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Reactive oxygen species (ROS) have been studied for their role in plant development as well as in plant
immunity. ROS were consistently observed to accumulate in the plant after the perception of pathogens
and microbes and over the years, ROS were postulated to be an integral part of the defence response of
the plant. In this article we will focus on recent findings about ROS involved in the interaction of plants
with pathogenic fungi. We will describe the ways to detect ROS, their modes of action and their impor-
tance in relation to resistance to fungal pathogens. In addition we include some results from works focus-
sing on the fungal interactor and from studies investigating roots during pathogen attack.

1. Introduction

So-called reactive oxygen species (ROS) include various forms of
reduced and chemically reactive molecules such as superoxide
anion (O2��), hydrogen peroxide (H2O2), hydroxyl radical (OH�) or
hydroperoxyl radical (HO2�). Up to the 1980s the synthesis as well
as the detoxification of ROS had already attracted many
researchers and ROS were much studied for their role in plant

development (Elstner, 1982; Swanson and Gilroy, 2010; Tian
et al., 2013).

In 1983, Doke reported a production of O2��during an incompat-
ible interaction of potato with the oomycete Phytophthora infestans
(Doke, 1983). This observation set forth a considerable wave of
studies on the production of ROS in whole plants or in suspension
cells confronted with live pathogens or various elicitors. It has
become apparent that ROS are an integral response to both biotic
and abiotic stress. A large number of reviews have been dedicated
to this topic (Apel and Hirt, 2004; Baker and Orlandi, 1995; Barna
et al., 2012; Baxter et al., 2013; Foyer and Noctor, 2013; Laloi et al.,
2004; Mehdy, 1994; Miller et al., 2008; Mittler, 2002; Mittler et al.,
2011; O’Brien et al., 2012a; Sutherland, 1991). In this article, we
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will briefly review the available methods to detect the formation of
ROS in plant tissue. We will then discuss the different possible
modes of action of ROS, as their deployment is among the early
reactions after the perception of pathogen-, microbe- or damage-
associated molecular patterns (PAMPs, MAMPs or DAMPs) by pat-
tern recognition receptors (Boller and Felix, 2009; Torres, 2010;
Torres et al., 2006). Finally, we will review the more recent evi-
dence establishing the link between ROS production and resistance
to fungal pathogens both in leaves and the roots.

2. Detection of ROS

Many methods are used to detect the accumulation of ROS.
They are based on histochemical staining, fluorescence, lumines-
cence, electron paramagnetic resonance (EPR) spectroscopy or
ROS sensors (Table 1). Fluorescent probes, CeCl3 and ROS sensors
are also used for a subcellular localisation of ROS. A difficulty with
the detection of ROS lies in their relative short life-times combined
with the ability of living cells to scavenge ROS. Furthermore, tissue
damage or disruption during tissue handling might generate ROS
artefacts. The lack of probes with a high selectivity is another hur-
dle. In other words, no probe is guaranteed to work for a given tis-
sue under given conditions. Given these difficulties, researchers
engaging in the detection and localisation of ROS in plant tissue
are therefore advised to make the necessary controls and prelimin-
ary tests to determine the validity of the probes they are using.
This includes using more than one method to support their conclu-
sions. In the next section, we have briefly summarised the most
common approaches used and indicated some recent publications
where they have been applied. The reader is referred to several
useful reviews on methodological aspects and associated difficul-
ties and limitations concerning ROS detection (Freinbichler et al.,
2011; Nauseef, 2014; Winterbourn, 2014; Zulfugarov et al., 2011).

H2O2 can be detected with the histochemical stain 3-30 diam-
inobenzidine (DAB) that forms instantly a brownish polymer in
presence of H2O2 and peroxidase (Thordal-Christensen et al.,
1997). DAB staining has been often used to visualise the generation
of H2O2 in planta (Asai et al., 2010; Dubreuil-Maurizi et al., 2010;
Kobayashi et al., 2012; L’Haridon et al., 2011; Liao et al., 2012;
Rojas et al., 2012; Simon et al., 2013; Torres et al., 2005; Yokawa
et al., 2011; Zhang et al., 2012). The Amplex Red hydrogen perox-
ide/peroxidase activity assay also allows quantifying H2O2 concen-
trations and consists in a non-fluorescent molecule that is oxidised
by H2O2 and becomes fluorescent in presence of peroxidase. Recent
examples of this method applied to plants are cited hereafter (Shin
and Schachtman, 2004; Zhang et al., 2012). An analogous method
to quantify H2O2 uses 3-methylbenzothiazoline hydrazine that
reacts in presence of peroxidases (Malolepsza and Rozalska,
2005). Assays with ferrous ion oxidation (FOX) are based on the
spectrophotometrical detection of peroxide-mediated oxidation
of Fe2+ to Fe3+ ions that forms a complex with xylenol orange.
The FOX method was used on cultured suspension cells
(Boubakri et al., 2013; O’Brien et al., 2012b) or on incubation med-
ium of leaf explants (Bellincampi et al., 2000). Other methods to
determine H2O2 spectrophotometrically in plant samples include
the use of resorcinol/titanium oxalate (Becana et al., 1986) or ABTS
(2,20-Azino-bis-(3-ethylbenthiazoline-6-sulfonate)) (formation of
blue colour) (Messner and Boll, 1994). The cytochemical staining
using cerium (III) chloride (CeCl3) is used for a subcellular localisa-
tion of H2O2. The reaction between CeCl3 and an excess of H2O2

