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ABSTRACT

The storage behaviour of uranium dioxide powder is reviewed. Topicr,

covered include the amount of oxygen taken up under storage conditions, Int.-

basic oxidation processes, the effects of extra oxygen on the fabrication and

irradiation behaviour of uranium dioxide, the pyrophoric reaction of uranium

dioxide powders in air, the stabilization of uranium dioxide against oxidation,

and the effectiveness of sealed containers. The pyrophoric process in air at

room temperature is shown to be the result of rapid chemisorption of oxygen,

and a theory explaining this effect is developed. Equations are also derived

to describe the overall oxidation behaviour in air at room temperature, and

they are found to agree with what few experimental data are available.
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1. INTRODUCTION

OIn air at room temperature, the most stable uranium oxide is U0av . Thus

UOa shows a strong tendency to take up oxygen on exposure to the air. The rate

and practical extent of oxidation are functions of the temperature, the partial
(2)

pressure of oxygen and the physical properties of the dioxide specimen' . The;

presence of oxygen in excess of the stoichiometric ratio of 2 may affect the

fabrication behaviour of a UOs powder, and if excess oxygen is retained in the

sintered product, the performance of the material under neutron irradiation may

also be affected. Under some conditions, UOa powders may even burn in contact
(2)with air , an event which is obviously undesirable. Thus the behaviour of U02

powders under storage conditions should be of concern to anyone involved in the

production or handling of these materials. In this review both practical and

theoretical aspects of this topic are considered.

2. STORAGE - GENERAL RESULTS

The primary reaction which can occur during the storage of U0a is oxidation .

involving both chemisorption and penetration of the oxygen into sub-surface regions.

There is no evidence that the adsorption of other gases, for example CDs and water

vapour, is a major problem. This is not to say that these other gases are not

adsorbed or that they are without effect on the subsequent behaviour of UOa, and

there appears to be scope for research in this area. However, oxidation during

storage is the topic covered in the remainder of this survey.

The oxidation of UOa with free access of air above room temperature v;a:;

studied by Stevenson and Boyd and the results were summarised by Martin * . Tho

process had an activation energy of 13 to 17 Kcal/mole and this was used to make;

predictions about the oxidation rate in the vicinity of room temperature. The rate

of oxidation for two samples of slightly differing specific surface was approxi-

mately proportional to-the specific surface, and other workers ' ' have observed

that the 0/U ratio attained after extended storage is directly related t,o the

specific surface. The predictions were expressed in terms of the percentage of

UaOs formed. Some of the quoted results have now been recalculated as 0/U ratios

and are given in Table 1, together with values calculated for other specific

surfaces assuming that the oxidation rate is directly proportional to the specific

surface.

More recent work on the oxidation of UOa (see Section 3) indicates that these

results may not be completely reliable. The temperature range of experimentation

was such that at least three different oxidation processes were probably active,
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so that there was probably no justification for extrapolating to room temperature

by assuming a unique mechanism.

Table 2 gives results of other experimenters
(6,7)

for the variation in the

limiting 0/U ratio with specific surface after storage in air. The values due
(6)

to Lister and Gillies were taken from a graph in their paper, whereas those

of Bell and CartereV are as quoted in their work. In neither case were the

actual experimental conditions reported.

(6)The two' sets of results disagree,.those of Lister and Gillies^ indicating

a much higher degree of oxidation. Their results also agree better with the two-

year values given in Table 1. The question of the limiting 0/U ratio is discussed

again in Section 7, and it is sufficient to point out here that there are no

thoroughly reliable data for the oxidation behaviour of UOa under storage conditions,

Humidity in the air has been thought to enhance the oxidation rate^ ' , but

controlled experiments
(4,8) have shown it to have no effect.

The oxidation of UOa during storage may be limited by using tightly sealed
(4)

containers , and optimum conditions are stated to involve airtight containers

held at 25°C or less^2' .

3. OXIDATION

There appear to be three or even four distinct stages in the oxidation of U02.

In the present survey we are concerned with three stages, which may be identified

in the folio-wing way.

