INTRODUCTION: Aerobic fitness, as measured by VO$_{2\text{peak}}$, is a well-validated predictor of morbidity and mortality in healthy individuals and those with cardiovascular disease. Resting arterial function, as indicated by carotid to femoral pulse wave velocity (cfPWV: arterial stiffness), and arterial structure as indicated by intima-media thickness (IMT), and carotid diameter (Dc), are correlated to cardiovascular risk. As alterations in arterial health likely impact aerobic capacity, identifying arterial parameters that predict cardiovascular fitness are necessary; however, this relationship has not been fully investigated.

PURPOSE: This preliminarily cross-sectional study examined the relationship between relative peak VO$_2$ and resting arterial function of 51 subjects without overt cardiovascular disease (CVD) (mean age 44.9 ± 11.6). **METHODS:** VO$_{2\text{peak}}$ was assessed using a staged graded exercise test on a semi-recumbent bicycle until volitional fatigue. cfPWV was measured with Applanation tonometry; IMT and Dc were measured with B mode ultrasound. To account for individual differences in CVD risk each individual was assigned a metabolic risk score based on their age, sex, blood pressure, BMI, triglycerides, HDL, and glucose. **RESULTS:** Univariate regression models indicated that VO$_{2\text{peak}}$ is significantly related to cfPWV [$r = -0.43$, $p = 0.002$], IMT [$r = -0.46$, $p = 0.001$], and Dc [$r = -0.30$, $p = 0.035$]. For multivariate analysis adjusted for age, sex, and metabolic risk scores, VO$_{2\text{peak}}$ remained significantly related to cfPWV [$r = -0.29$, $p = 0.036$], IMT [$r = -0.32$, $p = 0.012$], and Dc [$r = -0.25$, $p = 0.037$]. **CONCLUSION:** Preliminary data suggest that peak oxygen uptake is independently correlated with arterial health in populations free of overt CVD. These results suggest that improving peak oxygen uptake may have a favorable effect on arterial function and vice versa.

Research funded in part by the American Heart Association 11CRP7370056 and National Heart, Lung, Blood Institute T32- HL090610