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Summary - This paper attempts to make the link between two of Corrado Gini’s con-
tributions to statistics: the famous inequality measure that bears his name and his
work in the early days of balanced sampling. Some important notions of the history
of sampling such as representativeness, randomness, and purposive selection are clar-
ified before balanced sampling is introduced. The Gini index is described, as well as
its estimation and variance estimation in the sampling framework. Finally, theoret-
ical grounds and some simulations on real data show how some well used auxiliary
information and balanced sampling can enhance the accuracy of the estimation of the
Gini index.
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1. INTRODUCTION

Undoubtedly, the most famous contribution of Corrado Gini to the field of
statistics is his work on inequality measures, prominently the Gini index, which
is still today the leading inequality measure. It is used in various domains
outside statistics such as economics, sociology, demography and is a strong
political tool. A probably less known contribution of Gini is to be found in the
field of survey statistics. Indeed, in the 1920s, Gini took part in the committee
that advocated the use of samples in official statistics. Moreover, some years
later he sampled Italian circumscriptions in a way that is often referred to as
the first example of a balanced sample. The goal of this article is to provide an
understanding of the evolution of the notion of balanced sampling across the
twentieth century and how this notion has participated in the debate between
random and purposive selection methods. Eventually, we propose to link both
of the above contributions of Corrado Gini and show how some well used
auxiliary information and balanced sampling can enhance the accuracy of the
estimation of the Gini index.
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The next section is dedicated to a short overview of the history of sampling
and particularly of the debate on purposive and random methods. In Section 3,
the controversial notion of representativeness is widely discussed. Balanced
sampling and Gini’s contribution to the topic are considered in Section 4. Sec-
tions 5 and 6 define the Gini index, its expression in the sampling framework
as well as the estimation of its sampling variance. The two further sections
are dedicated to the linkage between the Gini index and balanced sampling:
Section 7 shows how balanced sampling can enhance the accuracy of the es-
timation of the Gini index by means of a sample, followed by a confirmatory
simulation study on real data operated and discussed in Section 8. Finally, the
last section of the paper is dedicated to concluding remarks.

2. THE EARLY STAGES OF SAMPLING
2.1. Acceptance in the scientific community

The common use of sampling in statistics is recent. Many papers report
the historical background of sampling in statistics (for example Hansen et al.,
1985; Hansen, 1987; Fienberg and Tanur, 1995, 1996). First, its struggle to be
accepted as a valid method in a field that is accustomed to full-coverage methods
(census); Second, the confrontation between the two different paradigms inside
the field, random selection and purposive selection.

A notorious and early proposition of the use of a sample instead of a full
census was done by A.N. Kiaer (1896, 1899, 1903, 1905) at the 5th International
Statistical Institute (ISI) meeting in Bern in 1895. Sampling methods would
be more widely accepted thirty years later, in 1925, when some results are
presented at the 16th ISI Sessions in Rome. These results are those of the
Reports on the representative method in statistics, proposed by A. Jansen and
a committee of five other statisticians (Jensen, 1926). Corrado Gini is one of
them.

The history of sampling theory has been driven by several concepts, often
associated to unclear meanings. There is frequent confusion and misunder-
standing between the notions of representativeness, purposive selection, random
selection or balanced samples. These concepts, as well as their evolution across
the history of survey methods, are discussed in the following sections.

2.2. Purposive and random selection

In addition to eventually giving credit to the idea of sampling, the report by
Jensen (1926) already opposes two methods of sampling: purposive selection
and random selection. This separation has been the vector of a large amount
of researches on sampling.



When speaking of random selection it is firstly of importance to distinguish
between the population of interest and the sampling frame. The sampling frame
is the list of units from which the sample is to be drawn. For example, if
a survey on male adults of a given country (the population of interest) is to
be done, a list of all male adults in the country has to be generated before
sampling can be effective. Ideally, the sampling frame corresponds fully to the
population of interest, but for various reasons under-coverage (units that are in
the population but not in the frame) or over-coverage (units that should not be
in the frame) is possible.

