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ABSTRACT

We consider a model of distributed iterative algorithms whereby several

processors participate in the computation while collecting, possibly stochastic

information from the environment or other processors via communication links.
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1. Introduction

Classical (centralized) theories of decision making and computation deal

with the situation in which a single decision maker (man or machine) possesses

(or collects) all available information related to a certain system and has to

perform some computations and/or make a decision so as to achieve a certain

objective. In mathematical terms, the decision problem is usually expressed as a

problem of choosing a decision function that transforms elements of the information

space into elements of the decision space so as to minimize a cost function. From

the point of view of the theory of computation, we are faced with the problem of

designing a serial algorithm which actually computes the desired decision.

Many real world systems however, such as power systems, communication networks,

large manufacturing systems, C systems, public or business organizations, are too

large for the classical model of decision making to be applicable. There may be a

multitude of decision makers (or processors), none of which possesses all relevant

knowledge because this is impractical, inconvenient, or expensive due to limitations

of the system's communication channels, memory,or computation and information processing

capabilities.

In other cases the designer may deliberately introduce multiple processors

into a system in view of the potential significant advantages offered by distributed

computation. For problems where processing speed is a major bottleneck distributed

computing systems may offer increases in throughput that are either unattainable or

prohibitively expensive using a single processor. For problems where reliability

or survivability is a major concern, distributed systems can offer increased fault

tolerance or more graceful performance degradation in the face of various kinds of
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equipment failures. Finally as the cost of computation has decreased dramatically

relative to the cost of communication it is now advantageous to trade off increased

computation for reduced communication. Thus in database or sensor systems involving

geographically separated data collection points it may be advantageous to process

data locally at the point of collection and send condensed summaries to other points

as needed rather than communicate the raw data to a single processing center.

For these reasons, we will be interested in schemes for distributed decision

making and computation in which a set of processors (or decision makers) eventually

compute a desired solution through a process of information exchange. It is possible

to formulate mathematically a distributed decision problem whereby one tries to

choose an "optimal" distributed scheme, subject to certain limitations. For example,

we may impose constraints on the amount of information that may be transferred and

look for a scheme which results in the best achievable decisions, given these cons-

traints. Such problems have been formulated and studied in the decentralized control

context [21,22], as well as in the computer science literature [23,24]. However,

in practice these turn out to be very difficult, usually intractable problems [25,26].

We, therefore, choose to focus on distributed algorithms with a prespecified structure

(rather than try to find an optimal structure): we assume that each processor chooses

an initial decision and iteratively improves this decision as more information is

obtained from the environment or other processors. By this we mean that the ith

processor updates from time to time his decision x using some formula

x -f (x ,I ) (1.1)

where I is the information available to the ith processor at the time of the

update. In general there are serious limitations to this approach the most obvious
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of which is that the function fi in (1.1) has to be chosen a priori on the basis of

ad hoc considerations. However there are situations where the choice of reasonable

functions fi is not too dificult, and iterations such as (1.1) can provide a practical

approach to an otherwise very difficult problem. After all, centralized counterparts

of processes such as (1.1) are of basic importance in the study of stability of dynamic

systems, and deterministic and stochastic optimization algorithms.

In most situations to be considered the information Ii of processor i contains some

past decisions of other processors. However, we allow the possibility that some proc-

essors perform computations (using (1.1)) more often than they exchange information,

in which case the information Ii may be outdated. Thus our formulation includes

asynchronous algorithms where there is no strict a priori sequence according to which

the iterations (1.1) are carried out at the various processors. Asynchronous algorithms

have several advantages over their synchronous counterparts. First, while considerable

progress has been made recently in understanding and reducing the computation and com-

munication complexity of algorithm synchronization [42], the associated protocols still

may require complex implementation and considerable communication and computation overhead.

Second in a synchronous algorithm the progress of computation is controlled by the

slowest processor. Finally, in situations where the problem data changes with time,

synchronous algorithms require a restart protocol that may complicate their implementation

and introduce critical time delays. On the other hand synchronous iterative algorithms

are easier to understand and their convergence can be more readily established than their

asynchronous counterparts. Some well known iterative algorithms simply do not converge

or otherwise work satisfactorily when implemented in a totally asynchronous mode as will

be explained in the sequel. Furthermore, the effects of asynchronism on rate of conver-

gence and communication complexity are not well understood at present.
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There are a number of characteristics and issues relating to the distributed

iterative process (1.1) that either do not arise in connection with its centralized

counterpart or else appear in milder form. First there is a graph structure charac-

terizing the interprocessor flow of information. Second there is an expanded notion

of the state of computation characterized by the current results of computation x and

the latest information Ii available at the entire collection of processors i. Finally

when (as we assume in this paper)there is no strict sequence according to which com-

putation and communication takes place at the various processors the state of computation

tends to evolve according to a point-to-set mapping and possibly in a probabilistic

manner since each state of computation may give rise to many other states depending on

which of the processors executes iteration (1.1) next and depending on possibly random

exogenous information made available-at the processors during execution of the algorithm.

From the point of view of applications, we can see several possible (broadly

defined) areas. We discuss below some of them, although this is not meant to

be an exhaustive list.

a) Parallel computing systems, possibly designed for a special purpose, e.g.

for solving large scale mathematical programming problems with a particular

structure. An important distinguishing feature of such systems is that the

machine architecture is usually under the control of the designer. As mentioned

above, we will assume a prespecified structure, thereby bypassing issues of

architectural choice. However, the work surveyed in this paper can be useful

for assessing the effects of communication delays and of the lack of synchronization

in some parallel computing systems. Some of the early work on the subject [10],[ll]

is motivated by such systems. For a discussion of related issues see [7].

b) Data Communication Networks. Real time data network operation lends itself

naturally to application of distributed algorithms. The structure needed for dis-

tributed computation (geographically distributed processors connected by communication

links) is an inherent part of the system. Information such as link message flows,
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origin to destination data rates, and link and node failuresis collected at

geographically distributed points in the network. It is generally difficult to

implement centralized algorithms whereby a single node would collect all

information needed, make decisions, and transmit decisions back to the points of

interest. The amount of data processing required of the central node may be too

large. In addition the links over which information is transmitted to and

from the central node are subject to failure thereby compounding the difficulties.

For these reasons in many networks (e.g. the ARPANET) algorithms such as routing,

flow control, and failure recovery are carried out in distributed fashion [1]-[5].

Since maintaining synchronization in a large data network generally poses

implementation difficulties these algorithms are often operated asynchronously.

c) Distributed Sensor Networks and Signal Processing.

Suppose that a set of sensors obtain noisy measurements of a stochastic

signal and then exchange messages with the purpose of computing a final estimate

or identifying some unknown parameters. We are then interested in a scheme by

which satisfactory estimates are produced without requiring that each sensor com-

municates his detailed information to a central processor. Some approaches that

have been tried in this context may be found in [27,28,29,30].

d) Large Decentralized Systems and Organizations. There has been much interest,

particularly in economics, in situations in which a set of rational decision makers

make decisions and then update them on the basis of new information. Arrow and

Hurwicz [31] have suggested a parallelism between the operation of an economic market

and distributed computation. In this context the study of distributed algorithms may be

viewed as an effort to model collective behavior. Similar models have been proposed

for biological systems, [32]. Alternatively, finding good distributed algorithms

and studying their communication requirements may yield insights on good ways of
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designing large organizations. It should be pointed out that there is an open

debate concerning the degree of rationality that may be assumed for human decision

makers. Given the cognitive limitations of humans, it is fair to say that only

relatively simple algorithms can be meaningful in such contexts. The algorithms

considered in this paper tend to be simple particularly when compared with other

algorithms where decision makers attempt to process optimally the available information.

