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Chapter 1 

The Fourier Transform 

11.1 Introduction 

In the early 1800's, Jean Baptiste Joseph Fourier first defined 

and used the function we call the Fourier transform. While the 

Fourier series is used for functions defined on a finite interval or 

periodic functions defined on all sJi, the Fourier transform is used for 

functions defined on all of 91; that is, the interval (-00,00). [ / ] is 

called the Fourier transform and is defined by: 

i r [ / ( 0 ] ( « ) = F(®)= )f{t)e-"»'dt (1.1.1) 
—00 

for all real a such that the integral exists. One family of functions 

which have a Fourier transform are those defined on with values in 

C which satisfy two properties: (a) piecewise continuous and (b) 

absolutely integrable (see Theorem 1.1). We will refer to this family 

6 



of functions as G(9?). We note that for this family we can interpret 

oo R 

^g{t)dt as lim jg(t)dt, the Cauchy principal value. 
R-> oo 

-R 

Actually, there are relatively few functions for which the 

Fourier transform can be found. But one of the reasons the Fourier 

transform is useful in physics is that many physical functions 

fortunately do have a Fourier transform. 

Theorem 1.1 (Existence of the Fourier Transform) [10, p. 94] 

For every function/ e G( 91), 

1. F is defined for all oo e 9?. 

2. F is a continuous function on . 

3. limF(®) = 0. 

a>~>±oo 

Proof of Theorem 1.1 

1. Since e~i0" = 1 for all real t and oo, 
oo oo 

\\f(t)e-i0>t\dt = \\m\dt < 0 0 . 
- co —00 

Thus f (t) e'im is absolutely integrable on 91 and is piecewise 

continuous. So F is defined for all real a>. 

2. To show F is continuous for a> e 9? we prove that 

lim[F(<y + h)~ F(a>)] - 0. Applying the definition, 



og ou 

F(G) + h)-F(o)= jf(t)e-i((0+h)'dt - \f{t)e',a"dt 

]f(t)e-"[e-hl -1 }dt 

F o r t,a>e % 

lim f{t)e-,a"[e-'m -1] = f{t)emi lim[<T"" -1] 

me-"0' . 0 

= 0. 

Since |/0)|-k e~ih'-\ < \f(0| -1-2 = 2|/(0|, we may apply the 

Lebesgue Dominated Convergence Theorem from analysis, 

OO 

lim \f(t)e-i0>t[e-,h' -1 ]dt = 0 . 

So \\m[F{co + h)~ F(q>)] - 0 and hence F is continuous at every point />-> 0 

in 5R. 

3. If the limit exists, we have by definition 

uu 

lim F(co) = lim \f(t)eia"dt 
CO—>±oo /y—»±co J 

— lim 
CO—>±00 

^f(t)cos(Dtdt + i jf(t)smo)tdt 



To prove lim F(a>) = 0 it is sufficient to show that lim [f (t) cos cot dt 
<w-»±co / » - » ± oo J 

ou 

and lim \f(t)sma>tdt are both equal to zero. We will prove the 
ft)—»±oo J 

- o o 

second result here. The proof of the first is analogous and is given in 

[10, p.96-97]. We know/ is absolutely integrable. Choose s > 0. 

There exists an M > 0 such that j]/(t)\dt < s. Thus 
\t\>M 

J"f{t)smcotdt 
t\>M 

< J]/(0sincot\dt < j]/(t)\dt < s. 
\t\>M \t\>M 

Since / is piecewise continuous on [-M, M\ there exists a 

partition -M-t0<tx<...<tm=M such that the step function 

M 

Kt) = f ( t k ) , tkA<t<tk , k = 1,2, ...,m satisfies §f(t)-h(t)\dt < s. 
-M 

M M M 

N o w , j f(t)sina)tdt = ^[f(t)-h(t)]sino)tdt + J/z(0 sin cotdt. 
-M -M -M 

For all co e % 

-M 

M M 

{ [ / ( 0 ~ h(t)]s\noJt dt < j j / ( 0 - h(t)\ • |sin cot\dt 
-M 

< 
M 
§f(t)-h(t)\dt 

-M 

< s, 

Now consider the second integral 
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M 
jh(t) sin cotdt 

-M 

m 
£ \f(tk)smcotdt 
4=1 u . 

k=1 

COS CO tk_x - COS 60 tk 

CO 

m 

* I l / M k=1 

< 2m 
CO 

max 
-M<t<,M |/(0|> 

For sufficiently large co, 2m 
co 

max |/(0l < s. Thus -M<t<M 

ou 

^f {t)s\ncot dt <2e < 3s and the theorem is proved. 

