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ABSTRACT

A number of techniques, such as principal component analysis and factor
analysis, have been used in receptor modelling where measured aerosol
composition at the sampling site are analysed in order to determine the
likely source contributions.  In this study factor analysis with non-
negative factor elements has been carried out using two techniques as
implemented in the PMF2 and ME2 computer codes.  The various
analysis techniques provided by the two programs are illustrated using
measured data at Hong Kong as a case study, which covers a period of
three years (2001 to 2003).  Both analysis techniques resulted in similar
results which are presented in this report. Data bootstrapping was also
carried out as an additional check on the quality of the results.
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1. Introduction
Receptor modelling [1], as applied to air quality studies, apportions measured aerosols
of chemical concentrations at the sampling site to their possible sources [2]. If the
composition profiles of all sources contributing to the measured concentrations at a
sampling site are known, the mass balance model becomes a multilinear regression
problem [3]. However, if a series of samples has been analysed without any
substantial information being available on the sources, multivariate data analysis
methods can be utilised.  These methods are based on the analysis of the correlation
between measured concentrations of chemical species, assuming that highly
correlated compounds are emitted from the same sources.

Factor analysis techniques are multivariate data analysis methods that are commonly
used in environmental studies to estimate the number and composition of the sources,
and their contributions to the samples taken at receptors. The most common form of
factor analysis is Principal Component Analysis (PCA) [4]. PCA extracts the principal
components explaining the majority of the variance in the data matrix that is then
qualitatively interpreted as possible sources. PCA suffers from a number of
drawbacks, e.g. the factors are not always physically explainable and it cannot handle
missing and below-detection-limit data.

To overcome some of the limitations of PCA, new approaches to the solution of factor
analysis problems have been developed.  In particular, two implementations of
Positive Matrix Factorisation have been used in this study, PMF2 and ME2
(Multilinear Engine), to assess and compare their usefulness in the identification of
origins of atmospheric pollution.

2. The Factor Analysis Model
A 2-way, bilinear factor analysis problem can be represented as:

X = GF + E    (1)
or

jijn
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n
niji efgx ,,

1
,, ���

�

(2)

where the matrix X contains the measured quantities at the receptor, i.e. xi,j  represents
the concentration of chemical species j in the ith sample.  Matrices G and F are factor
matrices to be determined and E is the matrix of residuals. If n observations are
available, each containing m chemical species and if a p-factor model is being
considered, G is a n x p matrix of source contributions to the samples, describing the
temporal variation of the sources. The matrix F is a p by m matrix of source chemical
compositions, or source profiles.

Equation (1) represents a 2-way problem in that the matrix X is two dimensional, i.e
temporal samples form rows of the matrix with the concentration of each chemical
species stored in the columns. For situations where the measured data can be
classified into separate groups, e.g. seasonal variation of measurements, the matrix X
could be three-dimensional, referred to as a 3-way problem.  In addition, equation (1)
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is a bilinear problem in that the values are expressed as a sum of products of the two
elements of G and F. On the other hand, the well known PARAFEC [6] model is a 3-
way trilinear model:

jipkpj
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(3)

where the 3-way measured data is explained by the product of 3 factor matrices, G, B
and F.

2.1 Positive Matrix Factor isation
The objective of Positive Matrix Factorisation (PMF) analysis, [4], is to minimise the
objective or penalty function Q, defined as:
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where ei,,j are the error terms specified in equation (2) and si,,j is a specified standard
deviation of each of the data values. The minimisation of the sum of the square of the
errors between the measured data and the model is carried out under the constraints
that the factor elements remain non-negative.  

2.2 PMF2
PMF2 [7, 8] is a program, which implements a weighted least squares approach to
perform positive matrix factorisation of measured data.  PMF2 solves the 2-way
bilinear model, while a second program, PMF3, has also been developed for the
solution of 3-way, trilinear models.  The programs provide a number of options to
control the solutions process which are specific to factor analysis.

2.3 ME2
The drawback of the PMF2 and PMF3 suite of programs is that the form of the model
is predetermined, i.e. bilinear models are solved by PMF2 and trilinear by PMF3.
ME2 [9] is a more recent technique for fitting multilinear and quasi-multilinear
mathematical expressions or models to two-, three- and many-dimensional data.  The
multilinear equations and the required information are presented to the program in a
user generated input file from which the program builds and solves the model.  This
gives the user a greater freedom in defining the form of the model and the imposition
of constraints on the solution.

3. Case Study
The Hong Kong study site, Figure 1, is located on Cape D'Aguilar at the south-eastern
end of Hong Kong Island at 22.22oN, 114.25oE atop a 60m cliff facing the South
China Sea.  The population density of Cape D'Aguilar is relatively low and the nearest
major urban/industrial town of Chai Wan is 10km away.  A detailed description of the
site and sampling techniques is given in [10].  In summary, 24-hour averaged PM2.5
samples are taken twice a week, on Wednesday and Sunday.  In this study data from
2001 to 2003 was used.  The total aerosol mass sampled is presented in Figure 2,
where the vertical axis represents mass concentrations in ng/m3 with sampling time on
the horizontal axis.
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Figure 1: Hong Kong Study Site

Figure 2: Daily averaged total mass fractions.