Stage 1. Chemisorption. This occurs rapidly on a clean, reduced surface at
(9)

all temperatures, even as low as -183°C . The chemisorption limit appears to
(9)correspond to one oxygen atom for each surface uranium ion . The heat of chemi-

sorption at-l83°C decreases from o.bout 55 kcal/mole at zero coverage to 10 to 12

kcal/mole at half coverage, and then to ~ 5 kcal/mole at the chemisorption limit^ °̂

As the adsorbed oxygen approaches the chemisorption limit there is evidence that

impinging oxygen is at first physically adsorbed, then slowly changes to the chemi-

sorbed state*1 .

Stage 2. Sub-surface oxidation. This process becomes noticeable at about

-138 C and up to about 50°C is the major process responsible for additional oxi-

dation ' . At constant temperature the amount of oxygen taken up (in addition

to that chemisorbed) follows a law of the form:

dy/dt = K exp (-ay) (1)

m

where y is the extra oxygen adsorbed, the constant K depends on temperature and

pressure, and a appears to depend only on temperature ' . For materials of

similar preparation, the oxidation rate is directly proportional to the specific

surface^ ' . The oxidation rate increases with temperature, the apparent

activation energy increasing from about 6 kcal/mole at the lower temperatures to

about 15 kcal/mole above 0°C . The maximum additional oxygen taken up in this

stage is stated to be about four times that contained in the chemisoz'bed layer^ '

It is believed to penetrate into the sub-surface regions of the UOa, the estimated

penetration distance being about 40A if one extra oxygen atom is taken up per unit

cell and 10A if the oxidized layer has a composition of UOa • Hoekstra, Santoro

and Siegel^ have observed infrared absorption peaks characteristic of U03 in

high surface area UOa oxidized at room temperature.

Stage 5. Bulk oxidation. A new process of oxidation becomes dominant at

about 80 to!00°C ' ' . For material of > 2ma/g specific surface the oxidation

obeys a diffusion law with an activation energy of 20 to 27 kcal/mole, and continues

up to an 0/U ratio of 2.33^ '. The reaction probably involves the formation of a
,(14)layer of composition U30y which thickens as oxidation proceeds

dation to UaOa generally requires a temperature of about 200°C
(14)

Further oxi-

For material

of very low surface area the oxidation process is apparently one of nucleation

and growth^

4. FABRICATION OF UOa - THE EFFECTS OF STORAGE

(2)
Of the various techniques which may be used to fabricate nuclear fuel

elements from UOa powders the one using cold pressing and sintering is the most

common and the only one to be considered here. Storage may influence this process

by affecting either the pressing or the sintering behaviour of the powder.

Although one suspects that surface oxidation and storage should affect

pressing behaviour, which is related to the surface properties of the powder,

there is little in the literature to support this belief. This lack of data

presumably results from the widespread use of pressing aids with UOa, so that the

pressing characteristics are determined largely by the particular binder and/or

lubricant used. Thus .if pressing aids are to be used, storage will probably not

unduly affect the pressing behaviour of UOa. It is assumed of course that oxi-

dation during storage has been non-pyrophoric, and the powder has not been completely

converted to U308 or U03. In the absence of pressing aids, the pressing behaviour

might well be sensitive to storage, and the region of maximum effect would probably

correspond to the establishment of a chemisorbed monolayer of oxygen.
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The presence of oxygen in excess of the stoichiornetric ratio has a marked
(2)

effect on the sintering rate of UOs. . Excess oxygen increases the sintering

rate and decreases the activation energy for sintering . The major effect

occurs within the range 2.00 § 0/U § 2.04̂  . Thus an improvement in sintering

rate or a reduction in the required sintering temperature may be achieved "by
(18)increasing the 0/U ratio, either by air-oxidation or by incorporating a powder

(19)
with higher oxygen content . Variations of these two processes have been

(20-24)
patented^ . In general the super-stoichiometric materials are sintered in

a 'neutral1 atmosphere such as nitrogen or argon. They may also be sintered in

a reducing atmosphere such as hydrogen or cracked ammonia, in which case the

excess oxygen may or may not^ give increased sintering rates. Presumably
(26)this depends on its rate of removal in the reducing environment

Thus the major effect of storage would appear to be an enhancement of the

sintering rate of the UOa powder, if it is sintered under neutral or mildly

reducing conditions. The effect is most pronounced for the initial departure

from stoichiometry and is less sensitive to additional oxygen taken up by already

well-oxidised powders. Where storage leads to variations in oxidation either

within or between otherwise identical batches of powder, there may be corresponding

variations in sintering rate unless a strongly-reducing atmosphere is used during
the sintering.

