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Chapter 1

The Fourier Transform

1.1 Introduction

In the early 1800’s, Jean Baptiste Joseph Fourier first defined
and used the function we call the Fourier transform. While the
Fourier series is used for functions defined on a finite interval or
periodic functions defined on all R, the Fourier transform is used for

functions defined on all of ®; that is, the interval (-w,0). & [f]is

called the Fourier transform and is defined by:
FlrONo)=Fo)= [fe™ d (1.1.1)

for all real @ such that the integral exists. One family of functions
which have a Fourier transform are those defined on ® with values in
€ which satisfy two properties: (a) piecewise continuous and (b)

absolutely integrable (see Theorem 1.1). We will refer to this family



of functions as G(R). We note that for this family we can interpret
) R

jg(t)dt as lim jg(t) dr , the Cauchy principal value.

—w0 -R

Actually, there are relatively few functions for which the
Fourier transform can be found. But one of the reasons the Fourier
transform is useful in physics is that many physical functions
fortunately do have a Fourier transform.

Theorem 1.1 (Existence of the Fourier Transform) [10, p. 94]

For every function f e G(R),

1. Fisdefined forall o € R

2. F is a continuous function on R.

3. lim F(w)=0.

w->+o

Proof of Theorem 1.1

1. Since .e'"‘" =1 for all real  and o,

o]lf(t)e"i“”, dr = wﬂf(z)[ dt < .

Thus f(z)e™" 1is absolutely integrable on ® and is piecewise
continuous. So F is defined for all real w.
2. To show F is continuous for @ € R we prove that

lim{F(w+ k)~ F(@)] = 0. Applying the definition,



F(o+h)-F(o)= «j‘ f®e @ dr — ii' f(e ™™ dt

= [r@e e 1ar.
Fort,we R,
£i-1301f(t)e—la)t[e—iht _-1] — Af(t)e—-ia)l %Ii_l)%[e_iht _1]
= f(®)e™ -0
=0.
Since [£(0)-le™|]e™ -1 < |f@®]-1-2 = 2|f(»|, we may apply the
Lebesgue Dominated Convergence Theorem from analysis,

;Ti_{%_o] Fe e ~1]ar =o.

So %in(}[F(co+h) —~ F(w)] =0 and hence F is continuous at every point

in R.

3. If the limit exists, we have by definition

lim F(o) = lim [re dr

= 1311@[?f(t)coswtdt+i?f(t)sina)tdt} .



To prove lim F(w) =0 it is sufficient to show that lim j f({H)coswtdt

and lim _" f()sinwtdr are both equal to zero. We will prove the

second result here. The proof of the first is analogous and is given in

[10, p.96-97]. We know f is absolutely integrable. Choose ¢ > 0.

There exists an M > 0 such that ﬂ f@ldt<e. Thus

Je|>M

jf(t)sincotdt

|t}>M

< |lf@Osinofd < [f@jdt<e.

le| oA {t]>M

Since f is piecewise continuous on [-M, M] there exists a

partition -M =1, <t <...<t, =M such that the step function

M
WO)= @), Lo <t<t, , k=12,..,m satisfies [f@)-n@ldr < &.
-M

Now, [f@sinetdt = [[fO)-ho)lsinwrd + [n@)sinotd.

Forall o € R,

IA

Afﬂf () h()]sinwt dt A]] f(@)=h()|-sinwi|dt

IA

flro-hnw)ar

<g.

Now consider the second integral
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m

Z I]f(tk)sin(otdt

k=1 e

M
jh(t) sine? dt
-M

£ cosmit, —cosa)tkl
2./) ~ |

7

max | f (t)| .

~-M<t<M

IA

1)

IA

j 14

For sufficiently large o, lz'ﬁ max |f(t) < &. Thus

@ | MM

J' f(O)sinwtrdi < 2¢ < 3¢ and the theorem is proved.

-0

Let’s work an example to illustrate the Fourier transform.
Example 1.1 Find the Fourier transform of the function

1, 0<t<1
0, elsewhere

f= {

First apply the definition and break up the integral over three

intervals for which the first and third are zero. So we get

F [fONo) =Fo)= [foe™d = [ed = m} _ e i

0

Now apply the identity e’ = cos@+isin@ for our result,

F(w) = sinm _H,(cosw__l_)
o

1) «
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Example 1.2 Find the Fourier transform of the function f(r)=¢™.

Apply the definition to the function f(r):
FUONw)=F(0)= [ee™ar
Combine the exponentials to get
Fo)= [e™d.
By properties of even and odd functions,
F(w)=2 Oi[e" coswtdt.
0

Integrate by parts twice to get

T _ —coswl+wsinot _, |
j.e coswtdl = e .
1] 0

1+’

Using the fact that lime™ = 0, we have

-

1
1+

Ie"’ coswtdt = ==,
0

2

So the Fourier transform of f(t)=e™ is F(w)= 1
+o

~.
Example 1.3 Find the Fourier transform of the Dirac delta function,

5(t), defined by 5(1)=0,t #0,and [s(dr = L. [, p2]
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One representation of the delta function

is 6(t) =
lim{% Tl
&0

. The Fourier transform of the Dirac delta function
0 elsewhere

can then be found as follows.

FL5W] = [swed

N

1
£

— 1 1 % —iwt
= 161_','(,‘{;_.[e dt]

lim

&0

e—iwt dt

Nie

= lim——l(2i sin(g)—g—))
&0 g 2

In Table 1.1 are a few functions and their Fourier transforms.

For more details about these and other examples or exercises refer to

Andrews, Bracewell, Pinkus, Pinsky, and Wienberger. However, for
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consistency, the transforms shown in the table are found using

definition (1.1.1).

Table 1.1
f(t) F(w)
I, 0<zr<l sina)_”(cosw_i)
0 elsewhere I ® 17)
o 2
1+ @*

2

JZe* , ais a nonzero constant

-af?

I g
? +1
—at
¢ hl) —, ais a constant
a—1iw
smeoo 7 o<1
! 0 ]a)| >1
5(t—-¢) et

B 1.2 Properties and Formulas

Finding the Fourier transform from the definition can be

difficult and tedious. Fortunately, we can find certain transforms by
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use of the properties of the Fourier transform without going to the

formal definition. Listed below in Table 1.2 are many of the

important properties, which hold under the appropriate assumptions.
Table 1.2

Properties of the Fourier Transform [1, p.225]

1.2.1 Flef+e,g)=c F(f)+c, F(g)
1.2.2 F(f™)= (iw)" F(w) n=012,..
1.2.3 F(f®))=iF'(w)

1.2.4 F(fat-a))=eF(f(@®))
1.2.5 F("fO)=F[fONw-a)
1.2.6 F(flan) = ﬁ FLIOKE), a0

Proof (1.2.2) We shall prove the case n=1. [10, p.105]

Assume fe G(R). By the definition of the Fourier transform we
have #( ') = j f'®e " dt, if the limit exists. Now use integration by
parts.

