

AUSTRALIAN ATOMIC ENERGY COMMISSION RESEARCH ESTABLISHMENT
 LUCAS HEIGHTS

AN EXAMPLE OF SPHERE BRIDGING IN A CIRCULAR CHANNEL by

L．R．SCOTT－ROGERS

July 1966

AUSTRALIAN ATOMIC ENERGY COMMISSION

RESEARCH ESTABLISHMENT
LUCAS HEIGHTS

AN EXAMPLE OF SPHERE BRIDGING IN A.

CIRCUIAR CHANREL

by

L.R. SCOTT-ROGERS

ABSTRACT

A bridged system of spheres in a circular channel with a channel-to-ball diameter ratio of 4.7 has been examined. The basic bridge structure consisted of two diametric arches at about 60° relative displacement. Associated with these arches was a stable hexagon ring of spheres and a central sphere held at five contact points.
Page

1. IN'IRODUCTION 1
2. CONDITIONS AT ITHE TIME OF BRIDGE FORMATION 2
3. EXAMINATION OF THE BRIDGE 2
3.1 Measurement of Sphere Centres 2
3.2. Mapping of Lower Surface 2
3.3 Replication of Lower Surface 3
3.4 Analysis of the Bridged System 3
4. DISCUSSION 3
5. REFERENCES 4
Table 1 - Vertical Location of Sphere Centres Referred to Sphere 10 as Datum, with Displacement in terms of Sphere Diameter
Table 2 - Relative Angular Displacement of Spheres Comprising the Lower Surface with Sphere 26 as Origin and Cross-section BB as Reference Axis
Figure l - Ball designation - lower surface and sides
Figure 2 - Plan of lower surface - shows Bridge 1 and 2 and Hexagon Ring
Figure 3- Elevation of Bridge 1 and 2 and Hexagon Ring
Figure 4 - Photograph of bridged system in Perspex cylinder before examination
Figure 5-Photograph of lower surface after fixing with varnish

It has been known for some time and adequately reported that spheres under gravity flow may bridge and jam flow in a channel (Sanderson and Porter 1958; Fraas et al. 1961). The parameters associated with this blockage include:
(a) the geometry of the channel and the particular value of the ratio of channel diameter to sphere diameter,
(b) the surface finish and hardness of both the spheres and channel,
(c) uniformity of size and shape of the spheres,
(d) the density of the spheres, and
(e) the presence or otherwise of mechanical agitation.

Many experiments have been conducted on the flow characteristics of uniform spheres through circular channels (Sanderson and Porter 1958). It has been concluded that bridging is:
(a) impossible for channel-to-sphere diameter ratios between l.I and 1.7,
(b) probable for ratios between 1.7 and 5.0,
(c) unlikely for ratios between 5.0 and 6.0 , and
(d) highly improbable for ratios greater than 6.0.

Hence, the actual ratio selected for design will most likely depend on:
(a) the requirement of "single-file" flow or large cross-section flow,
(b) the incidence of chipped and broken spheres, and
(c) the inventory limit and possible cooling problems associated with a large number of spheres in a channel.

While some information exists on the bridging probability with varying channel-to-sphere diameter ratios, no information can be found on the actual mechanism of bridging. Thus when a blockage actually occurred during an experiment on vibration flow, the system was examined for any useful information which might be extracted. The channel-to-sphere diameter ratio was
4.7 which is very close to the reportedly critical ratio of 5 . describes the bridge formation in detail.

2. CONDITIONS AT THE TIME OF BRIDGE FORMATION

A clean Perspex cylinder, nominally 4.75 inches inside diameter, had been mounted on a rigid bracket vertically above a horizontal vibratory feede tray. The lower end of the cylinder was 1.5 inches above the tray surface Smonth wooden spheres, 1.010 ± 0.005 inches mean diameter, 5.59 grams average ass, had been dropped into the cylinder to a depth of 2.5 feet. The channel-to-sphere diameter ratio was therefore 4.70. The spheres were allowed to low under gravity by mechanical agitation of the tray surface

The top free surface of the spheres moved 12 inches down the cylinder before a plug of 88 spheres formed. The rest of the spheres (about 500) discharged normally under the influence of the vibrations. The system was photographed prior to further study (Figure 4).

3. EXAMINATION OF THE BRIDGF

The system was first "fixed" with a washing of clear varnish. This process held the spheres at their points of contact with each other and this cylinder wall.