5. IRRADIATION PERFORMANCE OF UOg - THE EFFECTS OF STORAGE

The effects of excess oxygen on the irradiation behaviour of sintered UOg
(27)

have been summarized well by Robertson . In general, excess oxygen is a dis-

advantage. Relative to stoichiometric UOa the thermal conductivity is reduced,

the thermal expansion is increased, the diametral expansion under irradiation
(27)is increased and the fission product release rate is increasedv . The latter

property is the most sensitive to typical amounts of excess oxygen in sintered UOa

and will normally determine the allowable 0/U ratio. The plasticity and volatility
(27)

of UOa are also enhanced by excess oxygen^ . The allowable 0/U ratio in U02 fuel

elements depends on the reactor design, and for the CANDU reactor the value is
(27)

£ 2.01V . Thus in general it is preferable that the fabricated oxide be close
to stoichiometric.

6. PYROPHORICITY

6.1 General

Whether or not a given U02 preparation will spontaneously ignite when

exposed to oxygen depends on the specific surface of the oxide, the condition of
(2)the surface, the partial pressure or availability of oxygen and the temperature1 '.

5.

(28)Anderson et a l . v ' report that fully-reduced powders of specific surface 8.4 to

12.9 me/g were pyrophoric in air at room temperature, whereas ones with specific

surface < 2 ma/g were not pyrophoric. A specimen of specific surface 10.3 m2/g
(12)

was pyrophoric in oxygen at 0°C, but non-pyr-' jnoric if pre-oxidized at -80°C

Further examples of pyrophoricity protection by pre-oxidation or adsorption of

other vapours are listed in Section 7. Specim-- •$ of specific surface 1.4 ma/g

were non-pyrophoric up to 50°C but pyrophoric at 150°C

6.2 Theory

(12)

The general conditions which determine whether a given powder is pyrophoric

when exposed to air at room temperature may be identified in the following way.

Consider an isolated particle undergoing oxidation. Its temperature will rise

when the rate of heat generation caused by oxidation exceeds the rate of heat

loss from the particle. This condition may be expressed by the heat balance:

Rate of heat generation - Rate of heat loss = Rate of increase in heat content

(2)

The rate of heat generation per particle is directly proportional to the number

of moles of'oxygen reacting with unit surface area per second, (dx/dt) „, , thex,i ,p
heat of reaction per mole, AH „ and the surface area of the particle, S. The rate

x,l
of heat loss per particle is directly proportional to the difference between the

particle temperature T and the environment temperature T , and to the surface area

S and the heat transfer coefficient h, whilst the rate of increase in heat content

of the particle is the product of the particle mass m, its specific heat c and the

rate of temperature rise (dT/dt).

Thus Equation 2 becomes:

A H S (dx/dt) - h S (T-T ) = m c (dT/dt) .(3)

The subscripts x, T and p indicate that in general A H and (dx/dt) are functions

of the specified variables.

Let the -particle be spherical, with diameter D. Thus S = TrD2 and m = 7rD3p/6

where p is the particle density. Substitution in Equation 3 gives:

A H (dx/dt) - h (T-T ) = (cpD/6) (dT/dt) ...... (4)
x.,0. X, J. , [J e

In principle, if (dx/dt) and A H were known as functions of x and T, for a given

pressure, and if h and T were also known, the entire temperature - composition -

time history of the particle could be calculated and any pyrophoric tendency

identified. All the required data are not available, but Equation 4 at least
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indicates the determining variables. Vie see that:

(i) For a given x, T, Tg and p, (dT/dt) is proportional to (1/D) . Thus the

pyrophoric tendency increases with decrease in particle size or increase in

specific surface.