generates electron-dense deposits of cerium perhydroxides that
can be observed using transmission electron microscopy
(Bestwick et al., 1998; Fester and Hause, 2005; Lherminier et al.,
2009; Simon et al., 2013; Xia et al., 2009).

To visualise superoxide oxygen anions in the plant tissue, the
histochemical stain nitroblue tetrazolium (NBT) is frequently used.

Yellow, water-soluble NBT is reduced by superoxide radicals to
blue, water-insoluble formazan (Grosskinsky et al., 2012; Jabs
et al., 1996; Kawarazaki et al., 2013; L’Haridon et al., 2011; Liao
et al., 2012; Wang and Higgins, 2006; Xia et al., 2009). Superoxide
anion radicals can also be detected using dihydroethidium (DHE), a
cell-permeable blue fluorescent stain that forms red fluorescent
oxyethidium upon oxidation and intercalates with nucleic acids
(see recent applications in Lehotai et al., 2011; Mai et al., 2013;
Pet}o et al., 2013). The hydroxyl radicals can be quantified using
2-deoxyribose (DOR), a scavenger and a probe as exemplified in
the study on Botrytis cinerea-infected tomato leaves by
Malolepsza and Rozalska, 2005. DOR is sensitive to hydroxyl radi-
cals and thiobarbituric acid-reactive degradation products are
formed that can be determined spectrophotometrically (von
Tiedemann, 1997). Electron paramagnetic resonance spin trapping
spectroscopy (EPR) allows detection of oxygen free radicals or
other species with unpaired electrons (reviewed by Bacic and
Mojovic, 2005). Diamagnetic spin traps are used that react with
free radicals and form an adduct that can be detected using EPR
spectroscopy. For example, this method was used to detect the sin-
glet oxygen in thylakoid membranes under photoinhibitory condi-
tions or UV stress (Hideg et al., 1994, 1995). The singlet oxygen and
superoxide anion radicals can be also detected and localised using
dansyl-based fluorescence sensors such as DanePy or HO-1889-NH
(Hideg et al., 2002) as well as a Singlet Oxygen Sensors Green
(SOGS) (Flors et al., 2006; Plancot et al., 2013).

Fluorescein diacetate (H2DCF-DA, CM-H2DCF-DA) and dihydro-
rhodamine 123 are among the commonly used fluorescent probes
to detect a broad spectrum of ROS. They consist in non-fluorescent
molecules that become fluorescent when oxidised by ROS, and the
emitted fluorescence can be observed by fluorimetry and/or by
fluorescent microscopy, an advantage of such probes (Benikhlef
et al., 2013; Bulgakov et al., 2012; Fester and Hause, 2005; Guo
et al., 2010; Kolla et al., 2007; L’Haridon et al., 2011; Li et al.,
2007; Liu et al., 2010; Ma et al., 2013; Peleg-Grossman et al.,
2012; Plancot et al., 2013; Tada et al., 2004; Wen et al., 2008; Ye
et al., 2013). Luminol or luminol analogues are sensitive chemilu-
minescent probes used to quantify a relative intensity of ROS by
counting the emitted light with a luminometer, CDD camera or a
scintillation counter (Dubreuil-Maurizi et al., 2010; Flury et al.,
2013; Kunz et al., 2006; L’Haridon et al., 2011; Mersmann et al.,
2010). Finally, it is possible to determine the redox potential of
the glutathione pool in a high spatial and temporal resolution
using various redox-sensitive green fluorescent proteins (for exam-
ple roGFP) encoded in the test plant. The method requires transient

Table 1
Summary of different techniques that are used to detect ROS in plants.