Figure 2 clearly shows that there were selected periods of the year when the mass
concentrations were particularly high.  These periods have been identified in previous
studies also and were related to significant international events such as dust emissions
from desert regions in China as well as favourable meteorological conditions bringing
pollution from eastern China into Hong Kong [28].  Aside from this, a seasonal
variation is observed.  Chemical compositions of atmospheric aerosols in Hong Kong
has been studied elsewhere, one such study is presented in [18] - most of the chemical
species show seasonal variations, which reflect the weather conditions: i.e. low
concentrations in the rainy season of summer and high concentrations for the rest of
the year.

The samples have been analysed using accelerator based ion beam analysis (IBA)
techniques, resulting in the identification of 21 elements; H, Na, Al, Si, P, S, Cl, K,
Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br, Pb, Black Carbon.  The analysis techniques
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have been presented in [27,28].  Principal Component Analysis has previously been
carried out on a subset of this data and possible source factors identified [10].  In the
current study positive matrix factorisation is implemented using PMF2 and ME2.

4. Data Analysis with PMF2
The user controls the working of PMF2 via a fixed format input file, which offers a
number of options including such control as to the number of iterations to be carried
out, convergence criteria, etc.  Some of these options are discussed in the subsequent
sections, but for a full description see the user guide [8].

In undertaking a factor analysis study, uncertainties arise from a number of sources:
� Choice of the number of factors, see section 4.5 for a number of techniques

that can be employed to determine the number of factors.
� Having determined the number of factors, multiple solutions may exist:

� Where the optimisation problem to be solved may contain a
number of local minima.  Section 4.6 describes the use of different
initial guesses to search the solution space for the best solution.

� A number of different solutions may provide the same Q value in
the objective function.  This is referred to as rotational freedom and
is described in section 4.7.

The following sections use the Hong Kong data to illustrate the use of PMF2 in
carrying out factor analysis.

4.1 PMF2 Model Formulat ion
PMF2 solves the problem specified in equation (1) under non-negativity constraints,
i.e. only zero or positive values of the factor matrices are considered.  This implies
that mathematically the problem is redefined to include the constraints.  One might
better understand the internal workings of PMF2 by looking at the simplified
recasting of the model [11]:
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The coefficients � and � control the strength of two penalty terms which prevent the
factors G and F from becoming negative.  Whenever an element in G or F is about to
become negative, the corresponding term in the objective function (i.e. –log(fi.j))
approaches plus infinity and causes an increase of Q. By controlling the strength of
the penalty terms, the user may allow arbitrarily close approaches to zero but the
exact value of zero is never reached.  The penalty can be controlled by the Fkey input
matrix to PMF2, where elements of the factors are selectively chosen to be pulled
down to zero.  The user also has control over the coefficients through the lims
parameter in the input file [8], which controls how close to zero the constrained
components of the solution may get.  Smaller values result in values closer to zero.
Similarly, � and � control two regularisation terms which remove the rotational
indeterminacy and control the scaling of the left and right factors. 

Experimenting with the regularisation parameters is detailed in section 4.7.
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4.2 Standard deviation of observations
The values, si,j, for the standard deviations of the observations are specified by the
user.  Generally one should attempt to specify the standard deviation values so that
they indicate the agreement which is expected between the model and the data array.
A number of alternative forms for specifying the standard deviations are available in
PMF2, see [7].  In environmental work, different columns of the array X typically
contain concentrations of different elements, having different error characteristics.  In
this study two forms of the standard deviation were considered.  The first form is that
when the error mode flag, EM is set to -14, which results in a standard deviation of
the form:

� � � �jijijijijijijiji yxcyxccs ,,,,,,,, ,max3,max21 ���                      (6a)
where, the values of c1i,j, c2i,j and c3i,j are specified by the user and the matrix Y is the
model fit, i.e. Y = GF. Thus the weight will depend both on the measured value and
on the fitted value.

The second form is when the error mode flag, EM is set to –12, which results in a
standard deviation of the form:

jijijijijiji xcxccs ,,,,,, 321 ���                                                 (6b)

in which case the weight depends only on the measured values.  In our case study,
some differences were observed between the results obtained when using the two
forms of error modes.  The results are presented in section 4.10.

4.3 Outliers and the robust mode
Unless the errors in the data are approximately normally distributed and there are no
outliers, the robust mode needs to be used.  In this mode, if the residual exceeds a
specified amount, � - the outlier threshold distance, times the specified standard
deviation of the corresponding observation, the data point is processed as an outlier,
i.e. if
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the influence on the estimation and the value of Q would be the same as if:
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In this study �=4 is used, which is recommended by the author of the code based on
his experience [8].