There are several broad methodological issues associated-with iterative

distributed algorithms such as correctness, computation or communication efficiency,

and robustness. In this paper we will focus on two issues that

generally relate to the question of validity of an algorithm.

a) Under what conditions is it possible to guarantee asymptotic convergence

of the iterates xi for all processors i, and asymptotic agreement between different

processors i and j [(xl-x J ) O]?

b) How much synchronization between processor computations is needed in

order to guarantee asymptotic convergence or agreement?

Significant progress has been made recently towards understanding these

issues and the main purpose of this paper is to survey this work. On the other

hand little is known at present regarding issues such as speed of convergence, and

assessment of the value of communicated information in a distributed context. As

a result we will not touch upon these topics in the present paper. Moreover, there

are certain settings (e.g., decentralized control of dynamical systems,dynamic

routing in data networks) in which issues of asymptotic convergence and agreement

do not arise. Consequently, the work surveyed here is not of direct relevance to

such situations.

In the next two sections we formulate a model of distributed asynchronous

iterative computation, and illustrate its relevance by means of a variety of examples
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from optimization, parameter estimation, and communication networks. The model

bears similarity to models of chaotic relaxation and distributed asynchronous

fixed point computation [10]-[13] but is more general in two respects. First we

allow two or more processors to update separately estimates of the same coordinate

of the decision vector and combine their individual estimates by taking convex

combinations, or otherwise. Second we allow processors to receive possibly stochas-

tic measurements from the environment which may depend in nonlinear fashion on

estimates of other processors. These generalizations broaden a great deal the

range of applicability of the model over earlier formulations.

In Sections 4 and 5 we discuss two distinct approaches for analyzing algo-

rithmic convergence. The first approach is essentially a generalization of the

Lyapounov function method for proving convergence of centralized iterative processes.

The second approach is based on the idea that if the processors communicate fast

relative to the speed of convergence of computation then their solution estimates

will be close to the path of a certain centralized process. By analyzing the

convergence of this latter process one can draw inferences about the convergence

of the distributed process. In Section 5 we present results related primarily to

deterministic and stochastic descent optimization algorithms. An analysis that

parallels Ljung's ODE approach [37],[38] to recursive stochastic algorithms may be

found in [35] and in a forthcoming publication. In Section 6 we discuss convergence

and agreement results for a special class of distributed processes in which the

update of each processor, at any given time, is the optimal estimate of a solution

given his information, in the sense that it minimizes the conditional expectation

of a common cost function,
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2. A Distributed Iterative Computation Model

In our model we are given a set of feasible decisions X and we are interested in

finding an element of a special subset X* called the solution set. We do not specify

X* further for the time being. An element of X* will be referred to as a solution.

Without loss of generality we index all events of interest (message transmissions and

receptions, obtaining measurements, performing computations) by an integer time

variable t. This variable corresponds to a global clock and is mainly needed for anal-

ysis purposes. There is a finite collection of processors i=l,...,n each of which

maintains an estimate xi(t)eX of a solution and updates it once in a while according to

a scheme to be described shortly. We do not assume that these processors have access to

the global clock because this would amount to a synchronization assumption.

The ith processor receives from time to time m. different types of measurements
1

ii i
and maintains the latest values zi,z 2 ,..., z of these measurements. The vector of

measurements maintained by processor i is denoted by z (t) and is an element of Z ,

the Cartesian product of sets Z1, j=l,...,mi, i.e.
j 1

i i ) i i .. Zi
z (t) = (z'(t))) ... z (z x. x .' m. =1 m.

1 1

We denote by T. the set of times that processor i receives a new measurement of
i

type j. It follows that

i izj(t) = zj(t-1), tfT .At each time tCET , processor i records the new value of zj but also updates his estimate

according to

x (t+l) = Nij(x (t),z (t)), teT , (2.1)

where M.. is a given function. A simple and important special case is when no update

takes place upon reception of a measurement, in which case M ij(x,z)=x, Vx,z. Each
'ij
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processor i also updates from time to time (the set of such times is denoted by

i i
T ) the estimate x according to

i i
x (t+l) = Ci (x (t),z (t)), tET , (2.2)

where C. is a given function. For all other times the estimate x remains unaffected,

i.e.

xi(t+l) = xi (t), t' T.

For each processor i the sets T and Tj, j=l,...,mi are assumed mutually disjoint.

As a practical matter this does not involve loss of generality. Thus at each time t

each processor i either receives a new measurement of type j and updates x according

i i
to (2.1), or updates x according to (2.2), or remains idle in which case x (t+l) = x (t)

i i
and z (t) = zi(t-l). The sequence according to which a processor executes (2.1) or

i i
(2.2) or remains idle (i.e. the sets T i and Ti ) is left unspecified and indeed much of

the analysis in this paper is oriented towards the case where there is considerable a

priori uncertainty regarding this sequence. Note that neither mapping M.. or C. involves

a dependence on the time argument t. This is appropriate since it would be too restric-

tive to assume that all processors have access to a global clock. On the other hand the

mappings Mij and Ci may include dependences on local clocks (or counters) that record

the number of times iterations (2.1) or (2.2) are executed at processor i. The value

of the local counter of processor i may be artificially lumped as an additional component

into the estimate x and incremented each time (2.1) or (2.2) are executed.

Note that there is redundancy in introducing the update formula (2.2) in addition

to (2.1). We could view (2.2) as a special case of (2.1) corresponding to an update in

response to a "self-generated" measurement at node i. Indeed such a formulation may be
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appropriate in some problems. On the other hand there is often some conceptual value

in separating the types of updates at a processor in updates that incorporate new

exogenous information (cf. (2.1)), and updates that utilize the existing information

to improve the processor's estimate (cf. (2.2)).

The measurement zj(t), maintained by processor i at time t, is related to the

12 n
processor estimates x ,x ,...,x according to an equation of the form

i 1il 2=i2( nin iz. (t $i ( li(t)) x (_) (t)), .,xn( (t)) ), (2.3)

where w belongs to the sample space Q corresponding to a probability space (Q,F,P),

and 1< Ti (t)< t, for every i,j,k.

We allow the presence of delays in equation (2.3) in the sense that the estimates

x ,...,x may be the ones generated via (2.1) or (2.2) at the corresponding processors

ik i
at some times T. (t), prior to the time t at which zj(t) is used by processor i.

Furthermore the delays may be.different for different processors. We place the following

restriction on these delays which essentially guarantees-that outdated information

will eventually be purged from the system.

Assumption 2.1: For all i,j and k

lim T (t) = .
t- ~

For the time being, the only other assumption regarding the timing and sequencing

of measurement reception and estimate generation is the following:

Assumption 2.2: (Continuing update Assumption)

The sets T. and Ti are infinite for any i=l,...,n and j=l,...m i .The sets 3



The assumption essentially states that each processor will continue to receive

measurements in the future and update his estimate according to (2.1) and (2.2).