Product Reactive
oxygen
species

Detection

3–30 diaminobenzidine (DAB) H2O2 Histochemical
Amplex red H2O2 Spectrophotometrical
3-Methylbenzothiazoline hydrazine H2O2 Spectrophotometrical
Ferrous ion oxidation (FOX) H2O2 Spectrophotometrical
Ti4+ method H2O2 Spectrophotometrical
ABTS H2O2 Spectrophotometrical
Cerium (III) chloride (CeCl3) H2O2 Cytochemical
Nitroblue tetrazolium (NBT) O2�� Histochemical
Dihydroethidium (DHE) O2�� Fluorescence
2-Deoxyribose (DOR) OH. Spectrophotometrical
Spin trapping electron paramagnetic

resonance spectroscopy (EPR)
Oxygen free
radicals

Spectroscopy

Dansyl-based fluorescence sensors O2��; 1O2 Fluorescence
Singlet Oxygen Sensors Green (SOGS) 1O2 Fluorescence
Fluorescein diacetate ROS Fluorescence
Dihydrorhodamine123 ROS Fluorescence
Luminol ROS Chemiluminescence
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or permanent plant transformation and has already been used in
many cases (Beneloujaephajri et al., 2013; Heller et al., 2012;
Jubany-Mari et al., 2010; Lehmann et al., 2009; Rosenwasser
et al., 2011).

3. The multiple functions of ROS

ROS released in plants during an interaction with microbes can
affect both partners. Fungal pathogens as well as other invading
microorganisms are exposed to the oxidative stress generated by
ROS and they have evolved multiple ways to scavenge ROS using
for example small molecules (glutathione, ascorbic acid, flavo-
noids, alkaloids and carotenoids) that will be oxidised by ROS, as
well as detoxifying enzymes (superoxide dismutase, peroxidase,
catalase, peroxiredoxins).

One approach to evaluate the importance of ROS for plant
defences is to interfere with the mechanisms deployed by patho-
gens that protect them against ROS. Recently, the transcription fac-
tor Moatf1 homologous to the yeast ATF/CREB that regulates the
oxidative stress response was identified inMagnaporthe grisea. Tar-
geted gene deletion ofMoatf results in a higher sensitivity to ROS, a
reduced expression and activity of extracellular laccases and
peroxidases associated with a reduced virulence on rice (Guo
et al., 2010). H2O2 accumulated around the appressorium in the
deletion mutant but not in the wild type fungus and inhibition of
the rice NADPH oxidases with diphenyleneiodonium (DPI) restored
hyphal growth and virulence of the mutant (Guo et al., 2010). The
MoHYR1 gene ofM. oryzae encodes a glutathione peroxidase GSHPx
domain and was shown to be part of the antioxidative defence in
M. grisea, since Dhyr1 deletion mutants were impaired in tolerance
to H2O2 in vitro and in planta as well as in virulence (Huang et al.,
2011). Confocal imaging using fluorescent reporters was used to
characterise the cytosolic glutathione redox potential during spore
germination, appressorium formation and infection. Results show

that M. grisea is endowed with solid antioxidative defences even
during reduced penetration of the fungus in resistant hosts and
ROS produced by the host are unlikely to be a direct toxic barrier
for the fungus (Samalova et al., 2014). YAP-1 of Ustilago maydis is
a homolog of the yeast AP-1-like protein that regulates the
response to oxidative stress. Deletion mutants of U. maydis lacking
a functional YAP-1 gene exhibit a decreased virulence. This is asso-
ciated with an increase in H2O2 detected at the hyphal tips of the
penetrating deletion mutant. No accumulation of H2O2 was
observed around the tips of penetrating hyphae of the wild type
fungus. Treating the host plant with DPI restores the virulence of
the deletion mutant (Molina and Kahmann, 2007). These studies
exemplify how detoxification of host-derived ROS is essential for
fungal virulence and pathogenesis.

But ROS can also be sensed by fungal pathogens and act as
developmental signals for the differentiation of infection struc-
tures (Heller and Tudzynski, 2011). Recent studies succeeded in
monitoring the intracellular redox status in B. cinerea by express-
ing a redox-sensitive green fluorescent protein (roGFP) as a biosen-
sor for the redox status in the fungus. This elegant approach
showed the importance of intracellular redox differences between
infecting hyphae or in appressorial structures during fungal inva-
sion (Heller et al., 2012). Similar observations were made in M. gri-
sea lines where glutathione and ROS production where determined
by live cell imaging using Grx1-roGFP2 and fluorescent markers
(Samalova et al., 2014).

Rather than direct antimicrobial molecules, ROS are more likely
cofactors in redox reactions playing various roles in plant defences
(Torres, 2010). For instance, ROS have been characterised as pri-
mary signalling molecules, regulating multiple physiological pro-
cesses during plant growth and development (De Tullio, 2010).
Interestingly, evolutionary considerations based on the NADPH
gene family suggest that mechanisms to detoxify ROS were
acquired before the plants used ROS as signalling molecules
(Mittler et al., 2011).

