control, yields ease of option selection.

1-9. Microprocessor Control
1-10. All modules function under direct control of a
microprocessor based controller. Each module is
addressed by the controller as virtual memory. Scaling
factors and offset values can be applied separately, stored
in memory, and automatically used as factors in all
subsequent readings. Digital filtering utilizes averaged
samples for each reading.

1-11. Software Calibration
1-12. The 8506A features microprocessor-controlled
calibration of all ranges and functions. Any range can be
calibrated using a reference input of any known value
from 60% of range to full scale. Software calibration can
be performed using front-panel or remote control,
allowing recertification without opening the case or
removing the multimeter from the system.

1-13. Recirculating Remainder A/D Conversion
1-14. The multimeter adapts Fluke's patented
recirculating remainder (R2) A/D conversion technique
to microprocessor control. This combination provides
fast, accurate, linear measurements and long-term
stability.

1-15. Options and Accessories
1-16. Remote interfaces, a dc current converter, and an
ohms converter are among the options and accessories
available for use with the multimeter. Refer to Tables 1-1
and 1-2 for complete listings. Any one of the three
Remote Interface modules (Option 05, 06, or 07) may be
installed at one time.

1-17. SPECIFICATIONS
1-18. Mainframe specifications for ac volts, dcvolts and
de ratio measurement capability are presented inTable I -3
Optional function specifications are supplied with the
respective option modules and included in Section 6.

1-1
14q.
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Table 1-1. Options

OPTION
OPTION NAME NOTES
NO.

02A Ohms Converter 1

03 Current Shunts 1

05 IEEE Standard 488-1975 Interface 2

06 Bit Serial Asynchronous Interface 2

07 Parallel Interface 2

1) Either Option 02A or Option 03 can
be installed at one time.

2) Only one of Options 05, 06, and 07
can be installed at any time.

Table 1-2. Accessories

MODEL OR
PART NO.

M04-205-600 5,-inch Rack Adapter

M00-260-610 18-inch Rack Slides

M00-280-610 24-inch Rack Slides

80K-6 High Voltage Probe

80K-40 High Voltage Probe

83RF High Frequency Probe

85RF High Frequency Probe

Y8021 IEEE Std. Cable, 1 Meter Length

Y8022 IEEE Std. Cable, 2 Meter Length

Y8023 IEEE Std. Cable, 4 Meter Length

629170 TRMS Extender Card

MIS-7190K' Static Controller

MIS-7013K ° Bus Interconnect and Monitor

'For use during service or repair.

Table 1-3. Specifications

GENERAL SPECIFICATIONS
Dimensions ............................

Weight
BASIC ..............................
FULLY LOADED .....................

Operating Power
VOLTAGE ...........................
BASIC INSTRUMENT POWER .......
FULLY LOADED POWER ............
FREQUENCY ........................

Warm-nnUp ..............................
Shock and Vibration ...................

Temperature Range
OPERATING ........................
NON-OPERATING ...................

HumidIty Range
0°C TO 18°C ........................
18 C TO 40° C .......................
40°C TO 50 C .......................

Maximum Terminal Voltage
LO TO GUARD ......................
GUARD TO CHASSIS ................
HI SENSE TO HI SOURCE ...........
LO SENSE TO LO SOURCE ..........
HI SENSE TO LO SENSE ............
HI SOURCE TO LO SOURCE ........

I So.
1-2

10.8 cm High x 43.2 cm Wide x 42.5 cm Long
(4.25 in High x 17 in Wide x 16.75 in Long)(See Figure 1-1)

10 kg (22 Ibs)
12 kg (26 Ibs)

1OOV ac, 120V ac, 220V ac, or 240V ac (10%)
12 watts

24 watts
47 Hz to 63 Hz (400 Hz available on request)
2 hours to rated accuracy
Meets requirements of MIL-T-28800 for type III, class 5,
style E equipment.

0°C to 50 °C
-40°C to 70°C

80% RH

75% RH

45% RH

127V rms
500V rms
127V rms
127V rms
1000V rms or 1200V dc
280V rms
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Table 1-3. SpecIfcatlons (cont)

AC VOLTAGE
Input Characteristics

FULL SCALE RESOLUTION
RAN(GE 5S' DIGITS 6'6 DIGITS' 5 DIGITSMPEDANCE

100 mV 125.000 mV - 1 UV 1 MQ

300 mV 400.000 mV - 1 PV
1V 1.25000V 1 rV 10oV 11%
3V 4.00000V 1 V 10 uV
10V 12.5000V 10 V 100 uV Shunted by

30V 40.0000V 10 ,uV 100 V
100V 125.000V 100 uV 1 mV <180 pF

500 V 600.000V 100 .uV 1 mV

'In AVG operating mode.

Accuracy
HIGH ACCURACY MODE ±(% of Reading + Number of Counts)'

24 HOUR: 230 C 1°C 2

FREQUENCY IN HERTZ

RANGE 10 TO 40 TO 20k TO 50k TO 100k TO 200k TO 500k TO
40' 20k 50k 100k 200k 500k iM

100 mV 0.08 +0 0.02 + 5 0.04 + 5 0.2 + 0 0.6 + 0 1.5 + 0 3.5 + 0

300 mV to
10V 0.08 + 0 0.012 + 0 0.04 + 0 0.2 + 0 0.5 + 0 1.5 + 0 3.5 + 0

30V 0.08 + 0 0.012 + 0 0.04 + 0 0.2 + 0 0.5 + 0 3.5 + 0 12 + 0

100V 0.08 + 0 0.012 + 0 0.04 + 0 0.2 + 0 1.0 + 0 3.5 + 0 -

500V3 0.08 + 0 0.012+0 0.04 + 0 0.2+0 - -

90 DAY: 23°C ±5 0 C

FREQUENCY IN HERTZ

RANGE 10 TO 40 TO 20k TO 50k TO 100k TO 200k TO 500k TO

40' 20k 50k 100k 200k 500k 1M

100 mV 0.08 + 0 0.026 + 5 0.06 + 0 0.2 + 0 0.6 + 0 1.5 + 0 3.5 + 0

300 mV to
10V 0.08 + 0 0.016 + 0 0.06 + 0 0.2 + 90.5 + 0 1.5 + 0 3.5 + 0

30V 0.08 + 0 0.016 + 0 0.06 + 0 0.2 + 0 0.5 + 0 3.5 + 0 12 + 0

100V 0.08 + 0 0.016 + 0 0.06 + 0 0.2 + 0 1.0 + 0 3.5+0 -

500V3 0 08 +0 0016 + 0 0.06 + 0 0.2+0 - - -

'With slow filter

15. 
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Table 1-3. Specifications (cont)

AC VOLTAGE (cont)
Input Characteristics (cont)

>90 DAY: 230 C +5°C

ADD TO THE 90 DAY SPECIFICATION PER MONTH THE FOLLOWING % OF READING

FREQUENCY IN HERTZ

ALL 10 TO 40 TO 20k TO 50k TO 100k TO 200k TO 500k TO
RANGES 40 20k 50k 100k 200k 500k 1M

0.008 0.001 0.0025 0.012 0.021 0.06 0.11

NOTES:

AC coupled, 5'h digits, input level >0.25 x full scale. For 6hdigits multiply Number of Counts by 10.
For input levels between 0.1 x and 0.25 x full scale, add 5 counts for the 100 mV, V, 10V, and 100V
ranges, add 15 counts for the 300 mV, 3V, 30V ranges, and add 25 counts for the 500V range.

2 Relative to calibration standards, within 1 hour of dc zero.

3 Add 0.02 x (Input voltage / 600) 2 % of Reading to the specification.

ENHANCED MODE: Add the following (% of Reading + Number of Counts) to the High Accuracy Mode
Specifications.

NORMAL MODE: Add the following % of Reading to the High Accuracy Mode Specification.

AC+DC COUPLED MODES: ±(1.1 times the ac specification for the appropriate mode + the result (Adder)
from the following table).

