

# **Ansto**

# Radon-based assessment of stability affects on potential radiological releases

<u>Scott Chambers<sup>1</sup></u>, Alastair Williams<sup>1</sup>, Dan Galeriu<sup>2</sup>, Anca Melintescu<sup>2</sup> and Marin Duma<sup>2</sup>

<sup>1</sup> ANSTO, NSTLI - Environmental Division, Sydney, NSW, Australia

<sup>2</sup> "Horia Hulubei" National Institute for Physics & Nuclear Engineering, Bucharest-Magurele, Romania

H17-001 (Session 8: Modelling air dispersion and exposure to accidental releases)

17<sup>th</sup> International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes Monday 9<sup>th</sup> May 2016, Budapest, Hungary



- Personal risk and exposure directly related to concentration and time
- Concentration of pollutants or accidental releases related to source strength and mixing volume
- Atmospheric mixing volume changes diurnally, largely as a function of atmospheric stability

Ansto

- Wide range of stability classifications
- More accurate techniques (e.g. L, Ri<sub>Bulk</sub>) expensive, labour intensive, derived for idealised fetch conditions



- Common alternatives (e.g. Pasquill-Gifford) approximate / categorical
- Surface-emitted tracers give a direct measure of mixing intensity / extent; better than met. proxies in characterising the outcomes of vertical mixing



# Atmospheric radon (222Rn)

- Radon is the only gas in the Uranium-238 decay chain
- Surface-only source
- Mostly from land (unsaturated / unfrozen) not water
- Source function changes relatively little in space & time
- Unreactive / poorly soluble: sole atmospheric sink is radioactive decay
- Short half-life (3.8d) → (a) doesn't accumulate in the atmosphere
  (b) large ABL / troposphere gradient
- Rn half-life >> mixing timescale of the ABL (1-hour)
- Over 1 night (10-12h) Rn is an approximately conservative (>90%) tracer

### Ideal, versatile and powerful atmospheric tracer

Radon: distribution & <u>measurement</u>

- Land → Ocean, huge ∆ source fn.
  (2 3 orders of magnitude)
- Regional scales (10s → 1000s km) factor 2 - 4 ∆ source fn.
- Local scales (≤10s km; nocturnal fetch for stable conditions) fairly uniform
- Parent (<sup>226</sup>Ra half life 1600 y) (little temporal change except for soil moisture)





Griffiths, AD, et al., 2010: A map of radon flux at the Australian land surface. *Atmos. Chem. Phys.*, 10, 8969-8982.

#### Variability on many time scales

Seasonal (1-6 months) Synoptic (2-12 days) Diurnal (24 hours) Sub-Diurnal

Fetch, mixing and non-local processes

# Diurnal variability - the ABL mixing indicator



- Before Rn can be used as a stability indicator, need to isolate diurnal signal
- To do this, identify the fetch signal and subtract it from the orig. time-series
- Fetch signal related to 2-week air mass history (Rn half-life 3.82 days)
- Remaining variability is driven by mixing (constant source, changing volume)



# Shifted composite of diurnal variability



**Radon:** ~uniform surface source and ~conservative over 1 night

Therefore, nocturnal accumulation is **directly** related to the average **nocturnal stability** (mixing depth)

#### <u>Step 1:</u>

Calculate the nocturnal mean accumulation for each 24-hour period

#### <u>Step 2:</u>

Group the resulting values to devise a stability classification scheme.

For more information see: Chambers, S.D., et al., 2015: On the use of radon for quantifying the effects of atmospheric stability on urban emissions. *Atmos. Chem. Phys.*, 15, 1175-1190.

# Stability classification example



#### Diurnal composite Rn in each stability category

# About the Stability Categories

- The number of definable nocturnal stability categories dictated by length of dataset and desired robustness of statistics
- 1 yr, 4 seasons, <u>4 stab. categories</u>: diurnal composites based on 22 days
  5 yr, 4 seasons, <u>6 stab. categories</u>: diurnal composites based on 76 days
- Categories defined nocturnally over 10-12 hours but can generally be assigned to whole 24-hour periods (due to atmospheric persistence)
- The most stable nights are usually characterised by:
  - Clear skies, calm to light winds (e.g. anticyclonic conditions)
  - Usually flanked by the most unstable (convective) days
- The most well-mixed nights are usually characterised by:
  - High percentage of cloud cover and moderate to strong winds
  - Usually flanked by near-neutral days
- For regulatory dispersion modelling, radon stability categories can be used like Pasquill-Gifford categories to assign day/night wind speeds and  $\sigma_{WD}$  to the 16-point compass on a monthly or quarterly basis
- Categorisation is COMPLETELY INDEPENDENT of site meteorology

### Evaluating radon-derived stability categories: (a) Meteorology

Group met data by Rn-based stability category and form diurnal composites



<u>Stable</u>: low nocturnal wind speed, high wind direction variability, large temperature amplitude <u>Near-neutral</u>: higher, more consistent, wind speed & direction, lower amplitude temp fluctuation

