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ABSTRACT

A gamma ray spectrometer is described which uses a lithium drifted

germanium diode or a sodium iodide crystal as a central detector in conjunction

with an annular segmented sodium iodide assembly. The system can operate as

a total absorption, anticoincidence, or pair spectrometer and individual

detectors may be used separately. Thus, the requirements of high resolution

or high efficiency gamma ray spectroscopy can be met by suitable choice of

mode of operation. The various modes of operation are compared and typical

results given to illustrate their performance at a variety of gamma ray

energies. A detailed analysis is given of the response of a 30 cm3 Ge(Li)

detector for gaoia rays up to 17.6 MeV.

Note; This work has been submitted to a journal. Further details can

be obtained from the author or from the Director of the Research

Establishment.
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1. INTRODUCTION

In the rtufy cf charged particle or uodlrou ludueeu react'cti«s, gamma rays

with energies up to 10 MeV or higher are observed. The performance of detectors

at these energies is complicated by the variety of possible gamma ray interactions.

A number of well known proton reactions provide simple gamma ray spectra which

can be used to establish the details of the spectrometer performance. This

method has been used to calibrate a detector system developed for use in studies

of neutron capture. The system consists of a number of detectors which can be

used separately, or together, in coincidence operation. The performance of a

large coaxial lithium drifted germanium (Ge(Li) ) detector has been studied, using

gamma ray energies up to 17.6 MeV. In Section 2, the relatively complex response

functions are analyzed in terms of the interactions involved.

A Ge(Li) detector or a small sodium iodide crystal is used as the central

detector in the system shown in Figure 1. The central detector and an annular

segmented sodium iodide assemb3.y may be operated in any cf the following modes:

(a) Total absorption spectrometer, having high efficiency but poor

resolution (all outputs are summed to give one pulse height signal for analysis).

(b) Anticoincidence spectrometer, having the efficiency and resolution

characteristic of the selected central detector, but with a peak fraction which

is improved by the anticoincidence method. (Trail and Raboy 1959).

(c) Pair spectrometer, having low efficiency but a simple response function

with a high peak fraction and good resolution.

These are discussed in Sections 3, 4, and 5 and typical results illustrate

their performance at a variety of gamma ray energies. A comparison is then given

of the characteristics of each kind of detector.

2. GERMANIUM SPECTROMETER

A detailed study has been made of the performance of a single ended Ge(Li)

detector with trapezoidal cross section (Tavendale 1966a, 1966b). It has the

following characteristics: Cross sectional area ?J cm2, length 4.6 cm, active

volume 30 cm3 (approximately 90 per cent, of the total volume), capacity 42 pf,

leakage current 10"lo amp at 900 volts. The detector was mounted in a liquid

nitrogen cryostat designed to allow operation in conjunction with the codium

iodide annulus (Figure 1). The cryostat capacity of 8.5 litres was sufficient

to maintain the detector at 77°K for 30 hours. An 8 litre per sec ion pump

maintained a pressure lower than 10~7 mm mercury.



2.

S3>.0o the airn was to obtain information on the response function of germanium

detectors, ext.-eme pulse height resolution was unnecessary. The resolution observed

was in the ratine 15 to 30 keV for most gamma rays but in some cases Doppler

broadening gave rise to larger peak widths. A PDP-7 computer was used to record

1024 channel spectra and to process data. In many cases, for the study of high

energy gamma ray spectra, bias was necessary to obtain sufficient detail within

the 1024 channels.

2.1 Response Function Measurements

Pulse height spectra were recorded for the germanium detector without the

sodium iodide annulus or shielding. Gamma rays were incident parallel to the 4.6

cm length of the detector, from a point source at 5 - 10 cm from its end. Response

functions are shown in Figure 2 for a variety of gamma ray energies from 0.66 to

11.13 MeV. Details of the sources are given in Table 1. The proton reactions

were produced using a beam from a 3 MeV Van de Graaff accelerator with target

arrangements chosen to minimize the effects of unwanted gamma rays.

The observed pulse height spectra were corrected for background, cascade

gamma rays, and gamma rays from interfering reactions. In addition the continuum,

which is observed to be flat over a considerable energy range for most gamma ray

energies, was extrapolated to zero pulse height. This method removes backscatter

peaks and other features at low energy which are very dependent on the material

near the detector. There is some evidence that the response functions rise at

low pulse heights to an extent that increases as the gamma ray energy increases.