RANGE ADDER

100 mV to 1V ±(150 pV x (dc volts / total rms volts))
3V and 10V ±(1 mV x (dc volts / total rms volts))

30V and 100V ±(10 mV x (dc volts / total rms volts))
500V ±(50 mV x (dc volts / total rms volts))

-4 15.,

TIME SINCE FIRST READING
RANGE

<5 MINUTES . <30 MINUTES

100 mV, 1V, tOV, 100V 0 + 0 0.003 + 4

300 mV, 3V, 30V 0 + 0 0.003 + 4

500V 0 + 0 0.003 + 6

*AC-coupled, 5's digits, temperature change <1° C, input level >0.25 x full scale. For input levels between
0.1x and 0.25x full scale, multiply % of Reading adder by 10.

SEGMENT OF SCALE j 24 HOUR, 90 DAY >90 DAY ADD PER MONTH

0.25x to 1x full scale 0.4 0.044
0.1x to 0.25x full scale 0.6 0.055

l
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Table 1-3. Specifications (cont)

Operating Characterlstics
STABILITY: ±(1% of Reading + Number of Counts)'

CREST FACTOR ....................

3 dB BANDWIDTH ...................

Up to 8:1 at full 90 day or greater) accuracy for input signals with
peaks less than two times full scale, and highest frequency
components within the 3 dB bandwidth. Up to 4:1 for signals with
peaks less than four times full scale, with an addition of 0.03 to the % of
Reading.

3 MHz for the 100 mV range and 10 MHz for the 300 mV, 1 V, 3V and 10V
ranges (typical).

MAXIMUM INPUT VOLTAGE ......... ±600V rms or dc, 840V peak, or 1x 107 volts-hertz product.

TEMPERATURE COEFFICIENT ...... 0°C to 1alC and 28°C to 50°C
1/10 of 90 day Specification per °C

COMMON MODE REJECTION ....... >120 dB, dc to 60 hertz, with 100n in series with either lead.

SETTLING TIME
High Accuracy Mode ...............

Enhanced Mode ..................

Normal Mode ......................

Sample time = 3.5 seconds
Hold time = 2.5 seconds
Measurement time = 6 seconds

If the state of tha instrument is unknown, two complete measurement
times will be required to guarantee a correct reading. Use of the
external trigger mode will always allow a 6 second measurement time.

The first reading requires the same time as the High Accuracy Mode.
Subsequent readings occur every 500 milliseconds. If the input
changes 1% the analog settling time to 90 Day mid-band accuracy is
1.5 seconds.

Settling times for large changes are non-linear. Zero to Full Scale
changes require 2.0 seconds to settle to 90 Day, mid-band
specifications. Full scale to 1/10th full scale changes require 3.0
seconds to settle to 1/10th full scale, mid-band; 90 day specifications.
Small changes (<1%) settle to mid-band specifications in <1.5
seconds.

153. 1-5~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

RANGE 24 HOUR 90 DAY

100 mV, 1V, 10V, 100V 0.0025 + 1 0.004 + 1

300 mV, 3V, 30V 0.0025 + 3 0.004 + 4

500V 0.0025 + 5 0.004 + 6

*High Accuracy Mode, ac coupled, 5½ digits, input level >0.25x full scale, 40 Hz to 20 kHz, temperature change
<1 C. For 6'h digits, multiply Number of Counts by 10. For input levels between 0.1x and 0.25x full scale, add to
the Number of Counts specification 2 counts for the 100 mV, 1V, 10V, and 100V ranges, 6 counts for the 300 mV,
3V, and 30V ranges, and 10 counts for the 500V range.

153 . 1-5
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Table 1-3. Specifications (cont)

AC VOLTAGE (cont)
Operating Characteristics (cont)

AUTORANGE POINTS

RANGE UPRANGE DOWNRANGE

100 mV 125.000 mV None
300 mV 400.000 mV 110 mV

1V 1 .25000V 0.352V
3V 4.00000V 1.1V
10V 12.5000V 3.52V
30V 40.0000V 11V

100V 125.000V 35.2V
500V None 110V

OPERATING RANGE

DC VOLTAGE
Input Characterlstlcs

RESOLUTION
FULL SCALE INPUT

RANGE 6h DIGITS 7'2 6'h RESISTANCE
DIGITS' DIGITS

100 mV 200.0000 mV -- 100 nV >10,000MO
1V 2.000000V - I pV >10,000MM

10V 20.00000V 1 pV 10 V >10,000Mn
100V 128.0000V 10- 0 pV 10Mr

1000V 1200.000V - 1 mV 10MQ

'7h-digit resolution: In AVG operating mode.

IS, .1-6

I
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Table 1-3. Specificatlons (cont)

Accuracy

DC VOLTS: ±(% of Reading + Number of Counts)

24-HOUR 90-DAY
23oC =1C' 230C :5oC

RANGE
OPERATING MODE OPERATING MODE

NORM AVG NORM AVG3

100 mV 0.0018 + 15 0.0010 + 8 0.0025 + 40 0.0020 + 8
lV 0.0008 + 7 0.0005 + 4 0.0015 + 8 0.0012 6

10V 0.0006 or 6' 0.0005 or 502' 0.0010 + 8 0.0008 + 6(
100V 0.0010 + 6 0.0005 + 5 0.0018 + 8 0.0015 + 

1000V 0.0008 + 6 0.000 5 + o 0.0018 + 8 0.0015 + 6
'Whichever is greater

>90-Day: 230C ±5°C

Add to the 90-day specification per month the following % of Reading and Number of Counts.

OPERATING MODE

RANGE NORM AVG3

100 mV 0.00017 + 5.6 0.0001 + 0.1
IV 0.0001 + 0.1 0.0001 + 0.1

10V 0.0001 + 0.1 0.00008 + 12
100V 0.00013 + 0.1 0.0001 + 0.1
1000V 0.00013 + 0.1 0.0001 + 0.1

NOTES:

'Relative to calibration standards, 4-hour warm-up, within 1 hour of dc zero. After software calibration,
add the following to the 24 hour accuracy specification:

TIME SINCE INTERNAL NUMBER OF
(HARDWARE) CALIBRATION COUNTS'

<30 Days 0
<90 Days 1
<1 Year 2
>1 Year 3

'With 6½/6-digit display. For 7'h-digits. multiply Number of Counts by 10.

,,'h-digit mode of operation.

3After 4-hour warm-up, within 1 hour of dc zero.

)5.-. 
1-7
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Table 1-3. Specifications (cont)

Operating Characteristics
TEMPERATURE COEFFICIENT: ±(% of Reading + Number of Counts)/°C

RANGE 0°C TO 180 C AND 280 C TO 50°C

100 mV 0.0003 + 5
1V 0.0003 + 1

10V 0.0002 + 0.5'
100V 0.0003 + 1
1000V 0.0003 + 0.5

*Multiply Number of Counts by 10 for AVG operating mode (7Y-digit).

INPUT BIAS CURRENT

AT TIME OF ADJUSTMENT 1-YEAR 230 C 10°C TEMPERATURE COEFFICIENT

<±5 pA <±30 pA <± pA/°C

ZERO STABILITY .................... Less than 5 pV for 90 days after a 4-hour warm-up. Front panel ZERO
push button stores a zero correction factor for each range.

MAXIMUM INPUT VOLTAGE ......... ±1200V dc or 1000V rms ac to 60 Hz, or 1400V peak above 60 Hz may
be applied continuously to any dc range without permanent damage.
Maximum common mode rate of voltage rise is 1000V /p/sec.

ANALOG SETTLING TIME

FILTER TO 0.01% OF TO 0.001% OF

FILTER MODE COMMAND STEP CHANGE STEP CHANGE

Bypassed Fl1 2 ms 20 ms
Fast F0 or F3 40 ms 50 ms

Slow F or F2 400 ms 500 ms

DIGITIZING TIME
Line Synchronous ................. For 20 to 2 '7 samples per reading digitizing time is from 4 ms to 9

minutes 6 seconds using a 60 Hz ac line with times increasing 20%
using a 50 Hz ac line. Selectable in 18 binary steps.

