




AAEC/E622

(Revised)

## AUSTRALIAN ATOMIC ENERGY COMMISSION RESEARCH ESTABLISHMENT

### LUCAS HEIGHTS RESEARCH LABORATORIES

ENVIRONMENTAL SURVEY AT THE LUCAS HEIGHTS RESEARCH LABORATORIES 1983

by

M.S. GILES

#### A. DUDAITIS

DECEMBER 1985

ISBN 0 642 59820 7

#### AUSTRALIAN ATOMIC ENERGY COMMISSION RESEARCH ESTABLISHMENT LUCAS HEIGHTS RESEARCH LABORATORIES

#### ENVIRONMENTAL SURVEY AT THE LUCAS HEIGHTS RESEARCH LABORATORIES - 1983

by

M.S. GILES A. DUDAITIS

#### ABSTRACT

Results are presented of the environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1983. These results are satisfactory. No radioactivity which could have originated from these laboratories was found in samples collected from possible human food chains. All lowlevel liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne waste discharges during this period is estimated to be less than 0.01 millisieverts, which is 1 per cent of the limit for long-term exposure that is recommended by the National Health and Medical Research Council. National Library of Australia card number and ISBN 0 642 598207

The following descriptors have been selected from the INIS Thesaurus to describe the subject content of this report for information retrieval purposes. For further details please refer to IAEA-INIS-12 (INIS: Manual for Indexing) and IAEA-INIS-13 (INIS: Thesaurus) published in Vienna by the International Atomic Energy Agency.

AAEC; AIR; CESIUM; CONTAMINATION; ENVIRONMENT; EXPERIMENTAL DATA; FRESH WATER; GASEOUS WASTES; GROUND WATER; HUMAN POPULATIONS; IODINE 131; LIQUID WASTES; MILK; NEW SOUTH WALES; PLANTS; RADIATION DOSES; RADIATION MONITORING; RADIOACTIVE EFFLUENTS; RADIOACTIVITY; RIVERS; SAND; SOILS; STRONTIUM 90; TRITIUM; WASTE WATER

#### CONTENTS

| 1. | INTROD                                                                                                    | UCTION                                                                                                                                                                | 1                                    |
|----|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 2. | SAMPLE                                                                                                    | COLLECTION AND PREPARATION                                                                                                                                            | 1                                    |
| 3. | ANALYT                                                                                                    | ICAL METHODS                                                                                                                                                          | 1                                    |
| 4. | RESULT                                                                                                    | S                                                                                                                                                                     | 1                                    |
| 5. | <ul> <li>5.1 Airbo</li> <li>5.2 Woro</li> <li>5.3 Storm</li> <li>5.4 Efflue</li> <li>5.5 Fresh</li> </ul> | SION OF RESULTS<br>orne Releases<br>onora Estuary Samples<br>nwater Outlets<br>ent Discharge Pipeline<br>water Sections of the Woronora River<br>Forest Burial Ground | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2 |
| 6. | SUMMA                                                                                                     | RY                                                                                                                                                                    | 3                                    |
| 7. | ACKNOV                                                                                                    | WLEDGEMENTS                                                                                                                                                           | 3                                    |
| 8. | REFERE                                                                                                    | NCES                                                                                                                                                                  | 3                                    |
| Та | able 1                                                                                                    | Sample collection schedule and preparation details                                                                                                                    | 5                                    |
| Ta | able 2                                                                                                    | Radioactive iodine in air, 1983                                                                                                                                       | 6                                    |
| Ta | able 3                                                                                                    | Radioactive iodine in milk samples, 1983                                                                                                                              | 7                                    |
| Ta | able 4                                                                                                    | Tritium in Woronora water samples at station E 5.9, 1983                                                                                                              | 7                                    |
| Ta | able 5                                                                                                    | Radioactivity in Woronora zostera samples, 1983                                                                                                                       | 8                                    |
| Ta | able 6                                                                                                    | Radioactivity in Woronora beach sand, 1983                                                                                                                            | 8                                    |
| Ta | able 7a                                                                                                   | Radioactivity in samples from stormwater outlets, 1983                                                                                                                | 9                                    |
| Τa | ıble 7b                                                                                                   | Radioactivity in samples from stormwater outlets, 1983                                                                                                                | 10                                   |
| Ta | able 7 c                                                                                                  | Radioactivity in samples from stormwater outlets, 1983                                                                                                                | 11                                   |
| T  | able 8                                                                                                    | Gamma survey — effluent discharge pipeline, 1983                                                                                                                      | 13                                   |
| T  | able 9                                                                                                    | Radioactivity in samples taken near effluent discharge pipeline, 1983                                                                                                 | 13                                   |
| T  | able 10                                                                                                   | Radioactivity in freshwater section of Woronora River, 1983                                                                                                           | 13                                   |
| T  | able 11                                                                                                   | Radioactivity in samples of soil and vegetation from Little Forest Burial Ground, 1983                                                                                | 14                                   |
| Т  | able 12                                                                                                   | Radioactivity in samples of groundwater from Little Forest Burial Ground, 1983                                                                                        | 14                                   |
| Т  | able 13                                                                                                   | Radioactivity in samples taken from Creeks north of Little Forest Burial Ground, 1983                                                                                 | 15                                   |
| Т  | able 14                                                                                                   | Airborne radioactivity releases, 1983                                                                                                                                 | 16                                   |
| Т  | able 15                                                                                                   | Airborne radioactivity releases, 1983 as fractions of authorised limits                                                                                               | 17                                   |
| Т  | able 16                                                                                                   | Radioactivity discharges to the MWS&DB sewer during 1983                                                                                                              | 18                                   |

Continued

| Figure 1   | Lucas Heights district - location of sampling stations                         | 19 |
|------------|--------------------------------------------------------------------------------|----|
| Figure 2   | Little Forest Burial Ground — location of sampling stations                    | 20 |
| Appendix A | Previous environmental survey reports                                          | 21 |
| Appendix B | List of isotope symbols used in tables of survey results.                      | 22 |
| Appendix C | New Zealand National Radiation Laboratory report on strontium in sand for 1982 | 22 |

.

•

•

.

.

1

(

٩

¢

1

#### 1. INTRODUCTION

Since 1959, surveys have been made by the Australian Atomic Energy Commission (AAEC) of the radioactive content in samples collected in the vicinity of the Lucas Heights Research Laboratories (LHRL) to ensure that no unacceptable health effects either have occurred or will occur as a result of nuclear research and operation. The results obtained in these surveys have been published regularly and are listed in Appendix A.

During the early surveys (*i.e.* throughout the 1960s), weapons test fallout was readily detectable in samples collected around Lucas Heights [Giles and Stockdale 1966]. Because of this, a large program of sampling was undertaken to establish the general levels of radioactivity arising from weapons test fallout, and so enable additional radioactivity caused by nuclear operations at Lucas Heights to be assessed. To establish this general background, samples were collected within a 60 km radius of the site; this expanded program was scaled down in 1970 because the Australian Radiation Laboratory (ARL) had set up a monitoring system throughout Australia and routinely measured samples from the Sydney region. Results of these early surveys were published between 1957 and 1970 as described by Giles and Dudaitis [1982]. Further reports have been made by the Australian Ionising Radiation Advisory Council [AIRAC 1975] and the United Nations Scientific Committee on the Effects of Atomic Radiation [UNSCEAR 1977]. These studies are used as a basis for comparison with the results for milk samples reported in the later AAEC surveys.

The present monitoring system is designed to detect radioactive contaminants which may have been released from the LHRL, either routinely (under authorisations from the New South Wales Department of Health) or accidentally, and to ensure that such concentrations do not result in radiation doses to members of the public in excess of limits recommended by the International Commission on Radiological Protection [ICRP 1977] and by the National Health and Medical Research Council of Australia [NH&MRC 1981]. Doses recommended by these bodies are set for periods of time which extend over a normal life-time span.

#### 2. SAMPLE COLLECTION AND PREPARATION

Samples were collected at the sites shown in Figure 1, and details of collection and sample preparation methods are given in Table 1. (Note: The isotope symbols used are listed in Appendix B.)

#### 3. ANALYTICAL METHODS

Analytical methods are the same as those used before.

#### 4. RESULTS

1

Environmental survey measurements taken during 1983 are presented in Tables 2 to 13. Authorised airborne releases are given in Tables 14 and 15. Authorised liquid effluent discharges to the Metropolitan Water Sewerage and Drainage Board (MWS&DB) sewers are given in Table 16.

#### 5. DISCUSSION OF RESULTS

Throughout the tables where gamma spectrometry has revealed small unresolvable peaks at particular energies these have been reported as trace amounts. This indicates the possible presence of the isotope in question but the amount is not quantifiable.

#### 5.1 Airborne Releases

Measurable concentrations of <sup>131</sup>I were recorded in air samples taken betwen 20 March and 30 August. The highest reading obtained was on 28 June and was  $3.2 \times 10^{-3}$  of the derived working limit of 10 Bq m<sup>-3</sup>. The derived air concentration for child members of the public [ICRP 1977, 1979], i.e. the most sensitive individuals, is 10 Bq m<sup>-3</sup>. The average <sup>131</sup>I-in-air concentration for the year would have resulted in an effective dose of 0.8  $\mu$ Sv y<sup>-1</sup>, or 8  $\times 10^{-4}$  of the limit.

The milk monitoring data for caesium-137 and iodine-131 are given in Table 3. At most, a trace of caesium-137 was found, with a limit of determination of 0.3 mBq g<sup>-1</sup> (fresh weight). This was less than  $6 \times 10^{-3}$  of the derived limit, based on the assumption that an infant consumes 700 mL of milk per day. The limit of determination for <sup>131</sup>I in milk represents  $4.5 \times 10^{-2}$  of the derived limit.

Noble gas releases were always below the authorised limit during the year. The methodology of Petersen [1982] was used to calculate that, for an average year and given maximum authorised discharge levels, the most exposed individual would receive less than 0.01 mSv  $y^{-1}$  *i.e.* less than 1 per cent of the NH&MRC recommendation.

#### 5.2 Woronora Estuary Samples

Zostera and sand from the Woronora estuary were collected again during 1983 to monitor residual radioactivity remaining from discharges made before 1 July 1980. (The discharge of low level liquid effluent was diverted from the Woronora River to the MWS&DB sewers at that time.)

Traces of <sup>60</sup>Co too small to be quantified were still present in zostera. Since further analyses of these samples will prove unproductive it was decided to discontinue collecting these samples from 1984 onwards.

#### 5.3 Stormwater Outlets

Increased levels of  $\alpha$  activity in stormwater were measured near the No.1 outlet at the south-east corner of the fenced area in February, March and September. During March, this activity was accompanied by  $\beta$  activity, <sup>3</sup>H, <sup>137</sup>Cs and <sup>60</sup>Co. Increased <sup>3</sup>H was measured in March, July and September. The highest level found for <sup>137</sup>Cs, <sup>60</sup>Co and <sup>3</sup>H respectively was 5.9 × 10<sup>-2</sup>, 1.6 × 10<sup>-3</sup> and 9.5 × 10<sup>-2</sup> of the most conservative derived limit which assumes all drinking water is drawn from this source. When, as recommended by the ICRP, the concentrations are averaged over the year, the corresponding ratios to the derived working limit become  $1.3 \times 10^{-3}$ ,  $3.2 \times 10^{-5}$  and  $9.9 \times 10^{-3}$  respectively.