4.4 Solution and Convergence of the algorithm
The problem of determining the best solution for F and G in equation (1), becomes
that of finding the values of F and G that minimises Q in equation (5).  An iterative
algorithm is implemented which progresses from an initial guess for the elements of
the factors G and F, updating them systematically (using the Gauss-Newton method),
until convergence is achieved.   In the PMF2 implementation random numbers can be
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used to initialise the matrices or those from a previous calculation can be input into
the current calculation.
  
Convergence criterions are specified by the user, through the lims parameters, which
determine that convergence will be reached when the relative change in Q is below
the specified value for a specified number of iterations in succession. A maximum
number of iterations is also specified, at which time the program will terminate if the
convergence criterion has not been met.

Based on the adequacy of the selected model to explain the observations, the expected
value of Q at convergence is approximately equal to the number of data values minus
the number of essential free parameters fitted to the data [12].  This value is often
called the degrees of freedom:

� � � �mnpnmQE ���                                                         (9)
In the presence of outliers it may be difficult to know if the observed value of Q is as
expected or too large.  It may be more helpful to investigate the distribution of the
scaled residuals (ei,j/si,j). If the vast majority of these values are <2.0, then an increase
in the Q value is probably due to outliers.

In the current study (n=)266 data measurements are available for (m=)21 chemical
species.  When 8 factors are used, in the case of the accepted solution, the expected
value of Q according to equation (9) is 3290.  On convergence a value of 3393 for Q
was obtained, which is close to the expected value.  The scaled residuals are randomly
distributed and only a small number has an absolute value greater than 2.0 but all
scaled residuals have an absolute value less than 2.2.

4.5 Estimating the number of sources/factors
Various methods have been proposed for the estimation of the number of sources that
contributed to the measurement at the detector site [1, 5], e.g. the number of
eigenvalues of the correlation matrix, and other statistical methods, such as the
NUMFACT algorithm [26].  However, it appears that no mathematical criteria are
able to predict the "correct" number of factors [8].  Rather, the question is which
number of factors gives the most useful solution.

In PMF, the choice of the number of factors is a compromise [5]. Using too few
factors will combine sources of different nature together.  Using too many factors will
make a real factor further dissociated into two or more non-existing sources. In this
study we have carried out factor analysis with varying the number of factors followed
by inspection of the error of the fit and the form of the resulting factors.  A detailed
analysis of the residual matrix is presented in [5] where techniques that can be used to
give a bound on the number of factors is presented.  This analysis has been carried out
for this case study and the results are presented in section 4.5.1.  However, in this case
this analysis did not produce conclusive results.

In this case study the Q value results in a drop when the number of factors is
increased (see Table 1 where the Q value at convergence is given for 7, 8 and 9
factors).  For 9 factors the expected value of Q according to equation (9) is 3003,
whereas the fit resulted in a smaller than expected Q value, indicating that a good fit
is being obtained as a result of the freedom due to the larger number of factors used. 
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The expected Q value for 7 factors is 3577, whereas the actual value obtained in our
fit is 4525, indicating a poor choice for the number of factors.  The best fit to the
expected and actual value of Q is when 8 factors are used, i.e. 3393 achieved as
compared to 3290 as expected and thus the ratio is closest to 1.0.

Table 1 : PMF2: Q values for different number of factors.

Factor Q Expected Q Ratio
7 4525 3577 1.26
8 3393 3290 1.03
9 2613 3003 0.87

An additional analysis of matrix rotmat is presented in [5] (and detailed in the
following section) in accessing the number of factors.  By plotting the largest value in
rotmat against the number of factors, one can see a significant increase in the largest
value of rotmat as the number of factors is increased above the optimum.

4.5.1 Determining the number of factors by analysis of matrix rotmat and
residual matrix

A matrix rotmat is generated by PMF2 [12, 8], which is the basis for estimating the
uniqueness of the computed factor values.  rotmat is a p x p matrix of standard
deviations of rotational coefficients, i.e.

� �jiji tstddevrotmat ,, �                                                                 (11)
Roughly, each value of rotmat indicates how large a rotation can be carried out
without increasing the penalty function (Q), by more than one unit.  It is qualitative in
nature but can be used to reveal if factors have excessive rotational freedom.  In this
case, a small number of factors should be chosen.  Choosing the largest element in
rotmat can show the worst case in rotational freedom.  In Figure 3 we see some
increase when 11 factors are used and a significant increase with 12 factors, thus 11
factors or less should be used.

Figure 3:  Largest element in the rotational matrix.
In addition to the rotational matrix (rotmat) an analysis of the information from the
scaled residual matrix ( R ) [5] is used to define the number of factors and reduce the
ambiguity due to manual judgment.  Each element in matrix R is 
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Each column in R represents the quality of the fitting of each chemical species to the
product of GF.  Generally speaking the more the factors, the better the fit.  For each
specific number of factors, two parameters are obtained from R:  IM, the maximum
individual column mean, and IS, the maximum individual column standard deviation,
where

IM = �
�

�

�

�
�

�

�
�
�

n

i
jirn 1

,
1max  for j = 1, … ,m

and
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�
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jji rr
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2
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1max  for j = 1, … ,m

IM and IS serve as indicators to identify the chemical species having the least fit and
the most imprecise fit, respectively.  They can also be used to identify the number of
factors.  When the number of factors increases to a critical value, IM and IS will
experience a drastic drop.  