Line Asynchronous ................ 2 ms. (In 3 byte binary mode with dc zero, offset, limits and calibration
factors turned off.)

NOISE REJECTION
Normal Mode Rejection

LINE FILTER 4 SAMPLES/ 32 SAMPLES/ 128 SAMPLES/
FREQUENCY MODE READING READING READING

50 hertz Fast 60 dB 70 dB 75 dB
50 hertz Slow 85 dB 90 dB 95 dB
60 hertz Fast 60 dB 70 dB 75 dB
60 hertz Slow 90 dB 95 dB 100 dB

Common Mode Rejection .......... 160 dB at 60 hertz with 1 k in series with either lead, and 4 samples or
more per reading. Greater than or equal to 100 dB with less than 4
samples per reading.

- i 5 (, .
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Table 1-3. SpecfIcatlons (cont)

DC RATIO
Accuracy

I EXTERNAL REFERENCE VOLTAGE' ACCURACY'
_ _ . _ _ -~~- 

±20V to ±40V ±(A + B + 0.001%)

±Vmin to ±20V ±(A + B + (0.02% / IVr., I))

'Maximum External Reference Voltage = ±40V between External Reference HI and LO terminals,
providing neither terminal is greater than ±20V relative to the Sense LO or Ohms Guard2 terminals.

Operating Characterlstcs
INPUT IMPEDANCE ................. External Reference HI or LO >10,000 Mn relative to Ohms Guard 2 or

Sense LO.

BIAS CURRENT ..................... External Reference Hi or LO relative to Ohms Guard2 or Sense LO <5
nA.

SOURCE IMPEDANCE ............... Resistive Unbalance (External Reference HI to LO) <4 k. Total
Resistance to Sense LO from either External Reference HI or LO <20
kf.

MAXIMUM OVERLOAD VOLTAGE ±1 80V dc or peak ac (relative to Ohms Guard2 or Sense LO). 3cOV dc
or peak ac (External Reference HI to LO).

NOISE REJECTION

INPUT
TERMINALS NORMAL MODE COMMON MODE

Sense Same as dc volts Same as dc volts

External line frequency and line frequency and
Reference 2x line frequency 2x line frequency

>100 dB >75 dB

RESPONSE TIME
Analog Settling Time

FILTER MODE FILTER TO 0.01% OF TO 0.001% OF
COMMAND STEP CHANGE STEP CHANGE

Bypassed F1 2 ms 20 ms
Fast FO0 or F3 40 ms 50 ms
Slow F or F2 400 ms 500 ms

NOTES: (DC Ratio)

'A = 10V dc range accuracy for the appropriate period of time.

B = Input signal function and range accuracy for the appropriate period of time.

Vmrn = Minimum allowable External Reference Voltage = ±0.0001V, or Vnpn /10' (whichever is greater).
IVr, = Absolute value of the External Reference Voltage

'Ohms Guard is available through the rear input.

j�-7 
1-9
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Table 1-3. Specifications (cont)

DC RATIO (cont)
Operating Characteristics (cont)

Digitizing Time ................... For 20 to 2'7 samples per reading digitizing time is from 196 ms to9
minutes 6 seconds using a 60 Hz ac line with times increasing 20%
using a 50 Hz ac line. Selectable in 18 binary steps.

MAXIMUM RATIO DISPLAY .......... +1.00000 E±9

EXTERNAL TRIGGER INPUT

Polarity ...............................

High Level .............................
Low Level .............................
Pulse Width ...........................
Connector .............................
Maximum Input ........................
Maximum Shell to Ground Voltage .....

May be wired internally for either rising or falling edge. Factory wired
for falling edge.
+4.3V (minimum)
+0.7V (maximum)
10 ps (minimum)
BNC with the outer shell at interface common
±30V
±30V

SCAN ADVANCE OUTPUT

Polarity ...............................
High Level .............................
Low Level .............................
Pulse Width ...........................
Connector .............................
Maximum Shell to Ground Voltage ......

Positive
>+4V (TTL High)
<+0.7V (TTL Low)
3 ps (minimum)
BNC with the outer shell at interface common
±30V

Figure 1-1. Dimension Drawing

.|~~~ ~An~~~ I t5 .

43.18 cm
i-r - -(17.0 in)

F'--" r
13.25 cm " '

(5.219 in) 5.72 cm 10.8 cm
(225 in (4.25 in)

3.77 cm FRONT VIEW '
(1.484 in) 1.27 cm

(.5 in)

I ~ cL~c--------- H41.66 cm (16.4 in)
__ ~46.23 cm (18.2 in)

RIGHT SIDE VIEW
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Appendix E. COMPONENT SPECIFICATIONS

This appendix contains the specification sheets for selected

components used in the circuit portion of the two systems. In partic-

ular, they show the noise specifications for the components. The

noise data is necessary in developing the noise model and in calculat-

ing the noise in the circuits.

159.
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National
Semiconductor

Voltage References

LM1991LM299/LM399'Precision Reference

The LM199/LM299/LM399 re precision, temperature-
stabilized monolithic zeners offering temperature
coefficients a factor of ten better than high Quality
reference zeners. Constructed on single monolithic
chip is a temperature stabilizer circuit and an active
reference ztner. The active circuitry reduces the dynamic
impedance of the zener to about 0.5R and allows the
zener to operate over 0.5 mA to 10 mA current range
with essentially no change in voltage or temperature
coefficient. Further a new subsurface zener structure
gives low noise and excellent long term stability com-
pared to ordinary monolithic teners. The package is
supplied with a thermal shield to minimize heater power
and improve temperature regulation.

The LM199 series references are exceptionally easy to
use and free of the problems that are often experienced
with ordinary eners. There is virtually no hysteresis in
reference voltage with temperature ccling. Also. the
LM199 s free of voltage shifts due to stress on the leads.
Finally. since the unit is temperature stabilized. warm up
tirre is fast.

The LM199 cn he used in almost any application in
place of ordinary eners with improved performance.
Some deal applications are analog to dgital converters.

calibration standards. precision voltage or current sources
or precision power supplies. Further in many cases the
LM199 can replace references in existing equipment
with a minimum of wiring changes.

The LM199 series devices are packaged in a standard
hermetic TO-46 package inside a thermal shield. The
LM199 is rated for operation from -5C to +25°C
while the LM299 is rated for operation from -25'C to
*85'C and the LM399 is rated from OC to e70C.

Features
· Guaranteed 0.0001 %/C temperature coefficient
I Low dynamic impedance - 0.5f
* Initial tolerance on breakdown voltage - 2%
C Sharp breakdown at 400pA
a Wide operating current - 500pA to 10 mA
* Wide supply range for temperature stabilizer

* Guaranteed low noise
· Low power for stabilization - 300 mW at 25-C
· Long term stability - 20 ppm
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Maximum Ratings

abllztf Voltage
own Current

bstratle Voltage VlfAs INote 1)

perature Range

ature Range
jre (Soldering. 10 seconds)

Electrical naracerlslucs 0ro4el~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

40V
20 mA

I mA
40

-0. IV

-55°C to 125'C
-25°C tO 85CS

O"C to 70'C
-55C to 1SO 0C

300'C

2)

PARAME TER

prrse Breakdown Voltage

PR e Brekdown Vodlag

O"WV Wth Current

iret Dynamic Impedance

vere Breakdown
Te~talUre Coeffic,ent

Lng T m Stabltv

Tersl&ure Stablzer
htgy Current

tanperlture Stabller

Wm-Up Tsme to 0.05%

Wbibl Turn-on Current

CONDITIONS

0.5 mA < 1 10 mA

05 mA< I< 10mA

1 · ! mA

-'5C < T C ssC
85=C TA < 125C LM199

-25C < TA < 85=C
O*C T < 70C

LM299
LM399

LOHi< 10kHz

L~ 2'<cT <S T. °
No0te .31 I, 1 A *O1,

A · -55'C

(Note 31

V · 30V. T. * 25'C

9 L Vs 5 40. T · 25 C. (Note 31

1I 1: The iubstrate I eleclCtriftly ConnecteK d o the nat.ve terminl of the ieffr&tue Stabsltile

