Supporting Information

One-pot synthesis and catalytic properties of encapsulated silver nanoparticles in silica nanocontainers

Magdalena Priebe, and Katharina M. Fromm*

SI 1. Influence of surfactant on formation and coating of AgNPs with silica shell.

4 mL of surfactant was added under vigorous stirring into 10 mL of cyclohexane at room temperature. When the solution was transparent, 325 μ L of 0.01 M AgNO₃ were added dropwise. When Triton X-100 was used as surfactant no change in color was observed, however in case of Igepal CO-520, the color changed into yellow indicating formation of silver nanoparticles. The system was left for equilibration (80 minutes) and then 50 μ L of 9 M hydrazine were added dropwise. The flask containing Igepal CO-520 remained yellow, whereas the one containing Triton X-100 turned black. After 10 minutes 16 μ L of aqueous ammonia (28-30%) were added and then 50 μ L of TEOS-cyclohexane (volume ratio 1:1). After 24 h reaction, the microemulsion was destabilized with 20 mL of EtOH, centrifuged (15'000 rpm, 30 min, rt), washed twice with EtOH (25 mL) and twice with ultra-pure water (25 mL).

SI 2. UV-vis spectra of the samples prepared by use of Igepal CO-520 and Triton X-100. The spectra were normalized up to an absorbance = 1.

SI 3. Redox potentials of reducing agents.

Reducing agent	Redox reaction	$E^{0}[V]$	Reference
Sodium borohydride	$BH_4^- + 8 \text{ OH}^- \rightarrow B(OH)_4^- + 4 \text{ H}_2\text{O} + 8 \text{ e}^-$	1.24	44
Hydrazine	$N_2H_2 + 4 \text{ OH}^- \rightarrow N_2 + 4 \text{ H}_2\text{O} + 4 \text{ e}^-$	1.15	45
Ascorbic acid	HOHC O $HOHC O$ O O O O O O O O O	-0.058	46

SI 4. TEM images of $Ag@SiO_2$ prepared with 0.1 M $AgNO_3$. Shape variation. Scale bar: 100 nm.

SI 5. TEM images of Ag@SiO_ prepared with 1 $\,M$ AgNO_3 and 250 μL hydrazine. Scale bar: 100 nm.

SI 6. UV-vis spectra of Ag@SiO₂, prepared using 0.1 M AgNO₃ and 20 M, 10 M, 5 M, 1 M hydrazine. The spectra were normalized up to an absorbance = 1.

SI 7. Time-resolved UV-vis spectra of methylene blue mixed with a) 8 mM, b) 10 mM, c) 13 mM and d) 80 mM NaBH₄ solution (prepared as explained in *Determination of catalytic properties* with the only difference that ultra-pure water was used instead of $Ag@SiO_2$ suspension).

SI 8. Time-resolved UV-vis spectra of methylene blue after addition of $Ag@SiO_2$ (Sample 12, Figure 3 d) suspensions at different concentrations of silver a) 0.15 mM, b) 0.21 mM, c) 0.58 mM and reduction by 13 mM NaBH₄; d) $Ag@SiO_2$ suspension at of silver 0.29 mM and reduction by 8 mM NaBH₄.