F(f)= foe™ [, - [-io f@t)e " dr




15
=0+ io [f@ed (lim /=0, since £ G())

= io FAHw)
= iw F(w).

Proof (1.2.5)

Fle [0]= [ j0e™ di = [f@ye " dt = F[[©) o~a).

1 1.3 Real and Complex Qutcomes

By symmetry properties we can determine from the domain of
the function what the result will be in the codomain of the transform.

The results are summarized in Table 1.3 [2, p14].

Table 1.3
FUNCTION TRANSFORM
1.3.1 real and odd imaginary and odd
1.3.2 complex and even complex and even
1.3.3 real and asymmétrical complex and asymmetrical

1.3.4 | imaginary and asymmetrical | complex and asymmetrical

1.3.5 | real even and imaginary odd real
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1.3.6 | real odd and imaginary even imaginary
1.3.7 even even
1.3.8 odd odd

Proof (1.3.1)

0

Let f'be real and odd. Then Z[f[(-0) = Iei“’ f@®dr. Lett=-x. So

—00

we have Ff(-w) = - [e"* f(-x)dx

Thus & is odd. & [f] can be written as j[coswt—isincot] fOdt =

?coswtf(t) dt—i Q]sinwtf(t) dr.

@«

= — cl.)f‘«z"“"" f(x)dx

=—-Ffl(w).

In order to show that & is purely imaginary, we need to show

that jcosa;t f(@®dt = 0. Breaking up this integral over two intervals,

—0

[cosat f(t)at + ?coswtf(t)dt

= ~ |cosaw(~t) f(-t)dt + °]‘cos ot f(t)dt

o

o0 @

= - |coswt f(t)dt + Icoswtf(t)dt

0
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B 1.4 The Inverse Fourier Transform

There are a wide variety of definitions used in the Fourier

transform and its inverse. Typically, the Fourier transform is defined

by 3 _[ f@e’dr and the inverse Fourier transform by
)

57—/— jF(a))ei“”da) for some y >0 (or vice versa). Being consistent with
V4

-0

our definition of the Fourier transform, our inverse Fourier transform

is:
7RO =)= 5 [F@edo.  (141)

The Fourier transform and its inverse, regardless of the pair of
definitions used, should “undo” each other just as inverse functions
do.

Theorem 1.2
If fe G(R)and f is differentiable, then
FHFON=f.

Proof of Theorem 1.2




(based on a hint in exercise 10.3.9 in [6])

Fo)= [fEe ™ ax

1 Ox — l iox " =\ ,—ioX
E;F(a))e o € —if(x)e dx

1 L iox — 1 A ia)xw == —iwx
5;iﬁ’(m)e da)——i;_[e _;[f(x)e dido

RS
2w

aoje"’”‘ “or f(¥)didw

-~

h!——-'b‘

8

¢ f(F)didw

i
[\®]
V-
L‘—.h

8

1
2

3:__,8

j 0 £(%) do dx
-L

(by Fubini’s Theorem, see for example, [12, p.269])

1 © p{x-X) L

=e I _} f(@)dx

i(x-%) |,

-0

1 © lL(x—x) —-lL(x—i) _
- 2 { i(x—X) A

=1 O]f(ic’) 2_ sin L(x - X)dx
2z 3 xX—X

= — i)+ () - ] o sinLx - D)
T 5 xX—X

= —l—a]f(x) 2_sinL(x—J?)aff
27 xX—-Xx

18



19

j[f(x) f@)—sin L(x - $)ds

Consider the first integral. Letu = L(x-¥%),du= -Ldx. The
constant 2f(x) can be pulled outside of the integral. Note that

[=¢] .
J-smu

du has the well-known value of z. So the first integral is
U

-0

—Z—%Q'ﬂ = f(x).

Now apply integration by parts to the second integral. Let u =

@@ o4 dv

L =  sinL(x-¥)dx. So du =
X—X

G-+ E =S D] 2 g v = _COSLE=X) e have
-3 L

1 j[f(x) FEI—sinLx-HdF = > [ (f(x) f(x)jcosL(x x)]
. —o0

XxX—X L

Note that

" IcosL(x N -0 F)+fE) - f(] |
L (x—x¥)?

—0

X—X

[ (f(x) f(x))cosL(x x)} 50 since f(_)_)o OIS 30
2n 0

L
So putting all this together we have 51— _[F(a))e"‘”‘dw = f(x) +
T3

L—> . Thus

jcosL(x )| x-) ')+ (x)- f(x)] Let
L (x-%)’

—00
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2L j F(w)e'*dw = f(x) + 0. Combining this result with the first line
7 —©

of the proof we discover that f(x) :EL J’e“”*[ I f(®)e** df}dm which
74 -0 —o0

implies the desired result that f=% ' [F(/)].

Similarly, it can be shown under the appropriate assumptions
that F[F ' (F)]=F.

The inverse Fourier transform also has a linearity property and
a multiplicative property called convolution. These are listed below
in Table 1.4 [1, p.227] and [5, p.7].

Table 1.4

141 # (e F+e,G)=c, F ' (F)+ ¢, F71(G)

1.4.2 N =
F~ (Fo)G(0))= [fgx-udu= f*g,

where f=7 ' (F)and g=7F "' (G).

1 1.5 Relationship Between Fourier and Laplace Transforms

The Fourier transform is related to the well-known Laplace

transform, and we shall explore the relationship in this section.



21

Sometimes the Laplace transform will be the natural choice in solving
a differential equation even in applications where the Fourier
transform can be used. Interestingly, the Fourier transform and
Laplace transform can both be used together in the same problem.
We will look at joint transforms later in chapter 4.

Start with the Fourier integral relation [1, p.186], which is valid
at points of continuity for piecewise smooth and absolutely integrable

functions.