The reasons that make ROS important signalling regulators are:
(i) fast control over the production and scavenge in individual cells,
allowing a dynamic control of ROS levels; (ii) ROS can accumulate
in different subcellular organelles, resulting in an efficient intracel-
lular control; (iii) ROS-induced signalling is rapidly propagated
from the origin of the stimuli to the rest of the cells; (iv) the chem-
ical nature of ROS allows them to interact and modify different tar-
gets (reviewed in Mittler et al., 2011). Remarkably, plants exploit
this advantageous versatility of ROS when interacting with the
environment and during biotic interactions (Scheler et al., 2013).
Here we describe the most relevant roles of ROS during plant–
pathogen interactions (Fig. 1).

3.1. Modification of the cell wall

The reinforcement of the cell wall at the site of interaction with
the pathogen is an important pathogen-induced defence response.
It is mediated by de novo pathogenesis-related (PR) protein synthe-
sis including the class III plant peroxidases. Peroxidases mediate
ROS-dependent cross-linking of components of the cell wall
including glycoproteins, lignin and suberin (Almagro et al., 2009).
ROS-mediated cell wall modifications are also involved in the
defence of plants against insects. Cell wall modifications mediated
by ROS also take part during the interaction of wheat (Triticum aes-
tivum) or rice (Oryza sativa) with larvae of the Hessian fly (Mayeti-
ola destructor) (Liu et al., 2010).

3.2. Signal transduction pathways

ROS regulate different plant hormone signalling pathways,
plant–biotic interactions and developmental processes by redox-
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Fig. 1. The multifaceted actions of ROS. The most important ROS-induced mech-
anisms during plant–microbe interactions are shown. Peroxidase- and ROS-induced
cross-linking of cell wall components is part of the defence mechanisms not only
against microbes but also insects. ROS can modify multiple biological processes by
active post-translational modification (PTM) that includes sulfenylation of cysteine
residues (SOH). A well-characterised pathogen-triggered PTM that is dependent on
ROS and reactive nitrogen species (RNS), is the reduction and resulting interaction
of the SA-induced protein NPR1 and TGA transcription factors. The equilibrium of
this induction is regulated by the action of the enzymes S-nitrosoglutathione
(GSNO) and thioredoxins (TRXs). Additionally, a defence-induced programmed cell
death (PCD), named hypersensitive response (HR) is induced and regulated by the
complex crosstalk between ROS and RNS. Finally, ROS can modify other multiple
signalling pathways and cell to cell responses induced by different biotic and abiotic
stimuli, by the oxidation-dependent regulation of transcription factors and by the
co-regulation and co-induction of the secondary messenger Ca2+.
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dependent regulation of transcription factors (Barna et al., 2012).
There is evidence that indicates the direct induction of defence
responses mediated by ROS (Torres, 2010). However, under several
biotic and abiotic stress conditions the secondary messenger Ca2+

is also induced besides ROS accumulation. Since ROS and Ca2+ are
co-produced and co-regulate each other, the analysis of the regula-
tion of these pathways is complex (Wrzaczek et al., 2013). One of
the best characterised defence signalling pathways regulated by
oxidation events is the induction of salicylic acid (SA)-dependent
responses and attending regulation of two key regulators: the SA
receptor NPR1 and TGA transcription factors in Arabidopsis thaliana
(Liao et al., 2012; Fu and Dong, 2013). Briefly, under non-stress
conditions NPR1 is S-nitrosylated at the cysteine-156 by S-nitroso-
glutathione (GSNO) and sequestered in the cytoplasm as an oligo-
mer formed by disulphide bounds. Once SA accumulates upon
pathogen attack and alters the cellular redox state, this provokes
a reduction of the disulphide bonds in the NPR1 protein by the thi-
oredoxins TRX-h3 and TRX-h5 (Tada et al., 2008). Even further, a
change in the oxidation state of cysteine residues of TGA transcrip-
tion factors has been shown to be necessary to promote their inter-
action with NPR1 in the nucleus (Després et al., 2003). The reduced
form of the NPR1 oligomer releases NPR1 monomers that translo-
cate to the nucleus and interact with the oxidised TGA transcrip-
tion factors, promoting the induction of defence response genes
(Tada et al., 2008). Remarkably, ROS accumulation does not always
result in an induction of SA-dependent defence responses. During
symbiotic interactions in legume roots, ROS production is stronger
and lasts longer than during plant–pathogen interactions, but in
this case, the expression of PR proteins is reduced (Peleg-
Grossman et al., 2012), highlighting the complexity of the ROS-
dependent signal transduction.