3.1 Measurement of Sphere Centres

The relative positions of

two rows around the cylinder to 0.01 mm . The centres were then are tabulated in Table l. For number (Figure 1) and sphere 10 (he spheres were designated by

3.2 Mapping of Lower Surface

Mapping of the lower surface was necessary to obtain a cross-sectio through this surface. This would reveal any bridging structure in two dimensions at least. The lower surface was photographed (Figure 5) and the sphere centres accurately located. The resulting plan is shown in Figure 2 BB is tabulated in Table 2 .

3.3 Replication of Lower Surface

A calcium sulphate (plaster of Paris) impression was taken of the lower surface. Another Perspex cylinder of channel-to-sphere diameter ratio 4.70 was placed over the impression. Wooden spheres were then placed into the depressions and, guided by the original model, a replication of the bridged system was formed. The bridged system could now be examined completely or in part.

3.4 Analysis of the Bridged System

Two major bridge structures were apparent. These have been designated Bridge 1 and Bridge 2 and are shown in Figures 2 arıd 3. Each bridge was characterised by a "spring-ball" at the cylinder wall. The "spring-ball" positions were primarily dependent on friction and, although other spheres at the wall contributed frictional force, the "spring-balls" were judged to be basic components of the structure. Common to both bridges was a hexagon ring with sphere 26 held at five points in the centre of the ring.

Replication tests proved the existence of the two bridges; no other combination of spheres on the lower surface acted as an arch. Further tests indicated the stability of the hexagon ring. It could not collapse toward the centre and, provided sufficient friction existed between the "spring-balls" and the cylinder wall, it behaved as a stable structure.

The importance of sphere 26 was questionable. The bridged system could be replicated and isolated from the mould with or without sphere 26. However, owing perhaps to the slight variation in sphere size and the fineness by which sphere 26 was originally held, it did not lift with the rest of the system. In fact, a sphere directly above it fell to occupy part of the volume originally occupied by sphere 26 . This other sphere then acted as a "key-ball" for the two bridges and locked them with more convincing arches than sphere 26 had done. The tests suggested that sphere 26 was not a basic component of the structure, but, owing to the fine tolerances necessary to reproduce the original conditions exactly, a definite conclusion on its importance was not possible

4. DISCUSSION

Basically, the bridged system consisted of two diametric arches at about 60° relative displacement. Associated with these arches was a stable
hexagon ring of spheres and within the ring was another sphere held at 5 points The examination indicated that:
(I) The bridge "spring-balls" were primarily dependent on friction (2) wooden spheres and Perspex cylinder wall.
ly dependent on friction.
3) The central
of the bridged system as a whe (26) did not appear to be a basic component separate bridge.

When jamming

sphere diameter ratio of less in a circular channel with a channel-towards) will result. For chan 5, an arch (either concave or convex downbridge occurring lessens owing of greater size the probability of a are one sphere diameter or more channel wall.
and geometric arrangement of spheres bridged system depended on both friction 5. REFERENCES

Fraas, A.P., et al. (1961). - Preliminary design of a 10 MW pebble bed
reactor experiment. Oan Rin
Sanderson and Porter (1958). Oak Ridge National Laboratory CF 60-10-63. bed reactor steam power plant. and feasibility study of a pebble

TABLE 1

VERTICAL LOCATION OF SPHERE CENTRES REFERRED TO
SPHERE 10 AS DATUM, WITH DISPLACEMENT IN TERMS OF SPHERE DIAMETER

Sphere Number	Relative Displacement (diameters)	Sphere Number	Relative Displacement (diameters)
1	0.313	17	0.260
2	1.314	18	1.221
3	0.699	19	2.146
4	1.735	20	0.590
5	0.238	21	1.477
6	1.265	22	0.729
7	0.651	23	2.008
8	1.911	24	1.929
9	1.351	25	0.908
10	Datum 0.000	27	0.337
11	0.906	28	0.656
13	0.160	29	0.434
14	1.026	30	0.600
15	0.812	31	0.517
16	1.783	32	0.588

$\overline{2 \text { \#TqV }}$

FIGURE 1 bALL DESIGNATION - LOWER SURFACE AND SIDES

FIGURE 2 PLAN OF LOWER SURFACE
SHOWING BRIDGES I AND 2 AND HEXAGON RING

VIEW b-b bridge 2

figure 3 elevations of bridges 1 and 2 and hexacon ring

(a) View on plane of lower surface

(b) Oblique view of lower surface

FIGURE 4 PHOTOGRAPH OF BRIDGED SYSTEM IN PERSPEX CYLINDER BEFORE EXAMINATION

5

figure 5 photograph of lower surface after fixing with varnish