In particular, the; result obtained for 17.6 MeV gamma rays shows a rising continuum

and for this reason it is plotted separately in Figure 3. The broken curve in

Figure 3 is an estimate of the response function after removal of the 14.8 MeV

component of the gamma ray spectrum. On the other hand, the 11.13 MeV response

function has a flat continuum at least down to 3 MeV. The curves in Figure 2

have been normalized to have the same level for the flat part of the continuum.

The following typical results illustrate the main processes responsible for the

structure of these response functions.

2.2 0.48 MeV Response Function

The observed pulse height spectrum for 0.48 MeV gamma rays is shown as the

full curve in Figure 4. Strong back-scattering effects were observed in this

spectrum as well as a steep rise at low pulse heights. An estimate of the spectrum

was made after subtraction of these effects, using as a guide the expected ratio

of peak to continuum events. The energy distribution of Corapton scattered electrons

calculated from the Klein-Nishina formula is shown with area equal to that of the

3.

estimated experimental distribution. The effect of the photoelectric absorption

of the scattered photons is shown. Nine per cent, of these events are transferred

to the full energy peak. In addition 25 per cent, of the area is removed to

allow for multiple scattering, leaving the dashed curve labelled Ci as the estimated

single scattering distribution. A similar treatment of the multiple scattered

photons leads to the distributions Ca and CQ for double and triple scattered

photons. In each case some photoelectric absorption took nlace. and 7o i-'-r '••-•• tit .
of the full energy peak is due to this process.

Fry et al. (1966) used a Monte Carlo method to calculate response functions

for various detector dimensions and gamma ray energies. Their results show that

the events just below the full energy peak are the result of beta escape events

(electrons leaving the sensitive area of the detector) rather than multiple

scattered photons. In any experimental measurements there will also be some

contribution from photons which are scattered before interaction with the detector.

2.3 4.45 MeV Response Function

The peak region of the pulse height spectrum for 4.43 MeV gamma rays is

shown as the full curve in Figure 5. The three peaks arising from trie pair pro-

duction process are considerably broadened by recoil motion in the N15 (p,ay)C12

reaction. The dashed curves in Figure 5 are the results of Monte Carlo calcu-

lations reported by Fry et al.(1966) for a 14 cm3 detector. The calculations

include the effects of beta escape which will be more important for a 14 cm3

detector than for the 30 cm3 detector used for the measurements. Curve A does

not contain any effects due to bremsstrahlung radiation by pair or Compton betas,

whereas these effects have been included in Curve B. The inclusion of brems-

strahlung effects removes counts from the peak region of the spectrum. The

experimental results show structure that is intermediate between that of the two

calculated curves. A more accurate comparison would require use of the same size

detector for both measurements and calculation. However the difference in shape

on the low energy side of the double escape peak indicates that re-absorption of

the low energy bremsstrahlung photons should be included in the calculations.

2.4 11.13 MeV Response Function

The peak region of the response function for 11.13 MeV gamma rays is shown

in Figure 6. At this energy, the Compton and pair interaction cross sections

have the ratio 0.7 but a variety of multiple processes are possible and the

observed shape is quite complex. No Compton edge is observed at 10.88 MeV but

electrons of this energy have a range of 1 cm in germanium so beta escape
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events will be important. Also, it is calculated that 22 per cent, of the energy

of these electrons will be emitted as bremsstrahlung radiation.

When the positron and electron from pair production both come to rest in the

sensitive volume of the detector, the total energy deposited in the detector depends

on the probability for interaction of the two 0.51 MeV annihilation gamma rays.

The probabilities for capture (P ) and scattering (Pg) of 0.5 MeV gamma rays

determine the shape of the spectrum in Figure 4, arid from this PC/PS is found to

be 0.21. If the three peaks in Figure 6 are due entir»'-y to the pair process,

their areas should be given by:

F = S - 2 PePc D =

where P (= 1 - P - P ) is the probability for escape of 0.5 MeV gamma rays from
Q S C*

the sensitive region of the detector. Relative peak areas are shown in Figure 7

as a function of gamma ray energy. The ratio S/D is seen to be constant (0.26)

for all energies and this combined with the value of PC/PS gives the values:

P =0.56 P =0.08c
P = 0.36
s

The expected area of the full energy peak is calculated from the expression above

to be one third of the observed area at 11.13 MeV. The remaining two-thirds is

thus due to absorption of scattered photons, a result similar to that found at

0.48 MeV.

Between the peaks in Figures 5 and 6, structure is observed which may be

fitted by using the results for Compton scattering of 0.5 MeV gamma rays. The

dashed curve in Figure 6 is obtained by subtracting areas normalized to the

expected values of 2 P P and 2 P P from the experimental results. The smoothness^ e s c s
of this curve indicates that all structure above the double escape peak is caused

by the interactions of the annihilation radiation.