3.3. Programmed cell death

The programmed cell death (PCD) is an essential mechanism
during the growth and development of several organisms includ-
ing plants. PCD is a highly genetically controlled and orchestrated
process that leads to the degradation of proteins, lipids and DNA,
destruction of the plasma membrane and phosphatidylserine
externalisation, that ends with the destruction of the cell
(Dickman and de Figueiredo, 2013). During the last years, PCD in
plants has been extensively characterised and several molecular
players have been recently described, including the endoplasmic
reticulum (ER), Ca2+, nitric oxide (NO) and ROS (reviewed in
Agurla et al., in press; Garcion et al., 2014; van Doorn et al.,
2011; Williams et al., 2014). In plants, PCD takes place during leaf
senescence, photosynthesis and as part of the innate immune
response triggered by plant–pathogen interactions, called hyper-
sensitive response (HR). ROS-induced PCD has been described as
a mechanism of photooxidative damage during photosynthesis,
since plants under severe light stress show PCD induced by an
increase in the level and toxicity of singlet oxygen 1O2

(Triantaphylides et al., 2008). Interestingly, a recent analysis indi-
cates that under non-stress light conditions 1O2 can also play a role
as signalling molecule, regulating the PCD pathway and generating
microscopic lesions in the leaf (Kim et al., 2012). Concerning plant–
pathogen interactions, NO and ROS participate in a coordinated
way in regulated HR (Bellin et al., 2012). In agreement with this,
recent reports have established that reactive nitrogen species
(RNS) and ROS are not only crucial players during HR but actually
both participate in a complex crosstalk were they can interact and
regulate each other (reviewed in Wang et al., 2013). Nevertheless,
depending on the biotic interaction, ROS can interfere with PCD
induction and regulation or might not be involved at all (Torres,
2010). This indicates that PCD is under a complex regulation,
where ROS have an important role but are not the only player.

3.4. Post-translational regulation

ROS have an important role as modulator of different biological
processes such as plant–biotic interactions and development, act-
ing on protein post-translational modifications (PTM). ROS can
affect PTMs by at least two mechanisms: H2O2 can modify the cys-
teine residues producing a sulfenic acid (–SOH) by the chemical
reaction called sulfenylation (Scheler et al., 2013) and oxidation
of methionine residues within a phosphorylation motif can inhibit
phosphorylation of neighbouring peptides (Hardin et al., 2009).
During the symbiotic interaction between Medicago truncatula
and Sinorhizobium meliloti multiple proteins involved in nitrogen
fixation are sulfenylated, highlighting the importance of ROS in
the establishment and development of this plant–biotic interaction
(Oger et al., 2012). On the other hand, Triticum aestivum seeds ger-
minated in the presence of cadmium and other oxidative stressors
showed that ROS-induced PTM of proteins are involved in cell cycle
progression during root growth, affecting G1/S transition and pro-
gression through the S phase (Pena et al., 2012).

4. ROS and resistance to fungal pathogens of leaves

In this part we review some examples illustrating the relevance
of ROS in the defence of the plant to various, mostly fungal patho-
gens. The importance of ROS in the defence of the plant has been
tested by various attempts to inhibit their production. An efficient
way to block ROS production is difficult to find, since several major
sources of ROS exist in plant cells. These include a number of
enzyme systems that comprise among others NADPH oxidases,
superoxide dismutase, oxalate oxidase, cell wall peroxidases, lip-
oxygenases and polyamine oxidases (Bolwell, 1999; Shetty et al.,
2008; Torres et al., 2013; Yoda et al., 2009; Zimmermann et al.,
2006).

NADPH oxidases also termed homologues of mammalian respi-
ratory burst oxidases (RBOHs) are associated with ROS formation
during the interaction of plants with pathogens (Suzuki et al.,
2011). The cDNAs of 2 RBOHs were described in Nicotiana benth-
amiana: NbRBOHA expressed constitutively at low levels and
NbRBOHB induced by the elicitor INF1 from the oomycete P. infe-
stans a pathogen of potato. When these genes were silenced by
virus-induced gene silencing the suppressed plants show a reduc-
tion in ROS accumulation and INF1-induced cell death, along with
a loss in resistance to P. infestans (Asai et al., 2008; Yoshioka et al.,
2003).