(ii) For a given T, T , p and D, (dx/dt) for Stages 2 and 3 and A H for

7.

Stage I decrease sharply with increase in x

decreases with increase in prior oxidation.

(10,12)
Thus the pyrophoric tendency

(lii) For a given x, T , p and D, (dx/dt) increases rapidly with increase in
e (2 12)

temperature for Stages 2 and 3 oxidation^ ' . Thus the pyrophoric tendency

increases markedly with increase in particle temperature.

(iv) For a given x, T, T and D, (dx/dt) decreases with decrease in the

oxygen partial pressure below atmospheric in Stages 2^ ' and 3' ' and probably

also Stage 1 oxidation. Thus the pyrophoric tendency decreases with decrease in

oxygen pressure. A further effect of very low oxygen pressures would be to limit

the amount of available oxygen.

(v) For a given x, T. p and D, the pyrophoric tendency will obviously

increase with increase in T and with decrease in h.e

Some quantitative idea of the pyrophoric process at room temperature may

be gained by substituting data for the chemisorption reaction in Equation 4. The

hypothesis is that a pyrophoric reaction occurs at room temperature when the heat

liberated in the chemisorption stage is sufficient to heat the particle to a

temperature where Stages 2 and 3 oxidation are rapid enough to ensure a continued

increase in temperature. That pyrophoricity at room temperature depends on the

chemisorption reaction is justified by the fact that at room temperature'12^ Stage 2

oxidation is quite slow and Stage 3 almost non-existent whereas chemisorption is

virtually instantaneous. An estimate of the time required to produce a mono-

layer of oxygen when the substance is exposed to room-temperature air gives

10~8 seconds for a condensation coefficient of unity and 10"3 seconds if the

condensation coefficient is as low as 10~5. Pyrophoricity is evident immediately

on exposure to air, there being no incubation period before ignition. Because of

the fast chemisorption rate we may ignore the heat loss term in Equation 4 and

substitute:

(dx/dt) . _ ~ n/N At
•j-1- aP

3 x 104 cal/mole^ (an average value)

(14)

14

c = 0.055 cal/g (°C)

p = 11 g/cm3

and (dT/dt) = AT/At ,

where n is the number of molecules of oxygen in the chemisorbed layer, N is

Avogadro's Number, At is the time needed to establish the monolayer, and AT is

the temperature rise of the particle. The value of n is approximately 4 x 10

molecules/cm2 (Section 7). The calculations give:

AT ~ 2 x 10~4 /D (5)

Calculated values of AT for various values of specific surface and particle

diameter D are given in Table 3, and appear to substantiate the present approach.

Powders which are known to be pyrophoric at room temperature (specific surface

^ 8.4 ma/g) have values of AT which would boost their temperatures to the point

where Stage 2 oxidation is extremely rapid and Stage 3 oxidation is just beginning,

whereas non-pyrophoric powders ( < 2 m2/g) involve much smaller temperature rises.

A further point of course is that the required temperature rise would be smaller

for fine powders than for coarse ones, since the rates of Stages 2 and 3 oxidation

depend dire'ctly on specific surface.

7. STABILIZATION

The term stabilization applied to U02 powders appears to have four possible

meanings:

(i) complete protection of the powder against any oxidation,

(ii) protection against a pyrophoric reaction with air,

(iii) limiting the rate of air-oxidation to an acceptable level, and

(iv) limiting the extent of air oxidation.

In the commercial production of a sinterable UOa powder it is considered

neither feasible nor necessary to ensure complete protection against oxidation,

and, in general, stabilization probably involves a combination of the other three

meanings. There are three basic techniques which may be used.

7.1 Surface Area Control

The rate of oxidation of a powder increases with increase in surface area
(2}per granr . Thus a powder may be 'stabilized' by reducing its specific surface

(for example, by heating to an appropriate temperature in hydrogen). This

philosophy tends to run counter to the requirement of a high specific surface for



good sinterability. However, it is still logical to ensure that the specific

surface of the as-produced powder is no greater than that required for the desired

sinterability.