Bremcstrahlung radiation by the pair betas is also to be expected and the

narrow dip below the double escape peak can be explained by photoelectric

absorption of this radiation. The dashed curve in this region was obtained by

subtracting a calculated bremsstrahlung escape spectrum whose area was obtained

from the area of the double escape peak (no correction was made for scattering

or radiated photons or other multiple processes). Similar dips should be observed

near the single escape and full energy peaks, but they are too small to be sig-

nicant.

5.

2.5 Peak Efficiencies

Absolute peak efficiencies may be obtained from the expression:

A ,, -LT.
) >

where A is the area of the peak being considered, A^ is the total area in the

pulse height spectrum, L is the detector length, and T is the absorption coef-

ficient for germanium.

Because of difficulties in observing the true pulse height spectrum at low

pulse heights, a first estimate of the total area was made by assuming a flat

extrapolation to zero pulse height as discussed in Section 2.1. Results obtained

in this way were found to lie on smooth curves but, to fit these curves to

absolute calibrations of the same detector by Tavendale (1966a) it was necessary

to multiply the results by 0.80. This factor serves as a correction to the total

area for errors in the flat extrapolation technique as well as for the effects

of the inactive region of the detector. However the correction may not be

independent of gamma ray energy and consequently the shape of the efficiency

curves may be in error at high energies.

Additional information was obtained from an analysis of the results for the

0.992 keV resonance in the Al27 (p,r) .Si28 reaction. Using previous results

(Ophel and Osgood 1965) for the branching ratios in this reaction, the ratios of

efficiencies, at several pairs of energies were obtained. The use of this method

at lower energies was described by Freeman and Jenkin (1966).

Efficiency values are plotted in Figure 8 for the double escape and full

energy peaks as well as for the peak sum. The values obtained from aluminium

cascade gamma rays are shown as linked points for which the lower energy point

has been assumed to lie on the peak sum curve. The results for relative effi-

ciency given by Ewan et al. (1966) for a 25 cm3 detector are shown as dotted

curves in Figure 8. The agreement is satisfactory, the difference being chiefly

in the efficiency at 0.5 MeV where the two sets of results were normalized.

The lowest curve in Figure 8 is the result obtained by Ewan and Tavendale

(1964) for the double escape peak efficiency of an 0.85 cm3 detector. The 30

cm3 detector is only four times more efficient than the 0.85 cm3 detector at

4 MeV, but at higher energies the small detector efficiency drops very quickly

and it is one thirtieth as efficient at 9 MeV.

The curve labelled D1 in Figure 8 is the efficiency calculated for the

30 cm3 detector using the pair production cross section for germanium and the
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calculated probability for double escape peak events. The difference between

D and Df is the result of energy loss events which remove 90 per cent, at 10 MeV,

and 99 per cent, at 17.6 MeV, of the counts expected LO appear iu llio double

escape peak.

3. TOTAL ABSORPTION DETECTOR

The sodium iodide annulus shown in Figure 1 was obtained from Harshaw

Chemical Co., together with a central sodium iodide detector with diameter 2.32

inches and length 6 inches. The annulus is optically divided into six segments

and attached to each is an EMI 9536B photomultiplier tube. Separate signals may

be obtained from each segment and from the central detector inserted into the

annulus. The pulse height resolution of the annulus segments varies from 14 to

17 per cent, for Cs 137 gamma rays because of the poor geometry for light collection.

The pulse height resolution of the central detector is much better and by suitable

choice of size a resolution of 8 per cent, or less is possible.

When pulses from all components of the detector system are added, the system

operates as a single detector with effectively 100 per cent, efficiency and a

resolution of 15 per cent, for Csl37 gamma rays. Pulse height spectra are given

in Figure 9 for two gamma ray energies. The full energy peak contains approxi-

mately 30 per cent, of the area in these spectra. The annulus may be used as a

large solid angle detector, but the full energy peak fraction is only of the order

of five per cent, for all sources of gamma rays at the centre of the annulus.

4. ANTICOINCIDENCE SPECTROMETER

The sodium iodide detector system described above has the same dimensions

as the anticoincidence detector described by Trail and Raboy (1959). Similar

results are therefore obtained when pulses from the central detector are analyzed

provided no pulse greater than 30 keV occurs in the annulus at the same time.

Figure 10 gives the results for 2.62 MeV gamma rays showing a factor of four

reduction in the escape peaks and Compton continuum when the anticoincidence

method is used. A sodium iodide central detector was used to obtain these results

and this may be replaced by the Ge(Li) detector described in Section 2 to obtain

a similar reduction in the pulse height spectrum below the full energy peak.

