
ADSORPTION OF A JET FUEL ON A MODEL 
ORGANIC/CLAY SOIL: APPLICATION OF SMALL 

ANGLE NEUTRON SCATTERING

H.J.M. Hanley and T.E. Payne

H.J.M. Hanley. Executive, Australian Nuclear Science and Technology Organisation, PMB 

1, Menai, NSW. Australia, 2234, and Research School of Chemistry, Australian National 

University, Canberra, ACT, 0200, Australia.

T .E. Payne*.  Institute for Environmental Research, Australian Nuclear Science and 

Technology Organisation, PMB 1, Menai, NSW, 2234 Australia.

“Technical Note” submitted to: Journal of Environmental Engineering and Science

March 2008

* Corresponding author: 

email: tep@ansto.gov.au; telephone: +61 2 9717 3118; fax: +61 2 9717 9286

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ANSTO Publications Online

https://core.ac.uk/display/43819173?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:tep@ansto.gov.au


ADSORPTION OF A JET FUEL ON A MODEL 
ORGANIC/CLAY SOIL: APPLICATION OF SMALL 
ANGLE NEUTRON SCATTERING

Howard J. M. Hanley and T.E. Payne

Abstract: Small angle neutron scattering (SANS) data are reported from a system that models 

the contamination of a clay/organic matter soil from a fuel spillage. The soil was represented 

as an aqueous dispersion of the synthetic clay mineral Laponite coated with lysine, and the 

contaminant was a representative jet fuel, quadricyclane, mixed with the detergent 

cetyltrimethylammonium bromide (CTAB). The adsorbed surface coverage on the clay was 

estimated.  It is shown that the presence of adsorbed lysine considerably enhances the 

subsequent adsorption of both CTAB and quadricyclane.  It is demonstrated that the SANS 

technique can contribute to the general problem of environmental remediation and retention 

by probing the interactions of pollutants and clay surfaces.
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Introduction

The contamination of soils and groundwaters by hydrocarbons is an increasing 

problem worldwide, and there are a number of remediation techniques being applied (Song 

and Bartha, 1990; Nadim et al. 2000; Labud et al. 2007).  Depending on the remediation 

objective, it can be beneficial to either retard the movement of a contaminant or enhance its 



removal (Ranjan et al. 2006), and it is therefore important to better understand better the 

mechanisms of these processes. The adsorption of neutral organic contaminants on clay 

minerals can be considerably impacted if the inorganic clay surface cations are replaced by a 

quaternary ammonium equivalent. Therefore, the influence of cationic surfactants, such as 

cetyl trimethylammonium bromide (CTAB), on the ability of a clay to retain nonionic 

inorganic solutes has been the subject of detailed study (Ranjan et al. 2006). 

Multi-component organic/clay systems are in principle amenable to examination by 

small angle neutron scattering (SANS), and several such studies have been reported (Hanley 

et al. 1997, 2003; Hermes et al. 2006; King et al. 2007; Zhou et. al. 2007).  Nevertheless, 

relatively few studies have addressed environmental problems, although there are some 

examples (Diallo et al. 2005).  In the present study, we apply the SANS technique to 

investigate the adsorption of an aerospace fuel quadricyclane, C7H8 (Bai et. al. 2002; Lee et 

al. 2005) on an organic/clay system in the presence of an aqueous detergent.

SANS equations

The SANS technique (Higgins and Benoit, 1994) measures the scattered intensity, 

I(q) , as a function of the scattered wave vector, q , where q = 4π sin(θ / 2) λ , with λ  the 

incident neutron wavelength.  The straightforward expression for the scattered intensity from 

a simple system of units randomly dispersed in a given volume of a medium is

[1]                             I(q) ~ AφVp(ρ − ρm )2 P (q)

where A is an apparatus constant, φ  is the volume fraction and Vp  is the volume of a unit: 

P (q)  is the form factor which is a function of the unit’s geometry.  The term (ρ − ρm )2

 



represents the scattering power of the unit with respect to the medium.  Here ρ  is the 

scattering length density defined as ρ = ρmol bj N( j)∑  with ρmol  the molar density, b j  the 

neutron scattering length of nucleus j, and N( j)  the number of nuclei of type j.  The term ρm  

is the scattering length density of the background medium. 

