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Abstract 

Thermal energy from groundwater in abandoned, flooded, coal mines has the potential to make a 

significant contribution to decarbonisation of heat and Net-Zero carbon emissions. In Glasgow, UK, a 

subsurface observatory has been constructed for mine water heat and heat storage research. We 

synthesise geological and mine water resource findings from a four-year period of borehole 

planning, drilling, logging and testing.  The heterogenous bedrock is typical of the Scottish Coal 

Measures Group, whereas superficial deposits are more sand- and gravel-dominated than 

prognosed. Mine water boreholes encountered workings in the Glasgow Upper, Glasgow Ell and 

Glasgow Main coal seams, proving water-filled voids, mine waste, fractured rock mass and intact 

coal pillars with high yields on initial hydrogeological testing. Whilst the depth and extent of mine 

workings delineated on mine abandonment plans proved accurate, metre-scale variability was 

expected and proved in the boreholes. A mine water reservoir classification established from the 

observatory boreholes highlights the resource potential in areas of total extraction, stowage, and 

stoop and room workings. Since their spatial extent is more extensive across the UK than shafts or 

roadways, increasing the mine water energy evidence base and reducing exploration risk in these 

types of legacy workings is important.  

Net-Zero carbon emissions targets require significant progress to be made in the decarbonisation of 

heat. UK and devolved Government policy has shifted to meet Net-Zero targets by 2050 or earlier 

(e.g. HM Government 2018, 2020; Scottish Government 2020; CCC 2019) and whilst significant 

progress has been made in the decarbonisation of electricity (HM Government 2020), 

decarbonisation of heat presents a more difficult policy and implementation challenge (Abesser 

2020; POSTNOTE 2020). For example, in 2019 48 GW of renewable electricity capacity was available 

in the UK representing 37 % of generation, whereas 90% of homes used fossil fuels for heating, 

cooking and hot water (HM Government 2020) with peak heat demand calculated at 170 GW 
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(Watson et al. 2019).  In 2020, the UK Government’s energy white paper included major ambitions 

to transform heating of homes to clean energy sources including a target of installation of 600,000 

heat pumps a year by 2028 (HM Government 2020). However, the value of the subsurface for 

decarbonisation needs to be better understood by decision-makers, progressing by delivering 

scaled-up pilot schemes, independent environmental monitoring and improved characterisation 

(Stephenson et al. 2019). Geothermal energy and subsurface heat storage have significant potential 

for delivering low-carbon heat. Low enthalpy ‘shallow geothermal’ heat recovery from and seasonal 

thermal storage in abandoned coal mines offers one such opportunity (Gluyas et al. 2018; Adams et 

al. 2019; Stephenson et al. 2019).  

Many of the UK’s towns and cities are underlain by abandoned coal mines. Upon closure and with 

the cessation of dewatering, the mines have become naturally flooded with groundwater. The man-

made workings and rock mass surrounding them have a higher permeability compared to unmined 

rock due to still-open and partially-collapsed mined voids and collapse-related fractures forming an 

‘anthropogenically-enhanced aquifer’. Banks et al. (2004, 2009, 2017) and others have documented 

that mine water can be abstracted through a borehole and passed through a heat exchanger and 

heat pump to provide space heating and cooling for homes and businesses, before being returned 

within a sealed loop to a different part of the mine system via a second borehole (Figure 1). 

Important factors for mine water heat resources include the presence and connectivity of flooded, 

abandoned mine workings, groundwater flow directions and recharge, pumping rate information, 

temperature, water levels and chemistry (e.g. Ramos et al. 2015, Loredo et al. 2016; Banks et al. 

2017; Farr et al. 2020), as well as land availability and heat demand. Flooded mine workings can act 

as a thermal reservoir, with the potential to provide both heat recovery and heat storage, as 

required. The legacy of coal mining can thus be turned into a sustainable opportunity for low-carbon 

heating.  

Small numbers of successfully-operating mine water geothermal and heat storage schemes have 

proved the concept of using this decarbonised energy source for heating and cooling of buildings 

(e.g. UK, Banks et al. 2017, Lanchester Wines 2021; Heerlen Netherlands, Verhoeven et al. 2014; 

Asturias Spain, Loredo et al. 2016; Springhill Canada Jessop 1995; USA Watzlaf and Ackman 2006). 

An increasing number of mine water energy schemes are in exploration and operational stages in 

the UK (e.g. Athresh et al.2015; Banks et al. 2017; Brabham et al. 2019; Coal Authority 2020).  

However, the very large resource potential (e.g. Gillespie et al. 2013; Preene and Younger 2014; 

Ramos et al. 2015; Bailey et al. 2016; Farr et al. 2016, Gluyas et al. 2019) has yet to be widely 

exploited. Commercial demonstration of mine water heat technology is critical in breaking 
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economic, regulatory, awareness and acceptance barriers to this widespread utilisation (NERC et al. 

2019), though making the business case can be challenging (Townsend et al. 2021) especially with 

uncertainty over support mechanisms and policy (e.g. the Renewable Heat Incentive). Underpinning 

geoscientific research and innovation is essential, for enhancing process understanding, providing an 

open evidence base towards social acceptance, defining cost models and reducing risk (NERC et al. 

2019; Stephenson et al. 2019). As one of a growing number of underground laboratories worldwide, 

the UK Geoenergy Observatory in Glasgow (‘Glasgow Observatory’, Figure 2) is a unique facility for 

investigating shallow, low-temperature mine water thermal energy resources in abandoned and 

flooded workings at depths of around 50-85 m, together with baseline and induced environmental 

change. 

The scientific rationale for the Glasgow Observatory is multi-faceted. Experiences of existing mine 

water energy schemes raise a number of technical challenges such as clogging and precipitation of 

pipe work, pumps and heat equipment (Banks et al. 2004, 2009; Gzyl et al. 2019), resource 

sustainability, thermal and chemical breakthrough (Preene and Younger, 2014; Verhoeven et al. 

2014; Burnside et al. 2016 a,b) and optimal arrangements for abstraction-re-injection (Preene and 

Younger, 2014; Banks et al. 2017). Regulatory approvals and public engagement require an improved 

knowledge base on subsurface and surface environmental monitoring and impacts (e.g. Preene and 

Younger 2014 ‘environmental and regulatory risk’). For example, on the groundwater and surface 

water chemistry impacts (Banks et al. 2009; Burnside et al. 2016 a,b), stability of mine workings 

(Younger 2014, Todd et al. 2019) or potential movement of mine gas (Younger 2014). As an 

infrastructure designed for these kinds of mine energy challenges, the Glasgow Observatory 

comprises 12 boreholes, 4 research compounds, surface monitoring equipment and open data 

(Monaghan et al. 2019). 

Whilst Dennehy et al. (2019) provide a comprehensive overview of drilling into abandoned mine 

workings, there is a paucity of literature on the exploration and uncertainties of drilling into highly 

variable legacy workings for mine water heat resources. Pre-drill prognosis of the state of collapse of 

a mine working and mine water reservoir (void, waste, fractured rock, intact coal) at a specific 

location are difficult to predict from legacy data, likely to vary on a metre-scale, yet critical as they 

strongly influence the hydraulic properties (e.g. Younger and Robins 2002) that are key for the mine 

water resource and its sustainability. In addition, Andrews et al. (2020a) illustrate sedimentation of 

coal breccias and laminated muds resulting from groundwater flow within a collapsing pillar and stall 

mine working, highlighting an additional time-dependent process that affects hydraulic properties of 

legacy mines and potential mine water resources. Thus, whilst mine workings are commonly well 
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mapped at abandonment, the knowledge base on how their condition has evolved since flooding is 

limited, with likely consequences for hydraulic connectivity and sustainable hydraulic yields. 

Construction of the Glasgow Observatory provides a pre-drill to post-drill exemplar. This paper 

synthesises and interprets geological and borehole data through the exploration and appraisal 

stages and provides a basic characterisation of the anthropogenically-altered rock mass, including a 

mine water reservoir classification.  

Description of the Glasgow Observatory 

The Observatory is located in an urban setting in Glasgow City and South Lanarkshire (Figure 2), with 

commonalities in its coal mining history, geology and legacy of industrial land use with other parts of 

the UK and beyond. It has proceeded through a four-year exploration and appraisal workflow (Figure 

3; Starcher et al. 2021) and is at the scale of a small mine energy scheme, such as might supply a 

municipal or industrial building. Designed to anticipate future research, the infrastructure offers 

flexibility to test response to induced changes of flow, heat etc. that would not be possible within 

commercial schemes.  