Figure 4: Maximum individual column mean (IM) and standard deviation (IS).

Inspecting Figure 4, shows that from 8 to 10 factors should be used, where IM and IS
have similar values.  An analysis of 9 factors was carried out, however when
examining the G matrix, a correlation between the columns was found to exist (see
Figure 5), where two columns were correlated.  A similar analysis was carried out
with 8 factors in which case no correlations were found.

Figure 5: Correlation of two columns of matrix G.

R esid ual M at r ix Insp ect io n

0
1
2
3
4
5
6
7

0 5 10 15
N umb er  o f  F act o rs

IM

IS

0
1000
2000
3000
4000
5000
6000
7000

0 1000 2000 3000 4000 5000 6000



9

4.6 Multiple Solutions
The objective function Q, may posses several local minima, leading to multiple
solutions of the factorisation problem.  The presence of multiple solutions may be
investigated so that one re-runs the algorithm using several different sets of
pseudorandom values as the initial values for the factor matrices G and F (controlled
through the seed value in the input file to PMF2).  The advice given by the author of
PMF2 [11], is to regard all the solutions more or less independently from each other.
Inspect all of them and either accept the most sensible if a meaningful choice is
possible or else regard the solution as ambiguous, perhaps reporting two different
explanations for the same data.

For this study, seed values 1 to 20 were tested resulting in almost equal Q values (see
Table 2) and on examination almost identical factors were obtained. 

Table 2: PMF2: Q values for different seeds.

Seed Q Seed Q
1 3393.2671 11 3393.1147
2 3393.1899 12 3393.1899
3 3393.1897 13 3393.1921
4 3393.1709 14 3393.1970
5 3393.1521 15 3393.1782
6 3393.1687 16 3393.1583
7 3393.2148 17 3393.1155
8 3393.2102 18 3393.1528
9 3393.1873 19 3393.1797
10 3393.2144 20 3393.1960

4.7 Rotational Freedom
In the bilinear model an additional form of non-uniqueness results due to rotational
ambiguity, or different transformations of F and G that produce as good a fit to the
measured data.  This is demonstrated by the identity:

FGTTGF 1�
�                                                              (10)

where T is any non-singular square matrix.  The expression GT and T-1F represent a
pair of factors which are "equally good" as the original pair, G and F.  Understanding
and controlling rotations is discussed in [12].   There are two alternatives for handling
rotational freedom in PMF2 [5]:

� positive values of the user-specified parameter Fpeak change the object
function in such a way that concentration values in the matrix F tend to
assume extreme values in both directions, i.e. either close to zero or close to
the upper bound, depending on the form of normalisation chosen.  Negative
values of Fpeak result in the same effect on matrix G.

� individual elements of matrix F may be pulled towards zero by introducing
special penalty terms in the objective function.  The penalty elements are
controlled by the corresponding element in the Fkey matrix.  This imposes
a restriction on the accepted solutions, thus reducing the rotational freedom.  
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The form of the penalty depends on what value each element is set to:
� key = 0: element is constrained to non-negative values only
� key = 1: element is free to take any values
� key > 1: element is bound to zero, the strength of the bond depends

on the chosen value, e.g. if key = 3 it is weak, else if key = 10, it is
very strong

Note that these manipulations should be carried out on an already obtained solution,
by using the restart feature. Also, forcing the fitting process by Fpeak and Fkey
restricts the solutions and thus Q might be larger.  One must take care that this
increase is not too large.

Values of FPeak from -1 to 1 were tested. This produced a range of Q values (Table
3) where local minima’s were found to cluster around FPeak = 0 (Figure 6).   As can
be seen from the figure a number of solutions result in a similar Q value, any of which
could be a solution.  The solution with Fpeak of  0 was analysed and the resulting
factors could be physically explained based on a number of previous studies, see
section 4.10.

Table 3: PMF2:  Variance of Q, showing rotational freedom.

FPEAK Q
-1 3755.5447

-0.75 3783.2278
-0.5 3441.0317
-0.25 3404.6904
-0.2 3401.3337
-0.1 3394.7385
-0.01 3393.2004
-0.001 3393.2515

0 3393.1147
0.001 3393.1931
0.01 3393.2073
0.1 3395.4932
0.2 3408.8235
0.25 3412.5498
0.5 3682.4041
0.75 3755.5862

1 3870.0200

Figure 6 : Q results for different FPeak values.
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A third method, which allows detailed control of rotations is available which uses the
matrix rotcom, although the author of the code discourages the use of this.

4.8 Standard Deviation of  the Factor Matrices
PMF2 produces two matrices, G_std-dev and F_std-dev, which give the uncertainty of
each element of the factor matrix.  The standard deviation for the factor matrix G are
generated under the assumption that F is kept fixed and similarly for the F matrix,
under the assumption that G is kept fixed.