NminIt Of the referecme s 40V "me positve or 0.1V mo e negaiw then the ubstrmte.
The vOItage that can be appOed to ether

2. Thetr ep4Cacilatori' apply fO 30V pl tie p toAute stm let e ure d SS C L 5 t C TA * 125 C fo she LM199. -23 C < TA < '85 C
it LM299 nd C < TAc 70 C o, the LM399
be 3: This initial current can be reduced by adding We wpropriat resittor ad capacor to the hearter circuit. See e perlorrnat charteritlc
VIW S detrmine vlum.
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OP 27
LOW- NOISE PRECISION

OPERATIONAL AMPLIFIER

FEATURES
* Low Nose ................ On.... 0. 1Hz to 10Hz)

.......................................... 3nV/JRiiz
* Low Drift .................................. 0.22rC

High Speed ........................ 2 .SV/ Slew Rate
....................... ....... 8MHt Gain Bandwidth

* Low Vos ....................................... 10V
* Excellent CMRR ............... 126dB at Vc of + 11V
* High Open-Loop Gain ..................... 1.8 Millon
o Fits 725, OP-07, OP-OS, ADS10, AD517, 5534A sockets

ORDERING INFORMATIONt

PACKAGE

t A. 2iC HERMETIC HERMETIC PLASTIC OPERATING
VO MAX To-29 DIP DIP TEMPERATURE

(Vy) -PI-N -PIN SI-PIN LCC RANGE

25 OP2AJ' OPnAZ' - - MIL
25 OP7EJ OP27EZ OP27EP - INDCOM
so OP27B' OP27BZ' - OP27BRC,'3 MIlL
60 OPVZFJ OP27FZ OP27FP - INOCOM

100 OP2CJ OP27CZ - - MIL
MC0 OP2CGJ OP27GZ OP27GP - INDiCOM

'For de,ces processecd n total cornplance to MIL-STD-883. Doa W3 aer
part number Consult Ifctory tor 883 data shet

t Burn-ln is avlaable on commercial and ndustrial temperature range parls n
Cerldp. plastC dip and TO-can packages For oroering nmlormaton. e 18
Oat Book. Section 2.

GENERAL DESCRIPTION
The OP-27 precision operational amplifier combines the low
offset and drift of the OP-07 with both high-speed and low-
noise. Offsets down to 25,V and drift of 0.6pV/ C maximum
make the OP-27 ideal for precision instrumentation applica-
tions. Exceptionally low noise. ,n = 3.SnV/V/ii- ,. at 10Hz. a
low 1/f noise comrner frequency of 2.7Hz. and high gain 11.8
million). allow accurate high-gain amplification of low-level
signals. A gain-bandwidth product of 8MHz and a 2.8V/sec
slew rate provides excellent dynamic accuracy in high-speed
data-acquisition systems.

A low input bias current of 10nA is achieved by use of a
blas-current-cancellation circuit. Over the military temper.
ature range, this circuit typically holds Is and Iosto +±20
and 1SnA respectively.

The output stage has good load driving capability. A guaru,-
teed swing of + 10V into 600n end low output distortion make
the OP-27 an excellent choice for professional audio applica-
tions.

PSRR and CMRR exceed 120dB. These characteristics,
coupled with long-term drift of 0.2uV/month, allow the circuit
designer to achieve performance levels previously attained
only by discrete designs.

PIN CONNECTIONS

IAL I
. I

4 V- CAaldt

TO-"
(J-Suffix)

.C.

V.

NC.
1otOUT

%xS.

'l#v 1 . I . l v.

$-PIN HERMETIC DIP
(Z-Suff)

EPOXY MINI-DIP
(P-Suffls)

OP-27BRC/883
LCC PACKAGE

(RC-Sufflx)

SIMPLIFIED SCHEMATIC

-140 8/87, Rev. Al

1A.

I (R?,
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[~~)OP-2? LOW-NOISE PRECISION OPERATIONAL AMPLIFIER

0 r¢ost. high-volume production of OP-27 i achieved by
an on-chip zener-zap trimming network. This reliable

va stable offset trimming scheme has proved its effective-
00ovr many years of production history.

I OP-27 provides excellent performance in low-noise
,igaccuracY amplification of low-level signals. Applica-

pW Include stable Integrators, precision summing ampli-
kr precision voltage-threshold detectors, comparators

profesional audio circuits such as tape-head and
~,rophone preamplifiers.

TOP.27 is direct replacement for725. OP-06. OP-07 and
Op-,05 amplifiers; 741 types may be directly replaced by

Fmoving the 741's nulling potentiometer.

ABSOLUTE MAXIMUM RATINGS (Note 4)
Supply Voltage ............................. ±22V
nternal Power Dissipation (Note 1) ........... 500mW
Input Voltage (Note 3) ....................... 22V
Outut Short-Circuit Duration ................. Indefinite
Diffarential Input Voltage (Note 2) . ............... +0.7V
Dtiffrentisa Input Current (Note 2) ............... 25nmA
Storage Temperature Range ........... -65 C to + 150' C

Operating Temperature Range
OP-27A. OP-27B, OP-27C (J, Z, RC) .... -55"C to + 125 C
OP-27E. OP-27F, OP-27G (J. Z) ....... -25°C to +85'C
OP-27E. OP-27F. OP-27G iP) ............ OC to +70°C

Lead Temperature Range {Soldering, 60 sec) ...... 300 C
DICE Junction Temperature ........... -65 C to + 150' C

NOTES:
1. S tbl for maximum ambient temperature rating anG derating factor.

MAXIMUM AMBIENT DERAlTE ABOVE
TEMPERATURE MAXIMUM AMBIENT

FACKAGE TYPE FOR RATING TEMPERATURE

TO-9 J! 8OC 7.mW/C
S-Pn Hermetic DiP iZ 75'C 6.7mW/C

S !n Plastic DIP ,P 62C S.SmW'C

LCC 90C .4W/*C

2 The OP-27s inputs are protected by back-to-back diodes Currant imiting
reasstors are not used in oider to achieve low no,ise I11 dftentl npu
voltage excs ± 0.V. the nput current should be imited to 25rnA.

3. For supply voltages ess than 22V. the absolute maximum tnpul voltlag is
equal to th supply voltg,

4. Absolute maximum ratlngs apply o both DICE arnd packaged parts, unless
otherwise noted

ELECTRICAL CHARACTERISTICS at Vs = +15V. TA = 25'-C. unless otherwise noted....... o;, _/ .. .....
OP-27A/E OP-27B/F OP-27C/G

AETEX R SYMBOL CONITIONS iin TYP MAX MIN TYP MAX MIN TYP IMAX UNITS

O l 01tr Volta Note . - 10 25 - 20 s0 - 30 t100 V

LMwTerm Val OI' Ntes L SeiiVCV5 V /'rm NOe 2., - 0 2 O - 0.3 1.S - 04 20 pV/Mo

Of W Crrentt 
10s - I 30 - o so - 12 75 hA

IpIl am Curmnt Is - ±10 :40 - ±12 ±55 - t15 I0 hA

IU NOt ~HVOltil e. p IHit10Z - 00 Oi - 00 cis - 00 0.25 avp-p
Noe 3. S

lo - 10Hzt Note 3. - 3 5 S 5 - 3.5 5.5 - 3.6 0
a,, to '30z Nata * - 31 45 - 31 45 - 33 56 rtV'rv

wesgeoenelt~ fo - tO00Hz Not*3 - 30 31 - 30 36 - 32 4.5

""$W~a to - 10Hz -Nots .6 - 1. 40 - 1.7 4.0 - 1.7 -

C t Dt i o f 0o - 30H2 Notesl 3. 6 - tO 23 - 0 23 - 1.0 -
COiait Des qt 0 , 10OOO .Notes 3. - 0.4 0S - 04 06 - 0d 06

