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Background and motivation

• Atmospheric mixing volume changes

diurnally, largely as a function of

atmospheric stability

• Wide range of stability classifications

• More accurate techniques (e.g. L, RiBulk)

expensive, labour intensive, derived for

idealised fetch conditions

• Common alternatives (e.g. Pasquill-Gifford) approximate / categorical

• Surface-emitted tracers give a direct measure of mixing intensity / extent;

better than met. proxies in characterising the outcomes of vertical mixing

• Personal risk and exposure directly related to concentration and time

• Concentration of pollutants or accidental releases related to 

source strength and mixing volume



• Radon is the only gas in the Uranium-238 decay chain

• Surface-only source

• Mostly from land (unsaturated / unfrozen) not water

• Source function changes relatively little in space & time

• Unreactive / poorly soluble: sole atmospheric sink is radioactive decay

• Short half-life (3.8d)  (a) doesn’t accumulate in the atmosphere

(b) large ABL / troposphere gradient

• Rn half-life >> mixing timescale of the ABL (1-hour)

• Over 1 night (10-12h) Rn is an approximately conservative (>90%) tracer

Ideal, versatile and powerful atmospheric tracer

Atmospheric radon (222Rn)



Radon: distribution & 

measurement

Variability on many time scales
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• Land  Ocean, huge  source fn.

(2 - 3 orders of magnitude)

• Regional scales (10s  1000s km)

factor 2 - 4  source fn.

• Local scales (≤10s km; nocturnal fetch 

for stable conditions) fairly uniform

• Parent (226Ra – half life 1600 y)
(little temporal change except for soil moisture)

Griffiths, AD, et al., 2010: A map of radon flux at the Australian 

land surface. Atmos. Chem. Phys., 10, 8969-8982.



Diurnal variability - the ABL mixing indicator
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Fetch changes

Cyclic synoptic variability 

Diurnal changes 

in mixing depth

• Before Rn can be used as a stability 

indicator, need to isolate diurnal signal

• To do this, identify the fetch signal and 

subtract it from the orig. time-series

• Fetch signal related to 2-week air mass history

(Rn half-life 3.82 days)

• Remaining variability is driven by mixing 

(constant source, changing volume)
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Radon: ~uniform surface source 

and ~conservative over 1 night

Therefore, nocturnal accumulation 

is directly related to the average 

nocturnal stability (mixing depth)

Convective 

mixing off
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Step 1:

Calculate the nocturnal mean 

accumulation for each 24-hour 

period

Step 2:

Group the resulting values to 

devise a stability classification 

scheme.

For more information see: Chambers, S.D., et al., 2015: On the use of radon for quantifying the effects of atmospheric stability on 

urban emissions. Atmos. Chem. Phys., 15, 1175-1190.



Stability classification example

Cumulative frequency histogram 

of average nocturnal radon 

accumulation over 5-years
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Diurnal composite Rn in each stability category
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About the Stability Categories

• The number of definable nocturnal stability categories dictated by 

length of dataset and desired robustness of statistics

• 1 yr, 4 seasons, 4 stab. categories: diurnal composites based on 22 days

5 yr, 4 seasons, 6 stab. categories: diurnal composites based on 76 days

• Categories defined nocturnally over 10-12 hours but can generally be 

assigned to whole 24-hour periods (due to atmospheric persistence)

• The most stable nights are usually characterised by:

- Clear skies, calm to light winds (e.g. anticyclonic conditions)

- Usually flanked by the most unstable (convective) days

• The most well-mixed nights are usually characterised by:

- High percentage of cloud cover and moderate to strong winds

- Usually flanked by near-neutral days

• For regulatory dispersion modelling, radon stability categories can be used 

like Pasquill-Gifford categories to assign day/night wind speeds and WD to 

the 16-point compass on a monthly or quarterly basis

• Categorisation is COMPLETELY INDEPENDENT of site meteorology



Evaluating radon-derived stability categories:

(a) Meteorology

Stable: low nocturnal wind speed, high wind direction variability, large temperature amplitude

Near-neutral: higher, more consistent, wind speed & direction, lower amplitude temp fluctuation

Group met data by Rn-based stability category and form diurnal composites
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Stable: large amplitude 

changes

Near-neutral: small 

amplitude changes

NO – primary pollutant, 

local surface-based 

source (proxy for near-

surface accidental 

emission) 

Ozone behaviour 

supports atmospheric 

persistence hypothesis

Evaluating radon-derived stability categories:

(b) urban pollution example
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Assign hourly PG cats then 

group by Rn-based cats

Stable nocturnal Rn-category 

PG:  6 (night), 1-2 (day)

Well-mixed Rn-category

PG: 4-5 (night), 2-4 (day)

Stable nocturnal Rn-categories

Above the critical Richardson 

number (RiC=0.25)

Composite nocturnal 

Richardson numbers separate 

fairly consistently with radon-

derived stability categories.

(for more info.: Williams A.G., S. Chambers 

and A. Griffiths. Bulk Mixing and Decoupling 

of the Nocturnal Stable Boundary Layer 

Characterized Using a Ubiquitous Natural 

Tracer. Boundary-Layer Meteorol., 149, 381-

402, 2013)

Comparing radon-derived stability categories

with P-G and RiBulk categorisation
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Chambers, S.D., et al., 2016: Atmospheric stability effects on potential radiological releases at a nuclear 

research facility in Romania: Characterising the atmospheric mixing state. J. of Environ. Radioact., 154, 68-82.



Characterising diurnal pollutant cycles

Pasquil-Gifford vs Radon-based stability typing
PG-turbulence scheme based on WD and mean wind speed

Nocturnal categories: D - neutral, E - moderately stable, F - stable
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Influence of stability on nocturnal mixing depth

The change in radon (C) in the NBL is a balance between 

flux (F), decay () and dilution (D).

dC F C D
hdt

  

Iterative solution for h: equivalent mixing depth (he)

Analytical solution for h: accumulated mixing height (hacc)
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National Institute for Research and Development in 

Physics and Nuclear Engineering (IFIN-HH)

IFIN-HH: 10km SW Bucharest, urban-rural landscape, observations from 60m tower, 1 km exclusion 

zone, roughness elements 10-15m, challenging fetch for conventional stability typing.

IFIN-HH

Roughness map around IFIN-HH site



Seasonality of potential extreme events

Considering ONLY the most stable 

nocturnal atmospheric conditions:

(a) PG scheme reports 20-25% 

lower median concs of pollutants 

with near-surface sources 

(b) BUT - nocturnal mixing depth 

under stable conditions 10-20m, and 

the stack release height is >40m
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Despite the non-ideal fetch 

conditions, radon-derived stability 

categories were easily assigned
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Chambers, S.D., et al., 2016: Atmospheric stability 

effects on potential radiological releases at a nuclear 

research facility in Romania: Characterising the 

atmospheric mixing state. Journal of Environmental 

Radioactivity, 154, 68-82.



Conclusions

• Radon is a powerful and comparatively economical tool for 

atmospheric stability analysis of pollution / release concs.

• Can be used independently of site meteorology

• Rn-based stability analysis of urban pollution superior to conventional 

techniques particularly in conditions of non-ideal fetch

• Day/night (12-hr) Rn-based stability categories can be provided (like 

PG classes) for routine dispersion modelling purposes

• Long-term characterisation of pollution by Rn-derived stability 

category is also ideal for:

(1) evaluating the efficacy of emission mitigation strategies, and

(2) providing benchmarks for evaluating CTMs



Thank you
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Poland (Łódź): urban heat island studies
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Stability affects on site meteorology
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Stability affects on urban meteorology
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