An example of the computed standard deviation can be seen in Figure 7, where the
results for the soil factor are shown.

Figure 7: Plot for the soil factor showing standard deviation as calculated by
PMF2.

4.9 Explained Variation
A quantity referred to as the explained variation (EV) [8], summarises how important
each factor element is in explaining one row or column of the observed matrix.   The
equations used to evaluate EV are documented in [8]:
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In source appropriation studies, the element number j of the (p+1st) row of the EV for
F indicates how much of the variable number j remains unexplained.  In PMF2 an
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option is provided to print the factors in order of importance as calculated by EV.
Analysis of the results using this technique have not been carried out in this study, this
section has been included for completeness.

4.10 Discussion of PMF results
The eight factors generated by PMF2 are presented in  Figure 8.  The results with 8
factors were found to be stable, i.e. the characteristics of the 8 factors did not change
significantly with different starting seeds.

Analysis of the elements within the 8 factors revealed 8 possible sources.  Factor 1 is
an ocean (seaspray) factor, identified here as Sea1, with a strong representation from
Na and Cl which is in line with the “fresh marine” source from Qin et al. [32] who
had high contributions of Na, Cl and Mg. K and Ca were also present in our ocean
factor, as they are minor constituents of sea salt [22].  The PMF technique allows the
Black Carbon element that appears in this factor to be pulled down to zero (see
section 6) as it is not expected from marine sources. This has also been noted in Qin et
al. [32] who have adjusted their carbon element in the marine factor to better fit
emission patterns from sources. They believe it is particularly significant to do this as
the carbon fractions of their total mass was large, and could obscure finer signals.
Factor 2 is a chlorine depleted ocean factor that we have identified as Sea2. Qin et al.
[32] found a similar factor, in their PMF2 analysis using 9 factors, with high
contributions of Na, Mg and S (rather than Cl).  Chlorine depleted marine aerosols
have been reported by Lee et al. [5] due to inhomogeneous loss of Cl to reaction with
nitric acid.  This factor also has K and Ca, which are minor components of sea salt
[22].

The five elements Al, Si, Ti, Ca, Fe are commonly the major elements that indicate a
soil factor [27,28] and thus Factor 3 is identified as Soil. Ho et al. [24] analysed the
composition of paved road dust and soil in Hong Kong and found that the constituent
with greatest concentration was Si. Urban soil also contained Si as its highest
abundance and Al with the second highest. It was also found that paved road dust
samples are enriched in K, Ca and Fe. All of these have high contributions in Factor
3.

Factor 4 has high H content and identified as Org/Coal.  The elemental analysis of
this data is described in [10], where it is stated that ammonium sulfate and organic
matter were the only two measurable major sources of hydrogen.  

Factor 5, has been identified as a biomass smoke source, labelled Smoke, as H from
organic material and K from vegetation have been found by Cohen et al. [27,28] to
have the highest factor loadings and thus a strong correlation in their PCA analysis.
Also, Yli-Tuomi et al. [31] have associated a biomass burning factor with high
concentrations of Black Carbon and K. These are all major elements within our factor.
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Figure 8: PMF2 results for 8 Factors, with EM=-14.

Factor 6 has been identified as Oil/Diesel as a number of authors have matched high
V and Ni to burning of oil in power-plants [Qin et al. 32]. Also, Fung and Wong [25]
have identified S and V as constituents of oil combustion sources and Cohen et al.
[28] found that their Diesel factor was high in Ni, V, Black Carbon and H from
organic matter. These elements that have been identified are major contributors in our
factor and probably associated with oil and fossil fuel combustion associated with
power production and diesel motor vehicles.
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Factor 7 was identified as Auto, as Zn and Pb (prominent in this factor) have been
reported by various authors [25; 28] to be markers for motor vehicle emission.  Lee et
al. [5] also reported the presence of Ca and Fe (which are both present in this factor)
in their motor vehicle emission factor, which they concluded was due to road dust.
  
Factor 8, named 2ndryS is a secondary factor (i.e. due to reactions within the
atmosphere) of ammonium sulphate.  A secondary sulfate factor has also been
described in Ramadan [3].

4.10.1 PMF2 results with EM=-12
The results presented so far have used error mode: EM=-14. When EM=-12 was used,
similar results were obtained (see Figure 9) with only some minor differences.  These
differences include: Na present in Factor 4 (Org/Coal) (when EM=-12), which wasn't
present when EM=-14 was used.  Also, higher H concentration was observed in
Factor 7 (Auto) and lower P concentration in Factor 6 (Oil/Diesel), when EM=-12 was
used as opposed to when EM=-14.  However, these differences do not significantly
affect the classification of the factors as the contribution of these elements is only
small.