Wq R4.stanc. -hoiAtffii , Not 7 1.3 6 - 04 - 0.7 4 - Mn

-~~~~~~~~~~~~~~~~~~~~~~~3- G

ARM_ - - 3 - - 2.5 - - 2 - GN
klwt VOltage Rnto IVR _110 123 - 211.0 ±123 - 2110 ±123 - V

Cc . )-Mod*
sectleonaReo CMRR VcM _211V 114 120 - 101 123 - 100 120 - dB

Pesctior Supplo PSRR V -:4V to: 1V -1 t0 -10 -- 2 20 .V/VROAM-on Riho 2 2 OI

Lp-Sgnal RA 2tn. V0. ± Oav lo taoo - 1000 w100 - 700 itsO -
ftn" Go.n Avo RL i2 Oo. VO 10V 500 1500 - * 00 1500 - 600 1500 - V'mV

0t Vuoltage L Z kn :120 13 6 - 12.0 : 135 - ±tl.5 ±13s -

1v ° z seoon 1s0 :11.5 - ±100 11s - 210.0 :11.s5 -

Sw Rat SR 2 2kO Note4, I.? 2 - 17 25 - 17 2 - v

S-am 8/87, Rev. A1
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FATURES

* Voltage Noise 1.1nV4IJiz Max. at 1kHz

0.85nVliz Typ. at 1kHz

1.0nVlizTyp. at 10Hz

35nVp-p Typ., 0.1Hz to 10Hz
8 Voltage and Current Noise 100% Tested

* Gain-Bandwidlh Product 5OMHz Min.

* Slew Rate 11Vs Min.

* Offset Voltage 40,V Max.

· Voltage Gain 7 Million Min.
* Drift with Temperature 0.8pVl°C Max.

0 RPPLICRTIOnS
· Low Noise Frequency Synthesizers
a High Quality Audio

Infrared Detectors
w Accelerometer and Gyro Amplifiers

* 3500 Bridge Signal Conditioning
a Magnetic Search Coil Amplifiers

a Hydrophone Amplifiers

Flux Gate Amplfir

Te c h no o 'l -I
et, , . Ss ,d o H a

LT1028

Ultra-Low Noise Precision
High Speed Op Amp

DESCRIPTIOn

The LT1028 achieves a new standard of excellence
in noise performance with 0.85nVHFii lkHz noise,
1. nVI',i 10Hz noise. This ultra low noise is combined

with excellent high speed specifications (gain-bandwidth
product is 75MHz), distortion free output, and true preci-

sion parameters (0.1VI°C drift, 10V offset voltage, 30
million voltage gain). Although the LT1028 input stage
operates at nearly mA of collector currents to achieve
low voltage noise, input bias current is only 25nA.

The LT1028's voltage noise is less than the noise of a 500

resistor. Therefore, even in very low source impedance

transducer or audio amplifier applications, the LT1028's

contribution to total system noise will be negligible.

Voltage Noise vs Fwqunc

£T.7

SYNC

OUTPUT TO
DEODULATOR
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4

iII

0 I I 10
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10 l00

1
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LT1028

ABSOLUTE maximum RATlGS

Supply Voltage
- 55°C to 105°C ...................... ............ V

105C to 1250C ................................. ± 16V

Differential Input Current (Note 8) ................. ± 25mA
Input Voltage .................. .Equal to Supply Voltage
Output Short Circuit Duration ................. Indefinite
Operating Temperature Range

LT10O28AM, M .........................- 550°C to 1250C
LT1028AC, C .............................. 0°C to 70°C

Storage Temperature Range
All Devices ...........................- 650°C to 150°C

Lead Temperature (Soidering, 10 sec.) .............. 3000C

PACKAGE/ORDER IFORATIOnl 4

V5 Th*U

V-,

A%)
5 DPACKAG TO-5 MEW CAN

TOP ViEW

TRiM sVTw
-IN 7 V.

JA PG HEME'reM r0P
18 PACKG PLASTIC DIPrtg PLI~~~~l(AQ pU~~~~flt OIP~~

ORDER PART NUMBER

LT1028AMH
LT1O28MH
LT1O28ACH
LT1028CH

LT1028AMJ8
LT1028MJ8
LT1028ACJ8
LT1028CJ8
LTI028ACN8 -
LT1028CN8

ELECTRICAL CHARA CTERIS TICS vs= +15Y, TA= 25C, unes oherwise noted.

Y102u I PAsEJR I cODIONS I MIN TYP l 1 LT12SMC
SYMBOL PIER I CONDITIONS am Ka IIN T . I uNTS
Vo6 Input Offset Voltage (Note 1)
AV o% LongTer Inpul Off set (Note2)
ime Voltage Stability

Wnput Offset Cunent VC , re
Input Is Curentv

10 40 20 80 v
03 0.3 PV/Mo

12 50 18 100 nA
35 .go90 ±30 ±13. .AtX * jtt*ff=tao

........ _

_____ Input Nose Voltage 0.1Hztol 0 (Note3) 3 75 35 90 nVpp
Input Noise Voltage Density ft =IOHz(Note 4) 1.0 1.7 1.0 1. n

_ = 1000H 100D% tested 0J5 1.1 0.9 1.2 nV- i
hInput Noise Currnt Density ,= 10Hz(Notes 3and 4.7 10.0 4.7 12.0

9 _= ,1OO Z 100%l ested 1.0 1. 1.0 1J pJ
Input Resistance

Common-Mode 300 300 MD
Differential Mode 20 20 2 k

__ Input Cpcitanc 5 pF
Inpu Voltage .Range .11.0 122 11.0 12.2 V

CMRR Common-ModeReection Vc= t 1V 114 15 110 136 d
Ralio

PSM Power SupplyRejection Vs= 4Vto s t 1V 117 1 110 132 dB

m uLargeSignalVoltageain RLZ2KDV,= :t12V ? 30 5.0 30.0 VIpV
R.le, Vo= IIOV 5.0 0.0 3.5 20.0 VlIV
RL = =V10V 3.0 15. 2.0 15.0 V,V

VOU, MaximumOutputVoltage RL2 +12.3' s13.0 :12.0 =13.0 V
Swing R,26000 11.0 t122 t10.5 122 V

SR SlewRate A= -1 11 15 11 15 V/ls
GBW GainBandwithProduct = 20kHz (Note 6 50 75 50 75 MHz
o Open Loop Ouput Impedanc e V0=0-,10 s0 80 a

Supply Current 7. 95 10. mA

2
I 5,
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LT1028

ELECTRICAL CHARACTERISTICS Vs= ± I, -S5CsTAs125C,unlessotherwise noted

PARAMETER
input Offset Voltage
Average pkW
OfftD
kwA Offset Current
hputOHSleMCurent
Input Voltage Range
Corn ode Rejection
Ratic
PoerwSupply Rejection
Ratio
Large Signal Voltage Gain

Maximum Output Voltage
Swing
Supply Current

CONDMONS
(Note_,)
(Note 7)

Ve =OV

VN= 10.SV

VS= t4.SVto lSy

RL2k, V== : 10V
,> R t_V, = * Iov
Rtz2W4V>-1,

0

[0

0

0

0

0

LTMUAM
MIN TV MAX

30 120
02 08

25 g'
*40 * 150... fe =I,~

* 103 *11.7
106 122

110 1n

3.0 14.0
Lo W _ 

* 10.3 * 11.

L7 11.5

LT1Mi
MIN TP MAX

45 180
025 1.0

30 180
*50 ±300

*10.3 *11.7 .
10l 120

104 130zo .
2O 14.0
1.5 10.0

t 10.3 t 11J

9.0 13.0

RELECTRICAL CHARACTERISTICS VS= _ 15V, O'CsTAs0*C, unless otherwise noted.