Let's work an example to illustrate the Fourier transform. 

Example 1.1 Find the Fourier transform of the function 

/<0 = 
[1, 0</<l 
[0, elsewhere 

First apply the definition and break up the integral over three 

intervals for which the first and third are zero. So we get 

P [/(OK®) = F(«) = \me"mdt = je~ia"dt -ico 
le 

co co 

Now apply the identity e'° = cosG+ismd for our result, 

F(«) = + i 
co 

cos<a 1 
co co 
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Example 1.2 Find the Fourier transform of the function / ( t ) = e ''' 

Apply the definition to the function /(t): 

co 

0 ] O ) = F(®)= \eMe-i0"dt. 
-OO 

Combine the exponentials to get 

- c o 

By properties of even and odd functions, 

00 

F ( ® ) = 2 j V ' c o s c o t d t . 
0 

Integrate by parts twice to get 

7 , -COSCOt + COmiCOt _ 
\e cos cotdt = 1 e 

I 1 + C02 

Using the fact that l ime - ' = 0, we have 

CO J 

cos cotdt = 
I 1 + ®2 

2 So the Fourier transform of /(t) = e"1'1 is F(<y ) = 
1 + co2 

Example 1.3 Find the Fourier transform of the Dirac delta function, 

00 

8 (t), defined by S (t) = 0, t * 0, and \d{t)dt = 1. [5, p.2] 
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One representation of the delta function is S (t) = 

- - - < t < -limK 2 2 . The Fourier transform of the Dirac delta function 
0 elsewhere 

can then be found as follows. 

= jS(t) e"a,dt 

= lim 'f-e~""dt £—*0 J g 

lim 
£ 

1 V 
- \e -ia>t dt 

= l im— 
£G) 

em 
>~2~ - e 

ecoi ^ 
~T 

lim—-
seo 

2/sin 'a>e\\ 

V 2 J; 

2 . (ate^ l im—sin 
£0) \ ^ J 

= 1. 

In Table 1.1 are a few functions and their Fourier transforms. 

For more details about these and other examples or exercises refer to 

Andrews, Bracewell, Pinkus, Pinsky, and Wienberger. However, for 
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consistency, the transforms shown in the table are found using 

definition (1.1.1). 

Table 1.1 

f(t) F (co) 

IX o</<i 
[0 elsewhere 

sin® / cos® 1 ^ 
— + i 

co y co co) 

e-l'l 2 
1 + co2 

yj-f e 4o , a is a nonzero constant 

1 
t2+1 

-M ne 1 1 

e~M h(t) —-—, a is a constant 
a-ico 

sin / ——, 0 
• 

7t \co\ < 1 
0 \co\ > 1 

11.2 Properties and Formulas 

Finding the Fourier transform from the definition can be 

difficult and tedious. Fortunately, we can find certain transforms by 
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use of the properties of the Fourier transform without going to the 

formal definition. Listed below in Table 1.2 are many of the 

important properties, which hold under the appropriate assumptions. 

Table 1.2 

Properties of the Fourier Transform [ 1, p.225] 

1.2.1 H c j + c l g ) = c , n n + c 2 5 T ( g ) 

1.2.2 ^ ( / ( n ) ) = (io>yF(a>) n = 0,1,2,... 

1.2.3 

1.2.4 Hf(t-<*))=e,a'°nm) 

1.2.5 He,a' m ) = n m \ a > - a ) 

1.2.6 
rl 

Proof (1.2.2) We shall prove the case n = 1. [10, p. 105] 

Assume / e G( 9?). By the definition of the Fourier transform we 

CO 

have ZF(f') = [f'(t)e~'°J'dt, if the limit exists. Now use integration by 
—00 

parts. 

W ) = / ( O ^ k , - )-i<of{t)e-""dt 
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= 0 +i<» \f(t)e~la"dt (lim /(f) = 0, since / e G(9l)) 
J |/|-xx> 

—00 

= F{a>). 

Proof (1.2.5) 

11.3 Real and Complex Outcomes 

By symmetry properties we can determine from the domain of 

the function what the result will be in the codomain of the transform. 

The results are summarized in Table 1.3 [2, pi4]. 