The model system

Quadricyclane is assumed to be sorbed on the clay complex through the organic 

matter in association with cationic species present in the contacting aqueous phase.  We 

model this scenario by considering the synthetic clay sodium Laponite as the clay mineral, α-

amino acid l-lysine as representative organic matter, and CTAB as a typical cationic 

detergent.  Laponite platelets are of composition

                                  Si8 Mg5.54 Li0.46 H4O24[ ]0.46 −
Na0.46

+

 

and the surface sodium ions can be totally or partially substituted by the cationic surfactant 

and/or by the lysine.  In other words, the system can be considered as a particle made up of a 

central core and a surface coating. If the core has a characteristic scattering length density ρ1, 

and the surface has a characteristic scattering length density ρ2, the scattered intensity can be 

written

  [2]               I(q) ~ (ρ2 − ρm) VTPT(q) − V1P1(q)[ ]+ (ρ1 − ρm)V1P1(q){ }2

where V1 is the volume of the core, and VT  is the total volume of the particle. 



In the limit that q → 0  - which is of interest here - Eqn. [2] then becomes

  [3]                              I ~ (ρ1 − ρ2 )V1 + (ρ2 − ρm )VT{ }2

Equation [3], however, can be written in a more practical form.  A shift in the forward 

scattering for a sample in various solvents is proportional to the number of moles displaced 

by the scatterers, so that one can write the scattering power,  ∆ , of one mol of scatterer a that 

displaces xab  mol of solvent b as

 [4]                                                 
∆ ab = [ bi

ia
∑ − xab bi

ib
∑ ]2

                         

where bi is now taken over all atoms in the unit.  If one mol of the scatterer has now xc moles 

of a surface component c attached to it, which displaces xcb moles of solvent b. The scattering 

power becomes

  [5]                               
∆ acb = [( bi

ia
∑ + xc bi

ic
∑ ) − bi

ib
∑ (xab + xcb )]2

   

       

The ratio of the scattering powers for different values of the displaced mol fractions with be 

equivalent to the ratio of the measured scattered intensity as q → 0 . 

Solutions, SANS configurations

A stock solution was prepared by stirring 0.5 g of laponite in 100mls of D2O for five 

hours: the solution was clear and stable for many weeks.  Solutions of lysine and CTAB were 

made up with concentrations equivalent to a five times multiple of the cation exchange 



capacity (CEC) of the clay, which was taken as 76 mmoles equivalent/100g  (Morvan et al. 

1994) [Selecting this multiple of the CEC was arbitrary, but we have observed in our previous 

work (Hanley et al. 1997) that cationic/clay systems tend to aggregate heavily below this 

ratio.]  All calculations are with respect to one mol of the laponite surface, molecular weight 

= 379.3g.  Accordingly, 100ml D2O/laponite mixtures with 0.275g lysine and 0.683g CTAB, 

respectively, were prepared by stirring, very lightly centrifuging and filtering. A 

laponite/lysine solution was also prepared in H2O.  Finally, 10ml mixtures were made up by 

adding various amounts of quadricyclane to a solution composed of CTAB added to 

previously mixed laponite and lysine.

Neutron scattering intensities from the solutions were obtained from the appropriate 

samples loaded in 1 mm gap-thickness quartz cells and placed in the beam of the 30 m SANS 

NG3 spectrometer of the US National Institute of Standard and Technology (NIST) Cold 

Neutron Research Facility.  The spectrometer was configured: (a), with an incident neutron 

wavelength λ = 0.5 nm and a sample-detector distance of 4.5 m; and (b), with an incident 

neutron wavelength λ  = 0.6 nm and a sample-detector distance of 13 m with the detector 

offset by 25 cm.  The wave vector ranged for these configurations between 0.03 < q < 

1.2 nm-1.  Scattered neutrons were detected on the instruments 2D position sensitive detector. 

Azimuthally averaged data were corrected for empty cell and solvent scattering as previously 

described (Hanley et al. 1997). All experiments were carried out at ambient temperature and 

atmospheric pressure.

Results and discussion

Figure 1 displays the SANS data from the solution with lysine adsorbed on the 

laponite. Two curves are shown: one indicating the scattering with H2O as the solvent, the 



other with D2O.  Inspection of Eqn. [5] indicates that the mole fraction, xly, of lysine adsorbed 

on the clay can be determined from the two data sets.  The experimental forward scattering 

ratio I(q)H2O / I(q)D2O  as q → 0  is approximately 2. From Eqn [5], given the parameters listed 

in Table 1, we estimate this corresponds to xly ≈ 0.1 .   This mol fraction in turn corresponds 

to a surface coverage of about 1/3 CEC equivalents.  Hence, lysine is only partially adsorbed 

on the clay surface.