The majority of the Glasgow Observatory infrastructure is located at Cuningar Loop, Rutherglen 

(Figure 2, Table 1). Five boreholes are screened across the Glasgow Upper or Glasgow Main mine 

working or coal (Figure 4, Table 1) to depths of around 50 m and 85 m respectively (Barron et al. 

2020 a,b; Monaghan et al. 2020 a,b; Starcher et al. 2020 a,b). The boreholes are arranged in a 

triangle to characterise depth and spatial variability in 3D over 10-100’s m (Figure 2). A sixth 

borehole (GGA02) was drilled as a mine water borehole but encountered problems in the final 

stages of construction and is now a cased, sensor testing borehole to around 67 m depth (Monaghan 

et al. 2020c). The mine water boreholes are equipped with sensors for time-series monitoring of the 

subsurface. Downhole electrical resistivity tomography (ERT) sensors (Figure 5), fibre-optic cables for 

distributed temperature sensing (DTS) and hydrogeological data loggers have started to enable time-

series monitoring to characterise physical, chemical and flow heterogeneities.  Permanent 

infrastructure for the abstraction and re-injection of mine water and extraction or storage of heat is 

planned to be installed in four of the mine water boreholes in 2021. 

Five boreholes at Cuningar Loop with drilled depths between 16 - 45 m are screened in shallow 

superficial deposits and bedrock above the Glasgow Upper mine working (Figure 4, Table 1; Elsome 

et al. 2020; Shorter et al.2020 a,b; Walker-Verkuil et al. 2020 a,b). The boreholes record ongoing 

baseline environmental change, will provide evidence of any impacts from pumping mine water and 
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give an opportunity for developing new monitoring technologies. The boreholes are located in four 

fenced research compounds that provide space for the handling of borehole equipment and 

operation of surface monitoring systems (Sites 1,2,3, and 5; Figures 2, 5).  

The deepest borehole at the Glasgow Observatory is a 199 m cored, unmined reference section at 

Dalmarnock, some 1.5 km WNW of Cuningar Loop (Figure 2). The borehole was geophysically logged 

and imaged and core-scans are available (Kearsey et al. 2019a). This borehole was fully cased in early 

2019 and a string of five downhole seismometers provide baseline monitoring, feeding into the UK 

national seismic monitoring network. Baseline environmental monitoring of soil chemistry, soil gas, 

ground motion, surface and groundwaters has been ongoing since 2018. Open data available from 

ukgeos.ac.uk provides a growing body of data releases (e.g. Bateson and Novellino 2019; Barkwith et 

al. 2020; Fordyce et al. 2020) and time-series monitoring data over the 15+years lifetime of the 

Glasgow Observatory. Geological models are also available (Arkley 2019; Burkin and Kearsey 2019).  

Pre-drill geological and mining legacy 

datasets  

Gathering and synthesis of geological, mining and hydrogeological legacy information prior to 

borehole drilling was critical in planning the borehole location, design and prognosed target 

intervals.  

Superficial and artificial deposits 

The bedrock succession of eastern Glasgow is overlain by up to 40 m of glacial and post-glacial 

Quaternary deposits. The thick accumulations infill a broadly NW-SE trending channel of incised 

bedrock following the modern-day River Clyde (Browne and McMillan, 1989; Forsyth et al. 1996).  

The succession commonly comprises variable thicknesses of Devensian glacial till overlain by glacio-

fluvial sand and gravel. Widespread clay and silt of post-glacial raised marine deposits are overlain 

by sand, gravel, clay and silt of  estuarine and fluvial deposits (Browne and McMillan 1989; Forsyth 

et al. 1996; Finlayson et al. 2010). A range of modelling has been undertaken to represent the 3D 

distribution of the superficial deposits at city scale (Monaghan et al. 2014; Kearsey et al. 2015, 

2019b) with an updated pre-drill model presented in Arkley (2019).   

Made, filled and landscaped ground is widespread from a variety of prior industrial land use, in some 

places 10-15 m thick. Former land use and made ground at Cuningar Loop includes a water works 
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(northern end), colliery waste (southern end) and widespread up to c. 10 m thick cover of building 

demolition rubble added in the 1960’s (Ramboll 2018a). At Dalmarnock, in the immediate vicinity of 

borehole GGC01, legacy boreholes indicated the made ground was expected to be around a metre 

thick. Several sites within 500 m of GGC01 are undergoing remediation of land contamination of the 

shallow subsurface (e.g. Bewley and Sojka 2013; Farmer et al. 1999) resulting from a multiplicity of 

former industrial land uses (Ramboll 2018b; Watson and Westaway 2020). 

Bedrock 

The Glasgow Observatory is located on the western side of the Central Coalfield of the Midland 

Valley of Scotland, an area formerly extensively mined for coal (Clough et al. 1926; Forsyth et al. 

1996). The area is underlain by the approximately 300 m thick Carboniferous Scottish Upper, Middle 

and Lower Coal Measures formations, comprising cyclical sedimentary sequences of sandstone, 

siltstone, mudstone, root-bearing paleosol (‘seatearth’) and coal (more detail in Forsyth et al. 1996; 

Hall et al. 1998). Interpreted to have been deposited in dominantly fluvio-deltaic coastal plain and 

coal swamp environments, rare beds with marine fossils signify occasional marine incursions 

(Forsyth et al. 1996).  Fossil beds such as the Cambuslang Musselband (or ‘Marble’) and centimetre-

scale ironstone interbeds and nodules form subsidiary lithologies.  

The Glasgow Upper, Glasgow Ell and Glasgow Main coal seams are commonly the thickest in the 

area, frequently between 1-1.5 m in thickness (Hall et al. 1998). Mine plans and records from the 

Farme Colliery that extended under Cuningar Loop summarise the Glasgow Upper as commonly 1.3 

m thick, soft and ‘wet’ due to underlying impermeable claystone (Findlay et al. 2020). A type section 

of the Glasgow Ell coal is  1.09 m thick and the Glasgow Main at 1.35 m thick. 

Within 5 km of the Glasgow Observatory location, the bedrock succession is cut by normal and 

oblique-slip faults on a variety of trends.  The NW-SE trending Dechmont Fault is a major, long-lived 

structure (Hall et al. 1998), and other WNW-ESE to W-E trending faults subdivide the succession into 

several kilometre-wide fault blocks (BGS 1992, 1993). Faults on similar trends to the larger 

structures, and N-S trending faults further cut the succession. Faulting dissects open folding within 

the strata. Situated north of an easterly-trending syncline cored with the Upper Coal Measures, the 

rocks at Cuningar Loop dip around 1-3° to the SW (BGS 1992, 2008; Glasgow Ell mine abandonment 

plan ‘1 in 60’). The city-scale, faulted 3D geological model (Monaghan et al. 2014; Kearsey et al. 

2019b) was updated to a pre-drill bedrock and mine model by Burkin and Kearsey (2019) during 

definition/preliminary survey stages of the Glasgow Observatory.  
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Mining history and borehole planning 

Mining information was gathered from multiple sources, including datasets openly available via The 

Coal Authority online viewer and via inspection of The Coal Authority archives for additional records 

(plan scans, pumping records, shaft records). The British Geological Survey (BGS) also holds archives 

of coal information (borehole records, coal properties information), and industrial heritage 

publications which contain vital background information  (Findlay et al. 2020). The knowledge of 

former miners, mine surveyors and engineers can inform how mines were left on abandonment and 

how they may have evolved since closure, exemplified at Heerlen (Mine Water Good Practice Guide, 

2013). Mining information for the Glasgow Observatory benefitted from knowledge of a former 

central Scotland, Coal Board mining surveyor employed by BGS (e.g. McLean 2018). Within the 5 by 

4 km area surrounding the Glasgow Observatory, mine abandonment plans from 1810–1934 record 

the workings of eight coal seams from the Middle and Lower Coal Measures formations. Extents, 

depths, mining type, stone and coal roadways etc. have been digitised by BGS from the mine 

abandonment plans and used in the geological and mine models of the area (Burkin and Kearsey 

2019, Monaghan et al. 2014; Kearsey et al. 2019b).  