Given that we are interested in asymptotic results there isn't much we can hope to

prove without an assumption of this type. In order to formulate substantive convergence

results we will also need further assumptions on the nature of the mappings Mij, Ci,

and .ij and possibly on the relative timing of measurement receptions, estimate updates

and delays in (2.3) and these will be introduced later. In the next section we illus-

trate the model and its potential uses Dy means of examples.
It should be pointed out here that the above model is very broad and may

capture a large variety of different situations, provided that the measurements

i i xj ii
z. are given appropriate interpretations. For example, the choice z.(t) = x (T.(t))

corresponds to a situation where processor i receives a message with the estimate

computed by processor j at time T. (t), and t-TJ (t) may be viewed as a

communication delay. In this case processors act also as sensors generating

measurements for other processors. In other situations however specialized sensors

may generate (possibly noisy and delayed) feedback to the processors regarding

estimates of other processors (cf. (2.3)). Examples of both of these situations

will be given in the next section.

3. Examples

An important special case of the model of the previous section is when the

feasible set X is the Cartesian product of n sets

X = X X X2 ... X 
1 2 n

each processor i is assigned the responsibility of updating the ith component

of the decision vector x = (Xl,X2 ...,xn) via (2.2) while receiving from each

processor j (jsi) the value of the jth component x.. We refer to such distributed

processes as being specialized. The first five examples are of this type.
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Example 1: (Shortest Path Computation)

Let (N,A) be a directed graph with set of nodes N={1,2,...,n}and set of links

A. Let N(j) denote the set of downstream neighbors of node i, i.e. the nodes j

such that (i,j) is a link. Assume that each link (i,j) is assigned a positive

scalar a.. referred to as its length. Assume also that there is a directed
1J

path to node 1 from every other node. Let xl be the estimate of the shortest
1

distance from node i to node 1 available at node i. Consider a distributed

algorithm whereby each node i=2,...,n executes the iteration

xi. min {aij+xi (3.1)
jEN(i)

after receiving one or more estimates xi from its neighbors, while node 1 sets

xl = 0.

This algorithm--a distributed asynchronous implementation of Bellman's shortest

path algorithm--was implemented on the ARPANET in 1969 [14], and subsequently in other

computer networks. (Actually in the version implemented on the ARPANET the lengths

a.. were allowed to change with time at a fast rate and this created serious algorithmic

difficulties [14]). The estimate x. can be shown to converge to the unique shortest

i
distance from node i to node 1 provided the starting values x. are nonnegative [12].

The algorithm clearly is a special case of the model of the previous section. Here the

measurement equation [cf. (2.3)] is

i j ij
zj (t) = x (- (t)), t6T7, jeN(i) ; (3.2)

also, measurement receptions [cf. (2.1)] leave xl unchanged. The update formula

corresponding to (2.2) is based on (3.1). Its ith coordinate is given by

i i tOTi . (3.3)
x (t) = min {a..+z(t)}, teT (3.3)

1 jeN(i) j '

while for the remaining coordinates its form is not material (processor i is concerned

in effect only with the shortest distance from node i to node 1).
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Example 2: (Fixed point calculations)

The preceding example is a special case of a distributed dynamic programming

algorithm (see [12]) which is itself a special case of a distributed fixed point

algorithm. Suppose we are interested in computing a fixed point of a mapping

F: X+X. We construct a distributed fixed point algorithm that is a special case

of the model of the previous section as follows:

Let X be a Cartesian product of the form X=XlxX 2xX...xX and let us write
1 2 n

accordingly x=(xl,x2,...,xn) and F(x) = (Fl(x),F2(x),...,Fn(x)) where Fi: X+X..

i . i
Let x=(xXl,...,xn ) be the estimate of x generated at the ith processor. Processor

i executes the iteration

i i
z M >if tCT., i~jZj (t)j

xj(t+l) = Fi(x (t)) if tOTi , i=j

(3.4)
x (t) otherwise

(this iteration defines both mappings Ci of (2.2) and Mij of (2.1)) and transmits from

i i
time to time x. to the other processors. Thus the measurements Zj are given by

[cf. (2.3)].

i jil x
j

(3s5)z.(t) = xj(T. (t)), i$j .

Conditions under which the estimate x converges to a fixed point of F are given in

[13] (see also Section 4).
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Example 3: (Distributed deterministic gradient algorithm)

n
This example is a special case of the preceding one whereby X= Rn,

X. = R, and F is of the form

F(x) = x - aVf(x) (3.6)

where Vf is the gradient of a function f: R + R, and a is a positive scalar

stepsize. Iteration (3.4) can then be written as

z(t) if t6T., ifj

i i Df(x (t)) i
xj(t+l) xi(t) - xif tT i=j

1

xj(t) otherwise (3.7)

A variation of this example is obtained if we assume that, instead of each

processor i transmitting directly his current value of the coordinate x. to the other

processors, there is a measurement device that transmits a value of the partial

derivative ax to the ith processor. In this case there is only one type of measure-
1i

ment for each processor i [cf. (2.3)] and it is given by

1 il n in
i Af[x (T1 (t)),...,xn (T (t))

zl(t) = x

Iteration (3.7) takes the form

i i 1
xi(t+l) = x. (t) - az(t) if teT

for the ith coordinate, while for the remaining coordinates its form is immaterial

(processor i in effect estimates only the ith coordinate xi). The equations above assume

no noise in the measurement of each partial derivative; one could also consider the

situation where this measurement is corrupted by additive or multiplicative noise thereby

obtaining a model of a distributed stochastic gradient method. Many other descent

algorithms admit a similar distributed version.



Example 4: (An Organizational Model)

This example is a variation of the previous one, but may be also viewed as a

model of collective decision making in a large organization. Let

X = XxX2 x...x Xn be the feasible set, where Xi is a Euclidean space and let
n

f: X-+[O,c) be a cost function of the form f(x) = fWe interpret f
i=l

as the cost facing the i-th division of an organization. This division is under

the authority of decision maker (processor) i, who updates the i-th component

x. e X. of the decision vector x. We allow the cost fi to depend on the decisions
1 1

x.j of the remaining decision makers, but we assume that this dependence is weak.

That is, let

2fi
Ki = sup 3 f (x)
jm x6X 3xj x m

i i
and we are interested in the case K. <<K.. (unless j=m=i). Decision maker i

jm ii

receives measurements z., j=l,...,n of the form

i 3f j 1 il 2 i2 n in
z.(t) - (X( (t)),x 2(' (t)).x (1 (t)) (3.8)

ax 1 2 j n j
i

ik
where T. (t)< t [cf. (2.3)]. Once in a while, he also updates his decision

according to

i .
xi(t+l)= xi(t) - a. zj(t) , teT . (3.9)1 j=l

If we assume that

im j
Tji(t) T (t), Vij, mt,
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the above algorithm admits the following interpretation: each decision maker

i~m ~m imm, at time T. (t) sends a message x (tl (t)), to inform decison maker j of hisJ · o

decision. Then, at time Tj (t), decision maker j (who is assumed to be knowledgeable

about f ) computes zj according to (3.8) and sends it to decision maker i who, in

turn, uses it to update his decision according to (3.9). On an abstract level, each

decision maker j is being informed about the decision of the others and replies by

saying how he is affected by their decisions; however, this may be done in an

asynchronous and very irregular manner.