The selection process is referred to as random when all units in the sam-
pling frame have a non-null probability of being selected in the sample and that
this inclusion probability can be precisely established. Moreover, the scheme
is such that every possible subset (e.g. sample) s of the population U has a
probability of selection, denoted p(s). Unlike in some purposive methods, the
interviewer does not take any part in the selection process of the sample, which
is operated by an algorithm. Based on mathematical validation and allowing
for the construction of confidence intervals, random sampling is soon preferred
in the scientific community, as well as in official statistics. However, purposive
selection is still used nowadays, mostly via quota sampling methods.

Purposive selection (or non-probability sampling), regroups any sampling
method in which the inclusion probabilities are not known or in which some
units have no chance to be selected in the sample. These methods are often
used by private polling organizations because these organizations generally do
not have access to the sampling frame from which a sample can be drawn
(a census for example) and also because the total cost of the survey can be
lowered when using non-probability methods.

3. REPRESENTATIVENESS
3.1. A polysemic term

The idea and concept of representativeness was already used in Kiaer’s
work (Kiaer, 1896, 1899, 1903, 1905). Because the idea of a representative
sample is reassuring for an uninitiated audience as it provides an illusion of
scientific validity, it has been an important notion in sampling ever since.
However, the multiplicity of definitions to which it can be associated has been
at the core of many debates and misunderstandings in the history of sampling.
Thus, the term is much less used in modern survey sampling literature and in
our opinion it is a term best to avoid in survey methodology.

Kruskal and Mosteller (1979a,b,c, 1980) have written several survey papers
in which they typologize and the different definitions of representativeness in



and out of the field of statistics. They have listed nine different views of the
word and illustrated them by numerous excerpts from the literature. From their
work, one can also see that the definition of representativeness and the question
of purposive or random selection are often directly linked.

3.2. Representativeness of the sample

One point of interest which is seldom clarified is the statistical object to
which the quality of representativeness is attributed. It could be the statisti-
cal unit to be sampled (a representative individual, a representative district or
firm), the sample itself or the strategy used for the sample selection procedure.
Indeed, for example, using a method of sampling which supposedly provides a
representative sample and analyzing a posteriori the level of representativeness
of an accomplished sample are two very different conceptions of the problem.
Also considering the question of randomness and representativeness, Héjek
(1959, 1981) invokes the term of representative strategy (and not representative
sample) when talking about sampling methods like balancing or calibration, a
strategy being a pair composed of a sampling design and an estimator. When
used hereafter, the term of representativeness is applied to the sample, except
where specified.

3.3. Representativeness as a miniature of the population

Although many decisive differences occur between the authors, the under-
lying idea of representativeness in most cases is that to be considered represen-
tative a sample should be a miniature of the population of interest. Obviously,
this is a purely theoretical construct, which creates many divergences in its
application. Indeed, in order to select a sample which would be a downsized
replica of the population, the whole complexity of the population structure
has to be known, which is impossible. Generally, only a small aspect of this
structure is known, turning representativeness into a much more relative notion.
Moreover, the more information one has in the population, the more dissimilar
are each of its units. In the end, the only perfectly representative sample would
thus be the population itself. Also, as discussed further in this section, the re-
sults of Neyman (1934) in optimal stratification show that, in fact, expecting a
sample to be a miniature of the population is an erroneous ideal.

In practice, it is therefore only possible to come close to this view on
representativeness and many different solutions have been proposed to achieve
it, some of which being totally antagonistic. These methods depend obviously
on whether purposive selection or random selection is preferred, but also on the
different interpretations of representativeness. An example of these divergences
is well described by the question of the presence or absence of selective forces,
raised by Kruskal and Mosteller (1979a,b,c, 1980) and discussed below.



3.4. Selective forces

It can be advocated that the complete absence of a selective process in-
volving any kind of auxiliary information is a guarantee of representativeness.
This idea fosters the use of simple random sampling, because in that frame-
work every unit in the population has the same probability of being selected
in the sample, regardless of any of the unit’s characteristics. Here, selective
forces are viewed as a curb to representativeness, and the definition of the lat-
ter is partially confused with randomness. Moreover, the notion of randomness
itself seems bounded to simple random sampling, because other designs like
stratification or unequal probability sampling rely on selective forces.

On the contrary, other definitions see in selective forces a necessary re-
quirement to guarantee representativeness. For instance, this can be illustrated
by the widespread idea that the more a sample presents the same character-
istics (for example gender ratio, age groups, mean income) as the population
of interest, the more it can be declared representative. For the latter, perfect
representativeness is not accessible in practice, but can nonetheless be under-
stood as a miniature of the population and approached by using the available
information as controls.