The individual results for  $\alpha$  activity recorded on 22 February, 2 March and 21 September are higher than the limits set out in the regulations to the NSW Clean Waters Act [1979]. However, these limits apply at the 1.6 km boundary of the site which is one kilometre downstream from where these samples were collected and dilution would reduce this level substantially at the boundary. More importantly the average of the results during the year (0.2 Bq L<sup>-1</sup>) falls well below the required limit.

The ephemeral creek into which this stormwater drains is not used as a source of drinking water.

#### 5.4 Effluent Discharge Pipeline

The survey of radiation being emitted from the discharge pipeline revealed the dose rates shown in Table 8. The maximum annual radiation dose for members of the public recommended by the ICRP is 1000  $\mu$ Sv per year [ICRP 1979]. Because of the isolated position of the exposed sections of the discharge pipe, the likelihood of occupancy by members of the public is very low and thus the limits would not be exceeded. Checks on water and soil at points along the pipeline revealed no extraneous radioactivity.

#### 5.5 Freshwater Sections of the Woronora River

Checks were made throughout the year on radioactivity in the freshwater section of the Woronora River at the point of entry for drainage from LHRL. Samples were also collected at the Heathcote Road crossing, upstream and above any possible input from LHRL, to provide a direct measure of background levels. These are presented in Table 10. All readings represent normal background levels.

Appendix C contains results of repeat analyses by the New Zealand Radiation Laboratories of samples of sand from the freshwater section of the Woronora River collected in 1982. They are lower than the results reported in AAEC/E591, reflecting the lower detection limit of the New Zealand method.

#### 5.6 Little Forest Burial Ground

Sampling points for Little Forest Burial Ground are shown on Figure 2. Tritium was found in three of the groundwater bores from within the fenced area of the burial ground. No extraneous radioactivity was found in boreholes outside the fenced area (boreholes BHA to BHE). Since 1978, when measurements of <sup>3</sup>H commenced, there has been a trend towards increasing levels of <sup>3</sup>H in BH10, *i.e.* in the NE corner of the site. This suggests that groundwater movement is taking place in that direction, as predicted by earlier studies [Isaacs and Mears 1977].

Surface soil near trenches 56/57 and 68/69 within the fenced area showed higher than natural levels of  $\alpha$  activity in very localised areas. All of the burial ground has since been top dressed with 30 cm of fine particle soil as part of the regular maintenance program.

#### 6. SUMMARY

None of the samples taken from possible human food chains in the environs of the Lucas Heights Research Laboratories contained radioactivity which could be attributed to the operation of the site.

Discharges of airborne radioactive gases were always within authorised limits (Table 15). The dose to the most sensitive members of the public from <sup>131</sup>I releases was  $8 \times 10^{-4}$  mSv y<sup>-1</sup> and the calculated dose from released noble gases to the most exposed individuals was less than 0.01 mSv. These figures represent less than 1 per cent of the most restrictive limit recommended by the NH&MRC.

#### 7. ACKNOWLEDGEMENTS

The authors would like to thank Mr J.A. Fogden for his assistance in field and laboratory work. Potassium levels were determined by the CSIRO's Division of Energy Chemistry.

#### 8. REFERENCES

- AIRAC [1975] Fallout over Australia from Nuclear Tests Australian Radiation Laboratory and Bureau of Meteorology. Australian Ionising Radiation Advisory Council Report AIRAC No.2. Australian Government Publishing Service, Canberra.
- Fry R.M. [1966] A reformulation of the Lucas Heights liquid effluent discharge authorisation. AAEC/E156.
- Giles, M.S., Stockdale, J.A. [1966] The Lucas Heights environmental sampling program. AAEC/TM336.
- Giles, M.S., Dudaitis, A. [1982] Environmental survey at the AAEC Research Establishment, Lucas Heights — Results for 1980. AAEC/E542.
- ICRP [1977] Recommendation of the International Commission on Radiological Protection. Publication No.26. Pergamon Press, Oxford.
- ICRP [1979] Limits for Intakes of Radionuclides by Workers. International Commission on Radiological Protection. Pergamon Press, Oxford.
- Isaacs, S.R., Mears, K.F. [1977] A study of the burial grounds used for radioactive wastes at the Little Forest area near Lucas Heights, NSW. AAEC/E427.
- NH&MRC [1981]- Recommended Radiation Protection Standards for Individuals exposed to Ionising Radiation. National Health and Medical Research Council. Australian Government Publishing Service, Canberra.
- Petersen, M.C.E. [1982] Finite Cloud Dosimetry, in Proc. 7th Ann. Conf. of the Aust. Radiat. Protect. Soc., Canberra.
- UNSCEAR [1977] Sources and Effects of Ionising Radiation. United Nations Scientific Committee on the Effects of Atomic Radiation. United Nations, New York.

- -- -

| Sample                       | Station                                   | Frequency                  | Collection Details                                                       | Special Preparations                                                                                                                                                      |
|------------------------------|-------------------------------------------|----------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stormwater                   | то                                        | Weekly<br>and<br>Quarterly | Sampled by bucket<br>at the outlet of<br>the drain                       | 10 L sample evaporated<br>to dryness and the<br>residue counted                                                                                                           |
| Estuary<br>water             | E5.9                                      | Weekly                     | From surface by bucket                                                   | Distilled for<br>tritium                                                                                                                                                  |
| Radioactive<br>iodine in air | то                                        | Weekly                     | Collected on<br>Maypacks (charcoal<br>filters)                           | Gamma spectrometry<br>of Maypacks                                                                                                                                         |
| Milk                         | Τ3                                        | Monthly                    | Sampled from milk<br>produced by locally<br>grazed cows                  | Gamma spectrometry<br>of whole milk                                                                                                                                       |
| Beach sand                   | E1.3, 5.9                                 | Six-monthly                | Taken by scoop<br>from top 50 mm in<br>inter-tidal region                | Sample ashed and sieved.<br>Sample passing 10 mesh BSS<br>counted for $\beta$ - $\gamma$ emitters.<br>Sample between 60 and 110 mesh<br>BSS counted for $\alpha$ emitters |
| Zostera                      | E1.6, 2.4,<br>E4.6, 7.0,<br>E9.3          | Six-monthly                | Harvested by hand<br>or rake                                             | Ashed                                                                                                                                                                     |
| Vegetation                   | Tl. LHRL<br>stormwater<br>outlets         | Six-monthly                | Cut by hand<br>clippers                                                  | Whole unwashed vegetation ashed                                                                                                                                           |
| Sand/Soil                    | TO. TI, T2;<br>LHRL stormwater<br>outlets | Six-monthly                | Scooped from<br>surface                                                  | As for beach sand                                                                                                                                                         |
| Groundwater                  | TI                                        | Six-monthly                | Boreholes pumped<br>dry, allowed to<br>refill and sampled<br>from bottom | 10 L sample evaporated<br>to dryness and the<br>residue counted                                                                                                           |
| Creekwater                   | T2                                        | Yearly                     | Sampled by bucket or bottle                                              | As for groundwater                                                                                                                                                        |

.

.

•

 TABLE 1

 SAMPLE COLLECTION SCHEDULE AND PREPARATION DETAILS

| Week ending<br>(1983) | <sup>131</sup> I (Bq m <sup>-3</sup> ) | Week ending<br>(1983) | <sup>131</sup> I (Bq m <sup>-3</sup> ) |
|-----------------------|----------------------------------------|-----------------------|----------------------------------------|
| 5/I                   | n.d. <sup>[1]</sup>                    | 5/7                   | $6.5 \times 10^{-3}$                   |
| 11/1                  | n.d.                                   | 12/7                  | $2.2 \times 10^{-2}$                   |
| 18/1                  | n.d.                                   | 19/7                  | $4.9 \times 10^{-3}$                   |
| 25/1                  | n.d.                                   | 26/7                  | $2.8 \times 10^{-3}$                   |
| 1/2                   | trace <sup>[2]</sup>                   | 2/8                   | $4.6 \times 10^{-3}$                   |
| 8/2                   | trace                                  | 9/8                   | $3.6 \times 10^{-3}$                   |
| 15/2                  | n.d.                                   | 16/8                  | $6.3 \times 10^{-3}$                   |
| 22/2                  | trace                                  | 23/8                  | $5.6 \times 10^{-3}$                   |
| 2/3                   | trace                                  | 30/8                  | $4.4 \times 10^{-3}$                   |
| 9/3                   | trace                                  | 6/9                   | trace                                  |
| 15/3                  | n.d.                                   | 13/9                  | n.d.                                   |
| 22/3                  | trace                                  | 20/9                  | trace                                  |
| 28/3                  | $3.9 \times 10^{-3}$                   | 28/9                  | trace                                  |
| 5/4                   | $4.3 \times 10^{-3}$                   | 5/10                  | n.d.                                   |
| 12/4                  | $5.0 \times 10^{-3}$                   | 11/10                 | nd                                     |
| 19/4                  | n.d.                                   | 18/10                 | n.d.                                   |
| 26/4                  | $2.1 \times 10^{-2}$                   | 25/10                 | nd                                     |
| 3/5                   | $4.1 \times 10^{-3}$                   | 1/11                  | n.d.                                   |
| 10/5                  | $1.6 \times 10^{-2}$                   | 8/11                  | trace                                  |
| 17/5                  | $1.9 \times 10^{-2}$                   | 15/11                 | trace                                  |
| 24/5                  | $8.3 \times 10^{-3}$                   | · 22/11               | n.d.                                   |
| 31/5                  | $2.0 \times 10^{-2}$                   | 30/11                 | n.d.                                   |
| 7/6                   | trace                                  | 6/12                  | trace                                  |
| 14/6                  | $4.9 \times 10^{-3}$                   | 13/12                 | n.d.                                   |
| 21/6                  | $8.6 \times 10^{-3}$                   | 20/12                 | n.d.                                   |
| 28/6                  | $3.2 \times 10^{-2}$                   | 29/12                 | nd                                     |

TABLE 2 **RADIOACTIVE IODINE IN AIR, 1983** 

Three air samplers are located along the eastern boundary of the site, where suburban residences are closest. Results are calculated making the conservative assumptions that: all activity was released during the first day of sampling period; and all the activity was concentrated at one sampling point.

.

•

[1] not detected. [2] trace  $< 3 \times 10^{-3}$  Bq m<sup>-3</sup>.

.