Under the Cuningar Loop, seven coal seams were worked from the Farme Colliery between 1805–

1928 (Findlay et al. 2020). A range of mining types are recorded on the mine abandonment plans 

including stoop (coal) and room (void) (pillar and stall) workings and ‘total extraction’ areas. The 

latter were marked as stoop and room workings on 1880’s plans followed by removal of the pillars 

(pillar ‘robbing’) by the 1930’s plans (Figure 6), as opposed to longwall or shortwall mining methods. 

In total extraction areas without roof support, collapse to goaf (fractured rock) is expected to have 

occurred close to the time of removal of the pillar support (NCB 1975).  Pillars in the Glasgow Upper 

coal seam have a pillar width/height ratio of around 3 to 10.  The access shafts for the Farme Colliery 

were located to the SSW of the Glasgow Observatory boreholes, adjacent to what is now 

Downiebrae Road (Figure 2). One of the mine shafts was grouted and plugged in 2013 (Ramboll 

2018a, p. 36). Shaft ‘no 4 pit’ is situated 220 – 300 m to the east of the Glasgow Observatory 

boreholes, close to the River Clyde.  

Legacy borehole records from Cuningar Loop (e.g. BGS borehole numbers NS66SW BJ579, BJ583, 

BJ631) indicate the presence of voids, fractured rock with cavities, loose coal, loose or packed waste 

and stowage. Stowage is a term used for material used for backfill of mine workings during mining, 

as means of waste disposal and roof support. Stowage is likely to include a range of altered and 

stained clast types. ‘Waste’ recorded on legacy borehole records may include stowage, but it may 

also be collapsed roof material (goaf) or floor heave material. No pumping records have been 
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located from the Farme Colliery or immediate vicinity. High and artesian water levels measured in 

boreholes penetrating the Glasgow Upper mine working are noted in some legacy data (e.g. NS66SW 

BJ579 in 1979), giving some clues about the hydraulic regime and notable for planning borehole 

drilling and construction.  

Mine abandonment plans on several of the seams show that the Farme Colliery workings extended 

northwards under the River Clyde and were connected to a number of other collieries under the 

Clyde to the south-east (e.g. Haugh Pit, Westhorn). In turn these collieries were connected to the 

east, south and possibly west (e.g. Stonelaw, Eastfield pits; image of extents in Monaghan et al. 

2017, p. 20). Thus, depending on final abandonment and collapse state, substantial potential 

hydraulic interconnectivity of mine workings exists over kilometres-scale.  

The NW–SE trending fault shown on the BGS 1:10,000 scale geological map (BGS, 2008) at Cuningar 

Loop is derived from the abandonment plans through the seams (Figure 6, top right corner of each 

plan image). Smaller faults with throws of c.0.6 – 3 m on N, NW and WNW trends are common on 

the mine abandonment plans (Figure 6), but it is not clear if, or how many, of these smaller faults are 

connected between seams. There are a number of stone roads between seams (e.g. Glasgow Ell to 

Glasgow Main on the eastern side of Cuningar Loop), and former roadways within the coal workings 

are marked on a number of abandonment plans. The Glasgow Upper plan shows a number of 

‘wants’ i.e. sandstone channel washouts of the coal, most notably a NNE-trending ‘want’ between 

Glasgow Observatory sites 1 and 3 (Figure 4). Mining records document a clean boundary to the 

sandstone want, the coal thickness doubled in some places at the side of the want, and stone roads 

across the want recorded a coarse, pebbly base (Findlay et al. 2020, p. 62-63).  

Coal mining is not recorded in the mine abandonment plans for the site of the 199 m deep GGC01 

borehole at Dalmarnock. However, based on plans to the east and shafts to the west, unrecorded 

mine workings were considered possible or probable, both on the Coal Authority online viewer and 

by BGS (Kearsey et al. 2019a). Possible mine workings were therefore considered when planning this 

borehole, which provides the cored and reference section for the Glasgow Observatory.  

Implications for borehole planning 

The pre-drill borehole planning for the Glasgow Observatory targeted areas of both stoop and room 

and total extraction mine workings. This contrasts with existing mine water energy schemes that 

target roadways and shafts (Verhoeven et al. 2014; Athresh et al. 2015; Burnside et al. 2016 ab; 

Banks et al. 2017) due to their likely very high hydrogeological yields for heat recovery. The rationale 

for the targets at the Glasgow Observatory included (a) lack of suitable land available over shafts and 
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roadways and (b) different types of mine working are favourable for a research infrastructure to 

characterise potentially differing responses within these types of workings that are spatially 

extensive across the UK. For example, the heat dispersion characteristics of a fractured rock mass or 

mine waste are likely to be important for heat storage research.  

Three of the mine water boreholes were planned to target the uppermost worked coal seam, of the 

Glasgow Upper Coal at c.50 m. This is because for mine water heat resources, construction and 

operational costs are likely to be lower if the shallowest working is targeted, which may offset the 

gain of higher temperatures of deeper workings (e.g. Banks et al. 2017 note likely cost benefit of 

raising a pump to shallower levels). Three boreholes were also planned to target the third shallowest 

mineworking, of the Glasgow Main Coal at c. 85 m. The rationale was to provide depth variability, 

complexity in potential pathways for abstraction/re-injection and thermal breakthrough research. A 

significant consideration was also that the Glasgow Main Coal has a sandstone roof, meaning the 

mine working was thought more likely to be an open void or collapsed rock mass containing 

significant permeability. In contrast, the intervening Glasgow Ell Coal generally has a mudstone roof 

and was predicted to have more likely collapsed with resultant low permeability expected.  

The error in georeferencing scans of old, cracked mine abandonment plans and the original 

surveying error was understood to be around 5 – 10 m in XY, larger than the scale of stoop and room 

workings recorded on the plan  (contrast Figure 6a and 6b). This led to significant uncertainty that 

any particular borehole position would hit an intended target. Nevertheless, for a target in stoop and 

room workings the borehole was positioned apparently in a ‘room’ (GGA04). For a borehole 

targeting a deeper mine working, borehole positioning was in a ‘stoop’, to reduce drilling cost and 

risk (GGA05).  

Environmental regulation and protection played a significant role in the design of the boreholes, 

along with scientific considerations. Agreed through the planning permission process and in 

discussion with the environmental regulator (Scottish Environment Protection Agency; SEPA), 

separate borehole casings were installed through the made ground, superficial deposits and bedrock 

sections of all the Glasgow Observatory boreholes at Cuningar Loop, with the annulus of the 

different casing sections grouted before the next section was drilled. This was to be done to prevent 

the mixing of groundwaters from different lithologies, which could occur if vertical flow paths were 

created during drilling. The boreholes were to be screened only across the target interval, with the 

annulus fully sealed with grout above the screen, so hydrogeological observations related only to the 

target interval. Finally, to preserve the in-situ conditions for scientific research, and to minimise any 

environmental impact should one mine working contain water of much poorer quality, the Glasgow 
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Upper and Glasgow Ell mine workings were planned to be sealed with a plug of grout before 

progressing to the Glasgow Main mine working target. This would be required until water chemistry 

samples taken from the mine workings indicated an interconnected mine water body.  

Results: borehole drilling and construction 

Comprehensive descriptions of the borehole drilling, casing and grouting, the as-built design and the 

lithology and stratigraphy of each Glasgow Observatory borehole is detailed in Barron et al., (2020 

a,b), Elsome et al. (2020), Kearsey et al. (2019a), Shorter et al. (2020 a,b), Monaghan et al. (2020 

a,b,c), Starcher et al. (2020 a,b), Walker-Verkuil et al. (2020 a,b).  Some key aspects are summarised 

here.  

All boreholes had the same initial drilling diameter of 880 mm (34 ¾ “) for the made ground section, 

which was drilled using a piling rig with auger. The superficial deposits and bedrock sections had 

progressively smaller drilling diameters, and the drilled diameter at total depth varied between 

environmental baseline monitoring and mine water boreholes (Table 1). The open-hole superficial 

and bedrock sections at Cuningar Loop used reverse circulation, rotary drilling as standard for good 

sample recovery and to prevent loss of flush into the mine workings. Direct circulation with rotary 

drilling and duplex drilling (drilling while casing) was used when difficulties were encountered, either 

with clogging of the bit in claystones, or in an unstable hole in sand and gravel within the superficial 

deposits (Table 1). The drilling rig used a collared drill string to run behind the bit, giving a stiffer 

bottom hole assembly and helping to produce straight and vertical boreholes. Verticality in the mine 

water boreholes was surveyed using a cased hole wireline inclination tool. All the mine water 

boreholes at Cuningar Loop were within two degrees of vertical, the base of the 199 m deep 

borehole GGC01 was 1.84 m from the vertical.  