Likewise, some have an intermediate position. More than two decades after
his work with Corrado Gini (Gini and Galvani, 1929), which is detailed in later
sections of this paper, Galvani (1951) distinguishes three different procedures
of sampling: random selection, purposive selection and stratified selection.

In his paper, random selection is what is more often known as simple
random sampling. It uses no auxiliary information, and therefore requires no
prior knowledge of the population to be sampled. For the author, it is also the
procedure which is closest to the idea of reduction of the totality, where the
totality would be the whole population and all its characteristics. According to
Galvani, this statement does not imply that any achieved sample from a simple
random sampling design is effectively representative for all characteristics of
the population. It could be therefore argued that Galvani is unclear whether
representativeness is an attribute of the accomplished sample or of the method
of selection.

Purposive selection, instead, requires some auxiliary knowledge on the
whole population which are used to guarantee the representativeness of the
sample in relation to these auxiliary variables. However, Galvani notes that,
unlike in the random selection, the purposive procedure can by no means be
considered representative for characteristics that are not used in the selection
process. If we summarize Galvani’s point of view, he considers on one side
simple random sampling which, as a method, is representative for all character-
istics in the population, and on the other side, purposive selection which yields
a sample that can be described as representative for only a closed number of



characteristics. This leads him to oppose absolute representativeness (random
selection) and relative representativeness (purposive selection), the latter being
described as inferior to the former.

Stratified sampling is coherently considered by Galvani as a random se-
lection procedure which makes use of some knowledge of the heterogeneity of
the population regarding some characteristic. The property of “impartiality”, or
reduction of the totality, can also be credited to the stratified sampling method,
with presumably a better accuracy than for simple random sampling. In other
words, Galvani thinks that stratification is not a type of selective force which can
jeopardize representativeness. He states that random selection methods should
be preferred because they satisfy fully to the conditions of representativeness.
Moreover, probability theory can be applied to the random case.

3.5. Representativeness as a purpose

In the Kruskal and Mosteller (1979a,b,c, 1980) papers emphasis is not
put on one essential question: should representativeness be a purpose for sur-
vey sampling? From our point of view, the goal of a survey is to provide
good estimations (in terms of bias and variance) of some characteristics of the
population by means of a sample. In that framework, representativeness can
possibly be a means for achieving good estimations, not a goal in itself.

Probability sampling theory and an adequate use of auxiliary information
has shown that using unequal probabilities of inclusion or over-representing
some groups of the population can enhance the accuracy of the estimation. In
that sense, a sample can be obviously very far from being a miniature of the
population and estimate efficiently the characteristics of interest. The famous
paper by Neyman (1934) stresses two major assets of probability sampling the-
ory: only probability sampling methods can be theoretically validated because
they are the outcome of a random experiment; the results on optimal stratifi-
cation prove that a representative sample is not optimal in terms of accuracy.
The latter result, which can be viewed as counter-intuitive is a major defeat
for non-probability sampling, as well as for the idea of representativeness as a
purpose in the field of survey sampling.

4. BALANCED SAMPLING
4.1. A broad definition
Representativeness and randomness are both major debates of sampling

theory and the development of balanced sampling has certainly changed their
physiognomy. Balanced sampling, as defined below, has put the conception of



the representative sample as a miniature of the population in practice, first under
the purposive selection paradigm, than in the random sampling framework.
A balanced sampling strategy is a method of selection which uses auxiliary
information at the design phase. Moreover, a sample is said to be balanced
if its natural estimators of total on some auxiliary variables X will match (or
approximately match) the known population totals of these variables. What is
meant here by a natural estimator is an estimator such that the weight of any
given unit does not change from a sample to another. The main challenge
of balanced sampling is the selection process, because the sample has to be
selected with respect to the balancing constraints.

This broad definition is consistent with purposive as well as random meth-
ods. A more formal definition for the random case is given in Section 7.2
when the Cube method is introduced. Coherently, balanced sampling is at first
classified as a purposive selection method. One of the first known application
of balanced sampling, proposed in Italy by Gini and Galvani (1929) has en-
hanced this idea. Later, it will be shown that balanced and random are not
two mutually exclusive concepts. These findings have modified the definition
of randomness in sampling, which in the beginning of sampling theory was
mostly reserved to simple random sampling.

