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ABSTRACT
The use of atmospheric compositional data for the identification and apportionment of sources has been ongoing Keywords:
for more than 40 years. Beginning in the 1960s, it was recognized that data analysis techniques could be applied Receptor models

to data and resolve combination of constituents that represent sources. In the late 1970s, these data analysis
tools came to be called Receptor Models. This paper traces the early history of receptor models through those
early papers and provides a historical introduction to the paper in this special issue showing the state of the art in
the field and the application of these modern tools to a variety of atmospheric data.
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1. Introduction

The management of ambient air quality is a difficult but
important problem. In general, it involves the identification of the
sources of materials emitted into the air, the quantitative
estimation of the emission rates of the pollutants, the under-
standing of the transport of the substances from the sources to
downwind locations, and the knowledge of the physical and
chemical transformation processes that can occur during their
transport. All of those elements can then be put together into a
mathematical model that can be used to estimate the changes in
observable airborne concentrations that might be expected to
occur if various actions are taken. Such actions could include the
initiation of new sources as new industries are built and begin to
function, and the imposition of emission controls of existing
facilities in order to reduce the pollutant concentrations. However,
the atmosphere is a very complex system, and it is necessary to
greatly simplify the descriptions of reality in order to produce a
mathematical model capable of being calculated on even the
largest and fastest computers. Thus, although significant
improvements have been made over the past thirty years in the
mathematical modeling of dispersion of pollutants in the
atmosphere, there are still many instances when the models are
insufficient to permit the full development of effective and
efficient air quality management strategies. Thus, it is necessary to
have alternative methods available to assist in the identification of
sources and the apportionment of the observed pollutant
concentrations to those sources. Such methods are called
receptor—oriented or receptor models since they are focused on
the behavior of the ambient environment at the point of impact as
opposed to the source—oriented dispersion models that focus on

the transport, dilution, and transformations that begin at the
source and then follow the pollutants to the sampling or receptor
site.

All of the currently used receptor models are based on the
assumption of mass conservation and the use of a mass balance
analysis. Similarly, the assumption of mass conservation and the
use of a mass balance analysis can be used to identify and
apportion sources of airborne particulate matter in the
atmosphere. This methodology has generally been referred to
within the air pollution research community as receptor modeling
(Hopke, 1985; Hopke, 1991; Hopke, 2010). For example, suppose a
sample of air is passed through a filter and the collected particles
are analyzed for the elemental concentrations in mass of element
per unit volume of air sampled. Let us assume that measured total
airborne particulate lead concentration (ng/m3), for example, can
be considered to be the sum of contributions from independent
source types such as motor vehicles, incinerators, smelters, etc:

PbT :Pbauto +Pbincin. +Pbsmelter +.. (1)

However, a motor vehicle burning leaded gasoline emits
particles containing materials other than lead. Therefore, the
atmospheric concentration of lead from automobiles in ng/ms,
Pb,., can be considered to be the product of two cofactors; the
gravimetric concentration (ng/mg) of lead in automotive
particulate emissions, fpp auto, and the mass concentration (mg/ms)
of automotive particles in the atmosphere, g,uto:
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Pbayuto :gautO'be,auto (2)

The normal approach to obtaining a data set for receptor
modeling is to determine a large number of chemical constituents
such as elemental concentrations in a number of samples. The
mass balance equation can thus be extended to account for all m
elements in the n samples as contributions from p independent
sources:

p
Xij :Zgikfkj"'ef/ (3)
k=1

where x; is the i™ elemental concentration measured in the jth
sample, a; is the gravimetric concentration of the i™ element in
material from the k™ source, and fij is the airborne mass
concentration of material from the k™ source contributing to the j*
sample.

The solution to Equation (3) depends on what information is
available a priori. At least one vector of ambient concentration
data, x;, must have been measured. If the sources in an area are
known and an opportunity to sample them, then the number of
sources, p, is known as are the source composition profile vectors,
ay. Thus, the problem becomes a multiple regression problem with
only the vector of source contributions, f;, to be estimated. This
multiple regression problem is termed a chemical mass balance
(CMB) analysis. However, if the number and nature of the source
profiles are not known, then a factor analysis approach is needed
in which the number of sources, the source composition vectors,
and the source contribution vectors can be estimated only from
the ambient data. However, many more than one sample are
needed for such an analysis. The use of factor analysis and related
techniques has been generally termed multivariate receptor
models.

