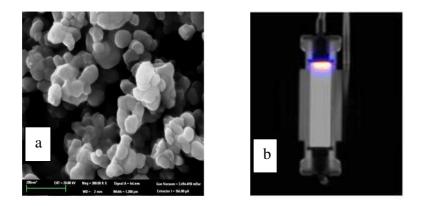
1st World Congress on Ga-68 and Peptide Receptor Radionuclide Therapy, THERANOSTICS , Bad Berka, Germany June 23-26, 2011

P-023


Development of ⁶⁸Ga Generator at ANSTO

Van So Le*, Michael Izard, Paul Pellegrini and Myint Zaw

ANSTO LifeSciences, Australian Nuclear Science and Technology Organisation Locked Bag 2001 Kirawee DC, NSW, 2232, Australia **E-mail: slv@ansto.gov.au*

A ⁶⁸Ge/⁶⁸Ga generator combined with an automated ⁶⁸Ga eluate purification unit was developed to produce ⁶⁸Ga solution suitable for labelling peptide ligands for PET radiopharmaceutical applications. The sorbent of a Ti-Zr ceramic structure [1] was used as a generator column packing material. The SEM picture of micro- and meso-porosity of these materials is shown in Figure 1a. Its X-ray diffraction presents a tetragonal nano-crystalline structure.

The adsorption capacity for Ge^{4+} ions is approximately 120 mg Ge per gram sorbent in 0.1 M HCl solution. The distribution coefficient Kd > 10000 mL/g for carrier-free ⁶⁸Ge⁴⁺ ions and 2 mL/g for ⁶⁸Ga³⁺ were evaluated in 0.1 M HCl solution. A 1.0 g weight sorbent column was used for immobilizing the parent nuclide ⁶⁸Ge and ⁶⁸Ga was eluted from the column with 3- 4 mL 0.05 – 0.1 M HCl solution. The ⁶⁸Ge breakthrough in ⁶⁸Ga eluate was around 10⁻³ % for a generator of 18 mCi ⁶⁸Ge activity.

Figure 1. (a) SEM picture of Ti-Zr ceramic sorbent used for loading ${}^{68}\text{Ge}/{}^{68}\text{Ga}$ generator column; (b) PET imaging of the ${}^{68}\text{Ge}/{}^{68}\text{Ga}$ generator column after 300 ${}^{68}\text{Ga}$ elution cycles

The PET imaging picture of the 68 Ga generator column after 300 elution cycles (Figure 1b) showed no significant spreading and drift of 68 Ge zone along the column. 68 Ga eluate of around 5 mL volume in 0.1 M HCl solution was purified on a small cation exchanger column with an aqueous alcohol solution mixture of hydrochloric acid, ascorbic acids and halide salts. An alkali solution was used for elution of 68 Ga from the ion exchange resin column to obtain a purified 68 Ga solution which is conditioned with acidic solution to obtain a final 68 Ga product of pH=3-4 in 0.75 mL

0.5 M NaCl or 0.5 M sodium acetate solution. The metallic contamination <20 nano grams per mL were found in this product solution. The organic solvent free 68 Ga solution product of acidity suitable for coordination chemistry based labelling of the peptide ligands was successfully used for preparation of DOTATATE and DOTATOC PET radiopharmaceuticals.

The process of ⁶⁸Ga elution from the generator followed by ⁶⁸Ga eluate purification was performed using a low-cost automation bench-top system [2]. This system is designed (Fig. 2) based on the timing sequence of seven processing steps without feedback control. The variable flow rate of eluents used for elution/purification in this system also ensure the optimisation of operating times with respect to different adsorption/ desorption kinetics of ⁶⁸Ga ion species, which is controlled by the sorbent and ion exchange resin used in the generator and purification columns.

Figure 1: ⁶⁸Ga generator (housed in the lead container in the lower part of the system) and processing unit with the eluents for ⁶⁸Ga eluate purification (in the upper part) together with a control unit at the bottom right.

References

- 1. Van So Le, Sorbent material, Patent, PCT/AU2011/000245
- 2. Van So Le, ⁶⁸Gallium purification, Patent, PCT/AU2011/000244