Steel was used for the made ground and superficial deposits casings and uPVC Boode casing was 

used for the screened sections and bedrock sections. The annulus of each casing section was 

grouted using either Ordinary Portland Cement (OPC), Tarmac Pozament SP/F6 mix (made ground 

and superficial casings) and SP/F6 or bentonite cement pellets (bedrock section) above a rubber 

annular seal topped with a bentonite plug (mine water boreholes) or a simple bentonite plug 

(superficial and bedrock boreholes). A pre-glued gravel pack was used in all boreholes except those 

in a mine working void, to prevent ingress of fines and rock pieces etc. that could clog the slotted 

screen. The gravel size was chosen to correspond to the screen slot size. After problems were 

encountered with borehole GGA02 (Monaghan et al. 2020c), an optical camera and caliper wireline 
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log were run in the open hole mine water boreholes to determine the character of the mine 

working, associated fracturing and placement of the annular seal. This working information was not 

part of the planned data collection. The risk of open hole instability, time and cost constraints meant 

a more comprehensive wireline log suite was not in scope.  

Here we provide a synthesis integrating the twelve new boreholes with legacy data.  

Results: post-drill lithology and 

stratigraphy 

Superficial deposits 

The thickness of made ground in the 11 Cuningar Loop boreholes varied from 7.5 – 9 m, and was 0.6 

m in GGC01 at Dalmarnock (Figure 7). The composition at Cuningar Loop included brickwork, 

concrete sandstone cobbles and boulders, ashy sand, gravel, wood, clinker, glass, slate and plastic. 

This is consistent with the area being used for landfill following building demolition. Natural 

superficial deposits show thickness variability across Cuningar Loop from 26 – 40 m, though the 

precise position of the top of bedrock over weathered sandstone bedrock was difficult to ascertain 

in some boreholes (e.g. GGB05).  

In the superficial deposits section, the returns records from GGA03r and GGA07 reflect a change in 

drilling method from reverse circulation to direct flush. This had a significant impact on the returns 

such that these records are not utilised in this synthesis (Figure 7). Below the made ground, the 

natural succession comprised a sand and clay unit and a sand and gravel unit interpreted as the 

Gourock Sand Member. Three environmental baseline boreholes were screened at this interval. This 

unit was underlain by clay and silt of the Paisley Clay Member, up to 12 m thick. A c. 1 m thick sand 

and gravel interbed is notable in boreholes in the south and east of Cuningar Loop (e.g. GGB05).  

Legacy boreholes record variable thicknesses, from 0.7 m to over 12 m, of diamicton, boulder clay or 

glacial till at the base of the superficial deposits in the southern half of Cuningar Loop (e.g. NS66SW 

SE17585 C3 and C5). At the northern end of the Loop, glacial till is not recorded, with up to c.18 m of 

sand and gravel above the top of bedrock (e.g. NS66SW BJ2463) interpreted as the Broomhouse 

Sand and Gravel Formation (Arkley 2019). The Glasgow Observatory boreholes encountered more 

sand and gravel and less glacial till than was prognosed, for example around 1 m of till interpreted in 

GGA01, compared with over 6 m in NS66SW BJ579 15 m away. Boreholes GGA04 and GGA05 located 
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10 m apart returned significantly different successions below the Paisley Clay Member. GGA04 

returns were of nearly 12 m thick gravel and sand, whereas GGA05 encountered around 4 m of sand 

and gravel overlying 7 m of clay, silt, sand and gravel interpreted as glacial till. Taken together the 

legacy and new boreholes suggest a channelised sand and gravel deposit, interpreted as a southerly 

extension of the Broomhouse Sand and Gravel Formation.  The sand and gravel caused some 

unexpected drilling problems (Starcher et al. 2021).  

A similar succession of glacial till, fluvio-glacial sand and gravel, raised estuarine clay, and alluvial 

sand of 30.5 m thickness was observed in borehole GCC01 at Dalmarnock (Kearsey et al. 2019a). 

More widely, the superficial deposits succession across the Glasgow Observatory is typical of the 

Quaternary succession in the River Clyde valley.   

Bedrock  

The bedrock sections of the Glasgow Observatory boreholes are typical of the Scottish Coal 

Measures Group comprising interbedded claystone, siltstone and sandstone with coal, palaeosols 

with roots, ironstone beds and nodules, and fossil beds (Kearsey et al. 2019a; Barron et al. 2020 a,b; 

Monaghan et al. 2020 b,c; Starcher et al. 2020 a,b; Figures 7, 8). Variability between boreholes is 

notable, for example the interval above the Glasgow Upper coal is commonly sandstone-dominated 

in legacy boreholes, GGA01 and GGA02. However, in GGA07 and GGA08 the interval was claystone-

siltstone dominated (Figure 7), possibly representing overbank deposits to fluvial channels or 

interdistributary bays. The interval between the Glasgow Upper and Glasgow Ell coals is typically 

mudstone dominated, with a heterolithic interval including the Cambuslang Musselband between 

the Glasgow Ell and Glasgow Main coals (Figures 7, 8). The thickness of the coals shows some 

variability, for example the Glasgow Upper coal as recorded varied from 1.14 m in GGA04 to 1.7 m in 

GGA07, consistent with mining records and legacy boreholes.  

Results: Post-drill mine workings 

Considerations for drilling practice 

Recognising mine workings when drilling and characterising them accordingly is evidently critical to 

realising a mine water resource. Open hole, reverse circulation rotary borehole drilling at the 

Glasgow Observatory utilised a range of features to identify mine workings (Table 2), in conjunction 

with an experienced drilling contractor. The characteristic features are similar to those listed by 

Dennehy et al. (2019, p. 317) for recording during open hole drilling of abandoned mine workings, 

though this was not published at the time of drilling. The mine workings prognosed were most 
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frequently identified by change in rate of penetration, character of rock chip returns and smell of H2S  

(Tables 2,3) or when coals were returned. Nevertheless, one instance of a packed waste was 

identified from an open-hole borehole optical camera log (GGA05, Glasgow Ell) and one mine 

working was not identified during drilling (GGA02 Glasgow Main). The large drill bit needed for the 

406 mm wide diameter boreholes may have impeded recognition of tightly packed or fully-collapsed 

workings (Starcher et al. 2021). Lessons learnt during construction of the first mine water boreholes 

proved the benefit using a borehole camera and caliper log on the open hole prior to casing, to both 

categorise the mine water reservoir, place the screened section and identify a smooth rock wall for 

placing of the rubber annular seal (Starcher et al. 2021).  

Sealing of the Glasgow Upper and Glasgow Ell mine workings in borehole GGA02 en-route to the 

Glasgow Main target took time (Monaghan et al. 2020c). The mine water chemistry results from the 

Glasgow Upper working in GGA02 and Glasgow Main working in GGA05 were critical in proving 

similar groundwater chemistries. This indicated an interconnected mine water body and meant 

during-construction sealing of the Glasgow Upper and Ell workings in later boreholes (GGA08) was 

not required for environmental protection and scientific reasons, saving time and cost.   

Variability encountered in target mine working intervals 

The Glasgow Observatory boreholes penetrated mine waste, open voids, fractured rock and intact 

coal in areas indicated on the abandonment plans as total extraction or stoop and room workings 

(Table 3, Figures 7 – 9; see details Barron et al. 2020 a,b; Monaghan et al. 2020 a,b,c; Starcher et al. 

2020 a,b). The variable character of the mine workings was not easily predicted from the mine 

abandonment plan. In contrast, the depths of the mine workings were well predicted by the mine 

abandonment plan spot heights (Table 3). The pre-drill borehole prognoses proved a good indicator 

for the depth of the Glasgow Upper and Glasgow Main workings. The first Glasgow Ell mineworking 

to be penetrated (GGA02) was around 6 m shallower than prognosed from the semi-regional model, 

but compatible with a mine spot height 30 m away, so updated prognoses were created for 

subsequent boreholes (Table 3). The knowledge gained on drilling into mine workings varied by 

seam and location:  

Glasgow Upper. An area shown on the Glasgow Upper mine abandonment plan as ‘total extraction’ 

contains some intact coal pillars as well as voids and waste (GGA07, GGA08; Figures 7-9). Around 

120 m away in a ‘total extraction’ area, a mine waste (stowage) was encountered (GGA01, GGA02). 

