AUSTRALIAN ATOMIC ENERGY COMMISSION RESEARCH ESTABLISHMENT LUCAS HEIGHTS

STUDIES IN COMPUTER COUPLED RADIOCHEMICAL ANALYSIS - PART 1. PEAK LOCATION AND PEAK ENERGY MEASUREMENT IN SCINTILLATION SPECTROMETRY

A.R. PALMER

February 1968
by
A. R. PALMER

ABSTRACT

A FORTRAN IV (Level H) programme is described which locates photopeaks in the output of a multichannel analyser scintillation spectrometer assembly. The programme is particularly useful for processing the output of large capacily analysers working in conjunction with a high resolution $G e(L i)$ detector.

CONTENTS

Page

1. INTRODUCTION 1
2. FACIIITIES AVAIIABLE 1
3. BASIS OF PROGRAMME 2
4. EXPERIMENTAL VERIFICATION 5
5. THE COMPUTER PROGRAMME 6
6. CONCLUSIONS 6
7. REFERENCES 6
APPENDIX Programme Listing
Table 1 Variation of photopeak position with time
Table 2 Photon energies (MeV) detected in sample of radium-226
Table 3 Examination of sample of radium-226
Table 4 Examination of radium-226
Table 5 . Typical programme output
Fjgure 1 Spectrum of radium-226
Figure 2 Spectrum of radium-226
Figure 3 Spectrum of radium-226
Figure 4 Spectrum of radium-226
Figure 5 Spectrum of radium-226
Figure 6 Decay chain of radium-226

1. IMFRRODUCTION

In recent years there has been considerable interest in the subject of computer coupled activation analysis. The logical result of coupling a computer to activation analysis is seen in the present generation of analysers where data are stored directly in a small computer rather than in a conventional multi-channel pulse height analyser. Whilst the engineering aspects of such assemblies are now well understood, ihere is ruch to be done in the field of data processing.

Peak location by computer was used for a while by Drew et al. (1962) and Kuykendall and Wainerai (1960), and it was discussed by Yule (1960). Although the trend has been to supplement peak location routines by more sophisticated mathematical treatments, such roxtines are still very useful in activation analysis studies, particularly since the advent of high resolution $\mathrm{Ge}(\mathrm{Li})$ detectors. These require the use of many channels if full advantage is to be taken of their inherently good resolution. Such detector-analyser combinations generate large quantities of data which take a long time to examine manaally.

The work reported here is a FORTRAN IV Level H programme developed for peak location and peak energy measurement in gamma scintillation spectrometry. It is intended primarily for use with the output from large capacity multichannel analysers connected to a high-resolution detector. As its prime purpose is peak energy measurement, it is used largely for deciding which isotopes are present in a sample. Subsequent reports will deal with the problems of energy assignment, evaluation of peak areas and spectrum stripping.

2. FACILITIES AVAILABLE

The facilities available to Chemistry Division staff at the A.A.E.C. comprise a 1024-channel Nuclear Data Pulse Height Analyser (Model FMR) and a range of detectors consisting of NaI (TI) crystals and a Li(Ge) solid state detector. Output from the detector-analyser is available either as printed lines via an electric typewriter or as punched tape from a Nuclear Data Model Punch-Reader unit. At present, to process data with the site computer (IBM-360) it is necessary to read punched tape from the analyser with the computer and produce a set of cards or magnetic tape for subsequent use as programme input. This step, although time-consuming, has proved quite satisfactory in practice. Punched card data storage has so far been preferred since it permits ready insertion of title cards and other data required for execution of the computer programme. The programme described here is thus designed solely for card input.

3. BASIS OF FROGRAME

The first step in processing of the input data is to sort and reproduce the input in a more readable form. This is a valuable feature of the programme since the output from the IBM typewriter is in groups of eight channels without channel identification. Subroutine SORT reproduces the input data arranging it with 10 channels per line, 400 channels per page with an initial channel identification for each line.

For subsequent operations, data convolution is applied. This technique, first applied in analytical chemistry by Savitzky and Golay (1964) and then applied to scintillation spectrometry by Blackburn (1965), largely eliminates statistical scatter in the data and produces a smoothed spectrum. Subroutine SMOOTH convolutes the raw data and the choice of 5,7 or 9 point cubic smoothing is available corresponding to the value of NOPTS supplied by the user. The smoothed data are printed out in the same format as that used for the input data.

After data convolution, photopeaks are located by means of the subroutine SEARCH. The following techniques are applied sequentially to locate photopeaks:
(i) The smoothed first derivative (D) is examined to determine at which channel (n) it changes sign. Next, the spectral region either side of this point is examined in more detail. The computer looks for groups of channels which satisfy the following criteria:

$$
D_{n-1}>0 ; D_{n} \leqq 0 ; D_{n+1}<0
$$

(ii) The computer now examines the spectrum over the channels n-WIDTH to $\mathrm{n}+\mathrm{WIDTH}$ and counts the number ($n-$) of channels for which $\mathrm{D} \leqq 0$ between channeis $n+1$ to $n+W I D D H$ and the number of channels ($n+$) for which $D \geqq 0$ between channels n-1 to n-WIDTH. As prograrme input, the experimenter provides another parameter FWIDIH. If both n - and $n+$ are $>$ FWIDTH, a peak is considered to exist near channel n and the value of n is stored for further processing. This test verifies that the spectrum does rise to a maximum in the vicinity of channel n. The value of the parameter WIDIH is supplied as input by the programme user.
(1ii) Since peaks satisfying the preceding criteria can be produced by chance, the peak is examined to determine if it is statistically valid (Drew et al. 1962, Kuykendall and Wainerdi 1960). The test for statistical significance at channel n is based upon the following assumptions:
(a) The number of counts in each channel is a random sampling of a normal distribution.
(b) There is a chance that a channel can contain more counts than several channels on either side, and yet not actually be a peak.
(c) Comparison of the count in channel n with the count in channels $n+\Delta n$ and $n-\Delta n$ will indicate the existence or non-existence of a peak at channel n.