F0) == [ [ fcosiot-xdrdo.  (15.1)
z —wo

0

y is a real number, we have

1

S(x)= T

[[roec +e 2 1drde
0 —0

= G]‘f(t)eico(t—x) dtdao + c]’o:’"f(t)e~-x'ep(1~x) dt d&'):!
-t 0~

0

= —T]'f(t)ei"’('_") didw + (]G]'f(t)e’“’(’“") dtdw}

L0 ~w —00—00

- LT f®e " dtda
>l

—a0—a0
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o)

zzi ferr [fe™ dida. (1.5.2)
44 —0

—a0

From the integral formula (1.5.2), which is the exponential form of
Fourier’s integral theorem, we can derive the pair of transform

formulas
Fo)= n]f(t)e"“” dt
and
oy J__ ¥ iwt
D= =y i F(w)e do

which are equivalent to our definition of the Fourier transform (1.1.1)
and inverse Fourier transform (1.4.1), respectively. Now if f'is related

to another function g such that f() = ¢ g(r)h(r) where ¢ is a positive

constant and A(f) is the Heaviside step function, then it follows from

9]

absolute integrability of f that Ie“"

0

g(|dt < ».  Notice that by

substitution, e “g(H)h(t) = ZL je‘"‘” j.e'(c"”’)"g(x)h(x)dxda). Since A(x)
T

- ~o0

= 1 whenever x > 0, we can write equivalently, g(Oh() =

1 0 o0

— | e g(x)dxdw. By the change of variables p=c-iw we
oy Yy g
0

—00
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formally obtain g()h(t) = 51— j e” _[e"”‘ g(x)dxdp. Thus we have
Tt

c—~io 0

derived the following pair of transform formulas [1, p.228]
F(p)= [e™ g(x)dx (1.5.3)
]

and

Cc+Hiowo

g h(t) = 5-1”— jep'F(p)dp. (1.5.4)

Observe that (1.5.3) is well-known to be the definition of the
Laplace transform. Equation (1.5.4) can be thought of as an inversion
formula for the Laplace transform. Thus, both the Laplace and
Fourier transforms can be motivated from the Fourier integral
theorem, providing a connection between the two transforms,

Here is another relationship between the Laplace transform and

the Fourier transform. The condition f |/ ()|dt < is too restrictive

—a

for some purposes. According to Duffy, the following has proven
useful in electrical engineering. Modify the Laplace transform as

follows [5, p.7]:

F)= {10,
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where Im(w)<0. (Compare with (1.5.3).) Note that under this
definition, a function that is not absolutely integrable, like the
Heaviside function, might have a transform. We can take this one

f|—>0

step further. If we can find ¢,,c, with ¢, > ¢, such that ¢

as t—>wo and e |f(H) >0 as t—> -, then we may define the

generalized Fourier transform (or two-sided Laplace transform) by
F(@)= [f@ye™ dt,

where ¢, > -Im(w) >¢,. (Compare with (1.1.1).)

There are several other transforms that have a direct connection
with the Fourier and/or Laplace transform. A few of these are the
Hankel, Mellin, Hilbert, Abel, and z transforms. Read chapter 12 of
Bracewell [2] for an in-depth discussion about how these linear

transformations relate to the Fourier transform.



Chapter 2

The Inverse Transform and Complex Analysis

§ 2.1 Finding the Inverse Transform with Complex Analysis

To be able to perform the inversion of a function containing
complex variables we need to be able to apply some theorems. First
we’ll introduce the residue theorem from complex variables.

Theorem 2.1 The Residue Theorem [4, p.183]
Let C be a positively oriented, simple closed contour on which f is
analytic except for a finite number of isolated singular points z,,z,,...,z,
on the interior of C. If X,,K,,...,K, are the residues of f at those points,
then

[f@ydz=27i(K, +K, +...+K,).
C

Theorem 2.2 allows us to evaluate a contour integral in either the

upper or lower half plane.

23
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Theorem 2.2 [8, p.275]
Let f be an analytic function on an open set containing the closed upper
half plane # = {ze € | Im(z) > 0} (or lower half plane ¥ = {ze C |
Im(z) < 0}) except for a finite number of isolated singularities, none of

which lie on the real axis, and there exist real constants M, p, and R,

with p > 1 and V<Z)l<|% whenever z e # (orz e ¥) and |z]> Ry .
Z

Then

@) o]' f(x)dx = 27iy. {residues of f in '}

(i)  [fCodx = -27iF {residues of f in %} .

Proof (see Example 4.3.5 [8, p.273])

(i) Choose radius R >R, so that all poles are enclosed in the contour
with the half-circle T, =y, + i, where y, is the line contour on the real
axis traversed from left to right and p, is the curved contour that runs

counterclockwise around the poles. Then by the residue theorem,

[f(zydz = 27rii Resf(z). Thus [f()dz + [f(2)dz = zm}"_j Res f(z).

= 2=z, ™ =%

< Mop - Mz

= = -0 as R—»>x. Also

Observe that

[z
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_[f(z)dz - If(z)dz as R > x. Therefore 11rn _ff(x)dx = jf(z)dz =

YR

27[12 Resf(z)

The proof of (ii) is similar and uses a contour in the lower half plane.
Next we need a theorem to evaluate these residues. Theorem 2.3
allows us to calculate residues without going to the definition of a

residue, which uses a Laurent series expansion.
Theorem 2.3 [4, p.190]

An isolated singular point z, of a function f'is a pole of order m if and

P(z)
(z=-2z0)"

only if f(z) can be written in the form f(z) = where ¢(z)is

analytic and nonzero at z,. Moreover,

() Resf(2)=g(z) ifm=1

(m-1)
(i1) Res ()= ¢( _(IZ)(:) ifm=>2.

1

Example 2.1 Find the inverse Fourier transform of F(w ) = PSS
o + 40+

The inversion formula is f(t) = e¢”'dw. Note that

[ =
5_;[ 2 4+ 8

1zt

e

———— has simple poles at z = -2+2i. Before we use Theorem 2.2,
z°+4z+8

we need to show the conditions hold. First we note the following.



izt

é l B et

lzz+4z+8| ‘zz+4z+8

Claim 1 ,where z =a+bi.

Proof : Trivial.

Claim 2 There exists an N such that for all with |z| >N,

1 o 22.
|22+4z+8‘ 2|
Proof : lim — =1
=0 {1+4z+4 82
1
fim |22 | =1
bl v
—+—+8
Z Zz
2
=lim 5 =
o z° +4z+8

Thus 3 N 5V z with || >N,

2
z

_Z 1<1+1
z2+4z+8

‘zzl <2 |22 +4z+8|

25 v
[z|2 |22 +4z+8] '
~-bt

SO| e | e (by Claim 1).