In terms of the convergence statistics, the main difference is that when EM=-14 was
used only 4 points exceeded the outlier limit of 4 as specified in section 4.3, whereas
when EM=-12 was used, 9 points exceeded the outlier limit of 4.  A Q value of 3393
was reached for EM=-14 and 4287 when EM=-12.  Inspection of the scaled residuals
showed more values above 2.0, when EM=-12 and a number of values were around
3.6, thus the higher Q value.  Calculating si,j by equation 6a (when EM=-14) takes into
consideration both the maximum measured and maximum calculated value, whereas
equation 6b (when EM=-12) takes into consideration only the maximum measured
value.  This could well explain the smaller Q value and scaled residuals observed
when EM=-14, which follow the established analysis techniques, i.e. that of Q
approaching an expected value, as specified in section 4.4, and the scaled residuals
generally within the range of –2.0 and +2.0.  When examining Q and the residuals one
needs to keep in mind that a larger Q value and some larger residuals will be observed
when EM=-12 is used.
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Figure 9: PMF2 results for 8 Factors, EM=-12.

5. Data Analysis with ME2
The Multilinear Engine (ME) [13] solves general multilinear models.  The multilinear
least squares model to be fitted is specified by enumerating all equations that together
make up the model.  
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In PMF2 a fixed model is fitted to the measured data with a number of predetermined
constraints on the form of the solution.  The user has some control of the fit through a
set of defined parameters and what subset of the predefined output is to be printed to
which file and under what format.  ME2 provides an engine to solve models, which
are specified by the user by using a scripting language.  The user is also provided with
a library, ME2libr, which implement the appropriate code to perform some common
analysis, some of which functionality was available under PMF2.

For example, if the 2-way bilinear model given in equation (1) is to be solved, subject
to the constraints that the first column of the factor matrix is to be smooth, then the
objective function used for optimisation (i.e. equation 4) will need to be augmented as
follows:
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Where, the second term introduces a penalty on the difference between successive
elements of column 1 of the factor matrix F, and w is a chosen weight.  While in
PMF2 the form of the constraints is fixed, in ME2, setting up of constraints is under
complete control of the user. A facility for specifying non-negativity constraints is
provided through the concept of child arrays.  Child arrays are associated with each
array and contain additional information about the data in the arrays.  For factor
matrices, a child array known as fkey, can be used to specify if the corresponding
element is constrained, and an additional two child arrays, known as flow and fhigh
can be used to specify the lower and upper limits.  In addition, factor elements can
be given a value and marked as locked at that value or can be forced to zero through a
masked option.

Given that the user has freedom to specify the model equations, associated constraints
and regularisation (known as auxiliary equations), a library is provided which
generates some of the more commonly used auxiliary equations.  The library also
provides a number of service routines, e.g. array manipulation for pre- and post-
processing of arrays and data input and output.  For example, a subroutine Expvariat,
provides code to compute the Explained Variation for the basic 2-way model.

Technical details of the ME2 implementation are given in [14], and the scripting
language, used to define the model, is detailed in [15].

5.1 Comparison of PMF2 and ME2

5.1.1 ME2 Model Formulation
The user has the freedom to specify the form of the model to be fitted to their data.
Information on possible models and how this is specified to ME2 is given in [13, 14
and 15].

5.1.2 Standard deviation of observations
ME2 offers the same options for error modes as available in PMF2.  The error mode
specified by EM=-14 is used in this analysis, for comparison with the PMF2 results.
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5.1.3 Outliers and the robust mode
ME2 has a similar option to PMF2 available to specify the robust mode and outlier
distances.  However, in ME2 the absolute value in equation (7) is replaced by:
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That is, the lower and upper limits can be specified by setting the two values, �1 and
�2.  For the ME2 study presented in this report the outlier threshold distance, i.e. �1
and �2, have both been set to 4, as for PMF2.

5.1.4 Solution and Convergence of the algorithm
In ME2 convergence criteria are specified in the same way as for PMF2, i.e. through
the lims parameters.  The scaled residuals of the fit are available in the child array,
sres.

5.1.5 Estimating the number of sources/factors
Analysis of the number of factors for ME2 would be similar to PMF2, however for
this study, given that the analysis on the number of factors was carried out under
PMF2, 8 factors were used under ME2.

5.1.6 Multiple Solutions
ME2 faces the same issues as PMF2 in finding the global minimum and once again
the ability to initialise the factor elements with different seeds is provided to give the
user some freedom in exploring the solution space.

5.1.7 Rotational Freedom
When solving 2-way bilinear models with ME2, the same issues arise as in PMF2.  To
some extent some of the rotational freedom is removed in solving multi-way,
multilinear problems.  As with PMF2, the user can reduce the rotational freedom by
using normalisation of the factor elements or pulling factor elements to a specified
value.  However, in ME2 there is no equivalent to the PMF2 Fkey matrix, or the
Fpeak option.  Rather, the user has to specify the equation to achieve this, e.g. a
subroutine called Pullto, supplied in the library, generates the required equations to
pull columns of a factor matrix towards a given value.  Also the child array fkey in
ME2 provides a facility to specify constrains on the factor elements.