Sample	Н ₂ О [µL]	AgNO ₃ [µL]	AgNO ₃ [M]	Reducer	Reducer [µL]	Reducer [M]	TEOS [µL]	Sequence	Color	λ _{max} of UV-vis	Comments	
1	700	700	0.01	CA	50	1	200	1	t	n	Almost no hollow structures of SiO ₂ , tiny AgNPs	
2	700	700	0.01	AA	50	1	200	1	sy	n	Hollow structure of SiO ₂ hardly visible, tiny AgNPs	
3	700	700	0.01	SB	50	1	200	1	У	n	Mainly full SiO ₂ , tiny AgNPs	
4	700	700	0.01	Н	50	1	200	1	dy	n	Nanorattle Ag@SiO₂, small spherical AgNPs, incomplete loading	
5	0	1400	0.1	Н	50	20	200	2	bl	403		
6	0	1400	0.1	Н	50	10	200	2	bl	404	Nanorattle Ag@SiO ₂ , AgNPs of various sizes	
7	0	1400	0.1	Н	50	5	200	2	bl	408		
8	0	1400	0.1	Н	50	1	200	2	bl-br	422	Empty solid SiO ₂ of smaller size AgNPs much larger then SiO ₂ , tight coating	
9	1400	0	0	-	-	-	200	2	t	n	Hollow SiO ₂	
10	0	1400	0.01	Н	50	20	200	2	0	403	Ag@SiO₂ (Conc. of AgNO₃↑, size of AgNP and loading ↑)	
11	0	1400	0.05	н	50	20	200	2	br	400		
12	0	1400	0.1	н	50	20	200	2	bl	401		
13	0	1400	0.2	Н	50	20	200	2	bl	405		
14	0	1400	0.3	Н	50	20	200	2	bl	410	Ag@SiO ₂ – disappearing nanorattle pattern	
15	0	1400	0.5	Н	50	20	200	2	bl	410	$Ag@SiO_2 - no nanorattle pattern$	
16	0	1400	1	Н	50	20	200	2	bl	404	No Ag@SiO ₂ pattern	
17	0	1400	1	Н	250	20	200	2	bl	422	$Ag@SiO_2 - no nanorattle pattern$	
18	0	1400	0.2	Н	50	20	100	2	bl	409	Ag@SiO₂ (Conc. of TEOS↑, silica wall thickness ↑)	
19	0	1400	0.2	н	50	20	200	2	bl	406		
20	0	1400	0.2	н	50	20	300	2	bl	407		
21	0	1400	0.2	Н	50	20	400	2	bl	404		

SI 9. Experimental procedure for preparation of $Ag@SiO_2$ nanorattles – variation of the experimental conditions.

[Sequence 1] cyclohexane + Igepal CO-520 + $H_2O \rightarrow TEOS/APTS \rightarrow AgNO_3 \rightarrow reducing agent \rightarrow NH_4OH$; [Sequence 2] cyclohexane + Igepal CO-520 $\rightarrow AgNO_3 \rightarrow reducing agent \rightarrow TEOS/APTS \rightarrow NH_4OH$; [t] transparent, colorless; [y] yellow; [sy] slightly yellow; [dy] dark yellow; [o] orange; [br] brown, [bl] black; [n] not measured or no AgNPs; [CA] citric acid; [AA] ascorbic acid; [SB] sodium borohydrate; [H] hydrazine.

TEM images of the samples are shown in SI 10-15, whereas UV-vis spectra in SI 16-20.

SI 10. TEM images of samples prepared with 700 μ L of H₂O, with 700 μ L 0.01 M AgNO₃, and 50 μ L of: a, b) citric acid (Sample 1); c, d) ascorbic acid (Sample 2); e, f) sodium borohydrate (Sample 3); g, h) hydrazine (Sample 4). Scale bar 200 nm (a, c, e, g) and 100 nm (b, d, f, h).

SI 11. TEM images of samples prepared with 1400 μ L of 0.1 M AgNO₃ and 50 μ L of: a, b) 20 M (Sample 5); c, d) 10 M (Sample 6); e, f) 5 M (Sample 7); g, h) 1 M hydrazine (Sample 8). Scale bar 500 nm (a, c, e, g) and 100 nm (b, d, f, h).

SI 12. TEM images of samples prepared with 1400 μ L of: a, b) H₂O (Sample 9); c, d) 0.01 M AgNO₃ (Sample 10); e, f) 0.05 M AgNO₃ (Sample 11); g, h) 0.1 M AgNO₃ (Sample 12). Scale bar 500 nm (a, c, e, g) and 100 nm (b, d, f, h).

SI 13. TEM images of samples prepared with 1400 μ L of: a, b) 0.2 M (Sample 13); c, d) 0.3 M (Sample 14); e, f) 0.5 M (Sample 15); g, h) 1 M AgNO₃ (Sample 16). Scale bar 500 nm (a, c, e, g) and 100 nm (b, d, f, h).