LT.m SC LT1OC
SYMBOL PARAMETER CONDITIONS MIN TYP MAX IN TYP MAX UNITS
Y. Input Offset Volage (Note 1) 0 15 8O 30 125 AY

V Average Input (Note 7) 0.1 0.8 02 1.0 ,VIC
Offstn Drift ~ ~~. i et rf_ _ __ _ _ _ _ _ _ _

I4. .Input OffsetCurent V :OV s 65 22 130 nA

I Input Bias Current V =0 V 0 *30 120 * 40 *240 nA
h__ Inpu VoUtae!!ang 0 *10.5 * 12 10.5 * 12.0 V.._ __p_ _o._e" 

CIRR Cc ode Rejecton Vc = *10.5V 0 110 124 106 124 dB
Ratio

PSRR PowerSuppyRejection Vs= 4.SVto bV * 114 132 17 132 de
Ratio __ _

A. LargoeSWl VoltageGain .2, V,= - OY 5.0 2' U 25 VIY
__ R!Llk,V= '10V 4.0 16.0 2.5 1 0 V/,v

VOU '' Maximum Output Voltage RLt2: * *11.5 * 12 11.5 * 12.7 V
___ Swing RL 6000(Nola9) *0.5 211.0 : 9.0 *10.5 V

SupplyCufrent *_.. 0 6. 10.5 6.2 11.5 mA

The denotes the specifications which apply over the fulloperating lear. Nohte C noise defined and measured with balanced source resis-
perature range. tors. The resulnt voge noise (aflter subtracting the resistor noise on an
Notel: Inpu Offset Voltage meassuremens are peformed by automstlc RMS basis) Is id by the sum of the two source resisors to obtain cur
tet equlpment approximatey 0.5 sec. afte application of pow. In ddl nt noIs Masin 1H currentnose uanbe inrred lfrom 100% testing
tlon st TA = 25C, ofs voltage h measured witth the chip heted toap at k .
proximatiy 5SC to aocount for the chip temprn ature se when the dei Nobe : GaIn.bdwldth product is n test ed. IIs guarnteed by desin
fully wanred up .and by infecefom the slew rate measurm en

Note LongTermipuOfftVoltageStablityreferstolthea weagetr NOl Thispeamerwsno( 100% tesed.
Une of Offset Votage vs. Time over extended perods after the Wst 30 days Not 1 The nputs a protected by bcko-bac diodes Current limiting
of operation. Excluding the Initial hour of operation, changes In V during resistors are nol used in order 1to achieve low noise. Hf differential input vo.
the first 30 days re typically 2.V. age excee * I.V, the input current should be limited to 2mA
Note 3: Thls parameter Is tested on a sample basis only. Note : This parmuer aranteed by design, fully warned up at
NOt 10HZ nolse voltae density Is Sample tested on ewery lot Devices TA 70C. t incdes chip temperature increase due to supply and load
100% tested at 101Hz are available on request current
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B HARRS. HA 2600/02/05
Wideband, High Impedance

Operational Amplifiers

* WIDE BANDWIDTH

* HIGH INPUT IMPEDANCE

* LOW INPUT BIAS CURRENT

* LOW INPUT OFFSET CURRENT

* LOW INPUT OFFSET VOLTAGE

* HIGH GAIN

o HIGH SLEW RATE

* OUTPUT SHORT CIRCUIT PROTECTION

12MHz

500Mf

InA

tnA

0.5mV

150K VN

7VI/ps

APPI ICA TIONS

o VIDEO AMPLIFIER

* PULSE AMPLIFIER

* AUDIO AMPLIFIERS AND FILTERS

o HIGH-OACTIVE FILTERS

* HIGH-SPEED COMPARATORS

* LOW DISTORTION OSCILLATORS

HA-2600/2602/2605 are internally compensated bipolar opera-
tional amplifiers that feature very high input impedance (500
MIn, HA-2600) coupled with wideband AC performance. The
high resistance of the input stage is complemented by low offset
voltage (0.SmV, HA-2600) and low bias ard offset current
(lna, HA-2600) to facilitate accurate signal processing. Input
offset can be reduced further by means of an external nulling
potentiometer. 12MHz unity gain-bandwidth product, 7V/p s
slew rate and 15,000VN open-loop gain enables HA-2600/
2602/2605 to perform high-gain amplification of fast, wideband
signals. These dynamic characterisitics, coupled with fast
settling times, make these amplifiers ideally suited to pulse
amplification designs as well as high frequency (e.g. video)
applications. The frequency response of the amplifier can be
tailored to exact design requirements by means of an external
bandwidth control capacitor.

In addition to its application in pulse and video amplifier de-
signs, HA-2600/2602/2605 is particularly suited to other high
performance designs such as high-gain low distortion audio
amplifiers, high-O and wideband active filters and high-speed
comparators.

The HA-2600 and HA-2602 have guaranteed operation from
-55oC to +1250C and are available in metal can and ceramic
mini DIP packages. Both are offered as a military grade part.
The HA-2605 has guaranteed operation from OoC to +750C
and is available in plastic and ceramic mini DIP and metal can
packages.

PINOUTS
COMPENSATION

IALAI

Inn

fCatm r.fmwt.A TAP UIrI:M

eALANC t I[ I * COMPENSATIONI

A. AIi , . v!

IN. [I SI lu
v. S 4 ] ALANCE

f Hcr s ,/ 9f'

FEA TURES D£SCRIPTION

SCHEMA TIC

1'(7 2-72
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SPECIFICA TOVNS

ABSOLUTE MAXIMUM RATINGS

Voltage Between V+ and V- Terminals 45.0V Operating Temperature Ranges:
Differential Input Volta + 12.0V HA-2600/HA-2602 -550C <TA<+125oC
Pelak Output Current Full Short Circuit Protection HA-2605 O°C <TA +75°C
Internal Power Disipation 300mW Storage Temperature Range: -65C < TA < +1500C

ELECTRICAL CHARACTERISTICS

NOTES: 1. AL * 2KS2
2. VCM · 1OV
3. Vo < 90mV
4. Vo -+.tOV
5 CL 100pF
6. Vo -* 200mV

7. Vo '+ 2OOmV
S. See Transient Response Test

Circuits & Waveforms Page 2-57.
9. aVS--SV

10. This parlmeter value guaranteed
by design calculations

11. Full power bandwidth guaranteed
by slew rate measurement:
FPSW - S. R./2 7TVpeak

12. VouT-s5V

I(,,",
-2-73

HA-261i HA-26U HA-ZS0
-SSOC toe +12SC -.SSC to +1215C 0°C to +7SC

PARAMETERI TEMP MIlN TYP MAX IMIN TYP MAX MIN TYP MAX UNITS

INPUT CHARACTERISTICS

Offset Voltae +250C 0.S 4 3 5 3 S mV
Full 2 6 7 7 mV

Offset Voltage Average Drift Full S V/IOC

lias Current *250C 1 10 15 25 S 25 nA
Full 10 30 60 40 nA

Offset Current +25oC 1 10 5 25 5 25 nA
Full 5 30 60 40 nA

Input Resistance (Note II .25C 100 500oo 40 300 40 300 M"

Common Mode Range Full ! 11.0 1.0 + 1.0 V

TRANSFER CHARACTERISTICS

Large Signal Voltage Gan (Note 1, 4) 25oC IOOK 150K 80K 150K 80K 150K V/V
Full ?OK 60K 70K V/V

Common Mode Rejection Ratio Full 80 100 74 100 74 100 dB
(Note 2)

Unty Gain Bandwidth Product (Note 3) 25oC 12 12 12 MHz

OUTPUT CHARACTERISTICS

Output Voltage Swing (Note 1) Full ± 10.0 t 12.0 t 10.0 12.0 1 10.0 12.0 V

Output Current (Note4) +250C 1 5 *.22 * 10 !18 + 1O 18 mA

Full Power Bandwidth (Notes 4 I ) * 25oC 50 75 50 75 50 75 kHz

TRANSIENT RESPONSE

Rise Time (Notes 1, . 5 A1 7) + 250C 30 60 30 60 30 60 ns

Overshoot (Notes 1. , 6 & 7) +250C 25 40 25 40 25 40 %

Sltew Rate (Notes 1. S. 7 & 12) +25C 4 _ 7 4 - 7 ± 4 7 V/Us

Settling Time (Notes 1., .7 & 12) +250C 1.5 1.5 1.5 us

POWER SUPPLY CHARACTERISTICS

Supply Current +250C 3.0 3.7 3.0 4.0 3.0 4.0 mA

Power Supply Rejection Ratio (Note 9) Full t 90 74 90 74 t0 dB
,,

- - -

V+ - 15V 0. C., V- - -15V D. C.
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OPERATIONAL AMPLIFIER
NOISE PREDICTION

By Richard Whitehead

INTRODUCTION

When working with op amp circuits an en-
gineer is frequently required to predict the
total RMS output noise in a given bandwidth
for a certain feedback configuration. While
op amp noise can be expressed in a number of
ways, "spot noise" (RMS input voltage noise
or current noise which would pass through
1Hz wide bandpass filters centered at various
discrete frequencies), affords a universal
method of predicting output noise in any op
amp configuration.