4.2. Gini and the premices of balanced sampling

Not long after the ISI Session in Rome in 1925, a new census is to be
run in Italy and room has to be made for the new data. The Italian statistical
office wants, however, to keep a representative sample of the previous census
of 1921. To do so, Gini and Galvani (1929) use a method referred to as
purposive selection by Neyman (1952), but also a premise of the idea of
balanced sampling (Yates, 1960). At that time, Italy is separated into 214
circumscriptions. The authors propose to keep a sample containing all units
inside 29 circumscriptions. The 29 circumscriptions are not selected at random,
but instead they are selected in order to match the population means of some
important variables. Indeed, the authors selected seven control variables and
selected the sample of 29 circumscriptions in order for the sample means to
be as close as possible to the population means. As a result, they realize that
for most other variables that were not included in the balancing procedure, the
match between the population mean and the sample mean is very poor.

Both Neyman (1952) and Yates (1960) discuss the paper of Gini and
Galvani (1929) to condemn the purposive selection method. In a different way,
they both stress out that, from a sampling point of view, the selection of 29
circumscriptions is a small sample of huge units. Moreover, Yates underlines
the fact that the reliability of the results is not assessable with the purposive
selection method. Neyman recalls that to obtain a reliable sample,“we must rely



on probability theory and work with great numbers” (Neyman, 1952, p. 107).
Whereas the total number of people in the balanced sample of Gini and Galvani
is very large, it remains a small sample of 29 units from a sampling point of
view. Of course, Neyman advocates that the circumscriptions should have been
considered as strata, instead of sampling units.

4.3. Balanced sampling towards randomness

Although representativeness and purposive selection are often associated,
Yates (1960, p. 39) has stressed that their is no contradiction between the
balanced procedures and random sampling. Furthemore, according to Yates, a
balanced sample is only satisfactory if it is random. He proposes a method
for selecting a random balanced sample. The randomization is done by first
drawing a preliminary random sample and then by selecting a further unit. The
latter is compared to the first unit selected in the original sample. If the new
unit improves the balance, it is kept in the sample in place of the original
unit. If not, it is rejected. Then, the second unit in the original sample is
compared to another new unit, and so on. This procedure is repeated until the
balance is considered satisfactory. An appealing remark from Yates is also that
purposive selection balanced sampling lead to the selection of units for which
the balanced variables take a value close to the population mean, resulting with
a problematic smaller variability in the sample than in the population.

While Galvani (1951) discussed three different kind of sampling (see Sec-
tion 3.4), a similar classification can be found in an article by Royall and
Herson (1973) which compares three kinds of balanced samples. The first cat-
egory is purposive selection (like in Gini and Galvani’s experiment), the second
category is random sampling and the third is what the authors call restricted
randomization. For the authors, (simple) random sampling provides a balanced
sample “on the average” (Royall and Herson, 1973, p. 887), but despite the fact
that adjustments can be done with post-stratification, the method can produce
severely unbalanced samples. This reasoning on balancing and simple ran-
dom sampling is very close to Galvani’s statement on representativeness. We
think however, that the argument of simple random sampling being balanced
in average is pointless. It seems to be simply another way of saying that the
estimators are unbiased under the sampling design. Furthermore, whereas this
is true for total or functions of totals, it is not true for other type of statistics
such as ratios, inequality indicators or quantiles.

Restricted randomization, on the other hand, is defined here as a selection
process which provides an approximately balanced sample without renouncing
to randomization. The selection process is as proposed by Yates (1960) and
discussed above. Royall and Herson (1973) point out that none of the methods
can however guarantee that a balanced sample is also balanced on variables



that are not included in the selection process. Indeed, the balanced sample
can mimic the population only to a certain extent, which depends greatly on
the availability of the auxiliary information. For the authors, the experiment
by Gini and Galvani is a notorious example of an approximately balanced
sample which was found out to be unbalanced for numerous other external
characteristics.

This discussion on balanced sampling requires some remarks on the vari-
ance of the estimator. Indeed, it has been shown (Deville and Tillé, 2005;
Fuller, 2009) that the variance under a balanced sampling design can be ex-
pressed as the variance of regression residuals. It is thus obvious that the more
the auxiliary variables are correlated with the character of interest, the more
the variance is reduced. Therefore, even if the sample is not balanced on a
particular variable, the variance of the sample mean and total of that variable
is nevertheless reduced if a correlation exists between the latter variable and
the auxiliary information.