The areas of stoop and room workings on the abandonment plan encountered both coal and an 

interpreted fractured coal pillar (GGA05, GGA04 respectively) confirming that this coal had not been 

‘robbed’.  The main learnings from the six boreholes encountering the Glasgow Upper were that 
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there was more coal remaining as pillars than expected. Fracturing or disturbance above and below 

coal pillars is described below and in Table 3.  

Glasgow Ell. The Glasgow Ell coal seam is documented as 1.1 m thick on the abandonment plan, yet 

the boreholes penetrated one open void (GGA02) and two packed wastes (GGA05, GGA08) all 

around 0.7 m thick, indicating collapse of the mine working from the original worked thickness. All 

boreholes were in zones marked as total extraction on the Glasgow Ell abandonment plan, and 

collapse may be prevalent due to weakness of the mudstone-dominated roof. On the borehole 

camera log the wastes appear as a tightly-packed breccia with mudstone matrix, with a migrated 

void 2 m above in GGA08 (Figure 9).  

Glasgow Main. The abandonment plans indicate total extraction of the Glasgow Main coal. The mine 

workings were open voids with a sandstone roof and underlying wood/waste (GGA08) or disturbed 

zone (GGA05; Tables 2,3; Figure 9). There a number of former roadways marked on the 

abandonment plans within the total extraction area. The 3 m thick void-waste-wood returns and 

CCTV data from GGA08 indicated that a roadway had been penetrated with wooden supports still in 

place. In the third Glasgow Main borehole (GGA02), the mine working was not recognised during 

drilling and is interpreted as a clean collapse (Monaghan et al. 2020c).  

The cored, reference borehole GGC01 at Dalmarnock returned intact coals, proving that there were 

not unrecorded mine workings within an area judged pre-drilling as having possible or probable 

workings (Kearsey et al. 2019a).  

Mining-induced fracturing and disturbance  

Outcrops and opencast coal sites exposures highlight the complexity of natural faulting and 

fracturing in heterolithic Carboniferous successions (e.g. Andrews et al. 2020b), strongly influencing 

groundwater flow (O Dochartaigh et al. 2015). Mine plans themselves form a valuable source of fault 

information (Rippon 1984; Walsh and Watterson 1988; Huggins et al. 1995; Monaghan 2017). In the 

case of the Cuningar Loop, mine plans record c.0.6 – 3 m throw faults on N, NW and WNW trends 

that were mined across. Natural discontinuities have also been documented in the cored Glasgow 

Observatory borehole GGC01 with numerous thin veins that exploited the coal cleat system and 

sparse discontinuities in other lithologies including mineralised and non-mineralised joints, slip 

surface and faults (Kearsey et al. 2019a). A subset of the discontinuities were unsealed and 

potentially transmissive, commonly with brittle fracturing in sandstone and slip-surfaces in 

mudstone (Kearsey et al. 2019a). 
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Mining causes an additional complex series of anthropogenically-generated voids, fractures and 

collapses. The character and migration of fractures and collapses in relation to subsidence have been 

extensively covered in the mining literature, with control by style of mining, rock lithologies and 

thicknesses, natural fault/fracture system, stress fields etc. (e.g. NCB 1975; Healy and Head 1984; 

summary in Mason et al. 2019). The effects on groundwater flow and flow properties (Younger  and 

Adams), and any evolution through time for legacy mines is less extensively documented, 

particularly the implications for mine water heat abstraction and heat storage (Andrews et al. 

2020a). An initial summary of the observed fractures and disruption observed in the Cuningar Loop 

mine water boreholes from adjacent to the mine workings is therefore important for future 

hydrogeological testing, conceptual and numerical modelling of mine water resources.  

Borehole camera and open hole caliper logs from five of the boreholes indicate that mining-induced 

subvertical fractures and disrupted zones are restricted to within 1 – 2 m above and below the mine 

workings (Table 3, Figure 9). Fracturing and disturbance above mine workings is of variable 

character. In GGA05 where the borehole is interpreted  to have drilled through an intact coal pillar, 

the borehole camera log appears to show open fractures along horizontal bedding planes for around 

6 m above the Glasgow Upper coal (Table 3, Figure 9). In GGA04 and GGA08 where the borehole has 

drilled through what is interpreted as a fractured/disrupted pillar and part void/waste, the roof is 

disrupted for around 1 – 1.5 m above the Glasgow Upper mine working. Fracturing in the mudstone 

roof of the Glasgow Upper pillar/void is not easily discerned in borehole GGA07.  

Where a packed waste was encountered in the mine working, fracturing and void migration are 

observed for around 2 m above the roof strata of the Glasgow Ell mine working (GGA05, GGA08, 

Table 3, Figure 9). Finally, where a clear void is encountered in the Glasgow Main mine working, the 

sandstone roof strata appear undisturbed in GGA05 and with some fracturing for 1-2 m above the 

sandstone roof in GGA08 (Table 3, Figure 9).  

The mine workings’ floor zone shows 1 – 2 m of fracturing beneath the Glasgow Upper coal pillar 

and Glasgow Ell packed waste in borehole GGA05 (Figure 9). The floor of the Glasgow Upper mine 

working (a grey claystone) appears visibly disrupted beneath an intact pillar (GGA05) or part 

pillar/waste (GGA08), typically with a caliper kick of around 0.2 m below the floor (GGA04, GGA05, 

GGA08). Minor losses during annulus grouting of this interval were observed in GGA05. This could be 

a result of floor heave and lift of this weak lithology through swelling upon flooding of the mine 

and/or induced strains caused by ‘pillar punching’, both common phenomena being recognised in 

mine workings (Healy and Head 1984; Wuest 1992; Mason et al. 2019 page 129; Mo et al. 2020). The 

floor of the Glasgow Main mine working in borehole GGA05 exhibits 1.7 m of broken rock and a 
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basal caved zone (Figure 9) that was not detected or interpreted as mine waste from rock chip 

returns of siltstone and very fine sandstone. This disrupted section is tentatively interpreted to be 

have been affected by floor lift or heave.  

In order to gain a first understanding of whether this qualitative description of mining-induced 

fracturing and disturbance in the Glasgow boreholes is representative of the rock mass as a whole, 

comparisons can be made with the literature. During active mining in the UK, an observation-based 

‘ten times the height of the mine working rule of thumb’ was used to estimate acceptable bedrock 

cover thicknesses against migration of mine working voids/collapses to surface (Mason et al. 2019). 

However, the rule of thumb was varied between 2 – 7 times the worked thickness, or greater than 

10 times, depending on type of roof strata, residual voidage and several other factors (Mason et al. 

2019). Andrews (2019) documents the majority of deformation 5 – 15 m above collapsed c.2 m thick 

pillar and stall workings exposed in an opencast site, with some faulting interpreted to around 50 m 

above the collapsed workings. Well-established numerical methods estimating collapse mechanisms, 

fracturing and subsidence due to mining also exist (NCB 1975; summaries in Healy and Head 1984; 

Mason et al. 2019), highlighting the variability in mining-induced disturbance with strong control by 

lithology, mining method, number of seams mined etc. In the Glasgow Observatory boreholes, the 

Glasgow Upper mine working varies from 1.15 – 1.7 m thick, so the ‘ten times rule of thumb’ is 

substantially larger than the 1 – 2 m, possibly up to 6 m, zone of disturbance observed. However, the 

Glasgow Upper mine workings have not collapsed where drilled, with intact pillars and packed 

waste/stowage. The Glasgow Ell mine working has partially collapsed onto a packed waste with 

fracturing and void migration for 2 m in GGA08, smaller than the ‘rule of thumb’ would predict. 

Further evaluation is needed to understand whether the Glasgow Observatory boreholes likely typify 

the mining-induced disturbance around worked seams at Cuningar Loop based on the particular rock 

characteristics, or whether the borehole observed disturbance is not representative of the wider 

rock mass.  

In summary, the borehole observations from the Glasgow Observatory indicate there is commonly, 

but not always, a 1 – 2 m volume of rock mass above and below mine workings with properties 

significantly affected by fracturing or deformation. Possible implications for hydraulic properties 

include inclusion of fracture-dominated flow adjacent to pipe flow (voids) or porous media flow 

(loosely packed wastes or floor heave), adding to the overall hydraulic conductivity and storativity of 

the anthropogenically-altered rock mass. Increased hydraulic conductivity and storativity may in turn 

have implications for geomechanical, geochemical and geomicrobiological properties and evolution 

that have yet to be fully understood. For heat storage applications, the fracturing and deformation 
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zones adjacent to the mine working may form discontinuities useful for heat dispersion and heat 

recovery, adjacent to the high permeability mine working. Additional work is needed to better 

characterise the rock mass at field scale and to understand the processes that may enhance or 

reduce hydraulic conductivity since mine closure.  