Example 5: (Distributed optimal routing in data networks)

A standard model of optimal routing in data networks (see e.g. the survey

[6]) involves the multicommodity flow problem

minimize I Da(Fa)
acA

subject to F = I I Xw, VaEAa wEW PEPwweW pePW

asp

X,p = r w, VWW
psP

W

Xw,p > 0, V , W, PW

Here A is the set of directed links in a data network, Fa is the

communication rate (say in bits/sec) on link acA, W is a set of origin-destination
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(OD) pairs, Pw is a given set of directed paths joining the origin and the

destination of OD pair w, x is the communication rate on path p of OD

pair w, r is a given required communication rate of OD pair w, and Da is a

monotonically increasing differentiable convex function for each a6A. The

objective here is to distribute the required rates rw among the available paths

in Pw so as to minimize a measure of average delay per message as expressed by

X D (Fa).
acA a aacA

Since the origin node of each OD pair w has control over the rates Xwpa

pEPW it is convenient to use a distributed algorithm of the gradient projection type

(see [6]8,[8],46]), whereby each origin iterates on its own path rates asynchronously

and independently of other origins. This type of iteration requires knowledge of

the first partial derivatives D'(Fa) for each link,evaluated at the current link
a a

rates Fa. A practical scheme similar to the one currently adopted on the

ARPANET [9] is for each link a6A to broadcast to all the nodes the current value of

either F or D'(Fa). This information is then incorporated in the gradient projec-
a a a

tion iteration of the origin nodes. In this scheme each origin node can be viewed

as a processor and Fa or D'(Fa) plays the role of a measurement which depends on

the solution estimates of all processors [cf. (2.3)].

The direct opposite of a specialized process, in terms of division of labor

between processors, is a totally overlapping process.

Example 6: (Gradient Method; Total Overlap)

Let the feasible set X be a Euclidean space. Each processor i receives

i j
measurements z. (jsi) which are the values of the estimates xj of other processors;

that is,

zj (t)= x (Tj (t)), isj .
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Whenever such a measurement is received, processor i updates his estimate by

taking a convex combination:

x (t+l) = M i. (x(t),zi(t)) = ijxi(t) + (1-1 J)z (t), teT., i j
J jJ' (3.10)

where 0<Bij <1. Also processor i receives his own information zi, generated

according to

i _ af(xl(t))
i (t) 

= ii(x (t),) ax= 

and updates xl according to

i i ii i
x (t+l) = Mii(x (t), z (t)) = x (t) - a Z (t), tiT (3.11)

11 1 1

where a is a positive scalar stepsize. Such an algorithm is of interest if the

objective is to minimize a cost function f: X+ R,and z. (t) is in some sense a descent

direction with respect to f, e.g. as assumed above. In a deterministic setting, such a

scheme could be redundant, as some processors would be close to replicating the computation

of others. In a stochastic setting, however (e.g. if

zi(t) = af (xi(t)) + wi t),

i
where w (t) is zero-mean white noise) the combining process is effectively

averaging out the effects of the noise and may improve convergence

Example 7: (System Identification)

Consider two stochastic processes y (t),y 2(t) generated according to

y (t) = A(q)u(t) + w (t),

tThe stepsize ac could be constant as in deterministic gradient methods. However, in
other cases (such as stochastic gradient methods with additive noise) it is essential

that a iis time varying and tends to zero. This, strictly speaking, violates the as-
sumption that the mapping M.. does not depend on the time t. However it is possible

to circumvent this by introducing (as an additional component of x ) a local counter

at each processor i that keeps track of the number of times iteration (3.10) or (3.11)
is executed at processor i. The stepsize al could be made dependent on the value of
this local counter (see the discussion following (2.1) and (2.2) in Section 2).



where A(.) is a polynomial, to be identified, q is the unit delay operator and

w (t), i=1,2, are white, zero-mean processes, possibly correlated with each other.

Let there be two processors (n=2); processor i measures y (t) and both measure

u(t) at each time t. Each processor i updates his estimate x of the coefficients

of A according to any of the standard system identification algorithms (e.g. the

LMS or RLS algorithm). Under the usual identifiability conditions [33] each

processor would be able to identify A(.) by himself. However, convergence should

be faster if once in a while one processor gets (possibly delayed) measurements

of the estimates of the other processor and combines them by taking a convex

combination. Clearly this is a case of total overlap, as in Example 6.

1 2
A more complex situation arises if we have two ARMAX processes y , y , driven by a

common colored noise w(t):

A (q)yi (t) = B(q)ui (t) + w(t), i=1,2

w(t) = C(q)v(t),

where v(t) is white and A ,B ,C are polynomials in the delay operator q. Assuming that

i i Bi
each processor i observes y and ul , he may under certain conditions [34] identify A ,B .

In doing this he must, however, identify the common noise source C as well. So we may

envisage a scheme whereby processor i uses a standard algorithm to identify A , B , C

and once in a while receives messages with the other processor's estimates of the coef-

ficients of C; these estimates are then combined by taking a convex combination.

This latter example falls in between the extreme cases of specialization and total

overlap: there is specialization concerning the coefficients of A ,B and overlap concer-

ning the coefficients of C.



-20-

4. Convergence of Contracting Processes

In our effort to develop a general convergence result for the distributed algorithmic

model of Section 2 we draw motivation from existing convergence theories for (centralized)

iterative algorithms. There are several theories of this type (see Zangwill [15],

Luenberger [16], Ortega and Rheinboldt [17], Polak, [18], Poljak [19]). Most of these

theories have their origin in Lyapunov's stability theory for differential and difference

equations. The main idea is to consider a generalized distance function (or Lyapunov

function) of the typical iterate to the solution set. In optimization methods the objective

function is often suitable for this purpose while in equation solving methods a norm of the

difference between the current iterate and the solution is usually employed. The idea is

typically to show that at each iteration the value of the distance function is reduced and

reaches its minimum value in the limit.

The result of this section is based on a similar idea. However instead of working

with a generalized distance function we prefer to work (essentially) with the level sets

of such a function; and instead of working with a single processor iterate (as in central-

ized processes) we work with what may be viewed as a state of computation of the distributed

process which includes all current processor iterates and all latest information available

at the processors.

The starting point for development of our result is a nested sequence of subsets

{X(k)} of the feasible set X. We assume that

X C X(k+l)C X(k) C...c X . (4.1)

The sequence {X(k)} depends on the nature of the specific problem at hand but the

implication is that membership of an estimate x in the.set X(k) is representative of its



proximity to the solution set X* . This is formalized by assuming that if I{xk is a

sequence in X such that xkEX(k) for all k, then every limit point of {xk} belongs to the

solution set X*. We assume here that X is a topological space so we can talk about converg-

ence of sequences in X. A relevant example is when X is R , x* is a unique solution and

X(k) = {xj | Ix-x*I 1< Ba k}, where B and a are constants with B>O and O<a<l, and ||-||

is some norm on Rn .

We denote for all i,j and k

Z (k) = ij(xl x ...,Xnw)jx X(k),...,x XX(k), wEQ} (4.2)

i .i i
Z (k) = Z (k)xZ2(k)x ... xZ1 (k), (4.3)

1 2 m.
1

X (k) = tCi (xl,z
) Ixl)X(k), zlEZ1(k)} (4.4)

1.