In the last two decades, a lot of research has been conducted on the idea that
balanced sampling is not in contradiction with the random sampling framework.
Modern methods allow indeed for the selection of balanced samples and at the
same time stay consistent with the notion of randomness (Deville, 1988, 1992;
Deville et al., 1988; Deville and Tillé, 2004; Hedayat and Majumdar, 1995;
Nedyalkova and Till¢, 2009; Tillé and Favre, 2004, 2005). It is therefore clear
that the history of balanced sampling has somewhat blurred the initial separation
between purposive selection and random sampling.

5. THE GINI INDEX
5.1. An inequality measure

Although we have, in this paper, introduced Corrado Gini through his work
in balanced sampling, his most famous contribution is undoubtedly the Gini
coefficient or Gini index (Gini, 1912, 1914, 1921), an inequality index based
on the Lorenz curve (Lorenz, 1905). An impressive amount of literature has
been written on the Gini index (for a survey paper see Xu, 2004), which is
still nowadays the most commonly used inequality measure. Finite popula-
tion inference for the Gini index has been the center of countless discussions
and papers. Indeed, many finite population expressions of the index co-exist.
Moreover, variance estimation is not straightforward, and robustness issues are
frequent, especially when working with income data which is known to be
generally heavily skewed.

The contribution of Corrado Gini’s index to inequality measure is immense.
It has been the most widely used inequality measure for now nearly a century.
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Its graphical interpretation, its synthetical comprehension (often written as a
percentage, where 0% is full equality and 100% perfect inequality) and the
fact that it satisfies many properties of the axiomatic approach to inequality
(Cowell, 1988; Dalton, 1920; Pigou, 1912; Shorrocks, 1980, 1984) has favored
its preeminence inside the field of inequality theory. Although other measures
have gain interest more recently, the Theil index for example (Theil, 1967,
1969) because of its subgroup decomposability property, or the Quintile Share
Ratio (Eurostat, 2005; Hulliger and Munnich, 2006; Langel and Tillé, 2011),
because of its simpler interpretation for non-specialists, the Gini index is still
by far the most applied and studied measure of income inequality.

5.2. Continuous case

There is at least three ways of apprehending the Gini index. The first
one is based on the Lorenz Curve, which graphically represents the share of
total income earned altogether by a given share of income earners, ordered
from poorest to richest. For example it is possible that the poorer 75% of the
population earn only 25% of the total income. This understanding of the Gini
index is the most common because it is graphically straightforward and gives
an immediate definition for the continuous case. Indeed, the Gini index is the
ratio of the area between the Lorenz Curve of the population of interest and
the diagonal (the Lorenz Curve under perfect equality) and the area below the
diagonal. The latter area is always equal to 1/2. Therefore, considering:

(1) a continuous and differentiable strictly increasing cumulative distribution
function F(y) of income y in RT, and f(y) its derivative and probability
density function,

(2) Q,, the quantile of order «, such that F(Q,) = o and the quantile function
QO(a), which can be written as the inverse of the cumulative distribution
function: Q(x) = F(x)™!,

(3) the Lorenz function (or quantile share) L(«), which is the share of total
income earned by all the income earners up to quantile o

2% uf (u)du

L) = Jooufwydu’

(5.1)

the definition of the Gini index for an infinite population is then:

1 1
G=2 (2 —/0 L(oz)doz) . (5.2)
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5.3. Discrete case

For the purpose of measuring inequality in a finite population, the partial
sum appears to be a central tool. We propose hereafter two definitions of the
partial sum, which can in either case be understood as the sum of all incomes
smaller or equal to a given quantile. To link the discrete and continuous cases,
it can be noted that the partial sum in the continuous case would be expressed
by the numerator of the Lorenz function (5.1).