 Hydrogeological borehole testing  

Having constructed the Glasgow Observatory boreholes, initial testing of the hydrogeological yields 

and responses was made to appraise future research uses and permanent heat abstraction and re-

injection infrastructure. The outcomes were critical, as for a mine water borehole, the yields and 

aquifer properties amount to success or failure for the resource.  

The initial resource appraisal began during the construction stages, firstly that the boreholes all 

encountered flooded mine workings and that mine water levels were commonly 1—3 m below 

surface ( Barron et al. 2020 a,b; Monaghan et al. 2020 b,c; Starcher et al. 2020 a,b). Secondly, initial 

indications of high yields were gleaned from borehole flushing and cleaning during construction, for 

example 38m3 was air-lifted from borehole GGA05 Glasgow Main mine working in 45 minutes 

(Barron et al. 2020b), proving a large yield before more structured test pumping.   

Test pumping was undertaken after all borehole construction had been completed to ensure that 

the groundwater regime was not affected by those activities (24 days minimum separation). It 

comprised 5-hour step and constant rate pumping tests on ten boreholes, including groundwater 

pressure, temperature and conductivity monitoring of surrounding mine water and environmental 

baseline boreholes. Full results are reported in Shorter et al. (2021). For the mine water boreholes, 

the majority of the 5-hour step tests pumped at c.5/10/15/20/25 L/s and the majority of the 5-hour 

constant rate tests were pumped at a maximum of 20 L/s. The length and rate of test pumping was 

constrained by water disposal. Geochemical analysis of mine water during borehole construction 

proved the groundwater to be suitable for disposal to the River Clyde and a SEPA discharge licence 

was granted for volumes of up to 369 m3 per day and maximum rate of 20 L/s after passing through 

tanks to allow settling of suspended solids.  

Monitoring of water level recovery after the test pumping and time-series data from the downhole 

hydrogeological data loggers provides more information on the initial resource characterisation and 

a basic understanding of the connectivity within the mine water and groundwater system (full 

results in Shorter et al. 2021). In the environmental baseline boreholes, initial monitoring has 

recorded variable water levels and variable yields from test pumping.  In four of the  mine water 

boreholes (GGA01, GGA05, GGA07, GGA08) flow rates of 20 L/s with limited drawdown between 
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1.49—4.24 m and temperatures around 12°C were achieved during 5-hour constant rate test 

pumping. Good connectivity within each of the Glasgow Upper and Glasgow Main mine workings, 

and a response in the Glasgow Upper with pumping of the Glasgow Main mine working was 

observed from water level responses (Shorter et al. 2021). This is promising for discerning responses 

during future research at the Glasgow Observatory on experimental timescales, with more complex 

linkages between different depth mine workings being useful for research on thermal breakthrough 

and tracers. 

Discussion 

Mine water reservoir classification 

Borehole drilling at the Glasgow Observatory encountered a range of flooded mine workings from 

open voids, loose and packed waste to fractured rock mass, that exert influence on the 

hydrogeological (hydraulic) properties and therefore the recoverable mine water resource. Here we 

propose reservoir classifications (Figure 10a -h).  

Open voids penetrated within total extraction areas of the Glasgow Main mine working (GGA05, 

GGA08; Figure 10e) and a void adjacent to a coal pillar in the Glasgow Upper mine working (GGA07) 

proved high yields on initial test pumping. The ‘open void’ reservoir classification is similar to shafts 

and roadways that are commonly targeted for mine water schemes (Verhoeven et al. 2014; Athresh 

et al. 2015; Burnside et al. 2016 a,b; Banks et al. 2017) and would appear to be the most promising 

for an economic mine water heat abstraction resource. Longer duration pumping is required to 

understand the local-regional connectivity and sustainability of the ‘open void’ reservoir at the 

Glasgow Observatory.  

High yields were obtained from test pumping of a mining waste (stowage) reservoir classification 

(Figure 10g) in GGA01 and with similar indications in GGA02 from an initial airlift during 

construction. These boreholes penetrate an area of total extraction area on the mine abandonment 

plan, highlighting that depending on recharge and connectivity, there is resource potential in 

spatially extensive areas, away from shafts and roadways. The properties of mining waste, stowage, 

collapsed roof material (goaf), or floor lift/heave material are likely to be very variable depending on 

lithology, groundwater flow, collapse and sedimentation processes since mining ended etc. (Figure 

10f,g,h), with more tightly packed wastes with smaller yields, perhaps offering resource potential for 

heat storage.  
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The fractured rock mass around or inside deformed coal pillars, or where there has been clean 

collapse of a mine working, or surrounding the mine working could also be considered types of mine 

water reservoir (Figure 10a,d). Borehole GGA04 is interpreted with a fractured sandstone roof and 

possibly a partially collapsed pillar. Initial 5-hour test pumping resulted in a yield of 15 L/s but with 

greater 20.97 m drawdown than in the other mine water boreholes (Starcher et al. 2020a). 

Boreholes penetrating this type of fractured rock mine water reservoir may form a resource for 

small-scale schemes, or may have potential for heat storage as they likely have enhanced 

transmissivity compared to unmined bedrock but not so great that heat would be dispersed too 

widely.  

These initial results from the Glasgow Observatory highlight that whilst there is great variability in 

mine water reservoir types, there is resource potential to be investigated within the spatially-

extensive stoop and room and total extraction mined areas underlying UK towns and cities, as well 

as the more spatially-restricted roadways and shafts. This is important in giving far greater spatial 

flexibility, as land may not be available, or heat demand not present at the locations of shafts and 

roadways. Boreholes or areas with relatively low yields, low connectivity and recharge may offer 

heat storage potential.  

Exploration risk in locating mine water boreholes 

In the same way that uncertainties in lithological heterogeneity, structural configuration and fluid 

flow pathways form risks for drilling successful conventional exploration wells for oil and gas or for 

groundwater, the same subsurface variabilities form risks for mine water boreholes. As discussed 

above, additional uncertainty comes from the complexity of the mine water reservoir and its 

evolution since mine closure. However, in contrast to other resources, mine abandonment plans, 

pumping records and historical knowledge provide greater certainty in terms of the resource 

location (extent and depth) and likely reservoir typologies. Given mine water heat technology is not 

widely developed, there are limited data available in the public domain on the ‘success rates’ of 

mine water boreholes in the UK, nor is there a framework for evaluating ‘success’ (since a borehole 

unsuitable for heat abstraction may be suitable for re-injection, monitoring or heat storage). Five of 

the six mine water boreholes at the Glasgow Observatory could be classified as successful in that 

they are screened across the planned mine working interval with proved yields on initial 

hydrogeological testing. Longer duration pumping and additional hydrogeological testing would 

further quantify the boreholes’ ‘success’. The sixth borehole (GGA02) encountered problems during 

annulus grouting resulting in it being a ‘dry’ sensor testing hole. Prior to those problems, two mine 

workings were recognised, but the Glasgow Main mine working target interval was not recognised 
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during drilling, the rock chip returns indicating a presumed clean collapse of the sandstone roof 

(Monaghan et al. 2020c).   

Lessons learned during the development of the Glasgow Observatory, based on the above synthesis 

of pre-drilling understanding and construction phase data, include: 

(a) The uncertainty in georeferencing old, creased mine abandonment plans can be greater 

than the metre-scale variability of stoop (coal) and room (void) workings, making it very 

difficult to locate a borehole to penetrate either target with certainty. A dynamic drilling 

program allowing for  responsive decisions is likely to increase success and reduce costs. 

For example, if some boreholes are planned for deeper workings and a stoop (intact 

coal) is encountered, carry on drilling. If a room (void)  or void and loosely packed waste 

are encountered, make that the target interval for that borehole; 

(b) Areas marked on the mine abandonment plan as ‘total extraction’ penetrated a large 

number of mine water reservoir classifications (open void, waste, fractured rock, clean 

collapse). With the exception of a void/wood/waste interpreted as a roadway on the 

abandonment plan, the variability was not predictable; 

(c) More intact coal pillars were encountered than expected in an area marked as ‘total 

extraction’. This is contrary to predictions of former miners and mine surveyors that in 

older mines more coal was taken or ‘robbed’ than was recorded; 

(d) For these open-hole, relatively wide-diameter boreholes, use of a borehole optical 

camera and caliper log was critical in characterising the mine water reservoir type, 

height and in reducing borehole construction risk (e.g. placing of the screened section 

and rubber annular seal). Cored boreholes could provide similar information, though 

with less certainty on accurate depths if core recovery was poor, or on changes in the in-

situ mine working condition as a result of drilling .  