7.2 Oxidation

Since the total heat generated in the chemisorption stage increases with

oxygen take-up during chetnisorption, the pyrophoric reaction may be prevented by

prior oxidation. Chemisorption of oxygen at low temperatures or under conditions

of limited oxygen access would thus prevent room-temperature pyrophoricity in a

potentially pyrophoric powder. The amount required to form one chemisorbed layer

on a freshly reduced UOg surface may be estimated as 4 x 1014 molecules of oxygen

per square centimetre of surface, using the results of Roberts^ ' . This gives

the following relationship between the 0/U ratio and the specific surface S of the

powder for a complete layer, and thus protection against room temperature pyro-
phoricity:

0/U = 2.000 + 3.6 x 10~3 S, where S is in m2/g. •(6)

Thus a powder with specific surface 10 ma/g would require surface oxidation to

0/U ~ 2.04 to be sure of preventing a pyrophoric reaction in air, and a powder

with specific surface 100 m2/g would require surface oxidation to 0/U ~ 2.36.

In practice, particularly with the medium surface area powders, less than a complete

layer (and thus a somewhat lower 0/U ratio) would probably be sufficient. Re-

oxidation techniques include oxidation by water vapour at the previous reduction

temperature ' or by a dilute oxygen-nitrogen mixture at room temperature^ '.

Prior oxidation in excess of the chemisorption limit will decrease the rate

of oxidation in Stages 2 and 3. The extent of this effect may be calculated by

deriving the overall oxidation law, containing contribution from Stages 1, 2 and 3,

for a freshly reduced UOa powder exposed to air at room temperature. If A (0/U)

is the excess in 0/U ratio above 2.00, the contributions of the various stages are
given by:

Stage 1:

Stage 2:

Stage 3:

A (0 /U) j = 3.6 x 10"3 S

A (0/U)2 = S loge(1.03t)/1400

1-3A(0/U)3 5.68 x 10"G St2

(7)

(8)

(9)

Equation 7 comes directly from Equation 6. Equation 8 was derived from the
(121observed rate law for Stage 2 (Equation 1) , using a = 9V ' and K = 0.115 at 25°C

and atmospheric pressure. K was calculated from the observation that a carefully

9.

pre-oxidized specimen with specific surface 10.3 m/g reached an 0/U ratio of 2.18
(12)

after 2 weeks in air at room temperature^ . Under these conditions the contri-

butions of Stages 1 and 3 were first calculated using Equations 7 and 9, and sub-

tracted from the total increase in 0/U ratio to give the contribution from Stage 2.
(2 32)

Equation 9 was obtained from the rate data of Blackburn et al. •* and refers

to a temperature of 25°C.

Taking A (0/U) = A (0/U) j. + A (0/U)2 + A (0/U)3

vie obtain:

(10)

0/U = 2.000 + 3.6 x 10 3 S + S log (1.03t)/1400 + [l-(l-3.68 x 10"s St2)3]/3 .

(ID

In Equations 7, 0, 9 and 11 the units of S are ma/g and those of t are seconds.

Equation 11 may be used to calculate 0/U ratios for various values of S and t,

and results are given in Table 4.

The 0/U ratio as a function of time has also been calculated for material of

specific surface C.455 ma/g, for direct comparison with values taken from Table 1.

The two sets of results are plotted against time in Figure 1, and they agree very

well. Thus the data in Table 1 may be quite reliable, in spite of the treatment

as one unique process of a phenomenon composed of three quite different oxidation

processes.

The results given in Table 4 are plotted in Figure 2. The 0/U ratio in excess

of 2.00 is almost directly proportional to specific surface for a given exposure

time (Equation 11), and the relationships for various times are plotted in Figure 3.
/ Q\

The predictions agree well with the observations of Lister and Gillies (Table ?.}

but not with the data of Bel and CartereV (Table 2), and it is suggested that

the latter values reflect either insufficient exposure times, materials stabilized

by other means, or storage with limited access of air.