Let U define a finite population of size N, and y; the income (or other
characteristic of interest) of unit k € U. The incomes y, are assumed to
be sorted in increasing order such that £ also denotes the rank. A natural
expression for the partial sum would therefore be:

> el [y < Qal,

keU

where Q, is the quantile of order « and where I[A] is equal to 1 if A is
true and O otherwise. Quantile Q, can be defined in many different ways in
the finite population context (see for example Hyndman and Fan, 1996). The
other definition below has two good properties: it gets around the above issue
of the finite population quantile and it is strictly increasing upon o:

Y(@) =) wHlaN —(k—1)], (5.3)
keU
where
0 if x <0,
H(x):{x if 0<x<l, (5.4)
1 if x>1,

is the cumulative distribution function of a uniform distribution in [0; 1]. A
specific case for (5.3) is the population total, hereafter simply denoted Y:

Y()=> n=7.
keU

The second property leads to an important result for the Lorenz Curve. The
Lorenz Curve, which can be simply written by
Y (a)

Y 9
is indeed strictly increasing and convex in [0; 1[. Recalling (5.2), the Gini
index for the continuous case, an expression for a finite population is:

G=2<1—1/1Y(a)d(x) (5.5)
27 Y A . .

L(x) =
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With Expression (5.3), the Gini index becomes:

2 keU teU
G:— k _ — S €
YNker Y 2NY

5.4. Sampling from finite population

The level of inequality of a finite population, a country for example, is
most often estimated by means of a sample. National statistic institutes around
the world usually work with complex sampling designs which allow for the
use of auxiliary information to enhance accuracy of the statistics of interest.
For this reason, estimation and variance estimation of the Gini index under
complex sampling designs has been studied profusely.

A sample s C U of size n(s) is a subset of the population. A random sam-
ple S is selected from U by means of a sampling design p(s) > 0, for all s C

U and
Z p(s) = 1.

sCcU

The inclusion probability m; is the probability of unit £ to be in the sample.
Inclusion probabilities are defined by the sampling design and are such that

me=Y_pls), forall k € U.

s3k

Some sampling designs are of fixed size, e.g. var[n(s)] = 0. For these designs,
the sample size is simply denoted as n. Also, if the design is of fixed size,

then
Z T = Nn.
keU

In sampling theory, a classical estimator of total Y is

Y = Zwk)’k,

keS

where w; denotes the sampling weight of unit k. The weight can simply
be the inverse of inclusion probabilities (the estimator of total is then known
as the Horvitz-Thompson estimator) but can also account for calibration and
non-response adjustments. A natural estimator of L(c«) would then be

- Y (@)
L) = —,
(o) -
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where Y (o) is the plug-in estimator of (5.3):

Y (o) = > wiyH <ozN M l>,

keS Wi

where, H is as defined in (5.4) and ﬁk = pes Well(ye < y). An important
feature of this estimator is that the cumulative weight N is an estimator of
the rank of unit k¥ in the population. The estimation of the rank is one of
the most sensible issues in the estimation of the Gini index in the sampling
framework. If omitted, this issue leads to substantial errors in the estimation of
the sampling variance of the index. Note also that N = ), ¢ wy. An estimator
for (5.5) is then defined by:

R | kZ”Zkawelyk—yzl
G:N,Y\ZU)kayk—< szkyk>: €3 te _

keS 2NY

6. VARIANCE ESTIMATION FOR THE GINI INDEX
6.1. Linearization: the influence function approach

The Gini index is nearly one century old and has been used in count-
less empirical applications since then. However, within these applications, it
is not uncommon to find only point estimators, lacking variance or standard
deviation estimations, which are nevertheless necessary for confidence intervals
construction. The question of variance estimation for the Gini index is not
trivial and has motivated a great amount of research (for example Hoeffding,
1948; Glasser, 1962; Ogwang, 2000; Sandstrom et al., 1985; Deville, 1996;
Dell et al., 2002; Leiten, 2005; Giles, 2004; Berger, 2008).

One of the main methods of variance estimation of complex statistics
in sampling from finite population is the linearization technique. Based on
Taylor series, the method has been introduced by Woodruff (1971) and has
since motivated many publications presenting different approaches. Estimating
equations (Binder and Patak, 1994; Binder, 1996; Kovacevic and Binder, 1997),
influence functions (Deville, 1999) and the Demnati-Rao approach (Demnati and
Rao, 2004) are all approaches which can be, or have been, applied to variance
estimation for the Gini index in complex surveys.