’zz+4z+8| lzz+4z+8l

izt

< 2—1—— (for appropriate ¢, b (see below)).
{z +4z+ 8,

28
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< _ZIT (by Claim 2).

|z
Thus the conditions of Theorem 2.2 hold.
For t > 0, we use the upper half plane in which 5 > 0, so ¢™ <1.
For ¢t < 0, use the lower half plane in which b < 0, so ¢ <1. Thus
e™” <1 in both cases.
Applying Theorem 2.2(i), the inverse Fourier transform for # > 0

in the upper half plane is

izt
7! — L = —1——-27zi Res————— ¢
z°+4z+8 2r z=2+2i 7° + 4z + 8

izt

- Res ¢ ’
2=2+2i (z— (—2 + 21))(2" ("‘2 - 21))

== l . __.___iﬂ_____.
= (——‘2 - 21) z==242i

ei(~2+2i)t

(=2 + 2i) ~ (-2 — 2i)

:i.

i . e—2!—2ti
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For t < 0 use the pole z=-2-2i in the lower half plane. The inverse

Fourier transform using Theorem 2.2(i1) is

izt
y’-l [T__l_____.:| = —l——272'1 Res _._2_.._.?__.._.___.._
z°+4z+8 2z 2=-2-2i 7" +4z+8

. eizt
= —i-Res
2221 (z— (=2 - 20))(z— (-2 + 20))

eizt
— g l - _—_——_—_——.—.
z—=(=2+2i) | _,
/(220

22— (2420

- i . eZl—Zti

~ 4
=2t

eZI
_____-e
4

eZt
= T(cos2t —isin2t).

Thus the inverse Fourier transform is the combined solution,

-2/
7! i : } == (cos2t—isin2t).
o +40+8 4

If a pole should lie on the real axis, we can still find the inverse
Fourier transform. One method is to move the contour slightly off the

real axis with an epsilon band (see example 2.2). This integral is often
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referred to as Bromwich’s integral after the English mathematician

Thomas John I’ Anson Bromwich.

Example 2.2 [5, p.77] Find the inverse Fourier transform of ————,
a —a wl

where a=0. By (1.4.1), inversion formula is # 1[~——1-———} =

0w’ -ad’wi

_ZL I—;l—z—.ei“"da). Set z*> —a’zi= 0 to find the poles, z =0 and z =
T 0 —awi

a’i. We have a singularity on the real axis and on the positive
imaginary axis. Notice that there are no singularities in the lower half
plane, so f{t) = 0 for the case when ¢ < 0. Now, for t > 0, modify the

inversion integral using Bromwich’s integral to effectively move the

pole z = 0 off the real axis.

1 o~ ei“"

1 % 1 ;
)= — |———e"do » — | ————dow,
AY 27:_;[(02—-a2a)i 2r Y w(w-a’)

0—-£1

where j indicates the integral along the contour x=t y=-¢,

- <t <. Note that the limit of the second integral as £ — 0 gives the
original f{t). The inversion integral can be converted into the closed

contour integral

5 z_e'“dz
2w C z* —a’zi
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where both of the singularities are now within the contour and are

essentially in the upper half plane. Thus by the residue theorem,

fiH) = i[Zﬂi(Res(z = 0)+Res(z = a’))|

_ 1 i etzl :l eizt:l
= —|27xi = +
2”_ (z—a%) |, z |
1 —azt
2r a’i a’i

;1—17 (e“’z' - 1).

i

The final solution can be written as f{t) = ~lT(e""z’ —l)h(t), where k()

a

1 t>0

represents the Heaviside step function, defined by &() = {0 e i)’
<

Another method of finding the inverse Fourier transform, when a
pole lies on the real axis, is to apply a theorem.
Theorem 2.4 [8, p.287]

Let & be the open lower half plane {ze€C | Im(z)<0}, and let f be
analytic on an open set containing its closure {zeC | Im(z) <0} except

for finitely many isolated singularities. Suppose the ones on the real
axis are simple poles. Then if either (i) f satisfies the conditions of

Theorem 2.2(ii) (except for the poles on the axis) or (ii) fz) = e g(2)
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with @ > 0 and g satisfying g(z)—» 0 as z—0 in the half plane in the

sense that for each >0 there is an R(¢) such that |g(z)| <& whenever

Iz < R(¢) and z e &, then the integral exists and

? f(2)dz = 2zi Z{residues of fin ¥} — =i Z{residues of f on the real axis}.

(Similarly, j f(2)dz = 2ziX{residues of f in #} + i Z{residues of f on the

real axis}, for the upper half plane.)

Example 2.3 Find the inverse Fourier transform of . )
o(w” +1)

. . . - “ 1 .
The inversion formula is & _12_.._ - ————edw.
(@ +1) 2 Jw(w” +1)

The poles are z =0 and z = +i. If £ > 0, use the upper half plane

containing the poles z =0 and z = i. Thus by Theorem 2.4,

@ iot 1zt izt
1 —~€2—da) = 127 Res 62 + 7 Res——%——————
27 sw(@” +1) 2 = z(z"+1) =0 z(z° +1)

izt B izt
=1 27il Res —— |+ 7 Res~——e_——.—
2z z=i z(z—i)(z+1i) | =0 z(z-i)(z+1)

i o' i JREL T
— i +4+ |
_z(z+i):|2=’ 2|:(z—i)(z+i)_z=0

“la ] i[ 1 }
2| 2] -iG)
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ie” i
+._

2

_i(l-e™)
-

Ift<0,use z =0and z = —i. Thus by Theorem 2.4,

1 J 1 —27i| Res 2 ~ il Res 62
2w do@ 0™ "2 =i z(2" +1) =0 z(z" +1)
B izt izt
=1 —2ri Res — & |-zi Res—~——e—~—
27| =i z(z—i)(z+i) =0 z(z—i)(z+1i)
o e
| z(z 1) s 2{ (z-i)z+i0) -

- e’ i1
i) | 2| i)

_del i
2 2
_ i’ =1)
— -
il-e™) 5.0
Thusf'l{———l2 1}= 2
+ i(e' —
el 5 —-————’(62 D <o

We will finish this chapter with an example of a multivalued

function that involves branch cuts.
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Example 2.4 Find the inverse Fourier transform of the function

0 <0
]«w)= _T;L___ >0 -
@ (@? +1)

By the inversion formula, & (F(»)) = ZL j'F(a))e‘“"dco =
7[—00

1 J'—l——l—e"‘”‘ dw. For t > 0 use the upper half plane with the given
o’ (@ +1)

izt

R
contour (see Figure 2.4.1). We have f f(2)dz = j le dz +
€ P 23 (22 +1)
eizt —-pP eizt eizt
[ &+ [ & + [ &, whereR>and
Cx 23 (2% +1) R 23 (22 +1) % 23 (2% +1)
CR
Cp
R -p P R

—_—— e —————O
N
I
o

Figure 2.4.1
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p < 1. Place our branch cut so that ——725 <0< §2£ At 0 = 0, the function