In order to perform rotations in ME2 [12] the following additional terms can be
included in the objective function:
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The term Qn defined in equation (13) attempts to normalise the rows of F to unit
norm.  The parameter � should be chosen small enough so that in the computed
solution, the norms of rows of F deviate from unity at most by a small value (e.g.
0.01).  The term Qp defined by equation (14) attempts to pull the sum of all elements
of G towards zero.  A tedious analysis shows that this attempt leads to rotations in the
direction of negative Fpeak, as in PMF2, i.e. the parameter �2, corresponds to
negative values of Fpeak.  Positive values of Fpeak can be simulated by equation (13)
and (14) where G and F have been interchanged.

The role of the Jacobian matrix in analysing uniqueness is described in [14].   If the
Jacobian matrix in not of full rank (a certain combination of the columns is a zero
vector), the solution is not locally identifiable.  The gradient at the computed solution
can be accessed through the child matrix for each factor matrix, called fgrad.

5.1.8 Standard Deviation of Factor Matrices
An automated way of generating the standard deviations of the factor matrices has not
been provided.   A technique that could be investigated is that of obtaining a solution,
followed by restarting with the fixed solution for one of the factor matrices while
solving for the second matrix, perhaps with different seeds.

5.1.9 Explained Variation
A sample subroutine has been provided in the library to allow the calculation of the
Explained Variation.  A similar formula to that used in PMF2 is implemented.

5.2 Bilinear Model under ME2
As a first step the Hong Kong data was analysed under ME2 using a bilinear model,
with the normalisation of columns of the matrix F, i.e. the following two equations
are solved:
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subject to non-negativity constrains, as defined by the built-in option of setting F.key
to low limits and F.flow to a lower limit of zero, as detailed in [13].

5.2.1 ME2 Results and Discussions

The data was analysed under ME2, where 10 runs were carried out, and 8 factors were
used, as determined through the PMF analysis. The seed value of the random number
generator used for initialisation of the factor matrices, was initialised to 1 and for each
successive run was incremented by 100.  Analysing the results of the 10 runs showed
that the major elemental contributions were the same in the results of most runs, with
some of the minor elements moving between the factors.  

The 9th run (Seed=801) obtained the smallest Q (Table 4) which was chosen for
further analysis.  Inspection of the scaled residuals showed that only a very small
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number had an absolute value greater than 2, with the largest absolute value of 2.3.
An experiment was undertaken, where columns of the factor matrices were pulled
down to certain values, i.e. adding an auxiliary equation in which the sum of
nominated columns of the factor matrices is constrained to a given value.  The
minimum Q value obtained from this procedure was 4047, implying that some
rotational freedom exists in the solution.  This was not perused further as pulling
individual elements to zero was considered more appropriate for this work (see
section 6).

The ME2 generated factors with the smallest Q value (Figure 10), thus indicating the
best fit to the data, corresponded very closely to the PMF results (Figure 8), with the
only noticeable difference being the amount of Na appearing in Org/Coal factor.

Table 4 : ME2: Q values for different seeds.

Run Seed Q
1 1 4253
2 101 3977
3 201 4640
4 301 3489
5 401 3536
6 501 3408
7 601 3448
8 701 3974
9 801 3401

10 901 4512
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Figure 10 : ME2 results for 8 Factors.

6. Pulling Down Factor Elements
On examination of the Sea Spray, Soil and Auto factors a decision was made to pull
down the Black Carbon element from these factors.  This was achieved very simply
by setting the corresponding element of the fkey child matrix to masked. The new
solution obtained resulted in a slightly higher Q value, that of 3472.  The new factors
are shown in Figure 11.  Aside from the Black Carbon being pulled down some of the
other elements were affected; H was removed from Soil and so was Na from the
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Org/Coal factor, with the Black Carbon component of the Org/Coal factor increasing.
Also K from Auto was removed and an increase in Org/Coal was observed.  Pulling
down the same elements in the corresponding factors under PMF2 resulted in similar
results, see Figure 12.

A number of additional analyses of the data were carried out following a review of
these results [33].  Given that the S concentration is high in the measurements, an
analysis was carried out where the error for S was increased, following which it was
found that some of the Black Carbon was reduced from the Auto and 2ndryS factors
and an increase was observed in the Org/Coal factor.  The presence of Br and Pb in
the Auto and Ord/Coal factors was examined by applying a weak pulling down of
these two elements from the two factors, in which case it was found that there was a
stronger association of Pb with the elements in the Auto factor than in the Org/Coal
factor.
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Figure 11: ME2 Results after pulling down selected elements.
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Figure 12: PMF2 Results after pulling down selected elements.
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7. Multivariate Linear Regression
Once the factor analysis has been carried out, further analysis might be to perform a
multivariate linear regression fit to the total mass, C.  That is, while the factor analysis
is carried out on data matrix, X, which contains the mass of each element, a regression
fit of the following form:

C = GZ + E
can be carried out on the total mass data, i.e. C, which is a vector of n measurements,
G is an n by p matrix, as obtained by the factor analysis, Z and E are vectors of p
entries being the result of the fit and the residuals, respectively .  Thus Z contains the
contribution to the total mass from each of the factors.  Performing a linear least
squares fit resulted in Z=(2.0, 2.9, 3.0, 4.5, 3.6, 3.2,2.0, 3.5).  From these coefficient
an approximate contribution from each of the factors to the total measured mass can
be derived.  The results of this analysis are shown in Table 5.  In Table 5 the
contribution from each factor is given as a percentage of the total measured mass.
The highest contributors to the total mass are the Org/Coal factor with 24% and
2ndryS with 23% followed by Smoke of 19% and Oil/Diesel of 12%.  This is not
surprising as these factors have high S, Black Carbon or H content, which were the
three elements identified with the highest contribution to the total mass.