Among the 10 sequences encoding RBOHs in A. thaliana, AtRboh
D and F have been identified as crucial for ROS formation in leaves
and B and C in seed and root respectively (Marino et al., 2012). A
decreased ROS production in response to infection with avirulent
Pseudomonas syringae pv tomato DC3000 and Hyaloperonospora
parasitica was observed in double mutants of AtRboh D and F
(Torres et al., 2002). But rather than generating ROS that act
directly in the activation of defences, ROS produced by AtRboh D
and F might limit the spread of cell death around bacterial infec-
tion sites (Torres et al., 2005). This was shown by studies with
lsd1 (lesion simulating disease 1) mutants that form spontaneous
lesions that remain localised; when AtRbohD/F are suppressed in
lsd1 mutants as in the triple mutants lsd1/atRbohD/atRbohF, the
plants develop spreading lesions. In fact, mutants of RbohD are
similarly susceptible to a virulent strain of P. syringae whereas
mutants of RbohF display a slight increase in susceptibility com-
pared to controls (Chaouch et al., 2012).

In potato a Ca2+-dependent protein kinase (StCDPK5) was found
to phosphorylate a plasma membrane RBOH leading to an oxida-
tive burst. Transgenic potato expressing a constitutively active
form of StCDPK5 under a pathogen-inducible promoter allowed

4

ht
tp

://
do

c.
re

ro
.c

h



determining the implication of ROS in the defence of potato to
pathogens using a gain-of-function approach. Inoculation of such
plants with virulent isolates of P. infestans induced ROS and
increased resistance to the pathogen. However, transgenic plants
were more susceptible to the necrotrophic pathogen Alternaria
solani. Thus, RBOH-dependent ROS participate in the defence to
hemibiotrophic pathogens, but help the necrotrophic pathogen in
the colonisation of the tissue (Kobayashi et al., 2012). In agreement
with these data, NbRbohB-silenced N. benthamiana plants develop
smaller lesions after inoculation with B. cinerea (Asai and
Yoshioka, 2009). However, Rboh-mediated ROS accumulation is
not strictly correlated with disease susceptibility towards B. cine-
rea. The treatment of Arabidopsis leaves with oligogalacturonides
(OGs) elicits an AtRbohD-dependent oxidative burst and protects
Arabidopsis plants from subsequent attack by B. cinerea. Despite
the loss of the OG-elicited ROS-burst, atrbohD T-DNA mutants still
exhibit an induction of defence genes and an increased resistance
towards B. cinerea after OG-treatment (Galletti et al., 2008). A
recent study suggests nitric oxide (NO) to act as an upstream reg-
ulator of the OG-elicited oxidative burst mediated by AtRbohD
(Rasul et al., 2012). A link between disease resistance, NO and
ROS was also indicated by analysing different Arabidopsis ecotypes
after inoculation with Sclerotinia sclerotiorum. Resistant ecotypes
showed a higher expression of AtRbohD and F as well as an earlier
accumulation of NO and H2O2 when compared to susceptible eco-
types during interaction with S. sclerotiorum (Perchepied et al.,
2010). Adding another layer of complexity to the interplay
between NO and ROS, AtRbohD function was shown to be nega-
tively regulated by NO-dependent S-nitrosylation during hyper-
sensitive response (Yun et al., 2011).

The dependence of an oxidative burst on cell wall peroxidases
was initially reported in carrot suspension cells (Bach et al., 1993).
ROS formation dependent on an apoplastic peroxidase was later
confirmed in other plants (bean, Arabidopsis, pepper, lettuce, cot-
ton) (Bestwick et al., 1998; Bindschedler et al., 2006; Bolwell,
1999; Choi et al., 2007; Martinez et al., 1998). The relevance of apo-
plastic peroxidase was explored in A. thaliana expressing an anti-
sense construct of the heme-containing cell-wall-bound class III
peroxidase FBP1 of French bean. In such antisense plants the DPI-
insensitive oxidative burst was decreased in response to cell wall
preparations of Fusarium oxysporum. The antisense plants displayed
enhanced susceptibility to a broad range of fungal and bacterial
pathogens and showed a decrease in expression of mRNAs coding
for peroxidase AtPCa (PRX33) and AtPCb (PRX34) (Bindschedler
et al., 2006). When Arabidopsis tissue culture lines generated from
FBP1 antisense plants are treated with ROS inhibitors (azide and
DPI) about half of the MAMP-induced H2O2 can be accounted for
by a peroxidase-generated reactionwhile the rest is likely to depend
on NADPH oxidases and other sources. The expression of MAMP-
elicited genes including MYB51, CYP79B2, and CYP81F2 and the
two cysteine-rich defence-related peptides PDF2.2 and PDF2.3 are
decreased in the antisense cell lines (O’Brien et al., 2012b). The
importance of peroxidase-mediated ROS formation was studied in
Arabidopsis T-DNA insertion lines impaired in the expression of
the PRX33 or PRX34 mRNAs. Mature leaves of such T-DNA knock-
down lines respond to MAMPs (Flg22 and Elf26) with reduced ROS
formation and callose deposition and a decreased induction of
MAMP-activated genes. Finally, the PRX33 T-DNA knockdown line
is more susceptible to P. syringae than wild-type plants, supporting
a role for peroxidase-mediated oxidative burst in MAMP-mediated
plant defence (Daudi et al., 2012).