A generalized linearization method based on influence functions has been
developed by Deville (1999). The method is derived from the influence function
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as defined in the field of robust statistics (Hampel et al., 1985). The influence
function in Deville (1999) is slightly different from the latter and is defined by
T(M +t5,) —T(M)

IT(M, x) =lir% ; ,
t—

where measure M allocates a unit mass to each x;, T is a functional associating
a real number or a vector to each measure, and §, the Dirac measure at x. In
the sampling framework, measure M is estimated by M with mass w; at each
point x; in ihe sample. Moreover, the plug-in estimator of functional 7'(M) is
simply T(M). The influence function z; = IT (M, x;) is a linearized variable
of T(M) and

T(M)-TM) 1
w,wm(Zwka_ZZk),

keS keU

The variance of T(]T/I\) can thus be approximated by the variance of the total
of the linearized variable

var (T(]T/[\)) A var (Z wkzk> .

keS

Thus, the variance of a complex statistic can be estimated under any sampling
design for which the expression of the variance of a total is available. Generally,
however, the computation of the influence function requires information on the
whole population, not only on the sample. Therefore, plug-in estimators z; are
used instead of z.

6.2. Linearization of the Gini index

The Gini index is not an easy expression to linearize. Solutions based
on Taylor linearization resulted in a greatly over-estimated variance (Nygard
and Sandstrom, 1985; Sandstrom et al., 1985, 1988). Some further results use
estimating equations (Kovacevic and Binder, 1997) or introduce the influence
function approach (Monti, 1991; Deville, 1999). Applying the latter approach,
a linearized variable for the Gini index is

1 _
%= 2Nk = Yi) +Y — Ny — G(Y + yN)| . (6.1)

As emphasized previously, this expression involves unavailable information at
the population level. It can be substituted by the plug-in estimator

N 1

%= o5 2N = Y0+ ¥ = Ny = GO+ 3|
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with
> weyel (ye < yi)
v lesS

Y =

Ny
The linearization approach has proved its efficiency for variance estimation in

several simulation studies in the literature (Osier, 2006, 2009; Dell et al., 2002;
Berger, 2008).

7. BALANCED SAMPLING AND THE GINI INDEX
7.1. Linking two of Gini’s main contributions

The estimation of the Gini index by means of a sample is of importance to
provide reliable information on the level of income inequality in a population.
However, the Gini index is known to be very sensitive to high incomes and
the stability of the estimator is therefore very dependent upon the presence
of extreme values in the sample. Moreover, when the income distribution
contains outliers (very high incomes), the sampling distribution of the Gini
index becomes skewed, which creates difficulties when constructing confidence
intervals, even if the variance of the index is correctly estimated. In this
setup, the choice of the sampling design is crucial. Balanced sampling has
proved to make good use of auxiliary information when available. However,
the method can be only applied to population totals of auxiliary variables.
The idea of Lesage (2008) is to propose methods of balanced sampling for
non-linear statistics.

7.2. The Cube Method

Deville and Tillé (2004, 2005) have proposed a general procedure to select
a balanced sample called the Cube method. The algorithm is non-rejective and
selects a sample with respect to the balancing constraints

PRI Sh

kes Tk kev

for all auxiliary variable j = 1,..., p. As such, balancing is operated by
Horvitz-Thompson estimators of totals for the auxiliary variables. Moreover,
the statistic of interest is usually also a total (or a function of a total), say Y.
If the character of interest y; is well explained by the auxiliary information
X, the variance of Y is supposedly small.
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7.3. Non-linear balancing constraints

In the case of estimating a strongly non-linear function like the Gini index,
the use of available auxiliary information is also desired. It can happen that
when estimating the Gini index for a population at a time 7, the incomes of a
previous period in time t — §¢ are known in the population. Denoting x;, the
income of a previous year for unit k, a simple use of this auxiliary information
at the design phase would be to balance the sample on the total X = >, xi.
However, being eventually interested in the estimation of the Gini index, it
seems more favorable to balance, not on the total X, but on the Gini index
of the x;’s. Lesage (2008) uses for balanced sampling a well-known idea of
variance estimation for complex statistics. Indeed, the sampling variance of a
statistic 6 is easily expressed under a variety of complex sampling designs as
long as 6 is a total or a function of totals. If instead, @ is a non-linear statistic,
the popular approach of linearization consists in bringing the problem back to
one of a total, by using the linearized variable.