This technique has advantages for relatively low energy gamma rays, but for energies

above 5 MeV the full energy peak fraction is too small for the use of Ge(Li)

detectors to be attractive.

5. PAIR SPECTROMETER

The segmented sodium iodide annulus may be used as a pair spectrometer with

either a sodium iodide or Ge(Li) central detector. The circuit shown in Figure

11 allows operation as either a pair or anticoincidence spectrometer. The chief
features are as follows:

(a) Multiple coincidence unit; Fast pulses from the photomultiplier anodes

are delay line clipped to 60 nanoseconds width and summed at the input to a

tunnel diode discriminator. The discriminator level may be switched t-o give

an output if more than N input pulses are in coincidence (N = 1 to 4).

(b) Annulus window; Pulses from the last dynode of the photomultipliers

are summed into a single channel analyzer, which for pair spectrometer

operation is set to give an output if the sum corresponds to 1.02 ± 0.16 MeV.

(c) Triple coincidence unit; The outputs of (a) and (b) are used in

coincidence or anticoincidence with a pulse from a single channel analyzer

from the central detector. For the pair spectrometer an acceptable event

is one giving a total of three pulses, one in the central detector and two

in the annulus which add to 1.02 MeV.

(d) Pulse height measurements; A second pulse from the central detector

is fed tc the pulse height analyzer and analyzed if the required criteria

are met. Alternatively, separate spectra may be triggered in different

sections of the anlyzer using output pulses from suitable stages in the

electronics system.

(e) Timing; Leading edge or cross-over timing may be used, the latter

being most useful for sodium iodide detectors. For Ge(Li) detectors with

leading edge timing, distributions have been observed similar to those

presented by Graham et al. (1966). Asymmetric time distribucions are

obtained as a result of non-uniform field distribution in the coaxial type

detector and a resolving time greater than 100 nanoseconds is needed if

all events are to be accepted.

Pulse height spectra are presented in Figure 12 for gamma ray energies of 2.6,

4.4 and 11.1 MeV. These results were obtained using a 23 cm3 active volume Ge(Li)

central detector mounted as shown in Figure 1. The pair spectra show a dramatic

improvement in peak fraction compared to the singles spectra. However they still

contain a pulse height continuum which increases in importance as the gamma ray

energy increases. In addition, there is a tail on the high side of each peak
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which is critically dependent on the position and width of the annulus window.

The tail may "be reduced by raising and narrowing the window, but beyond an

optimum setting, this leads to a corresponding reduction in tne area of liw p

For the optimum setting, the peak in the pair spectrum has 35 per cent.,of the

area of the double escape peak in the singles spectrum. This factor was confirmed

using a source of annihilation radiation at the centre of the annulus.

The observed peak fractions are given in Table 2 together with values calcu-

lated for a 50 cm3 defector uslag curve3 D and D' \r Figure 8. The similarity

between the results shows that the loss of peak efficiency for high energy gamma

rays, which is responsible for the shape of curve D in Figure 8, is also responsible

for the continuum observed in the pair spectra. The germanium pair spectrometer

is therefore of limited use for gamma ray energies above 10 MeV since energy loss

processes give rise to a rapid fall in peak efficiency and at the same time to a

corresponding reduction in peak fraction.

The value of the pair spectrometer at intermediate energies is shown by

Figure 13 which gives normal and pair spectra for the three gamma rays from the

F19 (p,ar) O16 reaction. The lifetimes of the O16 excited states are such as to

cause Doppler broadening of the two gamma rays at 6.92 and 7.12 MeV. The normal

Ge(Li) spectrum is much more difficult to interpret than the pair spectrum which

was obtained in the same length of time.

The efficiency of the pair spectrometer is given by the double escape peak

efficiency for the Ge(Li) detector multiplied by a mode efficiency of 0.35. It

is thus approximately 0.5 per cent, per incident gamma ray for a 30 cm3 detector

and gamma ray energies in the range 3-9 MeV.

6. COMPARISON OF DETECTORS

Three main factors affect the usefulness of a particular type of detector

in the study of complex gamma ray spectra. These are resolution, efficiency,

and the complexity of the response function. The latter may be represented

qualitatively by the use of a peak fraction although this does not give a measure

of all the problems that arise with complex response functions. These factors

are summarized in Table 3 for the types of detectors discussed in this paper.

Variations with gamma ray energy make it impossible to give an accurate summary

but the values in Table 3 provide an indication of performance at typical energies.