The comparison is made as follows. A quantity

```
DIFF= N N - 1.96 \sqrt{}{N}
```

is first computed, where N_{n} is the smoothed count corresponding to channel n. From this quantity is subtracted the average value of the counts in channels $n-\Delta n$ and $n+\Delta n$. If the result is positive, a photopeak located at or near channel n is indicated. The theoretical basis for this procedure is given by Lapp and Andrews (1956). The value of Δn varies with n because of the way in which the peak width varies with its location in the spectrum. The programme user must specify initial (IFWID) and final (LHWID) values for Δn. Intermediate values are calculated automatically by the programme.

At this stage the computer will have identified the location of photopeaks as being in a particular channel n. The true position for the photopeak is now found more accurately by fitting a Gaussian distribution to the spectrum in the region of channel n. Boekelheide (1960) first proposed respresenting photopeaks by a Gaussian function but his procedure requires knowledge of the area under the Gaussian curve. As this is not readily available with the required accuracy, the procedure suggested by Zimmerman (1961) was used. This method requires that the quantity

$$
Q(n)=\frac{N_{n-1}}{N_{n+1}}=\exp \left[2\left(n-n_{0}\right) / \delta^{2}\right]
$$

be computed where N_{n-1}, N_{n+1} are the counts in channels $n-1$ and $n+1$ respectively and n_{0} is the true centre of the Gaussian. The value of n_{0} is readily obtained since

$$
\ln Q=2\left(n-n_{0}\right) / \delta^{2},
$$

and the plot of $\ln Q$ versus n is zero for $n=n_{0}$. A least mean squares method is then applied by the computer using the subroutine GAUFIT.

This procedure, rather than the simpler alternative of locating the centre or the photopeak at the shamel containing the maximum count, is justified by the excellent tine stability and linearity (see below) of the spectrometer. Table l shows the photopeak positions for four photopeaks determined at approximately hourly intervals throughout one day. The spectral drift is usually less than $\pm 3 / 10$ ths of a channel throughout the course of a day.

Calibration data are treated somewhat differently, Calibration data are identified at the input stage and seurched for photopeaks. The number of photopeaks located is then compared for correspondence with the number expected (provided as further input aiter the deck of cards containing the calibration data have been processed). Next the photon energies are read. If correspondence betweer, the numbers of photopeaks has been achieved, the photon energies are arranged in ascending order and a least mean squares fit performed to evaluate the coefficients b_{0}, b_{1} in the equation

$$
E_{r}=b_{0}+b_{1} n,
$$

where E_{γ} is the gamma ray energy corresponding to channel n. Values of b_{o} and b_{1} obtained previously may also be read in directly.

If values of b_{o} and b_{1} have been calculated or read in, the programme recognises data not used for spectrometer calibration and will evaluate the energy corresponding to the located photopeak. A linear energy calibration is used rather than a more complicated fit (such as polynomial) as the spectrometer is linear to better than 0.1 per cent.

One other feature is provided in the programme. Relative peak heights are calculated. These indicate relative importance and enable the programme user to concentrate attention on major rather than minor peaks when attempting photopeak assignments. Peak heights are evaluated by averaging the ccunts in channels $n-\Delta n$ and $n+\Delta n$ and subtracting this average from the count in channel n. The peak heights are then examined to find the maximum and relative peak heights calculated as fractions of this maximum.

The complete output from a set of cards consisting of calibration data and analytical data comprises:
(i) The location of the calibration photopeaks.
(ii) The number of calibration photopeaks detected.
(iii) The values of b_{0} and b_{1}.
(iv) The original experimental data sorted out with initial channel identification.
(v) The smoothed experimental data sorted and printed with initial channel identification.
(iv) The number of photopeaks detected, their position, relative height and corresponding gamma photon energy.
4. EXPERIMENTAL VERIFICATION

In order to run the programme, the user must provide the following parameters:
WIDTH - the number of channels to the right and left of a suspected photopeak it is desired to examine in more detail.

FWIDTH - the number of values for $D>0$ and $D<0$ to be exceeded between channels n to $n-W I D T H$ and n to $n+W I D T H$ respectively.
IHWID - the initial value for the half-width of the photopeak.
LHWID - the final value for the half-width of the photopeak.
As a result of test runs on many nuclides and their mixtures the following values were fqund to be very satisfactory using 1024 channels and 7-point cubic smoothing:

```
WIDTH = 4, FWIDTH = 2, IHWID = 4, LHWID = 6.
```

With these values no peaks were missed and very few extraneous peaks detected.
Table 2 shows the results of six different examinations of a specimen of supposedly pure radium-226. For this work, the gain of the analyser was set so as to exclude low energy gamma photons. Figures 1 to 5 show a typical spectrum drawn so as to reveal the existence of the photopeaks. The value of the computer programme in locating small peaks in the presence of very large ones is clearly demonstrated by these diagrams, and the output from one analysis is given in Table 5.