In Arabidopsis, besides AtRboh the NADP-malic enzyme (NADP-
ME) was recently shown to be associated with the formation of
ROS and ROS-dependent defences. Inoculation with the hemibio-
trophic fungal pathogen Colletotrichum higginsianum or with
PAMPs (flagellin, chitin) increased the activity of NADP-ME and

its transcript levels. In the loss-of-function T-DNA mutant nadp-
me2, ROS and the formation of callose are decreased in response
to PAMPs and an increased susceptibility towards C. higginsianum
was observed providing experimental support for a role of NADP-
ME and associated ROS in plant defence (Voll et al., 2012).

Several necrotrophic pathogens produce oxalic acid (OA) during
infection and OA can dampen the elicitor-triggered ROS production
(Cessna et al., 2000). An interesting series of studies have tested the
importance of OA as a pathogenicity factor and have yielded clues
on the relevance of ROS during an interaction with necrotrophic
fungal pathogens (for a summary see Walz et al., 2008a). Trans-
genic tomato expressing a wheat oxalate oxidase displayed oxalate
oxidase activity and reduced symptoms after inoculation with B.
cinerea (Walz et al., 2008b). Overexpression in tobacco of an oxa-
late decarboxylase from the basidiomycete Trametes versicolor that
converts OA into CO2 and formate, leads to a strong ROS accumu-
lation and delayed colonisation of S. sclerotiorum (Walz et al.,
2008a). Arabidopsis overexpressing the oxalate decarboxylase
gene of T. versicolor show a faster ROS accumulation after inocula-
tion with B. cinerea and a decrease in lesion size compared to con-
trols (L’Haridon et al., 2011). Thus, when necrotrophic pathogens
are exposed to an oxidative burst during the initial phase of infec-
tion their invasion is weakened. Paradoxically, OA can also induce
ROS formation and attending plant cell death at a later stage of the
infection that benefits a necrotrophic pathogen. A study by
Williams et al. (2011) nicely demonstrates how Sclerotinia medi-
ates the redox environment in the host using real-time redox sens-
ing by GFP, histological staining and reverse fungal genetics. At an
early phase, Sclerotinia creates a reducing environment by secret-
ing OA that prevents the ROS-induced localised defences. This
allows an early establishment of the pathogen that at a later stage
will exploit host ROS pathways and plant cell death to its own
advantage and successful colonisation. A similar role for OA during
the later phase of colonisation was highlighted in the interaction of
tobacco with Moniliophthora perniciosa, the hemibiotrophic causal
agent of witches broom disease (da Silva et al., 2011).

ROS are also part of the reactions that are activated when plants
undergo priming for defences. Priming of the expression of genes
associated with cell wall lignification and of the activity of ROS
forming enzymes is induced during systemic resistance in cucum-
ber against Colletotrichum orbiculare by acibenzolar-S-methyl
treatments (Deepak et al., 2006). Treatments with the PAMP chito-
san or with the fungus Plectosphaerella cucumerina both induce cal-
lose and ROS formation in Arabidopsis plants. When plants are
pretreated with the priming agent b-aminobutyric acid (BABA),
plants display resistance to the fungus. BABA treatment is also
associated with a faster and stronger callose and ROS formation.
The priming effect of BABA affects the homeostasis of ROS both
by activating the expression and respectively the repression of
ROS biosynthetic and scavenging enzymes. This highlights the
importance of an oxidised cellular status for activation of defences
in primed plants (Pastor et al., 2013). In grapevine suspension cells,
BABA primes elicitation of ROS and expression of the RbohD gene.
In leaves of grapevine, BABA primes for a stronger ROS production
in response to the downy mildew agent Plasmopara viticola that
correlated with an increased resistance to this pathogen. Primed
ROS formation and BABA-induced resistance was blocked by DPI
(an inhibitor of NADPH oxidoreductases) suggesting that NADPH
oxidase-dependent ROS production is crucial to the effect of BABA
in grapevine infected by P. viticola (Dubreuil-Maurizi et al., 2010).

5. ROS and resistance to fungal pathogens of roots

Although ROS synthesis and function in foliar plant diseases
have been described extensively, little is known about the implica-
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tion of ROS in defence reactions of the root. The chitin-elicited pro-
duction of ROS and of H2O2 in particular has been demonstrated in
roots of M. truncatula and Arabidopsis (Kim et al., 2006; Nars et al.,
2013; Plancot et al., 2013). Using an elicitor from Fusarium oxyspo-
rum, increased levels of superoxide and H2O2 were also detected in
the border-like cells of Arabidopsis and flax roots (Plancot et al.,
2013).