Success rates for mine water boreholes are likely to vary dependent on the age and quality of mine 

abandonment plans, the depth to mine workings and the available hydrogeological information. 

With the available pre-drill information at the Glasgow Observatory location and known variabilities 

proved in the mine water reservoir from legacy boreholes, a near 100% ‘success’ rate for mine water 

boreholes to encounter voids was not expected. The Glasgow Observatory experience has shown 

drilling programmes designed to be responsive to conditions encountered during drilling are likely to 

be beneficial. Other approaches might include the drilling of narrow diameter preliminary boreholes 

(IGA and IFC 2014), however given the metre-scale variability of mine workings, subsequent 

appraisal boreholes would need to be co-located. Surface-based geophysical survey techniques may 
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offer useful insights (e.g. microgravity, electromagnetic, magnetic, electrical resistivity tomography 

or ground penetrating radar surveys in Dennehy et al. 2019), however these were not utilised pre-

drill in the Glasgow Observatory due to the building rubble and foundations in the thick made 

ground and 30 – 40 m thick superficial deposits.  

Conclusions 

Boreholes at a subsurface observatory for mine water heat and heat storage research in Glasgow 

penetrated made ground, a thick sequence of superficial deposits, bedrock and mine workings at 

depths of around 50 – 85 m . The bedrock succession exhibited typical heterogeneity of the Scottish 

Coal Measures Group, whilst glacial to post-glacial superficial deposits proved more sand- and 

gravel-dominated than prognosed.   

Whilst the depth and flooded nature of mine workings was reliably predicted by 1930’s mine 

abandonment plans and legacy boreholes, we document some of the challenges in predicting legacy 

mine workings and exploration risks. Mine water reservoir classifications proved include open water-

filled voids, waste-filled mine workings, coal pillars and the fractured rock mass. The reservoir 

extends beyond the mine working through 1 – 2 m zones of fracturing and disturbance. Longer 

duration pumping is required, but initial hydraulic yields with limited drawdown highlight that ‘stoop 

and room’ and ‘total extraction’ mined areas offer potential for mine water heat and heat storage 

resources. With a spatially extensive footprint across former UK coalfields, these types of legacy 

mine working allow for greater flexibility in locating boreholes than shafts and open roadways, so 

classifying and characterising the resource potential is important. With much still to be investigated 

on the hydraulic properties and thermal resources of flooded coal mines, this pre- and post-drill 

geological synthesis of drilling into mines for the Glasgow Observatory boreholes forms a basis for 

future work, increasing the evidence base around mine water energy for decarbonising heating and 

storage towards net-zero carbon emission targets.  
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Figures 

 

 

Figure 1 Simplified overview of abandoned, flooded coal mines in the subsurface utilised for 

shallow, low enthalpy mine water heat via abstraction and re-injection of groundwater, to heat 

homes and businesses ©BGS, UKRI 2021 

ACCEPTED M
ANUSCRIPT

 at NERC Library Service on June 11, 2021http://qjegh.lyellcollection.org/Downloaded from 

http://qjegh.lyellcollection.org/


 

Figure 2 (a) Location of the Glasgow Observatory in the UK (b) position of Observatory sites (c) 
detail of Cuningar Loop mine water and environmental baseline characterisation and monitoring 
boreholes. Ordnance Survey data ©Crown Copyright and database rights 2021. Ordnance Survey 
Licence No. 100021290 EUL. 
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Figure 3 Simplified timeline of the definition/preliminary survey, exploration, appraisal (App.) and 

start of development (Dev.) stages of the mine water heat research infrastructure of the Glasgow 

Observatory.  
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Figure 4 Cross-section through sites 1 and 3 of the Glasgow Observatory interpreted from new and 

legacy borehole data, mine abandonment plan records and using 3D geological models.  

©BGS,UKRI 2021 
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Figure 5 Images of (a) Drilling of the cored borehole GGC01 in 2018 (b) Installation of uPVC 

casing screen to mine water borehole with pre-glued gravel pack, electrical resistivity sensor 

cable (red sensors) and fibre optic cable. Photos a,b BGS©UKRI 2020 (c) research compound 

Site 1 at July 2020, background photo courtesy BAM Nuttall .  
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Figure 6. Labelled images of georeferenced scans of Farme Colliery mine abandonment plans in 

the vicinity of the Glasgow Observatory boreholes. Boreholes penetrating the coal seam/mine 

working are labelled. Plan scans © The Coal Authority 2021. All rights reserved. Borehole locations 

and labels by the authors. Borehole colours as in Figure 2c. 
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Figure 7 Lithostratigraphical correlation panel of the Glasgow Observatory boreholes. Cuningar 

Loop boreholes summarised and interpreted from open hole rock chips. GGC01 sedimentology 

core log at a different scale.  ©BGS, UKRI 2021 
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Figure 8 Interpretive 3D block diagram to illustrate borehole geometry, proved and interpreted 

mine working variability indicated by abandonment plans. No vertical exaggeration.  ©BGS, UKRI 

2021 
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Figure 9 Rock chip log, caliper log and camera optical log images from the Glasgow Upper to 

Glasgow Main coal seam/mine workings section of boreholes GGA05 and GGA08.  ©BGS, UKRI 

2021 

ACCEPTED M
ANUSCRIPT

 at NERC Library Service on June 11, 2021http://qjegh.lyellcollection.org/Downloaded from 

http://qjegh.lyellcollection.org/


 

Figure 10 a-h Mine water reservoir classifications observed at the Glasgow Observatory with 

indications of their influence on hydraulic properties. ©BGS, UKRI 2021
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Site Borehole 
number 

Borehole type Drilling method: 
superficial and bedrock 
sections 

Total 
drilled 
depth from 
drill 
platform 
level (m)  

Drilled 
diameter 
at total 
depth 

Total casing 
depth from  
as-built 
datum (m)  

Screen 
depth 
from as-
built 
datum 
(m)  

Screen type and 
internal casing 
diameter 

Description of screened interval  ERT, 
fibre 
optics 
installed 

1 GGA01 Mine water Superficial and bedrock: 
rotary, reverse circulation  

52.00 406 mm 
(16”) 

51.11 44.81 - 
48.41 

4 mm slotted 
with pre-glued 
gravel pack, 248 
mm ID 

Overlying sandstone roof and 
Glasgow Upper mine working 
waste  

Y 

1 GGA02 Sensor testing Superficial and bedrock: 
rotary, reverse circulation 

94.16 406 mm 
(16”) 

92.57 n/a 248 mm ID n/a. Grout filled Glasgow Main 
target interval/screen inside 
casing up to 67.2 m 

Y 

1 GGA03r Environmental 
monitoring 

Superficial: rotary, direct 
circulation 
Bedrock: rotary, reverse 
circulation 

41.72 374 mm 
(14 ¾“) 

40.81 37.00 - 
39.81 

3 mm slotted 
with pre-glued 
gravel pack, 146 
mm ID 

Sandstone bedrock, above 
Glasgow Upper mine working 

N 

2 GGA04 Mine water Superficial and bedrock: 
rotary, reverse circulation 

53.63 406 mm 
(16”) 

53.00 47.40 - 
51.00 

4 mm slotted 
with pre-glued 
gravel pack, 248 
mm ID 

Overlying sandstone roof 
(fractured?) and Glasgow Upper 
mine working position, coal and 
mudstone 

Y 

2 GGA05 Mine water Superficial: rotary, reverse 
and direct circulation 
Bedrock: rotary, reverse 
circulation 

88.50 406 mm 
(16”) 

88.00  83.60 - 
86.30  

4 mm slotted no 
gravel pack, 248 
mm ID 

Overlying sandstone roof and 
Glasgow Main mine working, 
void to mudstone floor 

Y 

2 GGA06r Environmental 
monitoring 

Superficial: rotary, direct 
circulation 

16.00 191 mm  
(7 ½”) 