Several other points emerge from the data in Table 2. A total of 32 photon energies was indicated and Table 3 shows the frequency with which the photon energies occur. When the sample was counted for longer periods (800 minutea) all of these peaks were clearly visible.

The reproducibility of the energy measurements is particulary good, being typically $\pm 1 \mathrm{keV}$. In Table 4 an attempt has been made to assign the most comnon gamma ray energies to the known members of the radium-226 decay chain (Figure 6).

Complete assignment on the basis of the available data is not possible

5. THE COMPUTER PROGRAMME

The programme is in Level H FORTRAN IV and is listed as an appendix. The first data input is a title card. The second entry specifies the number of data points per set, the number of points used for smoothing and a code number (CAL) which identifies the type of data.

O corresponds to data to be processed for photopeaks.
l corresponds to data to be processed in order to calibrate the spectrometer.
3 indicates that calibration data already exist on cards and are to be read in directly for subsequent use

The third card specifies the initial channel around which smoothing is to occur. This number must be at least one greater than the number of points used for convolution. Proper selection of this point enables the experimenter to reject the low energy region of the spectrum if necessary

The fourth card specifies the other input parameters WIDTH, FWIDTH, IHWID, and LHWID required to process a spectrum.

A typical time for computation, including printed output for a set of calibration and unknown data, is 60 seconds.

Photopeaks which occur close to the last channel may be missed if the position of the photopeaks (channel n) is such that

$$
\mathrm{n}+\mathrm{NOPIS}>\text { the number of channels. }
$$

Insufficient data will, in this case, cause the programme to miss such peaks (as in Figure 5).
6. CONCLUSIONS

A FORTRAN IV (Level H) programme has been developed for processing the output of high resolution multichannel scintillation spectromers. The programme evaluates the location of photopeaks, peak energy and relative intensity. It is particularly useful for qualitative radiochemical studies.

7. REFERENCES

Blackburn, J. A. (1965). - Computer program for multicomponent spectrum analysis using a least squares method. Analytical Chemistry 37 : 1000-1003.
Boekelheide, J. F. (1960). - Two uses of probability paper in scintillation gamma ray spectroscopy. Rev. Sci. Inst. 31 : 1001-1002.

Drew, D. D., Fite, L. E. and Wainerdi, R. E. (1962). - Applications of computers to Nuclear and Radiochemistry. NAS-NS 3107, p.237.
Kuykendall, W. E. and Wainerdi, R. E. (1960). - An investigation of automate activation analysis. International Atomic Energy Agency Conference on Ccpenhagen, Denmark.
Lapp, R. E. and Andrews, H. L. (1956). - Nuclear Radiation Physics. Prentice-Hall, Inc., Englewood Cliffs, M. J., 2nd ed.
Savitzky, A. and Golay, M. E. J. (1964). - Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry. 36 (8) 1627-1639.

Yule, H. P. (1966). - Data convolution and peak location, peak area and peak energy measurements in scintillation spectrometry. Analytical Chemistry. 38 (1):103-105.
Zimmerman, W. (1961). - Evalutation of photopeaks in scintillation gamma ray spectroscopy. Rev. Sci. inst. 32:1063-1065

APPENDIX

Programe Listing

```
//
//LOCATE JOB ' ,7207',4.S.PALMER
/1 ES:O =ORTHCLO
//FORT.jYS!। Jo *
```



```
    COMMn:A SO,IC,NOMAX,[HWID,LHNID,NEWMAX,NODTS,NUMBER,NUM,NPEAKS
    C4LI:=:
    REAว if TITI=
```



```
C REAJIY NMKER OF DATA PGIYTS (ND) AVO NUMGER DF POINTS USED FOR
C TF S,%: iG FJLLO&
C CaL=" =JRRESPONOS TO ANALYTICAL JATA TO BE PROCESSED, CAL=1
C SORRESPGJS TO OATA SEJ TO GALIBRATE THE SPECTROMETER. CAL=3
    IHIOATES TH&T CALISDATIUS DARAMETERS ARE AVAILABLE AND ARE TO
        SE REAG I'4 YEXT
    2 PEAC(1.5ス),NOPTS.CAL
            f(Cal.En.3)SU TO C
```



```
    THAM THE YLMAEQ OF ONINTS USED FOR UATA SMDOTHING
    3 READ(1.5j):%
            ?EAO(i,55) #IDTH,FNIOTH,IHNIJ,LHNID
            qEAD I\because nata, CO IS THE COUNT IN A PARTICULAF CHANNEL
    6 REAう(土,亏E)(OJ(i),I=1.NO)
            iFiCiL.EO.:)g! Tn ?
            cal: s:Hofit
            Call SEARC=
            CALL SPECGL
            G0 i7 1
    7 CAL: 50ァT
        Call 5400T:
        call seafen
        00 i`1
    9 GEA0(1,57):2.E1
        CA!1:=:
        G0 T- !
```