.

| Station | Date  | Radioactivity (Bq $g^{-1}$ fresh weight |                      |  |  |  |
|---------|-------|-----------------------------------------|----------------------|--|--|--|
|         | 1983  | <sup>137</sup> Cs <sup>[2]</sup>        | 131 <sub>I</sub> [1] |  |  |  |
| T3      | 31/1  | n.d. <sup>[3]</sup>                     | n.d.                 |  |  |  |
| (Menai) | 28/2  | trace                                   | n.d.                 |  |  |  |
| •       | 28/3  | n.d.                                    | n.d.                 |  |  |  |
|         | 29/4  | trace                                   | n.d.                 |  |  |  |
|         | 27/5  | trace                                   | n.d.                 |  |  |  |
|         | 29/6  | n.d.                                    | n.d.                 |  |  |  |
|         | 28/7  | trace                                   | n.d.                 |  |  |  |
|         | 30/8  | trace                                   | n.d.                 |  |  |  |
|         | 10/10 | trace                                   | n.d.                 |  |  |  |
|         | 31/10 | n.d.                                    | n.d.                 |  |  |  |
|         | 30/11 | trace                                   | n.d.                 |  |  |  |
|         | 30/12 | trace                                   | n.d.                 |  |  |  |

TABLE 3RADIOACTIVITY IN MILK SAMPLES, 1983

[1] The analytical method used for  $^{131}$ I in milk has a minimum detectable level of  $1 \times 10^{-3}$  Bq g<sup>-1</sup>.

[2] For <sup>137</sup>Cs the minimum detectable level was  $3 \times 10^{-4}$  Bq g<sup>-1</sup>.

[3] Not detected.

| TABLE 4                           |
|-----------------------------------|
| TRITIUM IN WORONORA WATER SAMPLES |
| <b>AT STATION E5.9, 1983</b>      |

| Date<br>1983 | Tritium <sup>[1]</sup><br>(Bq mL <sup>-1</sup> ) | Date<br>1983 | Tritium<br>(Bq mL <sup>-1</sup> ) | Date<br>1983 | Tritium (Bq mL <sup><math>-1</math></sup> ) |
|--------------|--------------------------------------------------|--------------|-----------------------------------|--------------|---------------------------------------------|
| 5/1          | < 0.25                                           | 26/4         | < 0.25                            | 23/8         | < 0.25                                      |
| 11/1         | < 0.25                                           | 3/5          | < 0.25                            | 30/8         | < 0.25                                      |
| 18/1         | < 0.25                                           | 10/5         | < 0.25                            | 6/9          | < 0.25                                      |
| 25/1         | < 0.25                                           | 17/5         | < 0.25                            | 11/10        | < 0.25                                      |
| 1/2          | < 0.25                                           | 24/5         | < 0.25                            | 18/10        | < 0.25                                      |
| 8/2          | < 0.25                                           | 31/5         | < 0.25                            | 25/10        | < 0.25                                      |
| 15/2         | < 0.25                                           | 7/6          | < 0.25                            | 1/11         | < 0.25                                      |
| 22/2         | < 0.25                                           | 14/6         | < 0.25                            | 8/11         | < 0.25                                      |
| 2/3          | < 0.25                                           | 21/6         | < 0.25                            | 15/11        | < 0.25                                      |
| 8/3          | < 0.25                                           | 28/6         | < 0.25                            | 22/11        | < 0.25                                      |
| 15/3         | < 0.25                                           | 5/7          | < 0.25                            | 30/11        | < 0.25                                      |
| 23/3         | < 0.25                                           | 14/7         | < 0.25                            | 6/12         | < 0.25                                      |
| 28/3         | < 0.25                                           | 19/7         | < 0.25                            | 13/12        | < 0.25                                      |
| 5/4          | < 0.25                                           | 26/7         | < 0.25                            | 20/12        | < 0.25                                      |
| 12/4         | < 0.25                                           | 2/8          | < 0.25                            | 29/12        | < 0.25                                      |
| 19/4         | < 0.25                                           | 16/8         | < 0.25                            |              |                                             |

[1] Derived limiting concentration (DLC) [ICRP 1979] = 80 Bq mL<sup>-1</sup> (if taken as drinking water).

|         |       |       | Radioactivity (Bq $g^{-1}$ fresh weight) |                  |                                               |                      |  |  |  |
|---------|-------|-------|------------------------------------------|------------------|-----------------------------------------------|----------------------|--|--|--|
| Station | Date  | Gross | Gross                                    | Gam              | ima emitters                                  | К                    |  |  |  |
|         | 1983  | α     | $\beta$ (less <sup>40</sup> K)           | <sup>60</sup> Co | <sup>238</sup> U+ <sup>232</sup> Th<br>series | - (μg g <sup>-</sup> |  |  |  |
| E1.3    | 20/5  | 0.03  | 0.01                                     | trace            | trace                                         | 4500                 |  |  |  |
|         | 14/11 | 0.05  | 0.04                                     | trace            | trace                                         | 4100                 |  |  |  |
| E2.4    | 20/5  | 0.06  | 0.04                                     | trace            | trace                                         | 3800                 |  |  |  |
|         | 14/11 | 0.06  | 0.02                                     | trace            | trace                                         | 5000                 |  |  |  |
| E4.6    | 14/11 | 0.09  | 0.07                                     | trace            | trace                                         | 4100                 |  |  |  |

TABLE 5RADIOACTIVITY IN WORONORA ZOSTERA SAMPLES, 1983

| TABLE 6                                  |     |
|------------------------------------------|-----|
| RADIOACTIVITY IN WORONORA BEACH SAND, 19 | 983 |

|                     |              | Radioacti            | Radioactivity (Bq g <sup>-1</sup> dry weight) |                    |                      |  |  |
|---------------------|--------------|----------------------|-----------------------------------------------|--------------------|----------------------|--|--|
| Station             | Date<br>1983 | Gross                | Gross                                         | γ                  | K<br>(               |  |  |
|                     | 1965         | α                    | β<br>(less <sup>40</sup> K)                   | emitters           | (µg g <sup>1</sup> ) |  |  |
| E1.3                | 20/5         | 0.29                 | 0.05                                          | n.d <sup>[1]</sup> | 200                  |  |  |
|                     | 14/5         | 0.26                 | 0.05                                          | n.d.               | 200                  |  |  |
| E5.9                | 20/5         | 0.03                 | 0.13                                          | n.d.               | 250                  |  |  |
|                     | 14/11        | 0.02                 | 0.13                                          | n.d.               | 250                  |  |  |
| Average (al         | ll samples)  | 0.15                 | 0.09                                          |                    |                      |  |  |
| $DLC^{[\tilde{2}]}$ |              | 111                  | 92.5                                          |                    |                      |  |  |
| Average fra<br>DLC  | action of    | $1.4 \times 10^{-3}$ | $9.7 \times 10^{-4}$                          |                    |                      |  |  |

[1] Not detected.

[2] Derived limiting concentration. from Fry [1966].