Figures 2 and 3 may be used to estimate the oxidation rate for a powder c. f a

given specific surface and 0/U ratio. For example a powder of specific surface

5 m2/g and 0/U ratio 2.18 should gain a further 0.032 in 0/U ratio after 1 year

in air and an additional 0.024 in a subsequent year. For a particular specific

surface, Figure 2 can yield the 0/U ratio to produce a desired oxidation rate as

well as the time needed to establish that 0/U ratio on exposure to air at room

temperature. Thus Figure 2 is useful where stabilization is defined in terms of

an acceptable rate of oxidation. It is also useful where stabilization is defined

in terms of a limiting 0/U ratio, since it indicates whether that ratio would be
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exceeded for the expected storage time with free access of air. This in turn

would indicate whether the air access to the powder must be restricted or some

other measure taken to reduce the oxidation rate.

7.3 Adsorbed Inhibitors

All stages of oxidation at room temperature may be retarded or perhaps even

prevented by adsorbing some other species on the U02 surface. Suitable materials

include water vapour(33>M>35) , carbon dioxide(33-"34'36), ammonia(34>35), carbon

tetrachloride( ' , or various alcohols, ketones or hydrocarbons^34'35^. Carbon

dioxide does not completely prevent subsequent oxidation, but does prevent a

i with a:
(35,36)

(36)
pyrophoric reaction with airv '. These gaseous inhibitors are usually adsorbed

at room temperature ~">""'} and there is-no report of any subsequent effect on the

fabrication behaviour of the oxide powder.

8. LIMITING THE ACCESS OF AIR

Storage in tightly sealed containers^ might be expected to reduce both the

rate and the extent of oxidation of U02. In order to estimate the likely effect-

iveness of this procedure, calculations were performed for the following storage

conditions:

Mass of U02 = 10 kg

Volume of container = 10.litres

Thickness of container wall i 2 mm.

It was assumed that all the oxygen penetrating the container reacted immedi-

ately with the U02, so that the oxygen partial pressure drop across the container

wall was equal to the atmospheric partial pressure of oxygen. The permeability

coefficient K required for a particular oxidation rate was calculated using the
formula^37':

K = .(12)

where Qi/t is the flow rate of oxygen at S.T.P., Pl is the external oxygen partial

pressure, £ is the container wall thickness, A is the container surface area and

Ap is the oxygen partial pressure drop across the container wall.

An oxidation rate of 0.01 per year change in the 0/U ratio was calculated to

require a permeability coefficient of < 10'7 cm2/sec, and a rate of 0.1 per year

would require K < lo"6 cm2/sec. Values below 10"7 cm2/sec should be readily

attainable for the container material. For example, steel, glass and probably

polythene containers should be suitable, but fibre drums would be too permeable.

11.

The degree to which the containers must be sealed may be illustrated by calculating

the size of a single hole which, by itself, would give the desired maximum oxidation

rate. The assumption is that oxygen enters the container by diffusion through the

oxygen-nitrogen mixture contained in a cylindrical hole of radius r and length 2 mm.

The relevant form of the Fick equation^ , together with the data for the diffusion
(58}coefficient of oxygen in air , indicates that when the container material has

a negligible permeability, a cylindrical hole of 0.1 mm dia. would produce an

oxidation rate no greater than 0.01 change in the 0/U ratio per year. Sealing to

this degree should be possible in industrial practice.

It is probably not necessary to remove the air from the container before

filling it with UOa. For the above reference conditions, the oxygen in the container

at atmospheric pressure would be sufficient to increase the 0/U ratio by only 0.004.

9. DISCUSSION AND CONCLUSIONS

The major points in the previous sections may be summarized as follows:

Freshly-reduced uranium dioxide oxidizes readily on exposure to air at room temp-

erature. The oxidation rate is proportional to the specific surface of the powder. The

oxidation reaction includes strong and very rapid chemisorption, a subsequent stage

involving limited penetration of the UOa lattice, and a third stage with diffusion

kinetics. The third stage becomes of significant importance for exposure times

greater than a few months and at one year it is expected to'be the major process.

The chemisorption process is strongly exothermic and for material of high enough

specific surface the heat generated is sufficient to start a pyrophoric reaction.