Z.(k) = (Xij ..,Xw)x xl (k),...,x n X (k), wE , (4.5)

Z (k) = Zl(k)xZ2(k)x ... xZM (k) . (4.6)

In words, X (k) is the set of estimates obtained at a processor i after an update

i ii i i
x -Ci. (x ,z ) based on values of x and z that reflect membership of all processor

-i
estimates in the set X(k); Z (k) is the set of measurements obtained at processor i that

reflect membership of the estimate of each processor j in the corresponding set XJ(k).

We consider the following two assumptions the first of which applies to the important

special case where a measurement reception does not trigger an update of a processor's

estimate.
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Assumption 3.1: The measurement update iteration (2.1) leaves the estimate xi(t)

unchanged. Furthermore for all i and k

l (k)C X(k) (4.7)

Ci (x ,zi )eX(k+l), Vx EX (k), z ez (k) (4.8)

A more general version is:

Assumption 3.1': The sets X(k) and the mappings Qij,Mij, and Ci are such that for

all i,j and k

x (k)C X(k) (4.9)

ii i i
M. (x ,z )X( X(k),, z Z (k), (4.10)

i i -i i-i i i
M. (x ,z ) X- (k) Vx £X (k), z sZ (k), (4.11)

i i i -i -i
Ci(x ,z )EX(k+l), Vx eX (k), z eZ (k), (4.12)

i i i i-i
Mij (X ,Z )£X(k+l), y¥x iX(k+l), z EZ (k) (4.13)

As discussed earlier, if we can show that a processor's estimate successively

moves from the set X(O) to X(1), then to X(2) and so on, then convergence to a

solution is guaranteed. Assumption 3.1 or 3.1' guarantee that this will occur based

on the following observations where for simplicity we assume that there are no

communication delays i.e. T (t) = 0 for t£T 
j 3

a) Once all processors' estimates move into X(k)(and the measurements available reflect

that, i.e., z CZ (k) for all i), they will remain in X(k) [cf. the definition

(4.4) and either (4.7) or (4.9), (4.10)]; and once any processor's i estimate moves

into X (k) it will. remain in Xi(k) [cf. (4.7) or (4.9)-(4.11)].
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b) Once the information available at processor i reflects membership of every

processor's j estimate in the corresponding set X (k) [i.e xi eX(k),zi ez(k)],

i i i i
then an update x i-Ci(x ,z ) results in an estimate x belonging to

X(k+l) n Xi(k) [cf. (4.8) or (4.12)].

c) Finally once a processor's estimate moves into the set X(k+l)n X (k) it remains

there in view of (4.8) or (4.11)-(4.13).

These observations prove in effect the following proposition:

Proposition 3.1: Let Assumptions 3.1 or 3.1' hold. Assume that all initial processor

estimates x (0), i=l,...,n belong to X(O), while all initial measurements zi(0)

available at the processors belong to the corresponding sets Z.(0) of (4.2). Then

every limit point of the sequences {xi(t)} is almost surely a solution.

We note that Assumption 3.1 and 3.1' are generalized versions of a similar

assumption in [13], and therefore Proposition 3.1 is a stronger version of the result

given in that reference. Note also that the assumptions do not differentiate the ef-

fects of two different members of the probability space, so they apply to situations

where the process is either deterministic (Q consists of a single element), or else

stochastic variations are not sufficiently pronounced to affect the membership

relations in (4.7)-(4.13). We now provide some examples drawn primarily from problems

of gradient optimization and solution of nonlinear equations. Applications in dynamic

programming are described in [12].

Example 2 (continued): Consider the specialized process for computing a fixed point

of a mapping F in example 2. There X is a Cartesian product XlxX2 x...x Xn , and each

processor i is responsible for updating the ith coordinate xi of x=(xl,x2,...,xn)
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while relying on essentially direct communications from other processors to obtain

estimates of the other coordinates. Suppose that each set Xi is a Euclidean space

with norm IlIIi and X is endowed with the sup norm

Ilxll = max {IIxl11 i *.. llxnll , VXEX. (4.14)

Assume further that F is a contraction mapping with respect to this norm, i.e.,

for some ae(0,1)

IF(x)-F(y)jI < i Ijx-yt , Vx,y~X . (4.15)

Then the solution set consists of the unique fixed point x* of F. For some

positive constant B let us consider the sequence of sets

X(k) = {xEXI Ix-x*II < Ba }, k=0,1,...

The sets defined by (4.2)-(4.6) are then given by

· I< Bck ji
Z (k) = {xjeXj I xj-x < B 

-I< Bck+l ,
X (k) = {xEX(k)j I Ixi-x*i i < Ba 

-1 ii.xfi k+l
Zi(k) = {xjCXj< B I+} ,Z; (k) (Xx Gj I l1xj-x*11 < Ba vjfi

It is straightforward to show that the sequence {X(k)} satisfies Assumption 3.1'.

(Assumption 3.1 would be satisfied if an inconsequential modification is introduced in

the model and, in place of (3.4), a measurement reception leaves the processor's

estimate unchanged while computation updates at times teTi have the form

i zi(t) if ij

Fi ( z1 l ( t ) ,...,z (t)zil ( t )(t)xit)zZt)) if i=j).
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Further illustrations related to this example are given in [13]. Note however that

the use of the sup norm (4.14) is essential for the verification of Assumption 3.1'.

Similarly Assumption 3.1' can be verified in the preceding example if the contrac-

tion assumption is substituted by a monotonicity assumption (see [13]). This mono-

tonicity assumption is satisfied by most of the dynamic programming problems of interest

including the shortest path problem of example 1 (see also [12]). An important exception

is the infinite horizon average cost Markovian decision problem (see [12], p. 616).

Another interesting application of Proposition 3.1 to analysis of asynchronous flow

control algorithms in data networks can be found in Mosely [45].

An important special case for which the contraction mapping assumption (4.15)

is satisfied arises when X=Rn and xl,x 2,...,x are the coordinates of x. Suppose

that F satisfies

IF(x)-F(y) I Pix-yi, Vx,ysRn

where P is an nxn matrix with nonnegative elements and spectral radius strictly

less than unity, and for any z=(z z2 ... z) we denote by jzj the column vector

with coordinates IzllIz21I..., Iznl Then F is called a P-contraction mapping.

Fixed point problems involving such mappings arise in dynamic programming ([20],

p. 374), and solution of systems of nonlinear equations ([17], Section 13.1). It can

be shown ([11], p.231) that if F is a P-contraction then it is a contraction mapping

with respect to some norm of the form (4.14). Therefore Proposition 3.1 applies.

We finally note that it is possible to use Proposition 3.1 to show convergence

of similar fixed point distributed processes involving partial or total overlaps

between the processors (compare with example 6).
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Example 3 (continued): Consider the special case of the deterministic gradient

algorithm of example 3 corresponding to the mapping

F(x) = x - aVf(x) . (4.16)

Assume that f: Rn- +R is a twice continuously differentiable convex function with

Hessian matrix V 2f(x) which is positive definite for all x. Assume also that there

exists a unique minimizing point x* of f over Rn. Consider the matrix

2 2 2

(Dx1) 1 2 1 napaf | 2 E . , | * E - | axlaxn

H* = (4.17)

2 2 2

. Xn3X1 ' 2a 1 , Dn1X n 2 (ax)
n

obtained from the Hessian matrix V 2f(x*) by replacing the off-diagonal terms by their

negative absolute values. It is shown in [13] that if the matrix H* is positive

definite then the mapping F of (4.16) is a P-contraction within some open sphere

centered at x* provided the stepsize a in (4.16) is sufficiently small. Under these

circumstances the distributed asynchronous gradient method of this example is convergent

to x* provided all initial processor estimates are sufficiently close to x* and the

stepsize a is sufficiently small. The neighborhood of local convergence will be larger

if the matrix (4.17) is positive definite within an accordingly larger neighborhood of x*.