2. Chemical Mass Balance

Receptor models date back to the late 1960's when both mass
balance analysis and multivariate statistical methods were first
applied to air quality data. The concept of an atmospheric mass
balance model was suggested independently by Miller et al. (1972)
and by Winchester and Nifong (1971). In these initial models,
specific elements were associated with particular source types to
develop a mass balance for airborne particles. Subsequently, more
chemical species than sources were used in a least-squares fit to
provide estimates of the mass contributions of the sources
(Friedlander, 1973).

There were a number of these early applications of the mass
balance analysis including Gent, Belgium (Heindrycx and Dams,
1974), Heidelberg, Germany (Bogen 1973), and Chicago, lllinois
(Gatz, 1975). Several major research efforts have subsequently
resulted in substantially better source data. The source emission
studies led to much improved resolution of the particle sources in
Washington, D.C. (Kowalczyk et al., 1978; Kowalczyk et al., 1982).
In the first of these studies, Kowalczyk et al. (1978) introduced
weighted least—squares regression to fit six sources with eight
elements for ten ambient samples. Subsequently, Kowalczyk et al.
(1982) examined 130 samples using 7 sources with 28 elements
included in the fit. They obtained an excellent fit of the ambient
concentration data and a quite good understanding of the major
sources of airborne particles in the Washington, D.C. area.

Mayrsohn and Crabtree (1976) presented the use of an
iterative least—squares approach to apportion six sources of
airborne hydrocarbon compounds in the Los Angeles basin. The
sources were automotive exhaust, volatilization of gasoline and
release of gasoline vapor, commercial natural gas, geological
natural gas, and liquefied petroleum gas. They performed the
least—squares fit to the hydrocarbon compound concentrations

using gas chromatography to determine the concentrations of
eight compounds. Their ordinary least—squares source reconcili-
ation algorithm recognized that not all sources may contribute to
every sample, and, if negative contributions were obtained, a
different configuration of sources was employed with certain
qualifying assumptions. Each possible configuration with positive
coefficients was considered and the one with the lowest standard
error was chosen as the optimum solution. On the average,
automotive exhaust was the source of almost 50% of observed
hydrocarbons. Gasoline and its vapor contributed up to 30% by
weight and the balance resulted from commercial and geological
natural gas. Thus, automobiles and other highway related sources
were responsible for the majority of these hydrocarbons. A similar
study utilizing this mass balance approach for resolving
hydrocarbon sources has been made by Nelson et al. (1983) in
Sydney, Australia. Thus, it is possible to identify the impact of
emission sources on gaseous as well as particulate pollutants.
Similar work is reported in this special issue for Mumbai, India
(Pandit et al., 2011). CMB analysis has also been used to determine
the sources of benzene in rural New York State (Li et al., 2011).

In 1979, Watson (1979) and Dunker (1979) independently
suggested a mathematical formalism called effective variance
weighting that included the uncertainty in the measurement of the
source composition profiles as well as the uncertainties in the
ambient concentrations. As part of this analysis, a method was also
developed to permit the calculation of the uncertainties in the
mass contributions. Effective—variance least squares has been
incorporated into the standard personal computer software
developed by the U.S. EPA for receptor modeling. The most
extensive use of effective—variance fitting has been made by
Watson and colleagues in their work on data from Portland, OR
(Watson et al., 1984). Since that study, a number of other
applications of this approach have been made in a wide variety of
locations and extensive libraries of compositional profiles of
emission sources have been developed to be used in the mass
balance models. These models are described in detail by Watson et
al. (1991). In this issue, Pandit et al. (2011) have used the CMB
approach to apportion non—-methane hydrocarbons (NMHCs)
concentrations in Mumbai, India.

3. Factor Analysis

Actually, the first type of receptor modeling analysis reported
in the literature was factor analysis using eigenvector methods that
had been developed in the social sciences for interpreting large
data sets. Blifford and Meeker (1967) used a principal component
analysis with several types of axis rotations to examine particle
composition data collected by the National Air Sampling Network
(NASN) during 1957-61 in 30 U.S. cities. They were generally not
able to extract much interpretable information from their data.
Since there are a very wide variety of particle sources among these
30 cities and only 13 elements were measured, it is not surprising
that they were not able to provide much specificity to their factors.
Prinz and Stratmann (1968) examined both the aromatic
hydrocarbon content of the air in 12 West German cities and data
on the air quality of Detroit using factor analysis methods. In both
cases, they found solutions that yielded readily interpretable
results.