52 FORMAT(i4,5x,I1, $7 \mathrm{x}, \mathrm{I} 1$)
53 FORMAT(13)
55 FORMAT(2(9x,11),2(8X,12))
56 FORMAT (ix,1才I7)
57 FORMAT(F5.3, $4 \mathrm{X}, \mathrm{Fi}$ ©.6)
99 STOP
ENO

SUSROUTIVE SDRT
DOSSLE PRECISIDN SMCO,DI
COMMBN SMCO(105z), D1 (1050)
CGMMON A (1050), X(200),Y(20Z), TITLE(20),BD,B1,AVX,VAR,VARB1,VARBD
COMMON EN(1®D), VARCAL, BGCAL, B1CAL, AVXCAL, CHAN(2DD), ENVAL(200)
COMMON CALIB, VAL(2AD)
COMMON JYS(1Q50), JNEW(10Q)
INTEGER CNUM, CO, WIDTH.FWIOTH, CAL
COMMON CNUM (200), CO (1050), HIDTH,FWIOTH,CAL
COMMON NO, IC, NOMAX, IHWID, LHWIO, NEWMAX, NOPTS, NUMBER, NUM, NPEAKS
201 WRITE $(3,202)$
WRITE (3,203)TITLE
WRITE (3.204)
WRITE(3,205)
NUM=1
$K=\emptyset$
$\mathrm{L}=1$
$206 M=N U N$
$N=M+9$
$L L=L+490$
$K K=K+52$
IF(NO.LT.N)GO TO 211
WRITE(3,2e7)NUM,(CD(1),I =M,N)
NUM = N
F(NUM.EQ.LL)GO TO 210
F(NUM.EO.KK)GO TO 208
$N U M=N U M+1$
GO TO 206
208 WRI
NUM $=$ NUM +1
GO TO 206
218 WRITE (3.222)
WRITE(3.2@3)TITLE
WRITE (3.204
WRITE(3,205)
$K=K K$
$L=L+1$
$\mathrm{NLM}=\mathrm{NUM}+1$
GO TO 206
211 NRITE (3,2B7)NUM, (CO(I),I $=M, N O)$
202 FORMAT(1H1)
203 FORMAT(1H0,20A4,1)
204 FORMAT(1H, 10 H INITIAL, $40 \mathrm{X}, 10 \mathrm{H}$ RECORDED)
205 FORNAT(1H, $10 H$ CHANNEL , $40 X, 10 H$ COUNT, $/$
$2 \partial 7$ FORMAT(1H,2X,14,4X,10(4XI6))
209 FORMAT(1H)
299 RETURN
END

SMOOTH CONVOLUTES THE ORIGINAL DATA BY MEANS OF A CUBIC LAW．
7 DR 9 POINTS MAY BE USED FOR THE CONVOLUTION PROCESS．NOPTS
SET EDUAL TO 5．7 OR 9 RESULTS IN 5.7 OR 9 POINT SMOOTHING
RESPECTIVELY．NOPTS SET EQUAL TO W WILL RESULT IN DELETION OF ALL SUBSEQUENT SUBROUTINES．
DOUBLE PRECISION SMCO，DI
COMMON SMCO（1050）SMCD

COMMON EN（100），VARCAL，BDCAL，B1CAL，AVXCAL，CHAN（200），ENVAL（200）
COMMON EN（1DB），CALIB，VAL（20日）
COMMON JYS（1D5D），JNEW（10の）
INTEGER CNUM，CO，WIDTH，FWIDTH．CAL
COMMON CNUM（20日），CO（1050），WIOTH，FWIOTH，CSL
CGMMON NO，IC，NOMAX，IHWID．LHHID，NEWMAX，NOP TS，NUMBER，NUM，NPEAKS
IF（NOPTS．EQ． I）GO TO 399
IF（NOPTS．EO．5）GO TO 395
IF（NOPTS EO．7）GO TO 307
IF（NOPTS EO．a）OO TO 3 al
iNITIALISATION SEGMENT
LC EQUALS LAST DATA POINT AROUNO WHICH SMOOTHING OCCURS
LC＝NO－3
$C B=17.090$
C1＝12．000
C $3=0.902$
C $=0.002$
CNORM＝35．00
GO TO 31：
307 LC＝NO－
$\mathrm{CO}=7.10 \mathrm{DO}$
$C_{1}=6$.
$C 2$
$\mathrm{C} 2=3.600$
$\mathrm{C} 3=-2.800$
C4＝D．000
CNORH＝21．00
GO TO 310
309 LC＝NO－5
$C D=59 . D D Z$
$\mathrm{C}_{1}=54.000$
C2 $=39.000$
$\mathrm{C}=14.0 \mathrm{D} 2$
$C 4=-21.200$
CNORM＝231． 0 DQ
310 DO $311 \mathrm{~K}=1 \mathrm{C}, \mathrm{LC}$
$\operatorname{sico}(k)=\operatorname{Co} * \operatorname{Co}(k)+C 1 *(\operatorname{Co}(k+1)+\operatorname{Co}(k-1))+C 2 *(\operatorname{Co}(k+2)+\operatorname{Co}(k-2))$
$\operatorname{SMCO}(K)=\operatorname{SMCO}(K)+C 3 *(C O(K+3)+C O(K-3))+C 4 *(C O(K+4)+C O(K-4))$
SMCO（K）$=$ SMCO（K）／CNORM
$A(K)=S M C O(K)$
$311 \mathrm{JYS}(\mathrm{K})=\mathrm{A}(\mathrm{K})$
IF（CAL．GT．O）GO TO 399
WRITE（3，350）
WRITE（3，351）TITLE
WRITE 3,352 ）NOPTS

```
            WRITE(3,3E3)
            WRITE(3,354)
            NUM=IC
            K=NUM
            K=NU
312M=NUM
            N=M+9
            L=L*400]+(IC-1
            K=K+49
            IF(LC.LT.N)GO TO 315
            MUM=N(3,355)NUM,(JYS(I),I=M,N
            M=N
            F(NUM.EO.LL)GO TO 314
            F(NUM.EO.KK)GO TO 313
            NUM=NUM+1
            GO TO 312
                313 WRITE(3,356)
            K=KK
            NUM=NUM+1
            GO TO 312
314 WRITE(3.350)
            WRITE(3,351)TITLE
            WRITE(3,352)NGPTS
            WRITE(3,353)
            WRITE(3,354)
            L=L+1
            K=KK
            NUM = NUM+1
            Go To 312
315 WRITE(3,355)NUM,(JYS(1),I=M,LC)
350 FORMAT(1H1)
351 FORMAT(1H0,20A4,1)
352 FORMAT(1H, 35X21H OATA SMOOTHED USING,I1,12H POINT CUBIC.1)
354 FORMAT(1H,10H INITIAL ,40X,10H SNOOTHED,
355 FORMAT(1H,1DH CHANNEL,40X,10H COUNT, ,')
356 FORMAT(1H)
399 RETURN
    END
```