1 1 1
~=lnr e —({nr+iz) . iz
3 3 ,irt 3 i(re'* )t
e ; rle e e
f) = S—e" = 2 At O =1 flr) = o
ro+1 ro+1 (re’” )" +1
—llnr —li - —lm
3 ire(e”) 3 3 ~irt
e e rie e
TT = 5 . Now we shall show that the
ree”™ +1 r-+1

contribution of the circular arcs, C, and C,, to the contour integral is

eizl e‘(lmz)’ 1
zero. Observe that '[ ———dz| <— 27R S———-27R
Cr 23 (2% +1) R3(R*+1) R (R +1)
eizl e-—(Imz)t
- 0 as R - o. Also, j—l—————-————dz S—————-27p
° 23 (2% +1) PP (p:+1)
s—ll—-Zﬂp — 0as p — 0. Thus our contour integral becomes
p*(p* +1)
1 L
0 r 3 ein 0 r 3 e 3 e—trt
dr + | —————dr. (2.4.1
5[ r’+1 _;[ r?+1 ( )
By the residue theorem, J' f(z)dz = 2ziResf(z) =
bl z=l
izt izt izt ~t
27i Res ———— = 27iRes— =i | =2 =

23 (2  +1) 23 (z+1)(z—i) 2 (z+i)|
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—t ol & -t —t

e e e e 1 .

1 s = mme = — = — = —zme ’(\/3——1) Use the
_(m1+ﬂ) = cosZ +isin% Pyl
e3 2 e6 2 2

change of variables r =—s to evaluate _[ 1 Thus we have
B et
1 1
1 0 73 -irt 3.3 ist 1 0 "3 _ist
i r e '*7“ ( 1) s3e Y R4
e’ ———dr = ————ds = e° ds =
_i r?+1 J‘ s?+1 0;," 52 +1
1
sl © 3 irt
—e jr . el dr . Back to (2.4.1), we now know that
g i+
. A i
o r 3elrt - % 3 elrt 1 0 3 rt
dr —e? ar = —zetlV3-i Hence dr =
Jr2+1 Jr2+1 2 ( ) !r2+
e W3-i

: which simplifies to —ze”i. Thus the inverse Fourier
2(1 e“mJ

transform for > 0 is —% e’'i.

For t < 0 use z = —i the lower half plane. See Figure 2.4.2. Again,

R izI 1zt A iZ’
we have If(z)dz = _[ ——dz T jTe—*—dz * .[ *
¢ ? 23 (27 +1) 2% (2% +1) * 23 (2 +n
J'————l ¢ dz , but in the lower half plane. Place our branch cut so that

Cp g3 (z2 +1)

~ —3—275 <B< 5 Note that when we use 0 = —1t we get the same f{z), except
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1
for the factor ¢* , since e™ =e¢™ =-1. By doing similar computations

as before, we can show that the contour integral becomes

o r“} Rid p o, eg "e_,,,
r o+ [ g, (x
Jr2+1 _;[ r’+1 ( )
i
i
i
I
1
I
I
I z=]
I
I
1
-R -p 1 Jo, R
4
Cp
CR
Figure 2.4.2
By the residue theorem, [f(z)dz = 2ziResf(z) =
c Z=—i
izt izt izt _ t
27[1‘R_€S—T—€——=27riR_es - ¢ =27ri-——1e- = ”el =
23 (22 +1) 27 (z+i)(z ) De-h|_, @)



! t !

l[m-ﬂ) - ST cos:gi)+isin(%) - B

applying the same change of variables as before we have

1 1 _l
3 _irt 1 o 3 _irt

w d 3 irt ©
J'rr3i1 dr — 3 Jrrz; dr = ——;—ne’(ﬁﬂ'). Hence, Jrrzil

ar =

- I ] » - . . .
———L———lﬂ - ]3+l which simplifies to —ze‘i. Thus the inverse Fourier
2(1—&’“}

transform for ¢t < 0 is —%e’i. The inverse Fourier transform for the

function is 7 (F(w)) = -%e-"iz-.



Chapter 3

Solving Differential Equations

I 3.1 Using Fourier Transforms To Solve a DE
Here we will introduce the method of using Fourier transforms to
solve a differential equation. Our strategy is as follows:
1. Take the Fourier transform of both sides of the DE.
2. Also take the Fourier transform of the boundary conditions.
3. Solve the transformed problem using appropriate methods.
4. Take the inverse transform, if possible, back to the original

variables.

Now, we’ll illustrate this method with an example involving the
heat equation.
Example 3.1
Solve the PDE 4, =u_ for —o<x<w, >0
subject to: u(x,0)=e* and u(x,r) bounded.
Take the Fourier transform of both sides, which transforms

u(x,t)into U(w,1).

40



41

Flul=F [u,]
The variable ¢ is fixed in the transform. Using Table 1.2 for the right
hand side of the equation we get
U=-oU.

Set our transformed PDE equal to zero, U, + »* U= 0, and treat
this new equation as a first order ODE of the form 7'+a7T =0 with
solution T=ce . So the general solution is U(w,))=g(w)e™"*. Now
take the Fourier transform of the first condition

F [ux0)]=F [e™]

and look up the transform of ¢ from Table 1.1 to get

U(w,0)= Jret .
Direct substitution of ¢ = 0 into the general solution shows that U(®,0) is

also equal to g(w). Thus

U@.)=+re * e".

The solution we want is the inverse Fourier transform of U(w,?),

—w?

w(x,0)=F -1 (J;eTe—mzr

41,

=9",'][«/;r—e o
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Apply the formula F ™ (\[E eFJ = ¢ and choose a =
a

to get the
4 +1

final solution,

411 ,
— -1 T
u(x,) =4 (,/ﬁf — * )
a4t

| e
= i 9; - 4
A e

4r+l1

=
— 1 4141
4+1 € °

Example 3.2 Use the Fourier transform method to solve an ODE of the
form y"(t)+by'(t)+cy(t) = f(f) on —w<t<ow, subject to the condition

lim y(¢£) =0.

o
First take the Fourier transform of both sides, assuming that f{¥)
G(R):
Fy' )+ FbyO)+ Foyt)y=F f@).
Now referring to properties in Table 1.2 we have
~ o’ Y(0)+b(io)Y(0)+cY(0) = F(o),
which can be solved for @),

F(w)
—0* +biw+c

Y (o) =

To find the solution, apply the inverse Fourier transform,



y=F =1 (_

F(®)
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1% F(o)
__2;"'

-0’ +hiw+c

o’ +biw+c]

e do.