Figure 2 illustrates the effects of adding CTAB. The scattering pattern from a 

CTAB/laponite mixture in D2O is shown as the middle curve in the figure. Given an 

experimental ratio of the forward scattering of ~ 36, calculation using Eqn 5 suggests that 

xCTB  is ~1.0 equivalent to approximately 3-4 CEC equivalents. This value is consistent with 

our previous independent estimate reported by Hanley et. al. (1997). When, however, CTAB 

is added to a solution of the laponite pre-mixed with lysine, the scattering is enhanced as 

indicated by the upper curve in the figure. From the experimental forward scattering ratio, 

and using Eqn. 5, with xly = 0.1, we estimate that the CTAB coverage has increased to xCTB  ~ 

1.8 which corresponds to about 6 CEC equivalents. Thus the presence of a relatively small 

amount of adsorbed lysine considerably increases the adsorption of the CTAB on the 

laponite.

The effect of adding quadricyclane and CTAB to previously mixed laponite and lysine 

in D2O is shown in Fig. 3.  The upper curves depict the scatter with (a) 0.035ml and, (b) 0.7 

ml quadricyclane added to the 10ml solution. From the forward scattering ratio and setting 

xly = 0.1 and xCTB = 1.8  in Eqn.5, we estimate that xquad = 3.5  mixture (a) and xquad = 6.5  for 

mix (b). Using the quadricyclane density of 0.982g cm-3 these estimates are equivalent to ~ 

0.04mls and ~ 0.08mls adsorbed in 10mls, respectively. When compared to the original 

concentrations, given the experimental uncertainty in all the forward scattering extrapolations, 



we conclude that essentially all of the quadricyclane was probably adsorbed from mixture (a) 

but that there is a surplus in mixture (b). We could thus assume that there is a threshold 

concentration above which further quadricyclane adsorption would not occur.

The results reported here reinforce quantitatively the work of previous authors who 

have pointed out the importance of a cationic surfactant in the mechanism of pollutant/clay 

adsorption, either in the context of remediation or in the context of retention. We have, 

however, demonstrated the major contribution of the organic matter, lysine, to the overall 

adsorption mechanism.

We conclude by remarking that it would be relatively straightforward to extend this 

brief study - to obtain the quadricyclane adsorption isotherm, for example. The SANS 

technique could also be applied to elucidate the nanostructure of the clay surface and of the 

components in the liquid phase. Overall, we have demonstrated that the SANS technique can 

be a valuable adjunct to a general study of environmental contamination.
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Table 1.  Neutron scattering parameters - molecular mass, the sum of the atomic scattering 

lengths and the scattering length density (sld).

Mass Scattering length      sld
g 1012 cm 10-10 cm-2

Laponite 379.3 9.452 3.80
CTAB 363.9 -1.453 -0.24
CTA+ 284 -2.133 -0.45
Lysine 147 1.42 0.58
Lysine, Cl+ 182.5 2.38 0.78
Quadricyclane 92 1.663 1.07
H2O 18 -0.168 -0.56
D2O 20 1.914 6.37



Figure 1.   Plot of the scattered intensity from a solution of lysine adsorbed on laponite: in 

D2O (lower curve) and in H2O (upper curve).

Figure 2.    Plot of the scattered intensity from D2O solutions of CTAB (CTA+) adsorbed on 

laponite.  Lower curve - scattering from laponite; middle curve - scattering from CTA+ on 

laponite; upper curve - scattering from CTA+ adsorbed on laponite precoated with lysine.

Figure 3. The two upper curves show the scattered intensity from two D2O solutions of 

quadricyclane/CTAB mixtures adsorbed on laponite precoated with lysine. The solutions 

contained 0.7ml (squares) and 0.035 ml of quadricyclane in 10ml of the laponite complex 

mixture (circles).  The lower curve (diamonds) is the scattering from laponite in the absence 

of quadricyclane and CTAB.  The enhanced scattering due to adding the quadricyclane is 

seen by comparing the upper curves of this figure with the upper curve of Fig. 2.
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