In the balancing procedure, a similar trick can be used: to balance on a
non-linear statistic, the statistic of interest can be linearized and the total of the
linearized variable used as a balancing constraint. Moreover, this method does
not require any additional computing tools as for standard balanced sampling.

8. SIMULATION STUDIES

A simulation study has been operated on real household taxable income
data from the canton of Neuchitel, Switzerland to show the relevance of using
non-linear balancing constraints. Complete data is available for a population of
N = 82'489 households for two consecutive years, 2005 and 2006. The goal
of this simulation study is to estimate the Gini index in 2006 by means of a
sample and evaluate if balancing procedures are able to reduce the variance
of the estimator. The character of interest, denoted y, is the income of year
2006 for household k. The auxiliary information is available at the population
level and expressed as follows:

e 1;: the inclusion probability of unit k,

e x;1: the income of year 2005 for unit &,

e x;y: the linearized variable for the Gini index, as expressed in (6.1), of
year 2005 for unit k.

The results for four different sets of simulations are compared. All four simula-
tions consist in drawing 1000 samples of fixed size n = 5000. Equal inclusion
probabilities m;, = n/N, for all k € U, are used across all the simulations. The
sampling strategies concerning balancing constraints are detailed in Table 1.
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Balanced samples have been selected using the algorithm of the Cube method
(see Section 7.2). With the equal inclusion probabilities used here, simulation 1
is equivalent to a simple random sampling design without replacement.

TABLE 1: Simulations: descriptions of the sampling strategies.

Simulation Inclusion probabilities Balancing variables
simulation 1 Tk k.

simulation 2 k. Tk, Xk1-

simulation 3 Tk Tk, Xk2-

simulation 4 k. TTky Xk1s Xk2-

The results of the simulation study is summarized in Table 2. The second
column presents the relative bias of the estimated Gini index G computed over
all 1000 samples in each simulation set expressed as

Em(é)—G
G

RB(G) = :
where Egpn, (G) is the mean of the estimated Gini index over the 1000 samples

and G is the true value of the Gini index in the population. The last column
describes the gain in terms of sampling variance of simulations 2, 3 and 4
relatively to simple random sampling (simulation 1).

TABLE 2: Simulation results.

Simulation RB (@) vargim (6) /varsim1 ((A})
simulation 1 —0.009% 1.000
simulation 2 0.036% 0.773
simulation 3 0.000% 0.472
simulation 4 —0.020% 0.451

The four Monte Carlo simulations show that the bias of G is negligible. The
sampling variance of the estimator is lowered for all balanced designs in com-
parison with the simple random sampling design (simulation 1). While bal-
ancing on x;;, the income of the previous year, clearly has an effect on the
variance (simulation 2), the most important result here is that balancing on xy,,
the linearized variable of the Gini index of the previous year yields a far better
improvement (simulation 3). The same initial auxiliary information is available
in both simulations 2 and 3, but the use of the linearized variable presented
in Section 6 instead of the plain incomes of year 2005 gives a definitely more
stable estimator. In our case, balancing on x;, results in a sampling variance
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which is more than twice smaller than with simple random sampling. Finally,
balancing on both x;; and x;, (simulation 4) gives the best result but essentially
shows that when x;, is used, also adding x;; as a balancing constraint does
not bring much gain in terms of variance.

9. CONCLUSION

In this paper, we have reviewed two of Corrado Gini’s main contributions
and how they have participated in the development of their respective field.
For a start we have discussed the ambiguous notions of representativeness,
randomness and balanced sampling in order to get the article of Gini and
Galvani (1929) back in its perspective and show how it has participated in the
debates that have resulted in modern survey sampling theory.

Secondly, we have presented the Gini inequality index and its application
in the sampling framework. The linearization of the Gini index through the
influence function method is also introduced for two distinct goals. The first
one is variance estimation, which is briefly discussed. The second one is for
balanced sampling, which is of particular interest in this paper. Indeed, we
have shown how balanced sampling and the use of a linearized variable as
a balancing constraint can improve estimation. With the help of a simulation
study on real data we have shown that, if the information is available, balancing
on the income of a previous year when estimating the Gini index has a positive
impact on the stability of the estimator. However, we have also shown that
this auxiliary information can be used in a much better way, that is using the
linearized Gini index of a previous year as balancing constraints instead of the
plain incomes.
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