For example if f is positive definite quadratic with the corresponding matrix (4.17)

positive definite a global convergence result can be shown.
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One condition that guarantees that H* is positive definite is strict diagonal

dominance ([17], p. 48-51)

2 n 2f

(ax, 2 j> l DxDx. 9 Vi=l,...,n,
(Dxi) j=l ' j

j~i

where the derivatives above are evaluated at x*. This type of condition is typically

associated with situations where the coordinates of x are weakly coupled in the sense

that changes in one coordinate have small effects on the first partial derivatives

of f with respect to the other coordinates. This result can be generalized to the

case of weakly coupled systems (as opposed to weakly coupled coordinates). Assume

m.
that x is partitioned as x=(xlx 2, .. ,xn) where now x.iR 1 (mi may be greater than

one but all other assumptions made earlier regarding f are in effect). Assume that

there are n processors and the ith processor asynchronously updates the subvector xi

according to an approximate form of Newton's method where the second order submatrices

of the Hessian V2 f, isj are neglected, i.e.
X.X.1 j

X x. - (V2 f) V f (4.18)
1 X X.11 1

In calculating the partial derivatives above processor i uses the values x. latest

communicated from the other processors jSi similarly with the distributed gradient

method. It can be shown that if the cross-Hessians V f, isj have sufficiently
x.X.

1j

small norm relative to V 2 then the totally asynchronous version of the
Xixi f,

approximate Newton method (4.18) converges to x* if all initial processor estimates

are sufficiently close to x*. The same type of result may also be shown if (4.18) is

replaced by
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x. + arg min f(xlx 2 ,...,xn) (4.19)m. ' n
x.eR 1

1

Unfortunately it is.not true always that the matrix (4.17) is positive definite,

and there are problems where coupling between coordinates is strong and the totally

asynchronous version of the distributed gradient method is not guaranteed to converge

regardless of how small the stepsize a is chosen. The following example demonstrates

the nature of the difficulty.

Counterexample: Consider the function f:R3 *R given by

f(x 1 x 2 x3)= (x+X 2 +X3 ) 2 + (Xli +X 2+x3 -3) + (x2+X2 +X2

111
where 0<s<<l. The optimal solution is close to ( 2'2'2 ) for £ small. The scalar £

plays no essential role in this example. It is introduced merely for the purpose of

making f positive definite. Assume that all initial processor estimates are equal to

some common value x, and that processors execute many gradient iterations with a small

stepsize before communicating the current values of their respective coordinates to

other processors. Then (neglecting the terms that depend on c) the ith processor tries

in effect to solve the problem

- 2 2
min {(xi+2x) + (xi+2x-3) }

X.

3 -2x. After the processor estimates of thethereby obtaining a value close to - 2x. After the processor estimates of the

respective coordinates are exchanged each-processor coordinate will have been updated

approximately according to

- 3 -2
x +4-2x (4.20)
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and the process will be repeated. Since (4.20) is a divergent iterative process

we see that, regardless of the stepsize chosen and the proximity of the initial

processor estimates to the optimal solution, by choosing the delays between successive

communications sufficiently large the distributed gradient method can be made to

diverge when the matrix H* of (4.17) is not positive definite.

5. Convergence of Descent Processes

We saw in the last section that the distributed gradient algorithm converges

appropriately when the matrix (4.17) is positive definite. This assumption is not

always satisfied, but convergence can be still shown (for a far wider class of

algorithms) if a few additional conditions are imposed on the frequency of obtaining

measurements and on the magnitude of the delays in equation (2.3). The main idea

behind the results described-in this section is that if delays are not too large, if

certain processors do not obtain measurements and do not update much more frequently

than others, then the effects of asynchronism are relatively small and the algorithm

behaves approximately as a centralized algorithm.

As-an illustration consider the deterministic gradient method (4.16) for the case

where the objective f is quadratic and there are two variables and two processors each

specializing in updating a single coordinate of the solution. Each processor i

executes the iteration

i i af
x.i Xi a D. i=1,2 (5.1)
and occasionally communicates the latest value of 

and occasionally communicates the latest value of xi to the other processor.
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adf i i i
The partial derivative x. is evaluated at the current estimate x = (Xl,X2)

1

of the processor. Let us try to estimate the effect of communication delays by

assuming identical initial processor estimates x1 = (xl,x2 ) and two sequences of

events. In the first sequence processor 1 executes (5.1), communicates the result to

processor 2 who then executes (5.1) and communicates the result to processor 1. The

final estimates at the two processors will then be

-- i
= (xl,X2 ) , i=1,2

where

.f(x 1 ,x2 )
x1 x1 - x (5.2)

af(x1 ,x 2 )

X2 = X2 -a (5.3)
2x 2

Since f is quadratic we have

3f(xl,x 2) 3f(xl,x2 ) 32f(xl,x2 )

ax2 ax 2 + ax ax (X 1-X 1 )

so using (5.2) and (5.3) we obtain

af(Xl,'2) 2 D2f(xl'x2) af(x1,x2 )X2 = x -2 DX Dx - x1 x (5.4)
2 1ax ax2 ax1

In the second sequence of events there is a one unit communication delay between

execution of (5.1) at processor 1 and communication to processor 2, so that processor 2

executes the iteration (5.1) without knowledge of the latest estimate of processor 1.

After exchange of the results of the updates the final estimates at both processors

will be
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x (x1l, 2)

where

f (x1, X2 )
Xl = Xl - a ax (5.5)x1X

af(x 1 , x 2 )
x2

= x2 - a (5.6)
~x 2

Comparing (5.2)-(5.6) we see that the effect of the communication delay is reflected

in a difference of magnitude 2 a2 f(xl,x2) af(xl,x) in the second coordinate.

1ax ax2 1x2

This difference is of second order in the stepsize a, so if a is small enough the

effect of the communication delay is negligible. This example can be easily generalized

to show that the effect of any finite amount of communication delay is of second order

in the stepsize and can be made negligible by choosing a sufficiently small. This fact

underlies the proofs of all the results presented in this section.

Consider now the general problem of unconstrained minimization of f: Rn - R.

We assume that f is convex, has Lipschitz continuous first derivatives and is bounded

below. Consider the distributed asynchronous gradient method of Example 3, where

each processor i=l,...,n specializes in updating xi , the i-th coordinate of x.

The algorithm is specified by equations (3.5) and (3.7) which are repeated below for

easy reference

z (t) if tOT, iij (5.7a)

xi.(t) - af(xi (t)) if tT i , i=j, (5.7b)
i ax.1

x i(t) otherwise (5.7c)

z.(t) j j ( )) , ij. (5.8)
Ji ' i L
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ij
Proposition 5.1: Assume that, for some B>O, we have t-T. (t)<B, Vi,j,t, and

J

that the difference between consecutive elements of Ti is bounded, for each i.

Then, there exists some ca>O such that, for all ae(O,a], every limit point of x (t),

for any i, is a minimizing point of f.