|      |                                                                                                                                                                                                                      | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | adioactivity (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bq g <sup>-1</sup> fresh weight)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |                                                                                                                                                         |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date | Sample                                                                                                                                                                                                               | Gross                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gross<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | γ-emitters <sup>[1]</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $^{3}H$                                                | К<br>(µg g <sup>-1</sup> )                                                                                                                              |
|      |                                                                                                                                                                                                                      | u<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $(less^{40}K)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        | (#6.5.)                                                                                                                                                 |
| 1174 | water                                                                                                                                                                                                                | [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.25                                                  | _                                                                                                                                                       |
|      |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | -                                                                                                                                                       |
|      |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |                                                                                                                                                         |
|      |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $-238_{11} + 232_{11} +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        | -                                                                                                                                                       |
|      | -                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | trace $100 + 100$ h series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | 1500                                                                                                                                                    |
|      |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 238-1 232-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        | -                                                                                                                                                       |
| 27/7 | soil                                                                                                                                                                                                                 | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                      | 1300                                                                                                                                                    |
| 11/4 | soil                                                                                                                                                                                                                 | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | trace $^{238}U + ^{232}Th$ series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                      | 450                                                                                                                                                     |
| 27/7 | soil                                                                                                                                                                                                                 | 0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | trace $^{238}$ U + $^{232}$ Th series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                      | 400                                                                                                                                                     |
| 11/4 | watar                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.25                                                  | -                                                                                                                                                       |
|      |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{1}{238_{11}} \pm \frac{232}{232}$ The sector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        | -<br>700                                                                                                                                                |
|      |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | trace 0 + Th series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        | -                                                                                                                                                       |
|      |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{1}{238}$ $\frac{1}{232}$ $\frac{232}{10}$ $\frac{1}{232}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        | -<br>550                                                                                                                                                |
| 2111 | 5011                                                                                                                                                                                                                 | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                      | 550                                                                                                                                                     |
| 11/4 | soil                                                                                                                                                                                                                 | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                      | 250                                                                                                                                                     |
| 27/7 | soil                                                                                                                                                                                                                 | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | trace $^{238}$ U + $^{232}$ Th series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                      | 200                                                                                                                                                     |
| 11/4 | soil                                                                                                                                                                                                                 | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | trace $238_{II} + 232_{Th}$ series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                      | 900                                                                                                                                                     |
|      |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                      | 750                                                                                                                                                     |
|      |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                      |                                                                                                                                                         |
|      | -                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                      | 750                                                                                                                                                     |
|      | soil                                                                                                                                                                                                                 | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | trace $^{258}U + ^{252}Th$ series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                      | 700                                                                                                                                                     |
| 27/7 | water                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.25                                                  | -                                                                                                                                                       |
| 11/4 | soil                                                                                                                                                                                                                 | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | trace $^{238}U + ^{232}Th$ series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                      | 700                                                                                                                                                     |
| 11/4 | water                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.3                                                    | -                                                                                                                                                       |
|      | soil                                                                                                                                                                                                                 | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | trace $^{238}U + ^{232}Th$ series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                      | 500                                                                                                                                                     |
| 27/7 | water                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.25                                                  | •                                                                                                                                                       |
|      | ••                                                                                                                                                                                                                   | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        | 1000                                                                                                                                                    |
|      |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        | 1000                                                                                                                                                    |
| 27/7 | SOIL                                                                                                                                                                                                                 | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                      | 1000                                                                                                                                                    |
| 11/4 | soil                                                                                                                                                                                                                 | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | trace $^{238}U + ^{232}Th$ series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                      | 650                                                                                                                                                     |
| 11/4 | water                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.25                                                  | -                                                                                                                                                       |
| 27/7 | soil                                                                                                                                                                                                                 | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | trace $^{238}U + ^{232}Th$ series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                      | 400                                                                                                                                                     |
| 27/7 | water                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.25                                                  | -                                                                                                                                                       |
| 27/7 | vegetation                                                                                                                                                                                                           | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | trace $^{238}U + ^{232}Th$ series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                      | 5000                                                                                                                                                    |
| 1174 | soil                                                                                                                                                                                                                 | 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | trace 238 11 + 232 Th and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        | 1200                                                                                                                                                    |
|      |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                      | 1200                                                                                                                                                    |
| 21/1 | 5011                                                                                                                                                                                                                 | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | trace U + In series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                      | 900                                                                                                                                                     |
| 11/4 | soil                                                                                                                                                                                                                 | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | trace $^{238}U + ^{232}Th$ series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                      | 1100                                                                                                                                                    |
| 27/7 | soil                                                                                                                                                                                                                 | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | trace $^{238}U + ^{232}Th$ series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                      | 700                                                                                                                                                     |
|      | 11/4<br>27/7<br>11/4<br>11/4<br>27/7<br>27/7<br>11/4<br>27/7<br>11/4<br>27/7<br>11/4<br>27/7<br>11/4<br>27/7<br>11/4<br>27/7<br>11/4<br>27/7<br>11/4<br>27/7<br>11/4<br>27/7<br>11/4<br>27/7<br>11/4<br>27/7<br>11/4 | 11/4       water         27/7       water         11/4       soil         27/7       water         11/4       soil         27/7       soil         27/7       soil         11/4       soil         27/7       soil         11/4       soil         27/7       soil         11/4       soil         27/7       soil         11/4       soil         27/7 </td <td>Date         Sample         Gross<br/><math>\alpha</math>           11/4         water         -           11/4         water         -           11/4         soil         0.48           27/7         water         -           11/4         soil         0.48           27/7         water         -           27/7         soil         0.34           11/4         soil         0.25           27/7         soil         0.41           11/4         soil         0.49           27/7         water         -           27/7         soil         0.41           11/4         soil         0.49           27/7         water         -           27/7         soil         0.16           11/4         soil         0.96           27/7         soil         0.82           11/4         soil         0.36           27/7         soil         0.62           27/7         soil         0.23           11/4         soil         0.23           11/4         soil         0.62           27/7         soil         0.19</td> <td>Date         Sample         Gross<br/><math>\alpha</math>         Gross<br/><math>\beta</math><br/>(less <math>40_{\rm K}</math>)           11/4         water         -           27/7         water         -           11/4         soil         0.48         0.37           27/7         water         -         -           11/4         soil         0.48         0.37           27/7         water         -         -           27/7         soil         0.34         0.31           11/4         soil         0.25         0.10           27/7         soil         0.41         0.12           11/4         soil         0.49         0.10           27/7         soil         0.46         0.16           11/4         soil         0.46         0.16           11/4         soil         0.18         0.86           27/7         soil         0.16         0.71           11/4         soil         0.96         1.15           27/7         soil         0.62         0.34           27/7         soil         0.62         0.34           27/7         soil         0.19         0.19           27/7</td> <td><math display="block">\begin{array}{c c c c c c c c c c c c c c c c c c c </math></td> <td>Date       Sample       Gross       Gross       Gross       <math>\gamma</math>-emitters<sup>[1]</sup> <math>^3</math>H         11/4       water       <math>J^{[2]}</math>       -       -       &lt;0.25</td> 27/7       water       -       -       <0.25 | Date         Sample         Gross<br>$\alpha$ 11/4         water         -           11/4         water         -           11/4         soil         0.48           27/7         water         -           11/4         soil         0.48           27/7         water         -           27/7         soil         0.34           11/4         soil         0.25           27/7         soil         0.41           11/4         soil         0.49           27/7         water         -           27/7         soil         0.41           11/4         soil         0.49           27/7         water         -           27/7         soil         0.16           11/4         soil         0.96           27/7         soil         0.82           11/4         soil         0.36           27/7         soil         0.62           27/7         soil         0.23           11/4         soil         0.23           11/4         soil         0.62           27/7         soil         0.19 | Date         Sample         Gross<br>$\alpha$ Gross<br>$\beta$<br>(less $40_{\rm K}$ )           11/4         water         -           27/7         water         -           11/4         soil         0.48         0.37           27/7         water         -         -           11/4         soil         0.48         0.37           27/7         water         -         -           27/7         soil         0.34         0.31           11/4         soil         0.25         0.10           27/7         soil         0.41         0.12           11/4         soil         0.49         0.10           27/7         soil         0.46         0.16           11/4         soil         0.46         0.16           11/4         soil         0.18         0.86           27/7         soil         0.16         0.71           11/4         soil         0.96         1.15           27/7         soil         0.62         0.34           27/7         soil         0.62         0.34           27/7         soil         0.19         0.19           27/7 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | Date       Sample       Gross       Gross       Gross $\gamma$ -emitters <sup>[1]</sup> $^3$ H         11/4       water $J^{[2]}$ -       -       <0.25 |

 TABLE 7A

 RADIOACTIVITY IN SAMPLES FROM STORMWATER OUTLETS, 1983

[1] The  $\gamma$ -ray peaks detected at approximately 0.5 MeV could be <sup>7</sup>Be (0.48 MeV), <sup>103</sup>Ru (0.5 MeV) or <sup>106</sup>Ru (0.51 MeV); <sup>7</sup>Be is a cosmic-ray produced spailation product, and <sup>103</sup>Ru and <sup>106</sup>Ru are fission products. Bq g<sup>-1</sup> refers to the number of disintegrations per second per gram at the energies indicated.

.

[2] Not measured.

1

4

|                  | _           | <u> </u> |           |                                 | $\frac{1}{1}$                                                                                                                                                               | - 3                    |                  |
|------------------|-------------|----------|-----------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------|
| Station          | Date        | Sample   | Gross     | Gross                           | γ-emitters <sup>[1]</sup>                                                                                                                                                   | $^{3}H$                | K _1             |
|                  |             |          | α         | $\beta$ (incl. <sup>40</sup> K) |                                                                                                                                                                             | (Bq mL <sup>-1</sup> ) | $(\mu g g^{-1})$ |
|                  | 5/1         |          | _[2]      |                                 | ······································                                                                                                                                      | <0.25                  |                  |
| LHRL stormwater  | 5/1         | water    |           | - 0.42                          | n.d. <sup>[3]</sup>                                                                                                                                                         |                        | -                |
| outlet No.1      | 11/1        | water    | 0.05      | 0.42                            |                                                                                                                                                                             | 1.10                   | -                |
| near, south gate | 18/1        | water    | -         | -                               | n.d.                                                                                                                                                                        | 0.70                   | -                |
|                  | 25/1        | water    | 0.03      | 0.13                            | n.d.                                                                                                                                                                        | <0.25                  | -                |
|                  | 1/2         | water    | -         | -                               | -                                                                                                                                                                           | < 0.25                 | -                |
|                  | 8/2         | water    | -         | -                               | -                                                                                                                                                                           | 0.93                   | -                |
|                  | 15/2        | water    | -         | -                               | -                                                                                                                                                                           | < 0.25                 | -                |
|                  | 22/2        | water    | -         | -                               | -                                                                                                                                                                           | 0.52                   | -                |
|                  | 2/3         | water    | 1.68      | 9.57                            | $\begin{array}{l} 0.5 \ \text{MeV} = 0.16 \\ {}^{137}\text{Cs} = 2.95 \\ {}^{60}\text{Co} = 0.14 \\ \text{trace} \ {}^{238}\text{U} + {}^{232}\text{Th series} \end{array}$ | 1.80                   | -                |
|                  | 8/3         | woter    | _         |                                 |                                                                                                                                                                             | 1.09                   |                  |
|                  | 6/3<br>15/3 | water    | -<br>0.65 | 0.30                            | 0.5  MeV = 0.04                                                                                                                                                             | <0.25                  | -                |
|                  |             | water    | 0.05      |                                 | $^{137}Cs = 0.26$                                                                                                                                                           |                        | -                |
|                  | 23/3        | water    | 0.16      | 0.22                            | trace $^{238}U + ^{232}Th$ series                                                                                                                                           | <0.25                  | -                |
|                  | 28/3        | water    | 0.36      | 0.25                            | $^{137}Cs = trace$                                                                                                                                                          | <0.25                  | -                |
|                  | 5/4         | water    | 0.03      | 0.08                            | n.d.                                                                                                                                                                        | <0.25                  | -                |
|                  | 12/4        | water    | 0.08      | 0.07                            | . n.d.                                                                                                                                                                      | <0.25                  | -                |
|                  | 19/4        | water    | 0.03      | 0.07                            | n.d.                                                                                                                                                                        | <0.25                  | -                |
|                  | 26/4        | water    | 0.10      | 0.08                            | n.d.                                                                                                                                                                        | <0.25                  | -                |
|                  | 3/5         | water    | 0.07      | 0.15                            | n.d.                                                                                                                                                                        | <0.25                  | -                |
|                  | 10/5        | water    | 0.16      | 0.26                            | n.d.                                                                                                                                                                        | 0.43                   | -                |
|                  | 17/5        | water    | 0.05      | 0.07                            | n.d.                                                                                                                                                                        | <0.25                  | -                |
|                  | 24/5        | water    | 0.25      | 0.06                            | n.d.                                                                                                                                                                        | <0.25                  | -                |
|                  | 31/5        | water    | 0.15      | 0.17                            | n.d.                                                                                                                                                                        | <0.25                  | -                |
|                  | 7/6         | water    | 0.09      | 0.23                            | n.d.                                                                                                                                                                        | 0.28                   | -                |
|                  | 14/6        | water    | 0.21      | 0.31                            | n.d.                                                                                                                                                                        | <0.25                  | -                |
|                  | 21/6        | water    | 0.07      | 0.12                            | n.d.                                                                                                                                                                        | <0.25                  | -                |
|                  | 28/6        | water    | 0.07      | 0.14                            | n.d.                                                                                                                                                                        | 0.26                   | -                |
|                  | 5/7         | water    | 0.09      | 0.08                            | n.d.                                                                                                                                                                        | <0.25                  | -                |
|                  | 14/7        | water    | 0.12      | 0.12                            | n.d.                                                                                                                                                                        | <0.25                  | _                |
|                  | 19/7        | water    | 0.05      | 0.12                            | n.d.                                                                                                                                                                        | <0.25                  | -                |
|                  | 26/7        | water    | 0.09      | 0.10                            |                                                                                                                                                                             | <0.25                  | -                |
|                  | 20/7        |          |           |                                 | n.d.                                                                                                                                                                        |                        |                  |
|                  | 16/8        | water    | 0.03      | 0.10                            | n.d.                                                                                                                                                                        | < 0.25                 | -                |
|                  |             | water    | 0.11      | 0.18                            | nd.                                                                                                                                                                         | 0.48                   | -                |
|                  | 23/8        | water    | 0.06      | 0.18                            | n.d.                                                                                                                                                                        | 0.68                   | -                |
|                  | 30/8        | water    | 0.13      | 0.35                            | n.d.                                                                                                                                                                        | 0.62                   | -                |
|                  | 6/9         | water    | 0.20      | 0.19                            | n.d.                                                                                                                                                                        | 0.41                   | -                |
|                  | 21/9        | water    | 1.13      | 0.95                            | trace $^{238}U + ^{232}Th$ series                                                                                                                                           | 0.99                   | -                |
|                  | 28/9        | water    | 0.17      | 0.43                            | n.d.                                                                                                                                                                        | 0.35                   | -                |
|                  | 11/10       | water    | 0.06      | 0.08                            | n.d.                                                                                                                                                                        | < 0.25                 | -                |
|                  | 18/10       | water    | 0.02      | 0.06                            | n.d.                                                                                                                                                                        | <0.25                  | -                |
|                  | 25/10       | water    | 0.12      | 0.13                            | nd.                                                                                                                                                                         | <0.25                  | -                |
|                  | 1/11        | water    | 0.13      | 0.14                            | n.d.                                                                                                                                                                        | <0.25                  | -                |
|                  | 8/11        | water    | 0.25      | 0.22                            | n.d.                                                                                                                                                                        | 0.35                   | -                |
|                  | 15/11       | water    | 0.06      | 0.18                            | n.d.                                                                                                                                                                        | 0.37                   | -                |
|                  | 22/11       | water    | 0.08      | 0.12                            | n.d.                                                                                                                                                                        | 0.31                   | -                |
|                  | 30/11       | water    | 0.10      | 0.12                            | n.d.                                                                                                                                                                        | 0.33                   | -                |
|                  | 6/12        | water    | 0.07      | 0.14                            | n.d.                                                                                                                                                                        | 0.35                   | -                |
|                  | 13/12       | water    | 0.06      | 0.12                            | n.d.                                                                                                                                                                        | 0.28                   | -                |
|                  | 20/12       | water    | 0.09      | 0.11                            | n.d.                                                                                                                                                                        | <0.25                  | -                |
|                  | 29/12       | water    | 0.14      | 0.10                            | n.d.                                                                                                                                                                        | <0.25                  | -                |