SI 14. TEM images of sample 17 prepared with 1400 μ L of 1 M AgNO₃ and 250 μ L of hydrazine. Scale bar 200 nm (a) and 100 nm (b).

SI 15. TEM images of samples prepared with a, b) 100 μ L (Sample 18); c, d) 200 μ L (Sample 19); e, f) 300 μ L (Sample 20); g, h) 400 μ L (Sample 21) of TEOS. Scale bar 500 nm (a, c, e, g) and 100 nm (b, d, f, h).

SI 16. UV-vis spectra of samples prepared with 1400 μ L of 0.1 M AgNO₃ and 50 μ L of 20 M (Sample 5), 10 M (Sample 6), 5 M (Sample 7), 1 M hydrazine (Sample 8). The spectra were normalized up to an absorbance = 1.

SI 17. UV-vis spectra of samples prepared with 1400 μ L of H₂O (Sample 9), 0.01 M AgNO₃ (Sample 10), 0.05 M AgNO₃ (Sample 11), 0.1 M AgNO₃ (Sample 12). The spectra were normalized up to an absorbance = 1.

SI 18. UV-vis spectra of samples prepared with 1400 μ L of 0.2 M AgNO₃ (Sample 13), 0.3 M AgNO₃ (Sample 14), 0.5 M AgNO₃ (Sample 15) and 1 M AgNO₃ (Sample 15). The spectra were normalized up to an absorbance = 1.

SI 19. UV-vis spectrum of Sample 17 prepared with 1400 μ L of 1 M AgNO₃ and 250 μ L hydrazine. The spectrum was normalized up to an absorbance = 1.

SI 20. UV-vis spectra of samples prepared with 100 μ L (Sample 18), 200 μ L (Sample 19), 300 μ L (Sample 20) and 400 μ L (Sample 21) of TEOS. The spectra were normalized up to an absorbance = 1.

SI 21. Time-resolved UV-vis spectra of methylene blue mixed with Ag@SiO₂ suspension (Sample 12) at concentration of silver a) 0.15 mM, b) 0.20 mM, c) 0.24 mM and d) 0.93 mM (prepared as explained in *Determination of catalytic properties* with the only difference that ultra-pure water was used instead of NaBH₄ solution).

SI 22. Time-resolved UV-vis spectra of 2 mL of methylene blue mixed with a) 200 μ L of 9 mM NaBH₄ and 200 μ L of ultra-pure water, b) 200 μ L of 69 mM SiO₂ suspension (Sample 9, **Figure 3 a**) and 200 μ L of ultra-pure water (no waiting for sedimentation of particles), c) 200 μ L of 69 mM SiO₂ suspension (Sample 9, **Figure 3 a**) and 200 μ L of 9 mM NaBH₄ (no waiting for sedimentation of particles), d) 200 μ L of 9 mM NaBH₄ and 200 μ L of Ag@SiO₂ suspension (after waiting for sedimentation of particles, Sample 12, **Figure 3 d**).

As shown in (**b**) and (**c**), addition of relatively concentrated SiO₂ hollow spheres shifts overall spectrum of methylene blue which adapts partially shape of SiO₂ alone (compare **SI 17, sample 9** for UV-vis spectrum of SiO₂ hollow spheres). In addition, during the measurement, all spectra are shifted downwards, probably due to agglomeration and sedimentation of NPs. Interestingly, a band with maximum of absorbance at $\lambda_{max} = 663$ nm in (**c**) decreases significantly compared to (**b**). However, a characteristic band of oxidized form of methylene blue, at $\lambda_{max} = 255$ nm, well visible in (**d**), does not occur neither in (**b**) nor in (**c**).

SI 23. X-ray diffractograms (XRPD) of a) SiO_2 (Sample 9) and $Ag@SiO_2$ prepared with b) 0.01 M (Sample 10), c) 0.05 M (Sample 11) and d) 0.1 M (Sample 12) AgNO₃. Insets: corresponding UV-vis spectra normalized to 1 (From **SI 17**).

Note that: SiO_2 nanocontainers are amorphous (a). At low concentration of AgNPs, their presence can be confirmed only by UV-vis spectrum. In XRPD they are invisible due to large background of silica (b).