The impact of actively growing F. oxysporum on ROS levels was
demonstrated when elevated amounts of ROS and nitric oxide were
visualised in Arabidopsis roots following inoculation (Gupta et al.,
2013). Similarly, the generation ofH2O2was detected in cotton roots
after infection with Verticillium dahliae (Xie et al., 2013). In a study
investigating H2O2 generation upon V. dahliae infection, H2O2 pro-
duction in tomato plants carrying the Ve resistance gene preceded
that observed in a susceptible variety (Gayoso et al., 2010). Trans-
genic cotton plants expressing a fungal endochitinase gene aremore
resistant towards Rhizoctonia solani and accumulated ROS faster
than the wild type after inoculation with the pathogen (Kumar
et al., 2009). These data demonstrate that root invasion by a patho-
gen is accompanied by increased ROS accumulation and suggest
that ROS levels are associated to disease resistance.

Our understanding of the ROS-generating processes during
root–pathogen interaction is still rudimentary. Bai et al. (2013)
detected a reduced expression of an Rboh homolog from banana
following inoculation with F. oxysporum in a resistant cultivar,
whereas roots of a susceptible cultivar showed increased Rboh
transcript levels (Bai et al., 2013). An independent transcriptional
analysis of banana roots undergoing compatible interaction with
F. oxysporum found the induction of an RbohD homolog (Park
et al., 2012). When expression of the 10 AtRboh homologs was
compared in F. oxysporum-inoculated Arabidopsis roots, AtRbohD
revealed the most pronounced induction while AtRboh A, B and F
were slightly increased. Interestingly, this study also demonstrates
that an atrbohD insertion mutant is more resistant to F. oxysporum,
while atrbohF plants develop more severe disease symptoms than
the wild type (Zhu et al., 2013). Transcriptional analyses of F. oxy-
sporum-inoculated banana and Arabidopsis plants also detected an
upregulation of several peroxidase genes, but a direct link between
peroxidase activity and disease development has yet to be estab-
lished (Li et al., 2013; Zhu et al., 2013).

The family of germin-like proteins (GLP) have been associated
with H2O2 accumulation in infected plants (Christensen et al.,
2004; Schweizer et al., 1999). GLPs include enzymes with oxalate
oxidase (OxO) or superoxide dismutase (SOD) activities leading
to H2O2 production (Zimmermann et al., 2006). Expression of the
BvGLP-1 gene of sugar beet in Arabidopsis increased the H2O2 con-
tent in the transgenic plants and conferred resistance to V. longi-
sporum and R. solani (Knecht et al., 2010). The authors of this
study proposed that H2O2 produced by BvGLP-1 may function as
a signal activating plant defence responses since the transgenic
plants exhibited enhanced transcript levels of both the SA-depen-
dent PR-1 and PR-2 genes and the JA/ET-dependent PR-3, PR-4
and PDF1.2 genes (Knecht et al., 2010). Catalase peroxidase is one
of the most prominent upregulated proteins observed when V. lon-
gisporum senses xylem sap of rapeseed. Reducing the expression of
these proteins in V. longisporum using RNAi-mediated gene silenc-
ing increased the sensitivity of the fungus to ROS and affected the
performance of the fungus during the late phases of the disease
(Singh et al., 2011). This provides an indirect evidence for the
importance of ROS in the defence of rapeseed to V. longisporum.

6. Conclusions

ROS are increasingly recognised as important molecules partic-
ipating in various processes ranging from development to

responses of plants to stress. This review focussed on the involve-
ment of ROS in the interaction between plants and pathogenic
fungi. Interestingly, ROS can act as developmental signals for the
differentiation of infection structures in fungal pathogens. Besides,
while ROS are known for their direct antimicrobial role against
pathogens they are more likely cofactors in redox reactions playing
various roles in plant defences. To this point one of the difficulties
remains the localisation of the relevant ROS species, their levels
and their dynamics in various tissues and at the cellular level.
Our knowledge is limited by a suboptimal temporal and spatial
resolution describing ROS kinetics during local and systemic
responses. A major challenge in this field will be the development
of methods that allow unambiguous detection and quantification
of specific ROS. The parallel analysis of ROS in the apoplast as well
as in different subcellular compartments will advance as novel
technical developments become available. Another challenge is to
fully understand how changing ROS levels translate into specific
biological outcomes. Such knowledge will help to elucidate the
connections among the diverse signalling elements employed by
the cell.
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