Table 5 : Contribution to total measured mass from each factor.

Factor % contribution to mass
Sea1 2
Sea2 10
Soil  8
Org/Coal 24
Smoke  19
Oil/Diesel 12
Auto  2
2ndryS  23

Similar analysis can be carried out by multiplying elements of the G and F matrices,
as obtained by the factor analysis, to obtain mass contribution from each element
within the identified source factors.  The results are shown in Table 6.  This analysis
results in a similar contribution to the total mass from each factor, with the main
difference being in the reduced fraction of Org/Coal, and a slight increase in Auto,
being due to the solution of a different representation of the problem.
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Table 6 : Breakdown of contributions to total mass.

Soil Oil/Diesel Sea2 Smoke 2ndryS Org/Coal Sea1 Auto
H 0 29656 0 26466 35639 190601 863 0
Na 0 0 164644 0 0 0 19544 0
Al 25153 29 142 0 643 1899 5 166
Si 80888 0 1533 561 4992 5753 225 12965
P 0 211 0 1100 8756 183 0 0
S 15289 23199 91818 117080 401655 93200 0 20246
Cl 0 0.2866 0 0 0 0 39464 0
K 18581 0 0 67722 0 18549 885 0
Ca 17411 1920 6127 2340 85 0 415 0
Ti 2186 0 0 0 685 692 4 626
V 0 1256 0 0 0 0 10 0
Cr 122 0 0 39 107 112 0 218
Mn 760 0 113 104 58 136 0 672
Fe 21653 289 0 0 0 1790 0 9947
Ca 148 47 0 74 0 0 5 0
Ni 0 423 0 0 290 63 0 0
Cu 174 0 25 24 43 263 1 526
Zn 0 0 0 282 87 0 0 26538
Br 80 255 715 0 43 570 3 553
Pb 850 0 0 1804 0 3177 0 5837
BC 0 229266 0 175476 31992 69256 0 0

% of
Total

8.6 13.4 12.4 18.4 22.7 18 2.9 3.6

8. Using Bootstrapping to examine the results
It was pointed out in [26] that measurement errors affect the analysis when
determining the number of factors. A similar approach was used here to examine how
sensitive the obtained solution is to measurement error.  The original data was used as
a pool to randomly generate samples to be analysed individually, in a bootstrapping
fashion [29].  Twenty samples of 266 observations were generated from the original
data using random sampling with replacement.  The method employed here was to
generate 10 solutions for each of the 20 samples, following which the optimum
solution is selected.  The 8 fingerprints generated by the optimum solutions from each
bootstrap were then pooled and classified into 8 source fingerprints using cluster
analysis. Thirteen out of the twenty solutions resulted in 8 unique fingerprints,
however the other seven solutions all had a variation of the same factor, i.e. the factor
identified as Sea2, in some cases resulted with high contribution of Black Carbon and
H.  As a result the classification software incorrectly classified it as the Auto factor.
The seven solutions were analysed by hand and the factor was appropriately
classified. Figure 13 shows the average of each element in each factor as generated by
the 20 runs.  While some variations are present, the dominant elements exhibit the
same behaviour in all fingerprints with some difference seen in the factor labelled
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Sea2.  The error bars show the standard deviation of the 20 solutions, showing that
little difference between the solutions existed and we can conclude that the obtained
solution represents the situation well.

Figure 13: Average of 20 runs under ME2.

9. Conclusion
A 2-way factor analysis has been carried out on aerosol measurements at Hong Kong
using two separate programs; PMF2 and ME2. The results from PMF2 were
successfully reproduced using ME2 even though the two programs implement
different solution techniques.
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 The results from the two programs were found to be very similar, giving us
confidence in the two techniques. When EM=-14 was used in both PMF2 and ME2,
the results were almost identical with only minor differences in the smaller
contributing elements, thus not affecting the classification of the factors.  These
results are also compatible with previous studies of a subset of the data using
Principal Component Analysis.

Pulling down of factor elements wasn't fully exploited by the authors, due to the
desire of not applying personal judgement to the analysis.  However following a
discussion of these results [33], the benefit of applying a weak pulling down of
elements was investigated and fully appreciated.  When unexplained elements appear
to have an association with a certain factor, the degree of this association can be
examined by applying a weak pulling down of the element.

The strength of ME2 lays in the ability to perform multi-linear multi-way analysis.
The ability to introduce seasonal variations as well as information on air parcel
trajectories will be explored in a subsequent publication.
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