Table 1.3 

FUNCTION TRANSFORM 

1.3.1 real and odd imaginary and odd 

1.3.2 complex and even complex and even 

1.3.3 real and asymmetrical complex and asymmetrical 

1.3.4 imaginary and asymmetrical complex and asymmetrical 

1.3.5 real even and imaginary odd real 
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1.3.6 real odd and imaginary even imaginary 

1.3.7 even even 

1.3.8 odd odd 

Proof (1.3.1) 

CO 

Let /be real and odd. Then &\f\(-co) = \e'6" f(t)dt. Let t = -x. So 
—oo 

-o0 
we have F[f\(-a>) = - \e~i<ox f(-x)dx 

oo 

00 

= - \e-'*xfix) dx 
- c o 

oo 

Thus iF is odd. W \f\ can be written as J[cos®t - fsin cot]f(t)dt = 
- c o 

oo oo 

Jcos cot f ( / ) dt - i Jsin cot f (t) dt. 
-oo —oo 

In order to show that CJ is purely imaginary, we need to show 

00 
that jcos®/ f(t)dt = 0. Breaking up this integral over two intervals, 

-oo 

0 oo 0 oo 

Jcos cot / ( / ) dt + Jcos cot f i t ) dt = - jcos co ( - / ) / ( - / ) dt + Jcos cot f(t) dt 
-oo 0 oo 0 

00 ao 
= - Jcos®/ / ( t )d t + Jcos®//( / )dt 

0 0 
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= 0 . 

• 1.4 The Inverse Fourier Transform 

There are a wide variety of definitions used in the Fourier 

transform and its inverse. Typically, the Fourier transform is defined 

1 00 
by — ^f(t)e~'°"dt and the inverse Fourier transform by 

r 

jF(o))ei<0'd(o for some y > 0 (or vice versa). Being consistent with JL 
2 n 

our definition of the Fourier transform, our inverse Fourier transform 

is: 

<F-\F{o>m =M = J- }F{co)e^dco. (1.4.1) 

-oo 

The Fourier transform and its inverse, regardless of the pair of 

definitions used, should "undo" each other just as inverse functions 

do. 

Theorem 1.2 

I f f e G(!R) and/ is differentiate, then 

Proof of Theorem 1.2 
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(based on a hint in exercise 10.3.9 in [6]) 

oo 
F(o))= \f(x)e~ie>xdx 

—oo 

— FX to) ei0>x = —e"°x \f{x)e-ia>~xdx 
2n 2tz _{J 

— fF{co)ei0)Xd<o = — [ei(0S \f(x)e-"°~x(ficda) 
ix i i i 

•j L oo 

= — f femx e-iwx f(x)dxd(o 

-» L oo 

— J fe
w)<x'x) _f(x) dxdco 

-L -00 

« 00 I 

= \eim{x~~x) f(x)dcodx 
-oo -L 

(by Fubini's Theorem, see for example, [12, p.269]) 

n 2 7 I - X ) 

L 

f(x)dx 
-L 

1 \p
iL(x-x) _ p-'Hx-x) 

= _ L f£ f(x)dx 

1 00 2 
= — f f ( x ) -smL(x-x)dx 

2K J X-X 

][/(*) + /(*) - /(*)] sin L(x -x)dx 
2n t x-x 

1 00 2 = — [/(*) i:sinZ,(x-3c)c6c 
2n 1 x-x 

- 0 0 
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1 M 2 
+ — [[/(*) - /(*)] r sin L(x-x)dx 2n • x-x 

Consider the first integral. Let u = L(x - jc) , du = -Ldx . The 

constant 2fix) can be pulled outside of the integral. Note that 

f du has the well-known value of n. So the first integral is 
J u -oo 

2 f(x) 
2 n 

•n = f i x ) . 

Now apply integration by parts to the second integral. Let u 

f i x ) f ( x ) a n ( j d v = smL(x-x)dx. S o d u 
x-x 

(x-x)/Xx) + [ / (x)- / (x)]^ a n d v = _cosZ(x-x) T h u s w e h a v e 

(x-x) L 

_1_ 
2a 

+ 

J_ 
2x 

» 2 l 
f[/(*)-/(*)] sin Lix-x)dx = — * x -x 2 n 

ou 

J-

r m - f ( x ) 
x-x 

cos Z(x - x) 

cos£(x-x) [ (x - x)/'(x) + [/(*) - /(*)]" 
L (x-x)2 dx. Note that 

f i x ) - f (x) ̂  cos Z(x - x) 
x-x 

fix) 0 since -» 0 as x ±oo, 

So putting all this together we have — ^Fia))e""xda) = /(x) + 
2 7T _L 

I 
cosi(x-x) (x — x)f'jx) + l / ( x ) - / ( x ) ] 

(x-x)2 Let I -» oo. Thus 
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1 °° 
— fF(o))e i o , xda) = f i x ) + 0. Combining this result with the first line 
In i 

1 00 
of the proof we discover that f(x) = — IV"" 

2n J 
—00 

implies the desired result that f=9r'x W(f)\-

Similarly, it can be shown under the appropriate assumptions 

that (F)] - F. 