 TABLE 7B

 RADIOACTIVITY IN SAMPLES FROM STORMWATER OUTLETS, 1983

[1] The  $\gamma$ -ray peaks detected at approximately 0.5 MeV could be <sup>7</sup>Be (0.48 MeV), <sup>103</sup>Ru (0.5 MeV) or <sup>106</sup>Ru (0.51 MeV); <sup>7</sup>Be is a cosmic-ray produced spallation product, and <sup>103</sup>Ru and <sup>106</sup>Ru are fission products. Bq g<sup>-1</sup> refers to the number of disintegrations per second per gram at the energies indicated.

[2] Not measured.

|                                |       |            | R     | adioactivity (              | (Bq g <sup>-1</sup> fresh weight)                                                                                            | _              |                       |
|--------------------------------|-------|------------|-------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------|
| Station                        | Date  | Sample     | Gross | Gross                       | γ-emitters <sup>[1]</sup>                                                                                                    | <sup>3</sup> H | ĸ                     |
|                                |       |            | α     | β<br>(less <sup>40</sup> K) |                                                                                                                              | $(Bq mL^{-1})$ | (µg g <sup>-1</sup> ) |
| 20 m from                      | 11/1  | water      | _[2]  | -                           | •                                                                                                                            | 1.10           | -                     |
| LHRL stormwater<br>outlet No.1 | 11/1  | soil       | 0.55  | 0.39                        | trace ${}^{60}$ Co, ${}^{137}$ Cs<br>trace ${}^{238}$ U + ${}^{232}$ Th series                                               | -              | 1800                  |
|                                | 11/1  | vegetation | 0.02  | 0.01                        | trace $^{238}U + ^{232}Th$ series                                                                                            | -              | 4400                  |
|                                | 16/2  | water      | -     | -                           | -                                                                                                                            | 0.76           | -                     |
|                                | 13/4  | water      | -     | -                           | -                                                                                                                            | <0.25          | -                     |
|                                | 13/4  | soil       | 0.65  | 0.41                        | trace <sup>60</sup> Co, $^{137}$ Cs<br>trace $^{238}$ U + $^{232}$ Th series                                                 | -              | 1500                  |
|                                | 13/4  | vegetation | 0.01  | 0.03                        | 0.5 MeV = $0.008$<br>trace <sup>238</sup> U + <sup>232</sup> Th series                                                       | -              | 3800                  |
|                                | 29/6  | water      | -     | -                           | -                                                                                                                            | <0.25          | -                     |
|                                | 29/6  | soil       | 0.82  | 0.46                        | trace ${}^{60}Co$<br>${}^{137}Cs = 0.07 \text{ Bq g}^{-1} \text{ DW}$<br>trace ${}^{238}\text{U} + {}^{232}\text{Th series}$ | -              | 2100                  |
|                                | 29/6  | vegetation | 0.01  | 0.13                        | 0.5  MeV = 0.008<br>$^{137}\text{Cs} = 0.003$<br>trace $^{238}\text{U} + ^{232}\text{Th series}$                             | -              | 2700                  |
| <u></u>                        | 17/11 | vegetation | 0.01  | 0.04                        | trace $^{238}U + ^{232}Th$ series                                                                                            |                | 5100                  |

TABLE 7C RADIOACTIVITY IN SAMPLES FROM STORMWATER OUTLETS, 1983

Continued next page

.

|                 |       |        |                     | BLE 7C (cc<br>Radioactivity ( |                                             |                                            |                           |
|-----------------|-------|--------|---------------------|-------------------------------|---------------------------------------------|--------------------------------------------|---------------------------|
| Station         | Date  | Sample | Gross<br>a          | Gross<br>B                    | y-emitters <sup>[1]</sup>                   | - <sup>3</sup> H<br>(Bq mL <sup>-1</sup> ) | К<br>(µg g <sup>-1.</sup> |
|                 |       |        |                     | (incl. <sup>40</sup> K)       | <u></u>                                     |                                            |                           |
| 60 m from       | 22/2  | water  | 1.62 <sup>[4]</sup> | 0.47 <sup>[4]</sup>           | trace $^{238}$ U + $^{232}$ Th series       | <0.25                                      | -                         |
| LHRL stormwater | 2/3   | water  | -                   | -                             | -                                           | 0.65                                       | -                         |
| outlet No.1     | 8/3   | water  | -                   | -                             | -                                           | <0.25                                      | -                         |
|                 | 15/3  | water  | -                   | -                             | -                                           | <0.25                                      | -                         |
|                 | 23/3  | water  | -                   | -                             | -                                           | <0.25                                      | •                         |
|                 | 29/3  | water  | -                   | -                             | -                                           | <0.25                                      | -                         |
|                 | 5/4   | water  | •                   | -                             | -                                           | <0.25                                      | -                         |
|                 | 12/4  | water  | -                   | -                             | -                                           | <0.25                                      | -                         |
|                 | 19/4  | water  | -                   | -                             | -                                           | <0.25                                      | -                         |
|                 | 3/5   | water  | -                   | -                             | -                                           | <0.25                                      | -                         |
|                 | 10/5  | water  | -                   | -                             | •                                           | <0.25                                      | -                         |
|                 | 17/5  | water  | -                   | -                             | -                                           | <0.25                                      | -                         |
|                 | 31/5  | water  | -                   | -                             | •                                           | <0.25                                      | -                         |
|                 | 7/6   | water  | -                   | -                             | -                                           | <0.25                                      | -                         |
|                 | 14/6  | water  | -                   | -                             | -                                           | <0.25                                      | -                         |
|                 | 21/6  | water  | -                   | -                             | -                                           | <0.25                                      | •                         |
|                 | 28/6  | water  | -                   | -                             | -                                           | <0.25                                      | -                         |
|                 | 5/7   | water  | 0.05 <sup>[4]</sup> | 0.11 <sup>[4]</sup>           | n.d. <sup>[3]</sup>                         | 1.95                                       | -                         |
|                 | 14/7  | water  | 0.14 <sup>[4]</sup> | 5.65 <sup>[4]</sup>           | 0.13  MeV = trace                           | 3.56                                       | -                         |
|                 |       |        |                     |                               | 0.5  MeV = trace                            |                                            |                           |
|                 |       |        |                     |                               | trace <sup>137</sup> Cs                     |                                            |                           |
|                 | 19/7  | water  | 0.13 <sup>[4]</sup> | 1.84 <sup>[4]</sup>           | 0.13  MeV = trace                           | 3.16                                       |                           |
|                 |       |        |                     |                               | 0.5  MeV = trace<br>trace $^{137}\text{Cs}$ |                                            |                           |
|                 | 26/7  | water  | 0.16 <sup>[4]</sup> | 1.08 <sup>[4]</sup>           | 0.13  MeV = trace                           | 2.17                                       | -                         |
|                 | 2/8   | water  | -                   | -                             | -                                           | 0.98                                       | -                         |
|                 | 16/8  | water  | -                   | -                             | -                                           | 0.76                                       | -                         |
|                 | 23/8  | water  | -                   | -                             | -                                           | 0.56                                       | -                         |
|                 | 30/8  | water  | -                   | -                             | -                                           | 0.62                                       | -                         |
|                 | 6/9   | water  | -                   | -                             | -                                           | 0.37                                       | -                         |
|                 | 21/9  | water  | -                   | -                             | -                                           | 0.42                                       | -                         |
|                 | 28/9  | water  | -                   | -                             | -                                           | 0.63                                       | -                         |
|                 | 11/10 | water  | -                   | -                             | -                                           | <0.25                                      | -                         |
|                 | 18/10 | water  | -                   | -                             | -                                           | <0.25                                      | -                         |
|                 | 25/10 | water  | -                   | -                             | -                                           | <0.25                                      | -                         |
|                 | 1/11  | water  | -                   | -                             | •                                           | <0.25                                      | -                         |
|                 | 8/11  | water  | -                   | -                             | -                                           | <0.25                                      | -                         |
|                 | 15/11 | water  | -                   | -                             | -                                           | <0.25                                      | -                         |
|                 | 22/11 | water  | -                   | -                             | -                                           | <0.25                                      | -                         |
|                 | 30/11 | water  | -                   | -                             | -                                           | <0.25                                      | -                         |
|                 | 16/11 | soil   | 0.14                | 0.08                          | n.d.                                        | -                                          | 200                       |
|                 | 6/12  | water  | -                   | -                             | •                                           | <0.25                                      | -                         |
|                 | 13/12 | water  | -                   | -                             | -                                           | <0.25                                      | -                         |
|                 | 20/12 | water  | -                   | -                             | -                                           | <0.25                                      | -                         |

TABLE 7C (continued)

[1] The  $\gamma$ -ray peaks detected at approximately 0.5 MeV could be <sup>7</sup>Be (0.48 MeV), <sup>103</sup>Ru (0.5 MeV) or <sup>106</sup>Ru (0.51 MeV); <sup>7</sup>Be is a cosmic-ray produced spallation product, and <sup>103</sup>Ru and <sup>106</sup>Ru are fission products. Bq g<sup>-1</sup> refers to the number of disintegrations per second per gram at the energies indicated.

[2] Not measured.

[3] Not detected.

[4] Bq  $L^{-1}$ .