A freshly reduced powder of specific surface 8 ma/g is expected to be pyrophoric

in air. The transition point between pyrophoric and non-pyrophoric powders in air

at room temperature lies between 2 and 8 m2/g and is probably closer to 8 m2/g.

Experiment? are required to establish the transition point. Room temperature

pyrophoricity may be prevented by minimizing the amount of oxygen chemisorbed or

the chemisorption energy, and suitable techniques include limiting the availability

of oxygen, prior oxidation at either low temperatures or with limited access of

oxygen, and the use of gaseous inhibitors such as water vapour or COg-

The extent of oxidation in air increases with time and specific surface of

the powder and for reasonably high specific surfaces considerable oxidation may

occur over normal storage periods. There is disagreement in the literature over

the 0/U ratios to be expected and the theoretical analysis in this review supports

the more pessimistic values. Tables and graphs presented here enable the oxidation

tendency to be predicted and a decision made as to whether some degree of protection
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is required. Protective methods include the use of air-tight containers and

adsorbed gaseous inhibitors. Air-tight containers must be relatively impervious

if they are to be effective for prolonged storage periods. Adsorbed gaseous

inhibitors appear to be useful for oxidation protection, and an attractive one is

water vapour. However, experiments would be needed to establish the optimum

adsorption technique and the subsequent storage and fabrication behaviour of such
powders.

Extra oxygen enhances the sinterability of U02 if it is even partly retained

during sintering. However, retained oxygen is detrimental to the irradiation

performance of U02 fuel. The extra oxygen would tend to be removed during sintering

in either neutral or reducing atmospheres, but if the residual level in the sintered

piece is still too high then it may be lowered by subsequent reduction in hydrogen

at or above the sintering temperature. The effect of oxygen on the sintering rate

may lead to variations in sintering behaviour where there are differences in oxygen

content either within or between batches of powder, unless the sintering conditions

are such that the material is fully reduced before sintering begins.
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TABLE 1

CALCULATED 0/U RATIOS AFTER STORAGE FOR VARIOUS TIMES IN AIR

Specific Surface (ma/g)

Temperature (°C)

Storage Time

1 hour

24 hours

7 days

30 days

60 days

6 months

1 year

2 years

0.455(3>4)

10

2 .0003

2.002

2.006

2.007

2.008

2.010

2.011

2.012

20

2 .0003

2.004

2.007

2.009

2.010

2.012

2.013

2.016

30

2 .0005

2.006

2.008

2.011

2.012

2.015

2.018

2.021

1

10 •

2.0006

2.005

2.013

2.016

2.018

2.021

2.024

2.026

20

2.0007

2.009

2.016

2.019

2.021

2.026

2.029

2.035

30

2.001

2.014

2.018

2.024

2.026

2.034

2.039

2.046

5

10

2.003

2.026

2.066

2.081

2.088

2.11

2.12

2.13

20

2.004

2.044

2.077

2.096

2.11

2.13

2.15

2.18

30

2.005

2.070

2.092

2.12

2.13

2.17

2.20

2.23

10

10

2.006

2.051

2.13

2.16

2.18

2.21

2.24

2.27

20

2.007

2.088

2.15

2.19

2.21

2.27

2.29

2.35

30

2.010

2.14

2.18

2.24

2.27

2.34

2.39

2.46

TABLE 2

LIMITING 0/U RATIOS AFTER STORAGE IN AIR

Specific Surface (ma/g)

0/U

Specific Surface (ma/g)

0/U

0.61

2.01

1.2

2.00

0.78

2.02

3

2.06

1.1

2.03

7

2.13

1.4

2.04

10.5

2.21

1.8

2.06

11.5

2.22

2.7

2.13

12.5

2.21

5.5

2.27

17

2.25

10.9

2.43

19

2.29

Reference 6

Reference 7
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FIGURE 1. OXIDATION CURVE FOR UO9 (SPECIFIC SURFACE 0.455 n,2/9) EXPOSED TO AIR AT 25 C
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FIGURE 2. OXIDATION CURVES FOR UO2 (VARIOUS SPECIFIC SURFACES) EXPOSED TO AIR AT 25°C
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