By convolution we can then find y(#) where the Green’s function is

The poles occur where z°-biz-c=0 so z=

=L gorg = LT -1
—2—£ a)+bla)+c E 2z ;[ bzco c

m)t da)

bi+~-b* +4c By

2

considering various values of b and c, there are several possible cases.

Let the discriminant -5* +4c be denoted by D.

the outcomes in the chart below.

Then we can summarize

case: D>0 D=0 D<0
» = bitd b, bi £ di
2 2 2 7
d=+D =-D
possibilities: | 2 poles | Double pole on the 2 poles in either
in # imaginary axis Hor &
2 poles Double pole 1 pole on imaginary
in& at the origin axis and the other at
the origin
2 poles
on the 1 pole in each
real axis half plane
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The author of the article at [16] did the case D <0 and 5> 0.

We will calculate the solution for two other cases.

(1) Suppose D > 0 and b > 0. Then the poles z = ~g-+—g—i, —521—+§i

are in 5 Note: Butkov solved a similar ODE on page 278 using this
case. The poles in that example were both in &, which was one of the

possibilities. By Theorem 2.2(i) where ¢ > 0,

1 j'_z; e do = —L(inZ{residues in 7)
2r o —-ibw-c 2z

izt izt
. —e —e
z%%i z°—ibz—~c¢c L.4.% z° —ibz—c
22
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bt
2e ? sin(g)
. \2)

d

For t < 0, we consider the lower half plane. There are no singularities

there, so the integral is =zero. Therefore the solution is
bt
2e ? sm(fg—)
u(x,) =< —==2_ >0 .
d
0 , 1<0

(2)  Suppose that D> 0 and b = 0. Then the poles @ = ++/c are on R.

Using Theorem 2.4 for ¢+ <0 we have,

j = . 1 )
=N e do =—(-ri) {residues on R
2z ;[ zbco c 27 (-m124 )

izt izt
1 4 —e
= ———[Res ———— + Res ~——————J

2{z=Ve 22 —jbz—¢  z=Ve z? —ibz—c

izt izt

(since b =0)

(__etztj A (__eizr
z-e e \z44e)

_ Ve (i _ i)

4c

_-ie

4c

_ «[Esin!\/zt,_

2c

-2isin( ct)
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Similarly, for £ > 0 use the upper half plane and get —izii;l@ . Thus
C

the solution is u(x,?) = —\/E—SH;@I—) .
C

Example 3.3 [11]

Solve u,, +gu, =L2u,, subject to the boundary condition u, =-p v, 5()
r 5

atradius r=a.

Take the Fourier transform of both sides of the PDE
2 _ 1
g[urr] +g[7ur] - Tg[ult]
C
to get
2 @t
Ulro)+ = Ulr,w)=-— U(r,o).
r C
It is easily shown that the general solution is U(r,e) =
eikr e—ikr

+ B(w)
r I4

A(w)

, where k=2. The inverse Fourier integral is

ikr ~ikr
€ e i . . . .
+ B(co)——jl ¢'“dw . Physical considerations require
r

u(r,t) = 51; | [A(co)

r

A(w)=0 (see [5] p.116). Now take the Fourier transform of the
boundary condition.
Flu]=F1-pv,60]

Ula,w)=-pv,F[510)]= -pv,
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—ikr .
We have U, = Bl@)e 2( %71 and for the boundary condition, where r
r
—ika ;o + _ 2 ika
=a, U (a,0)= Biate g Hea—D) =—-pv,. Thus B(w) =£—_£M— and we
ika+1
asz eika e—ikr
have U(r,m) = 0 and hence
ika+1 r
- 3 ifga —1%r 2 & iw[l—:‘l]
u(r,t)=L ap.VOe € eia)tdw____apvo J-e '
27 5 (iZa+1D)r 2rr 5 1+

Evaluate this integral by the residue theorem. We have the simple pole

C, r—a . . .
z=~i. For t- >0, close the contour with a semicircle in the upper

a 4

half plane. By Theorem 2.2(i) we have If———c-dw = 2ri Rczse

ioa
1+ =

f——

(z-2i).c, = ZZ-Lr—c—e—g[’ r;a]. Thus u(r,r)=2L% 37[ ;]
.

r—a

For ¢- <0 close the contour with a semicircle in the lower half

c
plane. Since the function is analytic at all points interior to and on this

closed contour C, then by the Cauchy-Goursat theorem from complex

: r-a
iz| t——

e
iza
c

variables we have <j‘ dz =0. Hence, our combined solution using
C

r-a

the Heaviside step function is u(r,f) = %e_Z[IT] At - 2=2).
r
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Example 3.4 [7]
Solve u,, +u,,—u=0 with —wo<x<w, 0<y<1 and subject to the
boundary conditions u,(x,0)=0and u(x,])=e ™ h(x). Duffy [5] presents
this exercise on page 120 and provides an outline to assist in finding the
solution.
Take the Fourier transform of the PDE.
Flu )+ Flu, ] -Flu]=0
—0’U+U,,-U=0
Now take the Fourier transform of the boundary conditions.
Flu,(x,00]=F[0] and Flu@E)]=F[e™ h(x)]

1

1+wi

U,(0,0)=0 Ulw,)=

The characteristic equation for the differential equation is r* —-@* ~1=0

with solution r =+Vw? +1. Let m=vw®+1. The general solution is
U(w,y) = A(w)coshmy + B(w)sinhmy .

The partial with respect to y is U, (w,y) = mA(w)sinhmy + mB(w)coshmy .

So U,(w,0)=mB(w)=0 which gives B(w)=0. The general solution

simplifies to U(w,y)= A(w)coshmy. Now apply the second boundary
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1
(1+wi)coshm

condition, U(w,]) = A(w)coshm = 1—1—— which gives 4(w)=
+ i

1 cosh(yvw’ +1)
I+wi cosh(ve? +1)

Hence, the solution is U(w,y)= The inverse

Fourier transform is 2—1— I U(w,y)e'”*do. We now determine the poles to
/A

-0

use in applying the residue theorem. One of the poles occurs at z=i.

Since the hyperbolic cosine function is zero at the points (§+n7rji

where » is an integer, we can calculate the other singularities using

iz (2n+1)* +4
: .

algebra. The other simple poles occur at z=+ Let

o, =m*(2n+1)> +4. (Following the proof of Theorem 2.2, that theorem
is valid for a countable number of singularities, if the limits exist.
Assuming that U(w, y) € G(R), the limits do exist.)