### Evaluating radon-derived stability categories: (b) urban pollution example



Stable: large amplitude changes

Near-neutral: small amplitude changes

NO – primary pollutant, local surface-based source (proxy for nearsurface accidental emission)

Ozone behaviour supports atmospheric persistence hypothesis

Richmond, NSW, Australia

### <u>Comparing radon-derived stability categories</u> with P-G and *Ri<sub>Bulk</sub>* categorisation





Assign hourly PG cat<sup>s</sup> then group by Rn-based cat<sup>s</sup>

Stable nocturnal Rn-category PG: 6 (night), 1-2 (day)

Well-mixed Rn-category PG: 4-5 (night), 2-4 (day)

Stable nocturnal Rn-categories Above the critical Richardson number ( $Ri_c=0.25$ )

Composite nocturnal

Richardson numbers separate fairly consistently with radonderived stability categories.

(for more info.: Williams A.G., S. Chambers and A. Griffiths. **Bulk Mixing and Decoupling of the Nocturnal Stable Boundary Layer Characterized Using a Ubiquitous Natural Tracer**. *Boundary-Layer Meteorol.*, 149, 381-402, 2013)

#### <u>Characterising diurnal pollutant cycles</u> <u>Pasquil-Gifford vs Radon-based stability typing</u>

PG-turbulence scheme based on  $\sigma_{\text{WD}}$  and mean wind speed

Nocturnal categories: D - neutral, E - moderately stable, F - stable



#### Influence of stability on nocturnal mixing depth

The change in radon (C) in the NBL is a balance between flux (F), decay ( $\lambda$ ) and dilution (D).

$$\frac{dC}{dt} = \frac{F}{h} - \lambda C - D$$

Iterative solution for h: equivalent mixing depth (he)

Analytical solution for h: accumulated mixing height (hacc)





Stability / Mixing category

Richmond, NSW, Australia

#### National Institute for Research and Development in Physics and Nuclear Engineering (IFIN-HH)



IFIN-HH: 10km SW Bucharest, urban-rural landscape, observations from 60m tower, 1 km exclusion zone, roughness elements 10-15m, challenging fetch for conventional stability typing.

### Seasonality of potential extreme events

Despite the non-ideal fetch conditions, radon-derived stability categories were easily assigned

Radon-based





Hour of composite day

Considering ONLY the most stable nocturnal atmospheric conditions:

(a) PG scheme reports 20-25% lower median concs of pollutants with near-surface sources

(b) BUT - nocturnal mixing depth under stable conditions 10-20m, and the stack release height is >40m

Chambers, S.D., et al., 2016: Atmospheric stability effects on potential radiological releases at a nuclear research facility in Romania: Characterising the atmospheric mixing state. Journal of Environmental Radioactivity, 154, 68-82.



# **Conclusions**

- Radon is a powerful and comparatively economical tool for atmospheric stability analysis of pollution / release conc<sup>s.</sup>
- Can be used independently of site meteorology
- Rn-based stability analysis of urban pollution superior to conventional techniques particularly in conditions of non-ideal fetch
- Day/night (12-hr) Rn-based stability categories can be provided (like PG classes) for routine dispersion modelling purposes
- Long-term characterisation of pollution by Rn-derived stability category is also ideal for:

(1) evaluating the efficacy of emission mitigation strategies, and(2) providing benchmarks for evaluating CTMs





#### Recent publications related to this presentation

- Chambers, S.D., et al., 2011: Separating remote fetch and local mixing influences on vertical radon measurements in the lower atmosphere. *Tellus 63B*, 843-859.
- Williams, A.G., et al., 2013. Bulk Mixing and Decoupling of the Nocturnal Stable Boundary Layer Characterized Using a Ubiquitous Natural Tracer. *Bound.-Lay. Meteorol.*, 149, 381–402.
- Chambers, S.D., et al., 2015: On the use of radon for quantifying the effects of atmospheric stability on urban emissions. *Atmos. Chem. Phys.*, 15, 1175-1190.
- Chambers, S.D., et al., 2015: Quantifying the influences of atmospheric stability on air pollution in Lanzhou, China, using a radonbased stability monitor. *Atmos. Environ.*, 107, 233-243.
- Crawford, J., et al., 2016. Assessing the impact of atmospheric stability on primary and secondary aerosols at Richmond, Australia, using Radon-222. *Atmos. Environ.*, 127, 107-117.
- Chambers, S.D., et al., 2016: Atmospheric stability effects on potential radiological releases at a nuclear research facility in Romania: Characterising the atmospheric mixing state. *Journal of Environmental Radioactivity*, 154, 68-82.
- Williams, A.G., et al., 2016. Radon as a tracer of atmospheric influences on traffic-related air pollution in a small inland city. *Tellus B*, submitted January 2016.

#### Poland (Łódź): urban heat island studies



#### Stability affect on Urban Heat Island intensity



Urban Heat Island Intensity depends strongly on the regional stability (derived by radon)

#### Stability affects on site meteorology



#### Stability affects on urban meteorology