THE NOISE MODEL

Figure 1 is a typical noise model depicting
the noise voltage and noise current sources
that are added together in the form of root
mean square to give the total equivalent
input voltage noise (RMS), therefore:

Figure 1

The total RMS output noise (Eno) of an amp-
lifier stage with gain = G in the bandwidth
between f and f2 is:

Eno = G ( f 2 Eni2df%)

Note that in the amplifier stage shown, G

is the non-inverting gain (G = 1 + )

regardless of which input is normally driven.

Eni = Jeni2 + Ini2 Rg2 + 4KTR9 where.

Eni is the total equivalent input voltage noise
of the circuit.

eni is the equivalent input voltage noise of the
amplifier.

Ini 2 Rg2 is the voltage noise generated by the
current noise.

4KTRg expresses the thermal noise generated
by the external resistors in the circuit where
K = 1.23 x 10-23 joules/OK; T = 3000K

(270C) and Rg =(RR1R3 )+ R2
RI+ R/

PROCEDURE fOR COMPUTING
TOTAL OUTPUT NOISE

1. Refer to the voltage noise curves for the
amplifier to be used. If the g value in
the application is close to the Rg value
in one of the curves, skip directly to step
6, using that curve for values of Eni2 . If
not, go to step 2.

2. Enter values of eni 2 in line (a) of the table
below from the curve labeled" R = O S ".

3. From the current noise curves for the

(C.,
10-30

A P r1 - _V. Hr I' <4PP
NO
No. 519

FOR YOUR INFORMATION

Harris Analog

I
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amplifier, obtain the values of ini2 for
each of the frequencies in the table,
and multiply each by Rg2 , entering the
products in line (b) of the table.

4. Obtain the value of 4KTRg from Figure
14, and enter it on line (c) of the table.
This is constant for all frequencies. The
4KTRg value must be adjusted for temp-
eratures other than normal room temper-
ature.

5. Total each column in the table on line
(d). This total is Eni 2 .

I 1 aU IK*c 10KOa 10KH.

el 1, .ck) 4K?1_

,, , _

15K

oIKf

leoe

Fige 2
The HA-2600 In a Typical G , 1000 Circuit

Values are selected from Figures 5, 5a and 14
to fill in the table as shown below. An Rg
of 30KS1 was selected.

6. On linear scale graph paper enter each of
the values for Eni 2 vs. frequency. In
most cases, sufficient accuracy can be
obtained simply by joining the points
on the graph with straight line segments.

7. For the bandwidth of interest, calculate
the area under the curve by adding the
areas of trapezoidal segments. This
procedure assumes a perfectly square
bandpass condition; to allow for the
more normal -6db/octave bandpass skirts,
multiply the upper (-3db) frequency by
1.57 to obtain the effective bandwidth
of the circuit, before computing the area.
The total area obtained is equivalent to
the square of the.total input noise over
the given bandwidth.

8. Take the square root of the area found
above and multiply by the gain (G) of
the circuit to find the total Output RMS
noise.

A TYPICAL EXAMPLE

It is necessary to find the output noise of
the circuit shown below between 1KHz and
24KHz.

I.." 

iCI~ 'ODL IKk/ 1ICKI IODKwK

fJ1m, I,.' It1l1..r!S ?l,7810- I.1,,K0 7c 1p
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IcIKT% 4.1 a~. 1t6 H e, t1 m,6 U166.10-e

I d12 5.. '1 tW. l10.
! t
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The totals of the selected values for each
frequency is in the form of Eni2 . This
should be plotted on linear graph paper as
shown below:

I I

j

A*d *1t,

. WI

It W.

HA-2600 Totl Equivalent Input Noise Squared

Since a noise figure is needed for the fre-
quency of 1KHz to 24KHz, it is necessary to
calculate the effective bandwidth of the cir-
cuit. With AV 60db the upper 3db point
is approximately 24KHz. The product of
1.57 24KHz) is 3.7KHz and is the effective
bandwidth of the circuit
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TYPICAL SPOT NOISE CURYES (continued)

Cu; 4

HA-2600/2620 INPUT NOISE VOLTAGE

to

I
I

I
IJ
J

IO 1SK 1K 1ooK
fts. y. Ni

Curve S

HA-2640/2645 INPUT VOLTAGE NOISE (VS -+ 30V )

Curve 4A
HA-2600/2620 INPUT NOISE CURRENT

FreqiWucli

Curve SA
HA-2640/45 INPUT NOISE CURRENT (VS - +30V)

A

I

I t.
IlK looK

Curve 6
HA-2700 INPUT NOISE VOLTAGE

to IN IK IlK

Curw 6A
HA-2700 INPUT NOISE CURRENT
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Appendix F. ANALYSIS OF CIRCUIT NOISE MODELS

This appendix contains the step-by-step calculation of the noise

in all the circuits used in the two systems. The noise models are

included once again for easy reference. In addition, nodes have been

labeled so that the calculation is easier to follow.
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F.1 Noise Model for the Bias Circuit

The noise model for the bias circuit may be seen in Figure F.1.

This is the same model that appears in Figure 4.1.2.1. From this

model, the noise being injected into the DUT node can be calculated.

This noise, by the circuit configuration, is a current noise. To

obtain this value, I need to calculate the noise of the circuit from

input to output. The noise of the U2399 is filtered with a low pass

filter, before it reaches the U2 amplifier. At the input of the

amplifier, the noise is

EA2 - . 1 12 (EM2 + E1
2)

11 + RlClS

- 1 (Ej2 + E12) (F.1)
1 + R C 1 W

The noise then passes through the U2 amplifier, where the input

voltage and current noise of the amplifier is added.

EB2 - 2 2( R { + R2 (EN22 + EA2) + IN2R2 + 2 E3

(F.2)

The noise is then attenuated by a low pass filter.

EC2 - I 1 12 (EB2 + E4
2 )

11 + R4 C2 sI
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- 1I77r (EB2 + E4
2) (F.3)

1 + R4 ZC2 Zw

The noise is converted from a noise voltage to a noise current by the

bias resistor. At the DUT node, the noise current is equal to

IDUT EC + ERTA + 6F4
(RBIAS + R6 ) (F4)

The next step in the calculation is to put in the various values

for the noise quantities and calculate IDUT. The calculation will

show which noise sources are dominant and whether the bias circuit

contributes significant noise at the DUT node. In these calculations,

I will assume a noise bandwidth, Af, equal to 55 kHz minus 5 kHz, or

50 kHz. I will also assume that the circuit is operating at room

temperature, so that 4kT equals 1.61 e-20. For determining the filter

magnitude, a frequency of operation is needed, I will use 5 kHz. This

will give me the largest magnitude, so I will be calculating the worst

case. The specifications for the OP-27 gives the noise in units of

V//Hz. I will make this into volts by multiplying by the square root

of the noise bandwidth. Then all the noise values being used and

being calculated will be in terms of volts or amperes. The bias

resistance has a wide range of values from 250 to 2 l. The 2 Mn

bias resistance will result in the largest thermal noise voltage.