1 nProof (Outline): Let y(t) = (xl(t),...,Xn(t)). We also define a vector z(t)e Rn

whose i-th component is - Xafx(t)) if tCTi zero otherwise. Then, (5.7b) yields
1

y(t+l) = y(t) + az(t) (5.9)

Using the Lipschitz continuity of af/ax and (5.7),(5.8) we can easily show that

t-1
.- (x (t)) -

Ix (x (t)) (y(t))< Al a Ilz(T)l,
i 1-=t-B

for some constant A1 independent of a. We then use a second order expansion of f

to conclude that for some A2, A3, independent of a, we have

f(y(t+l))< f(y(t)) - af y(t) (xi(t))+ A22 2Iz(t) <

< f(y(t)) + t) z()+ A 2a z ( t
T=t-B

< f(y(t)) -a Iz(t)l + 2 A3 I IXI(T) 2
T=t-B

t 2

fC(y(t+l))< f(y(O)) - C(l-c4(B+l)A 3) I Iz(T) . (s5.10)
T=O
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If we choose a small enough, so that 1-a(B+l)A3 >0, we can easily show that z(t)

and consequently y(t) - x i(t), converge to zero. If we take any limit point x* of

{x ( t ) }, it follows that X (x*)=O. Since {xi(t)} has the same limit points for
1

all i, we conclude that x* minimizes f. Q.E.D.

We have included the above proof because it provides the basis for extensions

involving overlapping processors and stochastic descent iterations to be discussed

later.

Example 4 (continued): A variation of the above proof may be used to prove convergence

for that example as well. More interestingly, the discussion at the beginning of this

section indicates that the effects of asynchronism are roughly proportional to the

cross-derivatives a2f . Accordingly, convergence may be guaranteed as long as
ax. ax.

the bound on t-TkJ(t) (which is a measure of asynchronism) is inversely proportional

to a bound on the cross-derivatives [35]. Intuitively, this provides a link between

communication requirements and the degree of coupling of the divisions of an organization.

Example 5 (continued): An argument similar to the proof of Proposition 5.1 has been

used to prove convergence of an asynchronous gradient projection algorithm for the

problem of optimal routing in a data network [46].

Let us now return to the proof of Proposition 5.1. It is based on the vector

y(t) which serves as a summary of the state of the algorithm at time t and involves

effectively a two-time-scale argument: taking a very small, we have y(t+l)wy(t) and

iteration (5.7b) corresponds to very slow changes. On the other hand, (5.7a) and
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(5.8) correspond to much faster variations: within a time period of B units,

x (t) - y(t) becomes of the order of a, no matter how large the initial difference.

This suggests the approximation of each xi(t) by y(t).

For the above specialization example, a meaningful choice of the aggregate

vector y(t) was not hard to guess. We now turn to the case of overlapping processors

where such a choice is less evident. For simplicity, we restrict to the case of total

overlap.

If we make a slight generalization of Example 6, we obtain the following model:

x 1(t+l) = L (t)zl(t) + lj(t)x(t) + ai(t)z (t) (5.11)
j=l 
j*i

z(t) = x (t)) (5.12)

For any fixed i,t, the coefficients ij (t) are nonnegative and sum to 1. Moreover

ii i ii -

if ij, fi (t)=O, VtOT., and 1(t)> >, if tET. Finally, j (t)> ->O, Viti.

Concerning z (t), we let

i =ax (xi(t)),

and

l>O, teTx

ci (t) = 

0 , tOT

which corresponds again to a distributed gradient algorithm, except that each

processor is updating all components of his estimate, thus leading to a certain duplica-

tion of computations.
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We would like to define an aggregate vector y(t) which summarizes the state

of the algorithm at time t. The argument following Proposition 5.1 suggests that

y(t) should be chosen so that y(t) - xi(t) becomes of the order of a fast enough,

no matter how large the initial difference is. Fortunately, this is possible.

Observing that (5.11),(5.12) are linear evolution equations, there exist scalars

c j(tIs), determined by the coefficients B j(t), such that

i (tl t n
x (t+l) = I E Dj(t js)aj(s)zj (s) +

s=l j=l

n ..
+ E &lj(tIO)xj(l) . (5.14)

j=l

Assume that t-TljIt)< B, Vi,j,t and that the difference between consecutive

elements of Ti is bounded. It can be shown [35] that lim ± (tjs) exists, for
t+co

any i,j,s, is independent of i and will be denoted by DJ(s). Moreover, convergence

takes place at the rate of a geometric progression and there exists some 6>0 such

that OJ(s)>6, Vj,s. We then define

n t-l n

y(t) = E cJ(O)xJ(1) + I I J(s)a(s)zJ(s) (5.15)
j=l s=l s = j=

Comparing with equation (5.14), we can see that this is the common estimate at which

all processors would converge if zj was ignored, for all j and for all times larger or
3

equal than t. Equation (5.15) leads to the recursion (compare to (5.9))

n )
y(t+l) = y(t) + X oJ(t)a (t)z3 (t) (5.16)

j=l

which is considerably simpler than (5.11),(5.12). Let us observe that y(t) depends

on the entire sequence of future coefficients ij (s), s>t and is therefore unknown at
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time t. This is immaterial, however, because y(t), is only an analytical tool used

primarily for simplifying the proofs of convergence results. In fact, an argument almost

identical to the proof of Proposition 5.1 shows that the same result is valid for this

example as well.
We have discussed at considerable length the simplest possible distributed

algorithms of a descent type, so as to focus on the main ideas involved. We now

mention briefly several directions towards which these results may be generalized.

Complete statements and proofs may be found in [35,43].

First, there is nothing particular about the cases of specialization or complete

overlap discussed above. Similar results can be proved under the assumption that

for each component, a possibly different subset of the set {l,...,n} cooperates in

updating that component. To keep the discussion simple, however, we only indicate

extensions for the specialization case. The results for the cases of total or partial

overlap are very similar.

Proposition 5.1 remain valid if (5.7b) is replaced by a descent assumption of

the form

x. (t+l) = xi(t) - 1i(x (t))-, teT11 i - i

i n
where ci: R n -R is a continuous function satisfying:

i _fx )
i) >i(X) > O, Vx

i Dx. -

<i~x Kxf(x)
ii i fx) , Vx, for some K>O

ax.

iii [ (x)j= 0 => x minimizes f.
i 
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A generalization to a stochastic descent algorithm with multiplicative noise, such

as

zi(t) = ci(xi(t))(l+w (t))

with w (t) white, is also possible.

More interesting distributed stochastic algorithms are obtained if the noise

appears additively rather than multiplicatively, e.g.

zi (t) = i (xl(t)) + w¢(t)

~~i i

where i. satisfies conditions (i)-(iii) above and the noise w (t) satisfies for all t

(i) E[w (t)IF t]= (5.17)

(ii) For some K, E[wi (t)2 IFt]< K(f(xi(t))+l)

where Ft is a a-field describing the history of the algorithm up to time t. Similarly

with centralized algorithms, convergence may be proved only if the step-sizes ac

ii i i 1
decrease with time. So, let us assume that a a (t)=l/t , teTi, where t is the number

iof times that processor i has received a measurement z. up to time t. Then, the

conclusions of Proposition 5.1 hold with probability 1. The proof is based on the

supermartingale convergence theorem and resembles the proofs of [40] for related

centralized algorithms.