# TABLE 8GAMMA SURVEY — EFFLUENT DISCHARGEPIPE LINE, 1983

Survey of exposed portions of pipeline between LHRL and the MWS&DB sewer connection using an Ericsson type 1368A field meter

| Date  | Location                | Dose rate<br>(µSv h <sup>-1</sup> ) |
|-------|-------------------------|-------------------------------------|
| 30/5  | Joint No.9              | 1.0                                 |
|       | All other pipe sections | <0.4                                |
|       | Soil below joints       | <0.3                                |
| 16/11 | All pipe sections       | <0.4                                |
|       | Soil below joints       | < 0.3                               |

# TABLE 9RADIOACTIVITY IN SAMPLES TAKEN NEAREFFLUENT DISCHARGE PIPELINE, 1983

|                            | _     |        | (В                  | Radioactivit<br>q g <sup>-1</sup> dry we | - <sup>3</sup> H |                              |                            |
|----------------------------|-------|--------|---------------------|------------------------------------------|------------------|------------------------------|----------------------------|
| Station                    | Date  | Sample | Gross a             | Gross β<br>(less <sup>40</sup> K)        | γ-emitters       | - "H<br>(Bq mL <sup>-1</sup> | Κ<br>(μg g <sup>-1</sup> ) |
| Near scour                 | 29/6  | soil   | 0.32                | 0.03                                     | n.d.[1]          | _[2]                         | 300                        |
| valve No.1                 | 29/6  | water  | -                   | -                                        | -                | <0.25                        | -                          |
|                            | 16/11 | soil   | 0.23                | <0.01                                    | n.d.             | -                            | 600                        |
|                            | 16/11 | water  | -                   | -                                        | -                | <0.25                        | -                          |
| Woronora R. at             | 29/6  | soil   | 0.28                | 0.08                                     | n.d.             | -                            | 400                        |
| point where                | 29/6  | water  | •                   | -                                        | -                | <0.25                        | -                          |
| crossed by                 | 16/11 | soil   | 0.32                | 0.07                                     | n.d.             | -                            | · 200                      |
| effluent<br>discharge pipe | 16/11 | water  | 0.13 <sup>[4]</sup> | 0.12 <sup>[3][4]</sup>                   | n.d.             | <0.25                        | -                          |

- [1] Not detected
- [2] Not measured
- [3] Incl. <sup>40</sup>K contribution
- [4] Bq  $L^{-1}$

#### TABLE 10 RADIOACTIVITY IN FRESHWATER SECTION OF WORONORA RIVER, 1983

|                                |              | Radioactivity                             |                                           |                                |  |  |
|--------------------------------|--------------|-------------------------------------------|-------------------------------------------|--------------------------------|--|--|
|                                |              | Sand                                      | W                                         | ater                           |  |  |
| Station                        | Date<br>1983 | <sup>90</sup> Sr<br>(Bq g <sup>-1</sup> ) | <sup>90</sup> Sr<br>(Bq L <sup>-1</sup> ) | $^{3}H$ (Bq mL <sup>-1</sup> ) |  |  |
| Woronora R. at                 | 16/2         | 0.0001                                    | 0.007                                     | <0.25                          |  |  |
| Heathcote Rd crossing          | 29/6         | 0.0002                                    | 0.005                                     | -                              |  |  |
| (upstream of LHRL)             | 12/10        | 0.0009                                    | 0.023                                     | < 0.25                         |  |  |
| Woronora R. at                 | 16/2         | 0.0002                                    | 0.013                                     | <0.25                          |  |  |
| the point of                   | 29/6         | 0.0004                                    | 0.021                                     | -                              |  |  |
| entry of drainage<br>from LHRL | 12/10        | 0.0006                                    | 0.041                                     | <0.25                          |  |  |

,

|                 |        |       | Radioactivity (Bq g <sup>-1</sup> fresh weight) |                             |                        |                  |                          |                       |
|-----------------|--------|-------|-------------------------------------------------|-----------------------------|------------------------|------------------|--------------------------|-----------------------|
| Location        | Sample | Date  | Gross                                           | Gross                       | G                      | nitters          | К                        |                       |
|                 |        | 1983  | α                                               | β<br>(less <sup>40</sup> K) | 0.5 MeV <sup>[1]</sup> | <sup>60</sup> Co | $^{238}$ U + $^{232}$ Th | (μg g <sup>-1</sup> ) |
| TR 1-5          | Soil   | 30/6  | 0.67                                            | 0.52                        | n.d. <sup>[2]</sup>    | n.d.             | n.d.                     | 4900                  |
|                 | Soil   | 16/12 | 0.71                                            | 0.59                        | n.d.                   | trace            | trace                    | 3100                  |
| TR 56-57        | Soil   | 30/6  | 3.70                                            | 0.79                        | nd                     | n.d.             | n.d.                     | 4800                  |
|                 | Soil   | 16/12 | 3.07                                            | 0.82                        | n.d.                   | n.d.             | n.d.                     | 3500                  |
| TR 68-69        | Soil   | 30/6  | 1.12                                            | 1.04                        | n.d.                   | trace            | trace                    | 5100                  |
|                 | Soil   | 16/12 | 1.15                                            | 1.23                        | n.d.                   | trace            | trace                    | 3500                  |
| TR 72-73        | Soil   | 30/6  | 0.86                                            | 0.62                        | n.d.                   | trace            | n.d.                     | 6100                  |
|                 | Soil   | 16/12 | 0.92                                            | 0.87                        | n.d.                   | trace            | trace                    | 4100                  |
| TR 58           | Acacia | 30/6  | 0.01                                            | 0.15                        | 0.005                  | n.d.             | n.d.                     | 1500                  |
| (front)         | Acacia | 16/12 | 0.02                                            | 0.18                        | 0.004                  | n.d.             | n.d.                     | 2700                  |
| TR 59<br>(back) | Acacia | 30/6  | 0.02                                            | 0.05                        | 0.04                   | n.d.             | n.d                      | 1500                  |
| TR 60           | Acacia | 16/12 | 0.01                                            | 0.02                        | 0.008                  | n.d.             | n.d.                     | 2400                  |
| TR 53           | Grass  | 16/12 | 0.002                                           | 0.11                        | 0.011                  | n.d.             | n.d.                     | 3500                  |
| TR 56           | Grass  | 16/12 | 0.07                                            | 0.06                        | 0.013                  | n.d.             | n.d.                     | 3500                  |
| TR 71           | Grass  | 16/12 | 0.01                                            | 1.19                        | 0.005                  | 0.017            | n.d.                     | 4800                  |

TABLE 11 RADIOACTIVITY IN SAMPLES OF SOIL AND VEGETATION FROM LITTLE FOREST BURIAL GROUND, 1983

[1] The γ-ray peaks detected at approximately 0.5 MeV could be <sup>7</sup>Be (0.48 MeV), <sup>103</sup>Ru (0.5 MeV) or <sup>106</sup>Ru (0.51 MeV); <sup>7</sup>Be is a cosmic-ray produced activation product, and <sup>103</sup>Ru and <sup>106</sup>Ru are fission products.

[2] Not detected.

|              |      |      |      | Bq g <sup>-1</sup> | solids                                                                          |                                                     | $- \frac{Bq mL^{-1}}{^{3}H}$ |        |
|--------------|------|------|------|--------------------|---------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------|--------|
| Bore<br>hole | Gro  | ss α | Gros | s β <sup>[1]</sup> | Gamma                                                                           | emitters                                            |                              | п      |
| No.          | June | Dec. | June | Dec.               | June                                                                            | Dec.                                                | June                         | Dec.   |
| BHI          | 2.1  | _[2] | 0.7  | [2]                | n.d. <sup>[3]</sup>                                                             | _[2]                                                | <0.25                        | [2]    |
| BH2          | 2.7  | _[2] | 1.1  | _[2]               | n.d.                                                                            | _[2]                                                | < 0.25                       | _[2]   |
| BH3          | 4.7  | _[2] | 1.2  | _[2]               | trace <sup>238</sup> U                                                          | _[2]                                                | <0.25                        | [2]    |
| BH4          | 2.6  | 3.1  | 0.7  | 1.0                | <sup>232</sup> Th series<br>trace <sup>238</sup> U,<br><sup>232</sup> Th series | trace <sup>238</sup> U,<br><sup>232</sup> Th series | <0.25                        | <0.25  |
| BH6          | 1.9  | 1.5  | 0.7  | 0.5                | n.d.                                                                            | n.d.                                                | <0.25                        | <0.25  |
| BH10         | 0.3  | 0.02 | 0.3  | 0.4                | n.d.                                                                            | n.d.                                                | 1.2                          | 1.0    |
| OS1          | 0.7  | 0.2  | 0.5  | 0.2                | n.d.                                                                            | n.d.                                                | <0.25                        | <0.25  |
| OS2          | 2.7  | 2.2  | 1.4  | 1.8                | trace <sup>238</sup> U,<br><sup>232</sup> Th series                             | n.d.                                                | 7.4                          | 5.6    |
| OS3          | 1.8  | 1.6  | 3.4  | 7.8                | trace <sup>238</sup> U,<br><sup>232</sup> Th series                             | n.d.                                                | 14.7                         | 11.5   |
| BHA          | 1.2  | 0.6  | 0.7  | 0.4                | n.d.                                                                            | n.d.                                                | <0.25                        | <0.25  |
| BHB          | 0.06 | 0.08 | 0.1  | 0.2                | n.d.                                                                            | n.d.                                                | <0.25                        | <0.25  |
| BHC          | 0.09 | 0.03 | 0.1  | 0.3                | n.d.                                                                            | n.d.                                                | <0.25                        | <0.25  |
| BHD          | 0.2  | 0.3  | 0.4  | 0.4                | n.d.                                                                            | n.d.                                                | <0.25                        | <0.25  |
| BHE          | 0.2  | 0.05 | 0.3  | 0.3                | n.d.                                                                            | n.d.                                                | <0.25                        | < 0.25 |

#### TABLE 12 RADIOACTIVITY IN SAMPLES OF GROUNDWATER FROM LITTLE FOREST BURIAL GROUND, 1983

- [1] Includes <sup>40</sup>K contribution.
- [2] Bore hole dry.
- [3] Not detected.

# TABLE 13RADIOACTIVITY IN SAMPLES TAKEN FROM CREEKSNORTH OF LITTLE FOREST BURIAL GROUND, 1983

|                                                   |              |            | SAND                                 |                                           |                            |
|---------------------------------------------------|--------------|------------|--------------------------------------|-------------------------------------------|----------------------------|
|                                                   | _            | Rac        |                                      |                                           |                            |
| Station                                           | Date<br>1983 | Gross<br>a | Gross<br>β<br>(less <sup>40</sup> K) | y-emitters                                | K<br>(μg g <sup>-1</sup> ) |
| Barden Creek above<br>junction with<br>Mill Creek | 22/11        | 0.23       | 0.05                                 | n.d.                                      | 160                        |
| Mill Creek above<br>junction with<br>Barden Creek | 22/11        | 0.18       | 0.10                                 | trace ${}^{238}$ U + ${}^{232}$ Th series | 300                        |

| WATER                                             |              |            |                                       |             |                                          |  |  |  |
|---------------------------------------------------|--------------|------------|---------------------------------------|-------------|------------------------------------------|--|--|--|
|                                                   |              | Ra         | dioactivity (B                        | (1 - 1)     |                                          |  |  |  |
| Station                                           | Date<br>1983 | Gross<br>a | Gross<br>β<br>(incl. <sup>40</sup> K) | γ-einitters | <sup>3</sup> H<br>(Bq mL <sup>-1</sup> ) |  |  |  |
| Barden Creek above<br>junction with<br>Mill Creek | 22/11        | <0.01      | 0.03                                  | n.d.        | <0.25                                    |  |  |  |
| Mill Creek above<br>junction with<br>Barden Creek | 22/11        | <0.01      | 0.07                                  | n.d.        | <0.25                                    |  |  |  |

.