SUBRGUTINE SEAFCH
SEARCH APPLIES TESTS
EXTEPNAL GAUFIOE SMCO,DI
OOUBLE PRECISION SMCOM SMCO(1050), $1(1050)$
COMMON SMCO(10) ,
COMMON A(10), BGCAL,B1CAL,AVXCAL,CHAN(200), ENVAL(200)
COMMON EN(1) VAL (2OD)
COMMON CALIB.VAL(20D)
COMMON JYS (1®50), JNEW, FWIDTH,CAL
INTEGER CNUM,CO, CO(105Q),WIDTH,FWIDTH,CAL
COMMON CNUM(2DOM NEWMAX, NOPTS. NUMBER, NUM, NPEAKS
COMMON NQ, IC, NOMAX, IHWIO
IF (NOPTS.EQ.E)GO TO 490
IF (NOPTS.EG.S)GO
IF (NOPTS.EQ.7) GO TO 407
IF (NOPTS.EO.9)GO TO AE
C 485 LC=NO-3
C11 $=8.0 \mathrm{DD}$
C12 $=-1.200$
C13 $=0.000$
C14 $=0.000$
C1NORM $=12.000$
GO TO 410
407 LC=NO-4
C11 $=50.000$
C13 $=67.0$. 0 D
$\mathrm{C} 14=0.000$
C1NORM=252.00B
GO TO 410
409 LC=NO-5
C11 $=129.000$
C12=193.0D0
C13 $=142.0 D D$
C1 NORM $=1188.0 D 0$
410 DO $415 \mathrm{~K}=1 \mathrm{C}, \mathrm{LC}$
D1(K) $=\operatorname{C11*(CO}(K+1)-C 0(K-1))+C 12 *(C O(K+2)-C 0(K-2)$
D1 $(k)=01(k)+C 13=(C 0(k+3)-C 0(k-3))$
$01(k)=01(K)+C 14 *(C n(K+4)-C O(K-4)$
$415 \mathrm{D}_{1}(\mathrm{~K})=01(K) / C 1$ NORM
INITIALISATION SEGMENT
C
$420 J=I C+W 1 D T H$
$\mathrm{L}=\mathrm{LC}-\mathrm{WIDTH}$
NOMAX $=0$
$\mathrm{I}=\mathrm{C}$
$421 \mathrm{JL}=\mathrm{J}-\mathrm{WIDTH}$
JF(D1(J) LE OOO)GO TO 430
IF (D1 (J).LE. 0.000$) G 0$
IF (J.EQ.LJ)GO TO 470
$I F(J . E$
$J=J+1$
GO TO 421.

IF (J.EQ.LJ)GO TO 470
$J=J+1$
GO TO 421
$40 \quad \begin{gathered}\text { NNE } G=0 \\ L=J+1\end{gathered}$
441 IF (D1(L).LE.D.0DO)GO TO 445
IF(L.EQ.JU)GO TO 1450
$L=L+1$
GO TO 441
445 NNEG = NNEG +1
IF(L.EQ.JU)GO TO 1450 -
GOTO
GO TO 441
NPOS $=0$
1450 NPOS
$L=\mathrm{J}-1$
1451 IF(D1(L).GE.g.gDG)GO TO 1455
IF(L.EO.JL)GO TO 460
$L=L-1$
GO 10 1451
1455 NPO
IF (L.EQ.JL)GOTO 460
$L=L-1$
GO TO 1451
460 IF (NPOS.GT.FWIOTH.AND.NNEG.GT.FWIDTH)GO TO 465
IF (J.EQ.LJ)GO TO 470
$J=J+1$
GO TO 421
$465 \quad \mathrm{I}=\mathrm{I}+1$
NOMAX = NOMAX 1
$\operatorname{CNUM}(I)=J$
IF(J.EQ.LJ)GO TO 470
$J=\mathrm{J}+1$
GO TO 421
470 IF (NOMAX.EN.D)GO TO 485
WRITE(3.450)
WRITE(3,451)TITLE
$N=1$
$I=1$
NE WMAX $=2$
$475 \mathrm{~J}=\mathrm{CNUM}(\mathrm{I})$
=(IHWID+J\#LHWID/NO)/2
$I L=J-K$
$1 \cup=J+K$
IF (IL.LT.IC)GO TO 482
IF (IU.GT.LC)GO TO 482
DOUBLE PRECISION DIFF
DIFF= 0.008
DIFF=SMCO (J)-1.96000*SORT(SMCO (J))
DIFF=DIFF- $0.50 D \theta *(S M C O(1 L)+\operatorname{SMCO}(I U))$
IF (DIFF.GT.D. DDO) GO TO 480
IF (I.EQ.NOMAX)GO TO 487
$1 F(1+E$
$I=1+1$
$\begin{array}{lll}1=1+1 \\ \text { GO TO } & 475\end{array}$
$480 \mathrm{JNEH}(N)=\mathrm{J}$