However, we are converting to a noise current by dividing by the

resistance. Dividing by such a large resistance will result in a rel-
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atively small current, so I will calculate for the highest noise

current that can be expected. This will occur for the 250 

resistance.

Table 5 shows the numerical values of the noise sources used in

equations F.1 through F.4. Table 6 shows the final results for these

four equations.

Table 5 Numerical Values of Noise Sources in F.1 through F.4

Source

2

E12 E22

2,,
EN22

IN22R22

E32

E42

EBIAS

E62
66

Value (V2 )

2.50e-9

8.05e-12

7.22e-13

1.80e-12

8.05e-12

7.32e-14

2.01e-13

8.05e-14
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Table 6 Numerical Values of F.1 Througn F.4

Noise Quantity

EA2

E 2

EC2

IDUTf

Value

2.33e-15 V2

2.08e-ll V2 [

2.90e-16 V2 I
I

1.45e-18 A2 [

From Table 5 we see that the noise of the voltage reference is more

than two orders of magnitude above the noise of the 10 k. However,

the filter attenuates this noise significantly and it is the smallest

noise quantity in equation F.2. In equation F.2 none of the terms

really dominate over the others. The noise of the two 10 k resistor,

the input noise voltage and current of the operational amplifier are

about the same order of magnitude. Table 5 shows that the noise at

the output of the U2 amplifier is larger than the thermal noise of the

90.0 0 resistor, but both noise quantities are attenuated by the

filter. The attenuation is significant and EC2 is the smallest term

in F.4. As equation F.2 is written, the thermal noise of the bias

resistor is the largest term, but the thermal noise of R6 is less than

one order of magnitude smaller. Converting the voltage noise to a

current by dividing by the resistance squared results in a small

current noise.

If you assume the shot noise is about 8 e-17 A2, (This assumes a

reverse current of 5 mA and a 50 kHz noise bandwidth) the noise con-

tributed by the bias circuit is almost two orders of magnitude less
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than the shot noise in this worst case scenario. The shot noise is

not large enough to dominate over this bias circuit noise, so the bias

noise may have some affect on the accuracy of the noise measurements.

To operate at around 5 mA, the bias resistance should be larger than

250 . So the noise current should be a little bit smaller. The shot

noise should be large enough to dominate over the bias circuit noise.

The final conclusion is that the noise of the bias circuit is not

large enough to be considered a problem.

F.2 Noise Model for the Circuit Around the DUT

The noise model for the portion of the circuit around the DUT

may be seen in Figure F.2. This model is the same as the one seen in

Figure 4.1.2.3. The calculation of the noise of the system assumes

that no signal is being applied at the CAL input. This is one of the

assumptions that allows all the resistors to be put in parallel. The

noise model itself is quite simple, consisting of only the thermal

noise of the parallel combination of resistors, Rx, and the noise of

the DUT. The noise Ey is the signal that will be calculated and it is

the signal that will be amplified by the three amplification stages.

This quantity will indicate if the added thermal noise is lower or

higher to the DUT noise.

R 2 EDUT2 iF2.. Ex2

+ RDUT +DUT (F.5)
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To determine the noise of this section, the values of all the

noise generators and resistors must be inserted into equation F.5. I

will assume that the noise bandwidth is 50 kHz, the bias resistor, R

BIAS, is 250 , the resistance of the DUT, RDUT, is 10 . Thus, the

parallel combination of resistors, RX, is equal to 308. The noise of

the DUT, EDUT, is the shot noise multiplied by the RDUT . Assuming the

shot noise is 8 e-17 A2, as I did above, the noise voltage, EDUT2,

will be equal to 8 e-15 V2. The results of the calculation is sum-

marized in Table 7.

Table 7 Numerical Values of F.5

Noise Quantity

1. 1~

EDUT

E2 

2u2Ey~~~~~~

Value (V2)

I

J 8.00e-15

2.48e-13

7.75e-15

From this equation one can see that the DUT noise is attenuated very

slightly, while the thermal noise is severely attenuated. This is a

desirable effect, because we want the added noise to be as small as

possible. The shot noise is not sufficiently high to allow us to

ignore the thermal noise. This thermal noise will also be amplified

and will appear at the output of the circuit. So we must eliminate

this noise quantity from future calculation for DUT noise.
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F.3 Noise Hodel for the Amplification Stages

The noise model for the three amplification stages may be seen

in Figure F.3. This is the same model that was seen in Figure

4.1.2.4. From this model, the noise at the output of the circuit,

EOUT, can be calculated. The input noise to this section, Ey is the

noise calculated in the previous section. This input noise is

amplified by the stages and the noise of the stages is added to it.

The following equations describe this amplification and addition

process. In these equations, the magnitude of the three high pass

filters, formed with a 2.2 F and a 10 kn resistor, are not shown,

because the magnitude at 5 kHz is equal to unity. In the U6

amplification stage, which is.also a filter, assume that the

capacitors are open.

R 3EB2 (R + R)2 (Ey2 + EN42) + IN4R2 + E2
2 (F. E

EC2 EB2 (F.7)

ED2 R R 2 (EC2 + EN52) + IN52R52 + E5 + 2E62

EF2 - ED2 +E7 (F.9)

EG2 _ + R 2 (EF2 + 6) + NR + E9 + 2 + 2Elo2

.
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EOUT2 _ .2

To identify noisy components and determine whether the noise

produced by the amplifiers is large enough to swamp the noise being

amplified, the actual noise values must be substituted into equations

F.6 through F.11. As with the previous models, I assumed that the

no.se bandwidth, f, is 50 kHz and that the circuit is operating at

room temperature. The noise specifications for the LT1028 and the

HA2600 op amps, which may be found in Appendix E, are given in units

of V/]Hz and A/Hz. These values will be converted to units of volts

or amperes by multiplying by the square-root of the bandwidth. This

way all noise values will be in the same units. Table 8 gives the

numerical values for the noise sources used in equations F.6 through

F.11. Table 9 shows the final results of the calculation.
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Table 8 Numerical Values of Noise Sources in F.6 through F.11

Value (V2)

6.05e-14

1.28e-13

8.05e-13

8.05e-15

1.55e-11

8.86e-12

8.86e-14

6.49e-13

3.92e-11

1.75e-15

8.05e-13

3.74e- 13

Table 9 Numerical Values of F.6 Through F.11

Noise Quantity

EB2 

ED2 -

EG2

Ec2

EF2

EOUT2

Value (V2)

7.78e-10

7.94e-6

7.91e-5

Source

EN 4 2

N4 2IN42P22

E22

E32

N52R 5

E5
2

E62

E72

EN62

IN62R92

E92

Elo2
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Equation F.6 shows the effect of the first amplification stage on the

input noise. The input noise is amplified as desired. The only

problem is the input noise also contains some thermal noise from the

parallel combination of resistors, this noise is also amplified and

will reach the output of the system. We will have to eliminate this

noise quantity from any calculations of DUT noise. The input noise

voltage of the LT1028 is also amplified, by this stage. In addition,

the noise of the 10 resistor is multiplied by the ratio of R2 to R3

squared. Of these two extra noise contributing terms, the input noise

of the LT1028 is the most significant. The rest of the equations, F.7

through F.11, show that none of the noise from the second and third

amplification stages is added to the overall noise. This occurs

because the noise at the output of the first amplification stage is

substantially higher than any other noise source subsequently added.

Thus, the only effect the second and third amplification stages hare

on the noise is to amplify it. The output noise, EOUT, consists of

the noise from three sources all amplified. These three sources are

the input noise, EX, the input noise voltage of U4 and the thermal

noise of E3. Of these three sources, EX is the largest. The unwanted

thermal noise contained in EX will have to be eliminated in calcula-

tions for the DUT.
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