.

....

| Period       | Gross a       | <sup>131</sup> I    | <sup>90</sup> Sr                                            | <sup></sup>         | <sup>41</sup> A | Fission                         | Other                 |
|--------------|---------------|---------------------|-------------------------------------------------------------|---------------------|-----------------|---------------------------------|-----------------------|
| Eld No.      | (kBq)         | (MBq)               | (MBq)                                                       | (GBq)               | (TBq)           | product<br>Noble gases<br>(TBq) | activity<br>(MBq)     |
| 1/1 - 30/3   |               |                     |                                                             |                     |                 |                                 |                       |
| 2            | <62           | $1.6 \times 10^{4}$ | <4                                                          | •                   | -               | 34                              | $3.2 	imes 10^4$      |
| 15           | <6            | <2                  | <2                                                          | $6.4 	imes 10^{2}$  | 22              | -                               | $< 1.2 \times 10^{2}$ |
| 19           | <38           | <2                  | <i< td=""><td>-</td><td>-</td><td>-</td><td>&lt;1</td></i<> | -                   | -               | -                               | <1                    |
| 23A          | <8            | $4.2 \times 10^{3}$ | <19                                                         | -                   | •               | -                               | $3.1 \times 10^{2}$   |
| 23B          | <2            | <1                  | <1                                                          | -                   | -               | -                               | <1                    |
| 41           | <2            | <2                  | <i< td=""><td>-</td><td>-</td><td>-</td><td>&lt;1</td></i<> | -                   | -               | -                               | <1                    |
| 57           | -             | -                   | -                                                           | 18                  | -               | -                               | -                     |
| 1/4 - 30/6   |               |                     |                                                             |                     |                 |                                 |                       |
| 2            | <50           | $7.5 	imes 10^{4}$  | <5                                                          | •                   | -               | 30                              | $1.7 \times 10^{5}$   |
| 15           | <4            | <3                  | <1                                                          | $1.4 \times 10^{3}$ | 20.6            | -                               | <79                   |
| 19           | <15           | <17                 | <1                                                          | -                   | -               | -                               | <1                    |
| 23A          | <10           | $3.3 \times 10^{3}$ | <9                                                          | -                   | -               | -                               | 9.0                   |
| 23B          | <2            | <1                  | <1                                                          | -                   | -               | -                               | <1                    |
| 41           | <8            | <3                  | <1                                                          | -                   | -               | -                               | <1                    |
| 57           | -             | -                   | -                                                           | -                   | -               | -                               | -                     |
| 1/7 - 30/9   |               |                     |                                                             |                     |                 |                                 |                       |
| 2            | <b>&lt;41</b> | $1.1 \times 10^{4}$ | <0.3                                                        | -                   | -               | 48                              | $2.1 \times 10^{4}$   |
| 15           | <2            | 1.9                 | <0.2                                                        | $1.1 \times 10^{3}$ | 21              | -                               | $1.1 \times 10^{2}$   |
| 19           | <10           | $1.2 \times 10^{3}$ | <0.1                                                        | -                   | -               | -                               | 22                    |
| 23A          | <9            | $3.8 \times 10^{3}$ | <0.07                                                       | -                   | -               | -                               | $4.0 \times 10^{2}$   |
| 23B          | <1.2          | 1.5                 | <0.01                                                       | •                   | -               | -                               | 0.3                   |
| 41           | <7            | <1.4                | <0.07                                                       | •                   | -               | -                               | <0.2                  |
| 57           | -             | -                   | -                                                           | 108                 | -               | -                               | -                     |
| 1/10 - 31/12 |               |                     |                                                             |                     |                 |                                 |                       |
| 2            | 170           | $5.3 \times 10^{3}$ | <0.5                                                        |                     | -               | 68                              | $6.9 \times 10^{3}$   |
| 15           | <2            | 2.2                 | <0.2                                                        | $7.2 \times 10^{2}$ | 17              | -                               | 105                   |
| 19           | <14           | 11                  | <0.5                                                        | -                   |                 | -                               | -                     |
| 23A          | <9            | $2.8 \times 10^{3}$ | <1.1                                                        | -                   | -               | -                               | -                     |
| 23B          | <14           | 1.9                 | <0.05                                                       | -                   | -               | -                               | •                     |
| 41           | <7            | 0.6                 | <0.08                                                       | -                   | -               | -                               | -                     |
| 57           | -             | -                   | -                                                           | 41                  | -               | -                               | -                     |

.

.

•

TABLE 14AIRBORNE RADIOACTIVITY RELEASES, 1983

ŧ

ł.

| TABLE 15                              |
|---------------------------------------|
| AIRBORNE RADIOACTIVITY RELEASES, 1983 |
| AS FRACTIONS OF THE AUTHORISED LIMITS |

| Period<br>Bld No. | Gross a                 | <sup>131</sup> I       | <sup>90</sup> Sr        | <sup>3</sup> H       | <sup>41</sup> A | Fission<br>product<br>Noble gases | Other<br>activity       |
|-------------------|-------------------------|------------------------|-------------------------|----------------------|-----------------|-----------------------------------|-------------------------|
| 1/1 - 30/3        |                         |                        |                         |                      |                 |                                   |                         |
| 2                 | $< 9.4 \times 10^{-5}$  | 0.24                   | $< 6.3 \times 10^{-6}$  | -                    | -               | 0.20                              | 0.02                    |
| 15                | $< 1.8 \times 10^{-4}$  | $1.3 \times 10^{-4}$   | $< 7.7 \times 10^{-5}$  | $4.9 \times 10^{-3}$ | 0.81            | -                                 | $< 1.8 \times 10^{-3}$  |
| 19                | $< 1.2 \times 10^{-4}$  | $6.1 \times 10^{-5}$   | $<3.8 \times 10^{-6}$   | -                    | -               | -                                 | $<1.5 \times 10^{-6}$   |
| 23A               | $< 5.0 \times 10^{-4}$  | 0.26                   | $<1.5 \times 10^{-3}$   | -                    | -               | -                                 | $9.4 \times 10^{-3}$    |
| 23B               | $<3.0 \times 10^{-4}$   | $6.3 \times 10^{-5}$   | $<1.6 \times 10^{-4}$   | -                    | -               | -                                 | $< 6.3 \times 10^{-5}$  |
| 41                | <6.1 × 10 <sup>-6</sup> | $1.3 \times 10^{-4}$   | $< 3.8 \times 10^{-6}$  | -                    | -               | -                                 | <1.5 × 10 <sup>-6</sup> |
| 57                | -                       | -                      | -                       | 0.09                 | -               | -                                 | -                       |
| 1/4 - 30/6        |                         |                        |                         |                      |                 |                                   |                         |
| 2                 | $< 7.7 \times 10^{-5}$  | 1.15 <sup>[1]</sup>    | $< 7.7 \times 10^{-6}$  | -                    | -               | 0.19                              | 0.11                    |
| 15                | $< 1.3 \times 10^{-4}$  | $1.9 \times 10^{-4}$   | $< 4.0 \times 10^{-5}$  | 0.01 <sup>[2]</sup>  | 0.79            | -                                 | $< 1.2 \times 10^{-3}$  |
| 19                | $< 4.7 \times 10^{-5}$  | $5.3 \times 10^{-4}$   | $< 4.0 \times 10^{-6}$  | -                    | -               | -                                 | $< 1.5 \times 10^{-6}$  |
| 23A               | <6.3 × 10 <sup>-4</sup> | 0.21                   | $< 6.9 \times 10^{-4}$  | -                    | -               | -                                 | $2.8 \times 10^{-4}$    |
| 23B               | $< 3.1 \times 10^{-4}$  | $6.3 \times 10^{-5}$   | $< 1.6 \times 10^{-4}$  | -                    | -               | -                                 | $< 6.3 \times 10^{-5}$  |
| 41                | $<2.5 \times 10^{-5}$   | $1.9 \times 10^{-4}$   | $<4.0 \times 10^{-6}$   | -                    | -               | -                                 | <1.5 × 10 <sup>-6</sup> |
| 57                | -                       | -                      | -                       | -                    | -               | -                                 | -                       |
| 1/7 - 30/9        |                         |                        |                         |                      |                 |                                   |                         |
| 2                 | $< 6.2 \times 10^{-5}$  | 0.17                   | $< 4.7 \times 10^{-7}$  | -                    | -               | 0.29                              | 0.01                    |
| 15                | $< 6.1 \times 10^{-5}$  | $1.2 \times 10^{-4}$   | <7.7 × 10 <sup>-6</sup> | $3.5 \times 10^{-3}$ | 0.78            | -                                 | $1.67 \times 10^{-3}$   |
| 19                | $<3.0 \times 10^{-5}$   | 0.04                   | $< 3.8 \times 10^{-7}$  | -                    | -               | -                                 | $3.3 \times 10^{-5}$    |
| 23A               | $< 5.6 \times 10^{-4}$  | $2.4 \times 10^{-4}$   | $< 5.4 \times 10^{-6}$  | -                    | -               | -                                 | 0.01                    |
| 23B               | $< 1.8 \times 10^{-4}$  | $9.4 \times 10^{-5}$   | $< 1.6 \times 10^{-6}$  | -                    | -               |                                   | $1.9 \times 10^{-5}$    |
| 41                | $< 2.1 \times 10^{-5}$  | $< 8.8 \times 10^{-5}$ | $< 2.7 \times 10^{-7}$  | -                    | -               | -                                 | $< 3.0 \times 10^{-7}$  |
| 57                | -                       | $3.7 \times 10^{-4}$   | -                       | 0.72                 | -               | -                                 | -                       |
| 1/10 - 31/12      |                         |                        |                         |                      |                 |                                   |                         |
| 2                 | $2.6 \times 10^{-4}$    | 0.08                   | $< 7.8 \times 10^{-7}$  | -                    | -               | 0.40                              | $4.3 \times 10^{-3}$    |
| 15                | $< 6.1 \times 10^{-5}$  | $1.4 \times 10^{-4}$   | $< 7.7 \times 10^{-6}$  | $5.5 \times 10^{-3}$ | 0.63            | -                                 | $1.6 \times 10^{-3}$    |
| 19                | $<4.2 \times 10^{-5}$   | $3.3 \times 10^{-4}$   | $<1.9 \times 10^{-6}$   | -                    | -               | -                                 | -                       |
| 23A               | $< 5.6 \times 10^{-4}$  | 0.18                   | $< 8.5 \times 10^{-5}$  | -                    | -               | -                                 | -                       |
| 23B               | $< 2.1 \times 10^{-3}$  | $1.2 \times 10^{-4}$   | $< 7.8 \times 10^{-6}$  | -                    | -               | -                                 | -                       |
| 41                | <2.1 × 10 <sup>-5</sup> | $3.8 \times 10^{-5}$   | $<3.1 \times 10^{-7}$   | -                    | •               | -                                 | -                       |
| 57                | -                       | -                      | -                       | 0.27                 | -               |                                   | -                       |

[1] This discharge was not in breach of the authorised limit for stack discharges from the Research Establishment, although it exceeded the normal working limit for discharges from this stack for the period. In calculating the *derived* authorist discharge limits, allowance is made for discharges from other stacks. Since only two out of the six stacks were discharginary iodine-131, the authorised discharge limits are effectively doubled.