NEWMAX＝NEWMAX +1

AL（N）$=\operatorname{SMCO}(J)-D .5 *(S M C O(I L)+S M C O(I U))$
$N=N+1$
F（I．EQ．NOMAX）GO TO 487
$1=1+1$
GO TO 475
482 WRITE（3，1413）
F（I．EQ．NOMAX）GO TO 487
$1=1+1$
GO TO 475
485 WRITE（3，450）
WRITE（3，451）
WRITE（3，1412）
GO TO 490
487 IF（NEWMAX．EQ．OIGO TO 489
NUMBER＝NEWMAX
$00488 \mathrm{~K}=1$ ，NUMBE
$488 \operatorname{CNUM}(K)=J N E W(K)$
CALL GaUFIT
（F（CAL．EO．1）GO TO 1421
I＝1
TEMP＝VAL（1
DO $1452 \mathrm{~J}=2$ ，NEWMAX
IF（TEMP．GT．VAL（J））GO TO 1452
TEMP＝VAL（J）
1452 CONTINUE
DO $1453 \mathrm{l}=1$ ，NEWMAX $\quad \infty$
$1453 \mathrm{VAL}(\mathrm{I})=\mathrm{VAL}(1) * 100 . /$ TEMP
IF（CALIB．GT．日）CALL EVAL
WRITE 3.454 ）
WRITE（3，455）（CHAN（I），VAL（I）， $1=1$, NUMBER）
WRITE（3，1414）NEWMAX
GO TO 490
WRITE 3,1416 ）（CHAN（I），VAL（I），ENVAL（I），I＝1，NUMBER）
WRITE（3， 1414 ）NEWMAX
GO TO 490
1421 WRITE $(3,452)$
WRITE $(3,453)$（CHAN（I），I＝1，NUMBER）
WRITE（3，1414）NEWMAX
GO TO 490
450 FORMAT（1H1
451 FORMAT（1H0，20A4，1）
452 FORMAT（1H，＇PHOTOPEAKS LOCATEO AT CHANNELS •，$)$
452 FORMAT（1H ：＇PHOTOP
453 FORMAT（1H $2 \times F 8.2)$
454 FORMAT（1HG，＇PEAK POSITION＇，5X，＇RELATIVE HEIGHT＇，1）
455 FORMAT（1H，T3，F8．2，T22，F7．2）
1412 FORMAT（1H，＇NO PHOTOPEAKS DETECTABLE＇）
1414 FORMAT（1HD，＇NUMBER OF PHOTDPEAKS DETECTED IS ， 13,1$)$
1414 FORMAT（1Hも，＇NUMBER OF PHOTOPEAKS DETECTED IS
1415 FORMAT（1H日，＇＇PEAK POSITION＇， 5 X ，＇RELATIVE HEIGHT＇，5X，＇ENERGY＇，／）
1416 FORMAT（1H，T3，F8．2，T22，F7，2，T39，F6．3
489 WRITE $(3,1412)$

490 RETURN

END
subroutine specal
DUULE PRECISION SMCO，D1
DOUBLE PRECISION SMCO，D1

COMMON EN（1Z日），VARCAL，BDCAL，B1CAL，AVXCAL，CHAN（2DZ），ENVAL（2DZ）
COMMON EN（120），VARCAL，BDCAL
COMMON CALIB，VAL（20日）
COMMON JYS（1050），JNEW（120）
TH．CAL
COMMON CNUM（200），CO（1050），WIDTH，FWIDTH，CAL
COMMON NO，IC，NOMAX，IHEID，LHWID，NEWMAX，NOPTS，NUMBER，NUM，NPEAKS EXTERNAL ORDER，LSQ，GAUFIT CAL I $B=1$
503 READ（1，1504）NPEAK
E NFEAKS IS THE EXPECTED NUMBER Of PHOTOPEAKS CONTAINED IN THE CALIBRATION DATA
F（NPEAKS NUMBEF）GO TO 505
WRITE（3．1595） CALIB＝0
505 PEAD（1，1508）（EN（I），I＝1，NPEAKS） IF（CALIE．EO．D）GO TO 599
DO 510 I：1，NUMBER
510 A（I）＝EN（I）
c NUM＝NUMBER
C THE INPUT DATA IS ARRANGED IN ASCENDING ORDER OF ENERÉY CALL ORDER
JO $515 \mathrm{I}=1$ ，NUMBEP．
EN（I）＝A（I）
$x(1)=$ EN（I）
$x(I)$
$515 \times(1)=$ CHAN
CALL LSQ
$V A R C A L=V A B$
$B C C A L=B B$
$B E C A L=B 3$
$81 C A L=81$
$A V X C A L=A V$
520 WRITE（3，1509）B0CAL，B1CAL
1504 FORMAT（I2）
1505 FORMAT（1H，＇NUMBER OF PEAKS FOUND DIFFERS FROM THAT EXPECTED＇／）
1505 FORMAT（F6．3）