Now apply the residue theorem. For x>0 use the upper half

plane. Calculate the easier residue at z =i to get

Res cosh(yvz® +1)e’™ _ cosh(yvz’ +1)e'™ | _ e
= j(z—i)cosh(vz* +1) icosh(vz> +1) | _

Now calculate the sum of the other residues in the upper half plane.

© 2 1zx -
Z Res U(z,y)e"™ = z cosh(yvz” +1)e (Z__m',, ﬂ
70 217 7 i(z —i)cosh(v'z? +1) 2 )]
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10',,

We observe that l1m can be

2>0n cosh(\/z +1)

i i - % 4]
evaluated using L’Hospital’s rule: 11111; vz? +1 : 2 |
z—>—~— Slﬂh(‘\l Z + ) z Sinhm %,_I

3 n(2n+1) _ 7(2n+1)
sinh (7 (31)i) o, -)"o, ]

The summation becomes

2, cosh(ZZC"N i) 7 (2n+1)i JG

— . Applying the identity cosh(iz)=cosz
m (Fi-0) (D)o,

and the fact that (-1)" =

1
we get
._1)”

i (<D)" 7 (2n +1)ie—%x COS((2n+l)n' y) ‘
n=0 Oy (2—Gn) 2

So by Theorem 2.2(i) the inverse Fourier transform of U(w,y)for x > 0 is

1 -27[i[-—ie"‘ +Z (D' m@n+Di G cos[(zn +21)7z y)]

27[ n=0 (e

= oty H(-D"7 2n+1) e—;"x cos((2n+1)”y).
=0 Oy (O-n - 2) 2

For x < 0, use the infinite poles in the lower half plane. The calculation

of the inverse Fourier transform is analogous except there is no “extra”

: . 1 0 .
pole at z=i. The combined solution where sgn(x) = { y ¥z . is
— X <

u(x,y)=e" h(x)+27cz

(-D" 2n+1) e—%w COS( @2rn+1)x y]
s o, (sgn(x)o, —2) 2 ’
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d4y

Example 3.5 [3, p.283] Solve the ODE EI .

=q(x)—cy(x), —0<x<wo,

where ¢(x) is the external force per unit length on a beam resting on an
elastic foundation, y(x) is the displacement, and ¢, E, and I are
constants.

Take the Fourier transform of both sides and solve.

d

4
Y
97[E1dx4

1=Fax) —cy(x)]

El o' Y(0) = O(w) - cY(w)

V@) - 2@

Elo' +¢

Now find the inverse Fourier transform,

gfl[ 0() ): ey 1-2@) e gy

Elo* +¢ Elo* +¢

Let g(x)=P&(x), where P is a constant. Then Q(w)=% [PS(x)]=P.

We can pull the constant outside of the integral, -25— f % dw.

7 4 Elo® +¢

-0

P © taox

Rename 2 as a'. Then —Q(?L = | —do =
c Elw® +c 2rc J 2w +1
P @ eia)x . s
j' ————dw. Make the change of variables w=—. Then
2rc s a @ +1 a

—®0

do=-ds and s=aw. Our integral becomes e j' e4 .
st +

a 2rac

ds .




T 3ri

The poles occur where z*+1=0 or at the points z =e*, z, = e *,

=3xi ~7i

z;=e *, z,=e* with rectangular coordinates z =¥ +32;,

Zy ==Ly g = 2 By, P Forx<Ouse z,=¢ * and

-

z,=e * in the lower half plane. By Theorem 2.2 (ii), the integral

becomes
s .
—27i Res —+ Res
=z + ﬂz +
z—e z=e
L2 -3 lz—x —rn
=-27i (z e t) + (z et)
37t Z i
z=e * z=e ¢
. orer
=-2ri — + = 5 —=5
(z- e )(Z e )z—e “) o (z-et)z-ef )z-e *)| &
J2x fx
2a 2a
. V2x J— V2x J_
=-27i (cos —isin~= ) (cos + 7§ sin == )
—2\2i+242 —2fz—2«/’
(—2+/2i - 24/2)(cos 2 ‘/— V2x
=27 e
—16
J2x

S\
2isin ’) 2a

(4«/_
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2 (o fix i =
== ( ) . Multiplying this residue by we get the
nac
,/‘x
solution P2 (cos 25 _ jn2x ""‘) .

dac

ri 3zi

For x > 0 use z =e*, z, = e¢* the upper half plane. The

calculation of the residues is similar and the integral is

, for

-v2x —\/—x
2 . » = : . P2 x "
V2 (cos‘/f +sin 32 )e 2« . The solution is 4\['(003‘/2— +sn‘g;)

ac

this case. Using absolute values, we can combine the solutions from

P2( & 2 gl
both cases to give the final solution y(x) = 7 (cos = 21 4 sin "“ .
aC



Chapter 4

Fourier and Laplace Joint Transforms

B 4.1 The Joint Transform Method

We know that Fourier and Laplace transforms can be used
separately to solve partial differential equations. Interestingly, they
can be applied together for the same purpose. This undertaking
requires a double inversion, which can be a difficult task. Techniques
like the Caignard-de Hoop method have been successfully used in
finding the joint inverse.

In the Fourier-Laplace joint transform, we apply a Fourier
transform to eliminate the spatial dimension and the Laplace
transform to remove the time dependence. The resulting joint
transform can then be solved using algebra or ordinary differential
equation methods. Then we are faced with the double inversion. The
order in which we do them depends on the character of the joint

transform. The pattern we encounter in this chapter is: Fourier

54
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transform, Laplace transform, inverse Laplace transform, inverse

Fourier transform.

Example 4.1 [3, p.606]

Solve u_, —izu,, =8(x-£&)6(t—1), where —ow<x <o and >0
c

subject to u(x,0)=0, u,(x,00=0, and u approaches zero as x - t.

First, we will take the Fourier transform with respect to x.