13.76 11.79 - 
13.76 

1 mm slotted 
with pre-glued 
gravel pack, 
103.8 mm ID 

Sand and gravel in superficial 
deposits 

N 

3 GGA07 Mine water Superficial: duplex drilling,  
direct circulation. Bedrock: 
rotary, reverse circulation 

56.90 406 mm 
(16”) 

56.61 50.91 - 
53.61 

4 mm slotted 
pre-glued gravel 
pack, 248 mm ID 

Overlying mudstone roof and 
Glasgow Upper mine working, 
coal pillar and void  

Y 

3 GGA08 Mine water Superficial: rotary with 
reverse and direct 
circulation, and duplex 
drilling Bedrock: rotary, 
reverse circulation 

91.37 406 mm 
(16”) 

87.95 85.08 - 
87.70 

4 mm slotted 
pre-glued gravel 
pack, 248 mm ID 

Overlying sandstone/siltstone 
and Glasgow Main mine roadway 
void 

Y 
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3 GGA09r Environmental 
monitoring 

Superficial: rotary, direct 
circulation 

16.00 191 mm  
(7 ½”) 

14.33 11.43 - 
13.33 

1 mm slotted 
with pre-glued 
gravel pack, 
103.8 mm ID 

Sand in superficial deposits N 

5 GGB04 Environmental 
monitoring 

Superficial: rotary, direct 
circulation 

16.00 191 mm  
(7 ½”) 

12.99 10.09 - 
11.99 

1 mm slotted 
with pre-glued 
gravel pack, 
103.8 mm ID 

Sand and gravel in superficial 
deposits 

N 

5 GGB05 Environmental 
monitoring 

Superficial: rotary with 
reverse and direct 
circulation, and duplex 
drilling. Bedrock: rotary, 
reverse circulation 

46.00 374 mm 
(14 ¾“) 

45.39 42.39 - 
44.19 

3 mm slotted 
with pre-glued 
gravel pack, 146 
mm ID 

Sandstone bedrock, above 
Glasgow Upper mine working 

N 

10 GGC01 Seismic 
monitoring 

Geobore S coring 199.00 151 mm 198.30 n/a 76.6 mm ID n/a  N 

 

Table 1 Summary of Glasgow Observatory boreholes. Grid references, drilled and datum heights are given in open data from ukgeos.ac.uk. n/a=not 

applicable, Y=yes, N= no. ©BGS, UKRI 2021
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Feature Caused by:  Recognised during Glasgow 
Observatory borehole drilling 

Clean drop of core barrel Open mine working, void GGA02 – Glasgow Ell 
GGA05 – Glasgow Main 

Increased rate of penetration, 
increased cuttings returns 

Easier progress though mine ‘waste’  
(stowage/backfill, collapsed/fractured 
rock)  

GGA01 – Glasgow Upper 
GGA02 – Glasgow Upper 
GGA08 – Glasgow Upper 
GGA08 – Glasgow Ell 

Wobbling or ‘torquing-up’ of 
drill bit 

Sometimes indicates fractured rock 
mass 

GGA05 above Glasgow Main 

Smell of H2S (rotten eggs) 
and/or gas monitor alarm 

Mine gas/mine water Smell (alarm not activated): GGA01 – 
Glasgow Upper 
GGA02 – Glasgow Ell 
GGA05 – Glasgow Ell (faint) 
GGA05 – Glasgow Main 
GGA08 – Glasgow Upper 
GGA08 – Glasgow Main 

Loss of fluid flush If using direct circulation, fluid flush 
would be lost into the mine working 

Reverse circulation was used to 
avoid loss of flush 

Returns of iron and sulphur 
stained coal, mudstone, 
siltstone, sandstone (mixed 
lithologies) 

Returns of mine waste, may be loose 
to densely packed. Mixed, stained 
lithologies interpreted as stowage.  

GGA01 – Glasgow Upper 
GGA02- Glasgow Upper 
GGA08 – Glasgow Ell 
GGA08 – Glasgow Main 

Returns of wood, metal, rubber  Roof support, pit prop, roadway, 
trackway and similar (first confirm 
nothing has been dropped down the 
borehole) 

GGA02 – Glasgow Upper 
GGA08 – Glasgow Main 

Returns of stained, altered coal Edge of coal pillar or collapsed, 
fractured pillar 

GGA07 – Glasgow Upper 
GGA08 – Glasgow Upper 

Excess water at shakers Fractured rock above mine working  GGA08 – above Glasgow Upper  

Substantial kick(s) in caliper log  Void, waste or fractured rock GGA04 – above Glasgow Upper 
GGA05 – all 3 workings 
GGA07 – Glasgow Upper 
GGA08 – all 3 workings 

Voids, wastes, fractures, 
disturbed strata visible on 
optical camera 

 GGA05 – all 3 workings 
GGA07 – Glasgow Upper 
GGA08 – all 3 workings 

Table 2 Features used to recognise mine workings during open hole rotary drilling of the Glasgow 

Observatory boreholes at Cuningar Loop in 2019. ©BGS, UKRI 2021 
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Borehole – 
coal (in order 
of drilling) 

Prognosed drill 
depth. Glasgow 
Upper and Main 
target workings 
with error margin 
(m) 

Observed drilled 
depths of mine 
working (top-
base) from drill 
platform (m)  

Prognosed mine 
working type from 
mine plans 

Observed mine working type Observed mining-related collapse and fracture features 
above/below working 

GGA02- GU 45±4 47.80 – 48.95 Area of total extraction 
following earlier 
irregular-shaped 
worked areas and 
roadways 

Loose to moderately packed waste No data 

GGA02 - GE 77 70.16 – 70.76 Total extraction Open void No data 
GGA02- GMA 83 ±2 Not recognised Total extraction Not recognised - interpreted as cleanly 

collapsed working 
No data 

GGA01- GU 45±4  47.60 – 48.86 Area of total extraction 
following earlier 
irregular-shaped 
worked areas and 
roadways 

Loosely packed waste – mixed 
lithologies 

No data 

GGA05 – GU
+
 51 ±2 49.46 – 51.00 Stoop and room (coal 

stoop/pillar) 
Coal pillar Horizontal bedding planes for c.6 m above appear as open 

fractures. 
c.0.2 m disruption below pillar in claystone floor – caliper 
kick. Minor loss during annulus grouting. Fracture for c.2 m 
beneath Floor lift/heave or pillar punching? 

GGA05 – GE
+
 72* 71.90 – 72.6 Total extraction Tightly packed waste c.0.7m, not 

recognised during drilling, seen on 
optical camera and caliper log 

Fractures 1-2 m above and below the mine working from 
optical camera 

GGA05-GMA
+
 86 ±2 84.66 – 85.36 Total extraction Open, water-filled void. Underlying 

floor lift zone. 
Disrupted floor zone on optical camera and caliper data. 
Siltstone-fine sandstone rock chip returns (not waste), 
interpreted as 1.7 m of floor lift 

GGA04 - GU 51 ±2 49.46 – 50.60 Stoop and room 
(room/void) 

Fractured roof and coal – edge or 
collapsed pillar? 

Caliper log/rock chip returns indicate c. 1.5 m fractured 
sandstone in roof of coal. Also caliper kick in mudstone 
below coal.  

GGA08 - GU
+
 51 ±2 52.50 – 53.70 Total extraction Intact coal and waste – hit edge of a 

pillar 
Optical camera and caliper show disrupted mudstone roof 
c.1 m above. Disrupted floor c. 0.2 m below 

GGA08 – GE
+
 Between 72 – 81* 74.70 – 76.50 Total extraction Densely packed waste Optical camera and caliper show fracture and migrated 

void 2 m above mine working. Intact rock below.  
GGA08 - GMA

+
 88 ±2 87.70 – 90.70 Total extraction and Open void to collapsed material, wood, Fractures for around 1.2 m above roof of mine working on ACCEPTED M
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former roadway waste – the thickness indicates a mine 
roadway 

optical camera 

GGA07 - GU
+
 51 ±2 52.2 – 53.9  Total extraction Coal pillar and void on optical camera 

and caliper kick 
Fracturing not discernible in mudstone roof 

Table 3 Prognosed and observed depth and lithology/type of the mine water boreholes, listed in order of drilling*adjusted from published pre-drill 

prognoses during the drilling phase based on the depth of GGA02. + Signifies that optical camera data is available and constrains the interpretation. 

GGA04 interpretation includes open hole caliper data but not optical camera data. GU= Glasgow Upper, GE= Glasgow Ell, GMA=Glasgow Main. ©BGS, 

UKRI 2021 
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