599 RETURN
END

SUBROUTINE ORDER
DOUBLE PRECISION SMCO，DI
COMMON SMCO（1050），D1（1050）
COMMON A（1050），X（200），Y（200），TITLE（20），B日，B1，AVX，VAR，VARB1，VARBO
COMMON EN（100）．VARCAL，BDCAL，B1CAL，AVXCAL，CHAN（200），ENVAL（200）
COMMON CALIB，VAL（2D0）
COMMON JYS（1050），JNEW（100）
INTEGER CNUM，CO，WIOTH，FWIDTH，CAL
COMMON CNUM（20D），CO（1050），WIDTH，FWIDTH，CAL
COMMON NO，IC，NOMAX，IHWID，LHWID，NEWMAX，NOPTS，NUMBER，NUM，NPEAKS
NUNUM＝NUM－1
DO $602 \quad I=1$ ，NUNUM
$K=I+1$
DO $602 \mathrm{~J}=\mathrm{K}, \mathrm{NUM}$
TEMP＝A（I）
IF（A（I）．LT．A（J））GO TO 602
$A(1)=A(J)$
A $\operatorname{CONTINUS}$
RETURN
ENO

SUBROUTINE LSO
DOUBLE PRECISION SMCO，D1
COMMON A（1050），X（200），Y（200），TITLE（22），BD，B1，AVX，VAR，VARB1，VAPBQ
COMMON EN（10日），VARCAL，EGCAL，BICAL，AVXCAL，CHAN（20Q），ENVAL（200）
COMMDN CALIB，VAL（20日）
COMMON JYS（1050），JNEW（10g）
INTEGER CNUM，CO，WIDTH，FWIDTH，CAL
COMMON CNUM（200），CO（1250），WIOTH，FWIDTH，CAL
COMMON NO，IC，NOMAX，IHWID，LHWID，NEWMAX，NOPTS，NUMBER，NUM，NPEAKS
SUMX＝Z. DDE
SUMX $=0.000$
SUMY＝ $\mathrm{S} \cdot \mathrm{BDE}$
SUMXSO＝0．00
SUMYSO $=0.00$
SUMYSQ＝0．00
SUMX＝SUMX＋X（1）
SUMY $=$ SUMY S Y（
SUMXY＝SUMXY＋X（I）＊Y（I）
SUMYSQ＝SUMYSQ＋Y（I）＊Y（I）
705 SUMXSO $=$ SUMXSO $+X(1) * X(1)$
$D=$ NUM \＃SUMXSO－SUMX＊SUMX
$B D=(S U M X S Q * S U M Y-S U M X * S U M X Y) / D$
$V A R=(S U M Y S O-((S U M Y * S U M Y) / N U M)-((31 * D * B 1) / N U M)) /(N U M-2)$
$V A R=$ SSUMY SO－
AVX $=$ SUMX
NUM
VARB1＝VAR＊NUM／D
VARBG $=(V A R / N U M) *(1+(A V X * A V X * N U M * N U M / D))$
RETURN
END

SUBROUTINE GAUFIT
EXTERNAL LSQ
DOUBLE PRECISION SMCO，D1
COMMON SMCO（1050），D1（1050）
COMMON A（1050），X（200），Y（200），TITLE（20），BQ，日1，AVX，VAR，VARB1，VARBD
COMMON EN（100），VARCAL，BDCAL，B1CAL，AVXCAL，CHAN（200），ENVAL（200）
COMMON CALIB．VAL（200）
COMMON JYS（1050），JNEW（100）
INTEGER CNUM，CO，WIOTH，FWIDTH，GAL
COMMON CNUM（200），CO（1050），WIDTH，FWIDTH，CAL
COMMON NO，IC，NOMAX，IHWID，LHWID，NEWMAX，NOPTS，NUMBER，NUM，NPEAKS
DO 890 LL $=1$ ，NUMBER
$j=$ CNUM（LL）
$L=0$
$N=1$
$10 \mathrm{CA}=\mathrm{CD}(\mathrm{J}-\mathrm{N}$
$C B=C O(J)$
TEMP＝CA／CB
IF（TEMP．GT．0．30：G0 T0 820
GO TO B25
$320 \mathrm{~L}=\mathrm{L}+1$
IF（L．EQ．3）GO TO 825
$\mathrm{N}=\mathrm{N}+1$
GO TO 810
$825 M=0$
$30 \begin{aligned} & N=1 \\ & C A=C O(J+N)\end{aligned}$
$C B=C O(J)$
TEMP＝CA／CB
IF（TEMP．GT．Q．36）GO TO 835
$835 M=M+1$
IF（M．EQ． 3 ）GO TO 842
$N=N+1$
GO TO 83a
$840 \quad N=M+L+1$
NUM $=\mathrm{N}$
$J=U-L$
$J U=J+M$
$0850 k=1$ ，N
$849 \mathrm{JJ}=\mathrm{JL}, \mathrm{JU}$
$11=J J-J L+1$
$A B=C O(J J+1)$
a（I）
$A(I I)=A A / A B$
A（II）$=$ ALOG（A（II）
$849 X(M)=J J$
$850 Y(K)=A(K$
CALL LSO
890 CHAN（LL）$=-80 / B 1$
RETU
END

TABLEI
VARIATION OF FHOTOPEAK POSITION WITH TIME
1.4.