However, there was not further use of factor analysis until it
was reintroduced in the mid—1970's by Hopke et al. (1976) and
Gaarenstroom et al. (1977) in their analyses of particle compo-
sition data from Boston, MA and Tucson, AZ, respectively. In the
Boston data for 90 samples at a variety of sites, six common factors
were identified that were interpreted as soil, sea salt, oil-fired
power plants, motor vehicles, refuse incineration and an unknown
manganese—selenium source. In the study of Tucson, whole filter
data were analyzed separately at each site. They find factors that
are identified as soil, automotive, several secondary aerosol
materials such as (NH4),SO, and several unknown factors. They
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also discovered a factor that represented the variation of
elemental composition in their aliquots of their neutron activation
standard containing Na, Ca, K, Fe, Zn, and Mg. This finding
illustrates one of the important uses of factor analysis; screening
the data for noisy variables or analytical artifacts. It can provide
useful insight into several possible problems that may exist in a
data set including incorrect single values and some types of
systematic errors.

With the use of atomic and nuclear methods to analyze
environmental samples for a multitude of elements, very large
data sets have been generated. Because of the ease in obtaining
these results with computerized systems, the elemental data
acquired are not always as thoroughly checked as they should be,
leading to some, if not many, bad data points. It is advantageous to
have an efficient and effective method to identify problems with a
data set before it is used for further studies. Eigenvector analysis is
described in detail by Henry (1991).

A problem that exists with these forms of factor analysis is
that they do not permit quantitative source apportionment of
particle mass or of specific elemental concentrations. In an effort
to find alternative methods that would provide information on
source contributions when only the ambient particulate analytical
results are available, Henry and coworkers (Henry and Kim, 1989;
Kim and Henry, 1999; Kim and Henry, 2000; Henry, 2003) have
developed alternative methods based on eigenvector methods
called Unmix. In these analyses, resolution similar to that obtained
from a CMB analysis can be obtained although there remain
problems (Paatero and Tapper, 1993). An alternative least—squares
method has been developed by Paatero (1997) called Positive
Matrix factorization (PMF). The PMF approach uses an explicit
least—squares fit to the data to obtain the source profiles and mass
contributions. Both PMF and Unmix have been recognized as
applicable to air quality management efforts and are distributed by
the United States Environmental Protection  Agency
(www.epa.gov/ttn/scram/receptorindex.htm). There are a number
of examples of the application of PMF in articles in this Special
Issue.

4. Incorporation of Meteorological Information

It is often helpful to be able to combine the results of a source
apportionment obtained from a CMB or factor analysis approach
with local wind direction data to assist in the identification of
specific sources or source types. There are several approaches for
making such analyses including Conditional Probability Function
(CPF) and Non—Parametric Regression (NPR). These methods are
described and applied to highly time resolved data by Wang et al.
(2011).

None of the source apportionment methods (CMB, Unmix,
PMF) can provide a definite indication of the sources of secondary
particles such as sulfate, nitrate, or secondary organic materials.
The usual results of a CMB analysis are to list "sulfate" as a source
or possibly describe it as "regional sulfate”. Similar results are
typically obtained through factor analysis. In order to really
develop effective control strategies, it will be necessary to
attribute the secondary particle mass to the original gaseous
precursor sources. In order to make such an apportionment,
additional information must be included in the analysis. This
information is generally in the form of spatial/temporal
information or in terms of meteorology as defined by air parcel
back trajectories. A number of methods are available to analyze an
ensemble of back trajectories along with the related air quality
data (Hopke, 2003). Back trajectories have been applied in several
of the studies presented in this Special Issue (Begum et al., 2011,
Cohen et al., 2011).

The collection of studies presented in this issue provides
useful illustrations of the application of a variety of data analysis

tools to multiple types of air quality data. They demonstrate, by
example, the current trends and directions in air pollution
characterization, source fingerprinting and source apportionment.
The current analytical tools applied in these articles can reduce
such data to information that may be useful in developing and
applying air quality management strategies to improve air quality
in an effective and efficient manner.
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