Flu.] -5 Flu, 1= 60-0F[5x-5)]

-0’ U(w,t) - —I;U,,(co,t) =5(t—1)e”*
4
The Fourier transform of the conditions are # [u(x,0)] = #[0] and
Flu,(x,0]=F][0], that is, U(w,0) =0 and U,(w,0) =0

Now apply the Laplace transform to ¢,
-’ Z[U](w,5) — clz(s2 L[U(w,5) — sU@@,0) — U,(0,0)) = e e*.
Using the initial conditions we have

-0’ Z[U)(w,s) - —%[U](a) 5) = e e,

Thus the joint transform of this PDE is

-rs _~iof
L[U)(@.5) = 2S5

co+s
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_p2 TS e
Now take the inverse Laplace transform U(w,t) = ¥ - L—c—f—~——e———]

o’ + 52

=75

= _cleot g (~—£——2J By combining rules 23 and 10 from the

o’ +s
Laplace transform tables in [9], the inverse Laplace transform is
__02 e—iw:,‘
U(w,t) = ————sinlco(t - 7))t - 7).
cw

Take the inverse Fourier transform

_ ce-imé

u(x,t) =F 4 ( sin(ca)(t - r))h(t - r)j

=i

= _ch(t—r)g"l(e aj§ sin(ca)(t—z')))

e—ia)§

= —cht-1) - [“—sin(ca (- )" *do.
74 —an

w

1,

0, |x!>a'

x| <a

We know from [3, p.265] that ﬁi\/%sinfkke“’“dk = {

Thus u(x,t) = —cjg_; 7) . \[_27_ . J;—,[— j' \/% sin(c a’aft —17)) 9= g —

—ch(t-1)
2
0, If—x|>c(l—r)

é—x[<c(t——r)

>

. This solution can be rewritten as follows.

For the case when ¢ <7, the function is 0 (since #(r-7)= 0). When

._.c -
t>7, we have - for |£-x<c(t~7), which can be expressed as
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-755 (W& —x+c(t—1))—h(& -x—c(t-7))). To summarize, the solution is

——Eg(h({,’—x+c(t—r))—-h(§~x—c(t—r))), t>7

0, t<rt

u(x,t)=

Example 4.2 [14, p.197]

Xxxx

Solve Elu . +ku+mu, =P, 5(x)5(¢) with ~ew<x<w, >0 subject to
the initial conditions u(x,0)=0 and u,(x,0)=0 and u approaches zero
as x — oo,

The steps required to apply the Fourier-Laplace joint transform
of this PDE are outlined in [5, p.276]. First take the Fourier transform
of both sides, ¥ [Elu_, |+ F [ku]l + F [mu,] = F [P, 5(x)6®)].
Pulling out the constants we have EIF[u |+ kFlu]l+ mF[u,]=
P, 5(1)F| S(x) }, which gives us

Elo'*U(w,t) + kU(@,t) + mU (o,t) = P,6@). (4.2.1)
The Fourier transform of the initial conditions become U(w,0) =0 and

U, (0,0)=0.
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Now, apply the Laplace transform to (4.2.1), Elo*Z[U](@,s) +
kL [Ul(@,s) + m(s* & [Ul(@,5) -sU(@,0)-U,(@,0) = RZL[5®)] By
applying the transformed initial conditions and factoring we get
(EIo* + k +ms®) £[Ul(@,s) =P,. Thus the joint transform of our PDE

‘PO
Elo* +k+ms?

(4.2.2)

is Z[U|(w,s) =

Now we will apply the inverse Laplace transform to (4.2.2),

—1 PO _1( 1 J 2 EI
U@t) =% \Elo* +k+ms’ )= h¥ \Elo* +k+ms* )- Leta T

1
Thus U(w,r) = % A (aza)“ +§+s2J- We shall use the well-known

formula & ™ { 5 b 2} = sinbt. Let b=.a’w'+%. We then have

s +b
D 2 4 k
1 P, 4| deo'+i . }
ek | ——24—](— , which can be written as
/a%o“ +% m sT+ato" + -

. sm,/a o'+, (4.2.3)

aa)+"m

The last step is to take the inverse Fourier transform of (4.2.3).

u(x,t)=—2-}; Ifn Sm\(;—“aa:_t ) e *dw

o oo’ )cos(a)x)da)+1 jsm("l“ o tn )sm(a)x)da)
27rm KA PP + & [0 +
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Notice that since the first integrand was even and the second integrand
was odd, we could reduce to the last integral. The original paper goes
through seven additional steps to rewrite the solution with physical
considerations. However, their solution is still in integral form. For

our purposes, we express the solution as

u(x,t):ﬂp o].s \(/t;—__vc;arr )cos(a)x)da)

For another example of the Fourier-Laplace joint transform, the

reader can consult the journal article [13]. In this paper, the authors
apply the Fourier transform followed by the Laplace transform to
Maxwell’s equations, which govern radiation and propagation of
electromagnetic fields. Using this method, integral representations for

the electric field and the magnetic induction can be found.

1 4.2 The Double Fourier Transform
There are several other joint transforms that we could explore.
But since the emphasis of this paper is the Fourier transform we ask

the question can the Fourier transform be used jointly with itself in
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solving a PDE? The answer is yes. In certain situations, after taking
the Fourier transform once and examining the result, it might be
appropriate to use the Fourier transform a second time. This method
is sometimes called a multiple Fourier transform [15, p.329] or the
Fourier-Fourier transform. Since this method can be used in the same
way that a joint transform is used but uses only one kind of transform,

we will call it the double Fourier transform.

Example 4.3

Solve u, —u,, —u,, =0 with >0, —0<x <, —o < y < and subject
to u(x,»,0) = f(x,y). Assume f e G(R).

Take the Fourier transform of both sides with respect to x,
Flu] - Flu,) - Flu,]=F[0], whichis U, +&*U-U,, =0. The
Fourier transform of the initial condition is F [u(x,y,0) ]| = F[ f(x,»)],
or U(w,y,0) = F(®,y) .

Now apply the Fourier transform again, this time with respect
to the variable y, #[U, ]+ Flo*U]-#[U,, ] =#[0]. So we have
U, +0*U+sU =0, which can be expressed as U, +(@’ +s°)U =0.

The Fourier transform of the initial condition is now Z[U(w, y,0) ] =
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F [F(o,y)], or U(w,s,0)=F(w,s). This ODE is an initial-value
problem with solution U(w, s,t) = F(o,s)e™ @+,
Take the inverse Fourier transform with respect to s and apply
convolution (see 1.4.2),
F U@s.0]=F " [F@ne ']

-(y-¢)
‘e M dE.

U(w,y,t) =

\/__ jF(w E)e™

Lastly, take the inverse Fourier transform with respect to o,

e -G-¢)’
F _I[U(a),y,t)] =4 _ll:ﬁ .[F(a),f)e‘“"e ar dﬁ}

1 -8

=E IL/__ Ip(w e e # :l rdédao . (4.3.1)

Note that 51— [F@.6)e e do = F 7 (F(@,£)¢") by definition of
7z-~co

the inverse Fourier transform. Thus by applying convolution again

~(x-n)

we have J' f(m.8) \/_ e “ dn. Therefore, (4.3.1) can be rewritten

~(x-7)’ ~-¢)
“ dnle * d& to give us the final

J— [ If(n,cf) T

solution,

© @ -G’ -(y-¢)
u(xayat)_4— Ij (7755)8 4 dﬂdf-
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