Time of Day (hours)	Channel Number			
1030	329.1_{7}	778.7_{7}	847.7_{1}	887.1_{3}
1130	329.1_{5}	778.8_{9}	847.8_{4}	887.1_{6}
1230	329.3_{3}	779.0_{6}	848.1_{3}	887.3_{6}
1400	329.3_{6}	779.1_{7}	848.0_{6}	887.5_{3}
1445	329.2_{6}	779.1_{8}	848.1_{5}	887.4_{6}
1530	328.9_{1}	779.0_{9}	847.8_{1}	887.3_{9}
1615	329.5_{1}	779.4_{5}	848.3_{4}	887.6_{3}
1700	329.4_{8}	779.2_{8}	848.1_{3}	887.4_{8}
Mean	329.2_{7}	779.1_{2}	848.0_{3}	887.4_{1}

TABLE 2
FHOTON ENERGIES (MeV) DETECTED IN SAMPLE OF RADIUM-226
TABLE 3

Day of Experiment						No. of Occurrences
277 (a.m.)	277 (p.m.)	283 (a.m.)	283 (p.m.)	284 (a.m.)	284 (p.m.)	
0.147	0.147	0.147	-	0.147	0.147	5
0.185	0.185	0.184	0.185	0.185	0.185	6
0.240	0.241	0.241	0.241	0.241	0.240	6
0.255	-	0.256	-	0.256	-	3
-	-	0.271	-	-	-	1
0.294	0.294	0.294	0.294	0.294	0.294	6
0.349	0.351	0.350	0.350	0.351	0.350	6
-	0.509	-	-	-	-	1
0.608	0.608	0.608	0.608	0.608	0.608	6
0.665	0.665	0.664	0.664	0.664	0.664	6
0.704	-	-	-	-	0.703	2
-	-	-	0.722	-	-	1
0.742	0.742	0.741	0.742	0.742	0.742	6
0.768	0.768	0.767	0.768	0.768	0.768	6
0.785	0.786	0.785	0.785	0.786	0.786	6
0.807	0.806	0.806	0.805	0.806	0.806	6
0.934	0.934	0.934	0.934	0.934	0.934	6
1.121	1.122	1.120	1.121	1.121	1.121	6
1.156	1.155	1.156	1.155	1.155	1.155	6
1.183	1.183	1.181	1.182	1.183	1.183	6
1.240	1.240	1.239	1.239	1.239	1.239	6
1.282	1.284	1.281	1.282	1.282	1.282	6
1.381	1.381	1.379	1.380	1.380	1.380	6
1.408	1.409	1.407	1.408	1.409	1.407	6
1.428	1.429	1.428	1.428	1.427	1.429	6
1.512	1.512	1.510	1.511	1.511	1.511	6
1.537	1.537	-	-	-	-	2
-	-	-	1.588	-	2.587	2
1.666	1.664	1.663	1.665	1.664	1.664	6
-	-	1.696	-	-	-	1
1.734	1.735	1.732	1.733	1.733	1.734	6
1.769	1.769	1.767	1.768	1.768	1.768	6
Number of photopeaks reported						Mean
27	26	27	25	25	26	26

EXAMINATION OF SAMPLE OF RADIUM-226

Number of Floton Energies Reported in Range 0.047 to 1.769 MeV	32
Nomber occurring in 6 out of 6 spectra	23
Number occurring in 5 out of 6 spectra	1
Number occurring in 3 out of 6 spectra	1
Number occurring in 2 out of 5 spectra	3
Number occurrines in 1 out of 6 spectra	4

TABLE 4
examazation of radium-z26

Photori Energy $(M e V)$	Assignment	Photor Energy (MeV)	Assignment
0.147	-	0.934	Bi^{214}
0.185	Ra^{226}	1.121	Bi^{214}
0.240	$\mathrm{~Pb}^{214}$	1.156	-
0.255	$\mathrm{~Pb}^{214}$	1.183	-
0.271	-	1.240	-
0.294	$\mathrm{~Pb}^{214}$	1.282	-
0.349	$\mathrm{~Pb}^{214}$	1.381	Bi^{214}
0.509	-	1.408	-
0.608	Bi^{214}	1.428	-
0.665	-	1.512	Bi^{214}
0.704	-	1.537	-
0.722	-	1.588	-
0.742	-	1.666	-
0.768	Bi^{214}	1.696	-
0.785	-	1.734	-
0.807	-	1.769	Bi^{214}

FIGURE 2. SPECTRUM OF RADIUM-226
Plific

Figure 3. SPECTRUM OF RADIUM-226

COUNT $\left(\times 10^{-3}\right) /$ CHANNEL \longrightarrow

Count $\left(\times 10^{-3}\right) /$ channel -