Finally, if f is not convex, one may still prove convergence to a stationary

point, exactly as for centralized algorithms.
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Example 7: (continued) Several common algorithms for identification (e.g. the Least

Mean Squares algorithm, or its normalized version-NLMS)fall into the above framework.

Consequently, assuming that the input process u(t) is sufficiently rich and that

enough messages are exchanged, it can be shown that certain distributed algorithms

will correctly identify the system. A detailed analysis is given in [35].

There is a large class of important stochastic iterative algorithms for which

the condition (5.17) fails to hold. Very few global convergence results are available

even for centralized such algorithms [34,36] and it is an open question whether some

distributed versions of them also converge. However, as in the centralized case [37,

38] one may associate an ordinary differential equation with such an algorithm and

prove convergence subject to an assumption that the algorithm returns infinitely often

to a bounded region (see [35]). Such results may be used, for example, to demonstrate

local convergence of a distributed extended least squares (ELS) algorithm, applied

to the ARMAX identification problem in Example 7.

Recall now the time scale separation argument we introduced earlier. Intuitively,

for the algorithm to converge it is sufficient that the time scale corresponding to

the processor updates- which is in turn determined by the stepsize - is slow when

compared to the time scale at which new measurements are obtained. With a decreasing

step-size, processor updates become progressively slower. For this reason, convergence

may be proved even if the delays t-r J(t) increase together with t. In particular,

it is sufficient to assume that the delays in equation (2.3) increase with time slower

than some polynomial and still obtain convergence. More precisely, we require that

there exist B>O, 6>1 · such that, if t>B(n+l) , then TJ (t)> Bn , ij.

So far in this section we have implicitly assumed that the times that measure-

ments are received are deterministic, although unknown. For stochastic algorithms a
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new possibility arises: a processor may decide whether to acquire a new measurement

based on the current estimate x (t), on an old measurement z (t-l) or on any other

information pertaining to the progress of the algorithm. This results in T. (t)

being a random variable. For the specialization case convergence may be still proved

as long as the condition t-T±J(t)< B holds with probability one. Interestingly

enough, this is not always true in the case of overlap and more restrictions are needed

to guarantee convergence [35].

6. Convergence of Distributed Processes with Bayesian Updates

In Sections4 and 5 we considered distributed processes in which a solution is

being successively approximated, while the structure of the updates is restricted

to be of a special type. In this section we take a different approach and we assume

that the estimate computed by any processor at any given time is such that it

minimizes the conditional expectation of a cost function, given the information

available to him at that time. Moreover, we assume that all processors "know" -the

structure of the cost function and the underlying statistics, have infinite computing power,

and the quality of their estimates is only limited by the availability of posterior

information. Whenever a processor receives a measurement z. (possible containing an

earlier estimate of another processor) his information changes and a new estimate may be

computed. m
Formally, let X= R be the feasible set, (Q,F,P) a probability space and

f: Xxa+[O,o) a random cost function which is strongly convex in x for each w6t. Let

I (t) denote the information of processor i at time t, which generates a a-algebra

Fi C F. At any time that the information of processor i changes, he updates his
t

estimate according to

x (t+l) = arg min E[f(x,w)lF t] . (6.1)
xeX

Assuming that f is jointly measurable, this defines an almost surely unique, F -

measurable random variable [39. 
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The information I (t) of processor i may change in one of the following ways:

a) New exogenous measurements zi(t) are obtained, so that I (t) = (I (t-l),z.(t)).

b) Measurements zi3(t), jji, with the value of an earlier estimate of processor j are

obtained; that is,

(6.2)

Ii(t) = (Il(t-l), z(t))

c) Some information in I (t-l) may be "forgotten"; that is, Ii (t)C Ii (t-l)

i i
(or F CF t1)t t- 

The times at which measurements are obtained as well as the delays are either

deterministic or random; if they are random, their statistics are described by (Q,F,P)

and these statistics are known by all processors.

Case 1: Increasing Information. We start by assuming that information is never

forgotten, i.e. Fti D F Vi,t. Let f(x,) = ,Ix-x*(W)I 2, where x*: + Rm ist+l t

an unknown random vector to be estimated. Then,

xi Ct+l) = E[x*() IFt ]

i
and by the martingale convergence theorem, x (t) converges almost surely to a random

variable y . Moreover it has been shown that if "enough" measurements of type (6.2) are

obtained by each processor, then yl=yj, Vi,j, almost surely [30,41,44].If f is not quadratic

but strongly convex, the same results are obtained except that convergence holds

in the sense of probability and in the L 2(Q,F,) sense, where p is a measure equivalent

to P, determined by the function f [39]. However, this scheme is not, strictly

speaking, iterative, since Ii(t) increases, and unbounded memory is required.

Case 2: Iterative schemes

The above scheme can be made iterative if we allow processors to forget their

past information. For example, let



-41-

{x(t), z.(t)} if a measurement z1(t) is obtained at time t

{xi(t)}, otherwise

Let z =(t) xj(c.(t)), isj, T.(t)< t. Assuming that "enough" measurements of this

type are obtained by each processor, the disagreement x (t)-x j t) between processors

converges to zero as for Case 1 [39]. It has been also shown that x (t+l) - x (t) con-

verges to zero, for each i, but it is not known whether xi(t) is guaranteed to convergence

or not.
Even though this case corresponds to an iterative algorithm, it may be very

hard to implement: The computation of the minimum in (6.1) may be intractable. Also,

even if the processors asymptotically converge and agree, there are no guarantees

in general about the quality of the final estimate. There is one notable exception

where these drawbacks disappear, which we discuss below:

Case 3: Distributed Linear Estimation

Let f(x,w) = Ilx-x*(w) I , where x* is a zero-mean Gaussian scalar random

variable to be estimated. Suppose that at time zero each processor obtains measurements

i i
z~k = x* + wk, k=l, ...,mi (6.3)
Zi,k k k (6.3)

where wk are zero-mean Gaussian noises. We allow the noises of different processors

i
to be correlated to each other. Let I (0) = {z1 lk=l,...,m. No further measurements

i,k 1

of the form (6.3) are obtained after time zero. Subsequently each processor i receives

from time to time measurements z (t) x (T.(t)),T±(t)< t, of the other processors'
i ij i 

estimates and updates according to

x (t+l) = E[x*Il (0), zJ(t)] -

Tie timing and delay of these latter measurements is assumed to be deterministic. If

we make the assumption that an infinite number of measurements of each type z. is obtained

by each processor i, together with an additional assumption that essentially requires

that there exists an indirect communication path between every pair of processors

then it can be shown that x (t) converges in the mean square to the centralized estimate
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x* = E[x*lIl(O),...,In(O)],

which is the optimal estimate of x* given the total information of all processors [35],[39].

What is interesting about the above algorithm is that it corresponds to a

distributed iterative decomposition algorithm for solving the centralized linear

estimation problem. The minimization of the cost criterion over a space of

n
dimension X mi, in general, is substituted by a sequence of minimizations

i=l 1

along (mi+l)-dimensional subspaces.

i i
If the noises wk, w9, isj, are independent the algorithm converges after

finitely many iterations. In general, the algorithm converges linearly but the

rate of convergence depends strongly on the number of processors and the angles between

certain subspaces of the underlying vector space of random variables (essentially on the

correlations between wk and W3 i'j, see [35],[39]).
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