The efficiency (TJ) is the number of observed peak counts per incident gamma

ray. If experimental considerations do not otherwise determine the available

solid angle, the minimum source to detector distance must also be taken into account.

In many experiments the use of an annulus (as in the anticoincidence or pair

spectrometers} Taakes it necessary to increase the source distance, with a

resultant drop in absolute efficiency. However, T-Ther: cr.c cJcteetcr jyjic;:: jju:

be operated in any of the modes described, it is possible to choose the mode

best suited to the requirements of a particular experiment.
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TABLE 1

GAMMA RAY SOURCES

TABLE 3

Gamma Ray Energy
(MeV)

0.478

0.662

1.274

1.333

1.841

2.614

3.507

4.433

6.135

6.844

9.17

10.78

11.13

17.64

Source

Li7(p,p'r)

Csl3Y

Na22

Co60

ySS

ThC11

c12(p,r)

N15(p,ar)

F19(P,ar)

Be9(p,r)

c13(p,r)

Ai27(p,r)

Ai27(P,r)

Li7(p,T)

Proton Energy
(MeV)

1.66

1.698

0.898

0.874
or

0.602

1.083

1.747

0.992

1.372

0.441

Curve Number
(Figure 2)

A

B

C

D

E

F

G

H

I

Spectrometer

Total Absorption

Total Absorption

Small Nal

Small Nal

Nal A/Co

Nal Pair

Germanium

Germanium

Ge A/Co

Ge Pair

Size

8 in x 12 in

8 in x 12 in

2.3 in x 6 in

2.3 in x 6 in

2 .3 in x 6 in

2.3 in x 6 in

30 cm3

30 cm3

30 cm3

30 cm3

Gamma
Ray
Energy
(MeV)

0.5

5.0

0.5

5.0

0.5

5.0

0.5

5.0

0.5

5.0

Reso-
lution
(MeV)

0.085

0.6

0.04

0.15

0,04

0.15

0.005

0.005

1.005

0.005

Inter-
action
Probab-
ility

1.0

1.0

1.0

0.85

1.0

0.85

0.9

0.5

0.9

0.5

Peak
Fraction

0.4

0.3

0.4 (F)

0.02 (D)

0.6

0.6

0.1 (F)

0.04 (D)

0.3

0.3

Mode
Effic-
iency

1.0

1.0

1.0

1.0

1.0

0.35

1.0

1.0

1.0

0.35

Effic-
iency
T!

0,4

0.3

0.4 (F)

0.02 (D)

0.4

0.006

0.09 (F)

0.02 (D)

0.09

0.007

D

full energy peak

double escape peak

TABLE 2

PAIR SPECTROMETER PEAK FRACTIONS

E (MeV)

Measured Peak Fraction (%}

Calculated Peak Fraction (%}

2.62

46

53

4.43

30

46

6.14

25

30

10.78

ei

8
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ĉ^
L_
!"•u
LUa.
CO

£ a. ^

5 ? 1
DC ^ U
tij ^^

S 2 g 2
ro ^ a (0^

Of |
LU =>
O O

U
•

CM

"J 10
D

<^ /i\
§ i•••i

i

D- 6-14 MeV
_ |

•

27keV-|U S-6-l4MeV

- l { F-6-l4MeV

~̂ ™1™

__ ,_
«^

***~»«^^ 5i 6"2MeV 1
i_ *• "^^ ~ » ^^ » «H*« i « . * T' ' X r> ~i <^* » j ^ i *' 27 keV i « • ' S-7
" SINGLES SPECTRUM | ^ I

_- — 0 9 f^ £ f\ ^\ ft J I / T ^k

— ^'^ TD-7-12 \ |

- •4$ ^ li> •

" .. •: -^ -c-¥^ i '!^1 1
^* *•! »— ^> \| 'Jj *w^ "7 *.*••» «« *̂ »^ •*•• f * *!̂ "« 1

^vjwvfw^fcjj' <*c> *̂.̂ >* .*..*•• LJ*-** »L f^ x' vT ~ * * •*. • Kw • \
•T • ' / • • • • / ' «' J

— ' \•= PAIR SPECTRUM •
~ ' \i«
~ r

1~~ .«•
~

i
O IOO 2OO 3OO 40O 5OO

CHANNEL NUMBER

I^MCV

6-92MeV

^F -7- 12 MeV =

ij -
* r

vl
•

. 1
=
~i __

r
• ••«•» -v

6CO

FIGURE 13. GERMANIUM SINGLES AND PAIR SPECTRA

"*• (NJ

3iVM INOOD

r\ i rvGTr*PIOD«-