[2] This figure includes a contribution from Bld.57.

.

.

•

| RADIOACTIVITY DISCHARGED TO THE<br>MWS&DB SEWER DURING 1983 |                               |                              |                               |                               |  |
|-------------------------------------------------------------|-------------------------------|------------------------------|-------------------------------|-------------------------------|--|
|                                                             | Radio                         | Radioisotopes measured (MBq) |                               |                               |  |
| Period                                                      | α <sub>μ</sub> <sup>[1]</sup> | <sup>3</sup> H               | β <sub>μ</sub> <sup>[2]</sup> | Percentage of authorised limi |  |
| 1/1 - 31/3                                                  | 12.7                          | $2.3 \times 10^{5}$          | 201                           | 15                            |  |
| 1/4 - 30/6                                                  | 13.5                          | $6.1 \times 10^{5}$          | 266                           | 16                            |  |

 $10.8 \times 10^{5}$ 

 $1.5 \times 10^{5}$ 

1/7 - 30/9

1/10 - 31/12

9.3

11.3

# **TABLE 16**

[1] A mixture of unidentified  $\alpha$ -emitting nuclides taken as being all <sup>226</sup>Ra (*i.e.* the worst possible case) in calculating percentage of authorised limit.

184

154

[3]

14

15

[2] A mixture of unidentified  $\beta$ -emitting nuclides taken as being all <sup>90</sup>Sr (*i.e.* the worst possible case) when calculating the percentage of authorised limit.

[3] In the case of discharge to the MWS&DB sewer, the authorised limit is outlined in the regulations to the NSW Radioactive Substances Act published in Government Gazette No.136, 19 September 1980.

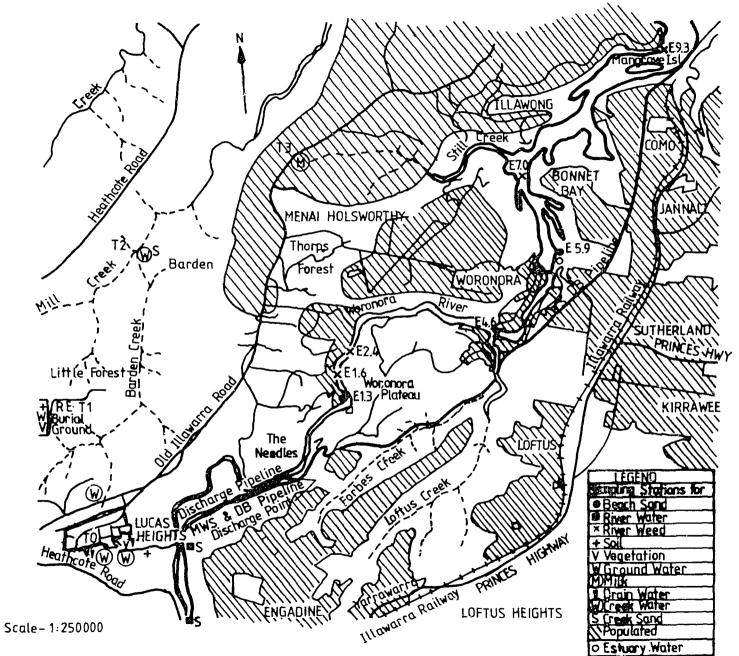
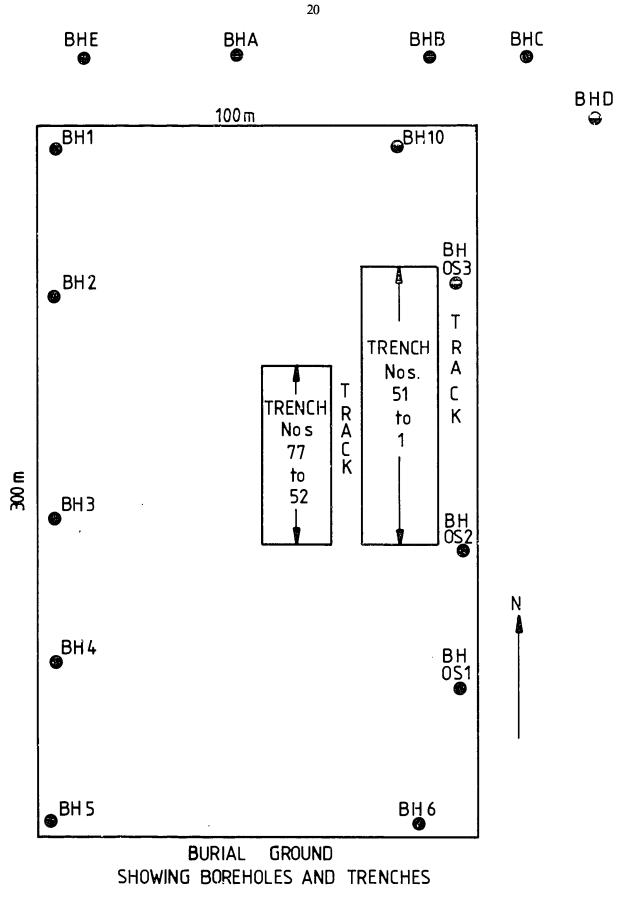




Figure 1 Lucas Heights district - location of sampling stations



not to scale

#### APPENDIX A PREVIOUS ENVIRONMENTAL SURVEY REPORTS

- Giles, M.S., Stockdale, J.A. [1966] Results of the Lucas Heights Biological Survey, December 1959 to December 1964. AAEC/E151.
- Cook, J.E., Dudaitis, A., Giles, M.S. [1969] Environmental Survey at the AAEC Research Establishment, Lucas Heights. Results for 1965, 1966 and 1967. AAEC/E151 Supplement No. 1.
- Cook, J.E., Dudaitis, A. [1970] Environmental Survey at the AAEC Research Establishment, Lucas Heights. Results for 1968. AAEC/E151 Supplement No. 2.
- Cook, J.E., Dudaitis, A. [1970] Environmental Survey at the AAEC Research Establishment, Lucas Heights. Results for 1969. AAEC/E151 Supplement No. 3.
- Conway, N.F., Dudaitis, A. [1972] Environmental Survey at the AAEC Research Establishment, Lucas Heights. Results for Period January July 1970. AAEC/E246.
- Dudaitis, A. [1973] Environmental Survey at the AAEC Research Establishment, Lucas Heights. Results for Period August 1970 to December 1971. AAEC/E271.
- Dudaitis, A. [1974] Environmental Survey at the AAEC Research Establishment, Lucas Heights. Results for 1972. AAEC/E301.
- Davy, D.R., Dudaitis, A. [1974] Environmental Survey at the AAEC Research Establishment, Lucas Heights. Results for 1973. AAEC/E335.
- Davy, D.R., Dudaitis, A. [1976] Environmental Survey at the AAEC Research Establishment, Lucas Heights. Results for 1974. AAEC/E375.
- Hespe, E.D. [1979a] Environmental Survey at the AAEC Research Establishment, Lucas Heights. Results for 1975, 1976 and 1977. AAEC/E467.
- Hespe, E.D. [1979b] Results of the 1978 Environmental Survey at the AAEC Research Establishment, Lucas Heights. AAEC/E494.
- Giles, M.S., Dudzitis, A. [1980] Environmental Survey at the AAEC Research Establishment, Lucas Heights. Results for 1979. AAEC/E508.
- Giles, M.S., Dudaitis, A. [1982] Environmental Survey at the AAEC Research Establishment, Lucas Heights. Results for 1980. AAEC/E542.
- Williams, A.R., Dudaitis, A. [1983] Environmental Survey at the Lucas Heights Research Laboratories, 1981. AAEC/E563.
- Giles, M.S., Dudaitis, A. [1984] Environmental Survey at the Lucas Heights Research Laboratories, 1932. AAEC/E591.

| Symbol            | Name               |
|-------------------|--------------------|
| <sup>41</sup> Ar  | argon-41           |
| <sup>7</sup> Be   | beryllium-7        |
| <sup>60</sup> Co  | cobalt-60          |
| <sup>137</sup> Cs | caesium-137        |
| <sup>3</sup> H    | tritium            |
| <sup>131</sup> I  | iodine-131         |
| К                 | potassium (stable) |
| <sup>40</sup> K   | potassium-40       |
| <sup>226</sup> Ra | radium-226         |
| <sup>103</sup> Ru | ruthenium-103      |
| <sup>106</sup> Ru | ruthenium-106      |
| <sup>90</sup> Sr  | strontium-90       |
| <sup>232</sup> Th | thorium-232        |
| <sup>238</sup> U  | uranium-238        |
| <sup>65</sup> Zn  | zinc-65            |

#### APPENDIX B LIST OF ISOTOPE SYMBOLS USED IN TABLES OF SURVEY RESULTS

#### APPENDIX C NEW ZEALAND NATIONAL RADIATION LABORATORY REPORT ON STRONTIUM IN SANDS FOR 1982

Results are expressed as becquerels <sup>90</sup>Sr/kg dry soil (dried at 110°C)

| NRL No. | Soil Description              | Date  | Bq $^{90}$ Sr/kg ± 2 s.d. |
|---------|-------------------------------|-------|---------------------------|
| 1       | Below weir, Heathcote Rd      | 1/4   | $0.08 \pm 0.07$           |
| 2       | Below weir, Heathcode Rd      | 23/6  | $0.13 \pm 0.07$           |
| 3       | Below weir, Heathcode Rd      | 13/10 | $0.01 \pm 0.11$           |
| 4       | Woronora R. pipeline crossing | 1/4   | 0.14 ± 0.07               |
| 5       | Woronora R. pipeline crossing | 23/6  | $0.05 \pm 0.03$           |
| 6       | Woronora R. pipeline crossing | 13/10 | $0.07 \pm 0.02$           |

#### **General Comment**

•

.

<sup>90</sup>Sr content very low in all soils, approaching lower limit of detection.

.