The inverse Fourier transform also has a linearity property and 

a multiplicative property called convolution. These are listed below 

in Table 1.4 [1, p.227] and [5, p.7]. 

Table 1.4 

1.4.1 9r~\clF + c1G) = c, & ( F ) + c2 W~x (G) 

1.4.2 00 

{F{(a)G{co))= Jf(u)g(x-u)du= f * g , 
-00 

where/= & (F) and g = & (G). 

11.5 Relationship Between Fourier and Laplace Transforms 

\f(x)e dx dco which 

The Fourier transform is related to the well-known Laplace 

transform, and we shall explore the relationship in this section. 
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Sometimes the Laplace transform will be the natural choice in solving 

a differential equation even in applications where the Fourier 

transform can be used. Interestingly, the Fourier transform and 

Laplace transform can both be used together in the same problem. 

We will look at joint transforms later in chapter 4. 

Start with the Fourier integral relation [1, p. 186], which is valid 

at points of continuity for piecewise smooth and absolutely integrable 

functions. 

(1.5.1) 

e +e Applying Euler's formula [4, p. 50] for cosine, cosj = — , where 

y is a real number, we have 

eia(f-x) dtdco 
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CO 00 

yl<BX j f(t)e'm' dtda. (1.5.2) 
-oo —oo 2 7C 

From the integral formula (1.5.2), which is the exponential form of 

Fourier's integral theorem, we can derive the pair of transform 

formulas 

F(a>)= jf(t)e~,a" dt 

and 

fit) = JF{a>y°*dco 
- co 

which are equivalent to our definition of the Fourier transform (1.1.1) 

and inverse Fourier transform (1.4.1), respectively. Now i f / i s related 

to another function g such that f ( t ) = e~c'g(t)h(t) where c is a positive 

constant and h(t) is the Heaviside step function, then it follows from 

oo 

absolute integrability o f / t h a t jV" \g( t ) \dt < oo. Notice that by 
0 

. 0 0 OO 

substitution, e~ctg{t)h(t) = — {e'"0' \e'{c^0)xg(x)h(x)dxdco. Since h(x) 
"Jtr J J 2 71 

-00 -00 

= 1 whenever x > 0, we can write equivalently, g{t)h(t) = 

1 oo 00 

je(c-«»)< je-(c-"»*g(x)ckda. By the change of variables p = c-ico we 
2n „ -oo 0 
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oo 

formally obtain g(t)h(t) = e p t je~px g(x)dxdp. Thus we have 
0 

derived the following pair of transform formulas [1, p.228] 

F(p)=\e-p*g(x)dx (1.5.3) 

and 

- C + / 0 0 

g(t)h(t) = - L f e p ' F ( p ) d p . (1.5.4) 

Observe that (1.5.3) is well-known to be the definition of the 

Laplace transform. Equation (1.5.4) can be thought of as an inversion 

formula for the Laplace transform. Thus, both the Laplace and 

Fourier transforms can be motivated from the Fourier integral 

theorem, providing a connection between the two transforms. 

Here is another relationship between the Laplace transform and 

the Fourier transform. The condition J [/(/)[<# < oo is too restrictive 

for some purposes. According to Duffy, the following has proven 

useful in electrical engineering. Modify the Laplace transform as 

follows [5, p. 7]: 

F(®) = \f(t)e',0"dt, 
o 
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where lm(®)<0. (Compare with (1.5.3).) Note that under this 

definition, a function that is not absolutely integrable, like the 

Heaviside function, might have a transform. We can take this one 

step further. If we can find cx,c2 with c2 > c,, such that e~c,t \f(t)\ -» 0 

as t —>co and <TC2'|/(/)|-»0 as / - > - o o , then we may define the 

generalized Fourier transform (or two-sided Laplace transform) by 

00 

F(©)= jf(t)e-ia"dt, 
-oo 

where c2 > - Im(<y) > c,. (Compare with (1.1.1).) 

There are several other transforms that have a direct connection 

with the Fourier and/or Laplace transform. A few of these are the 

Hankel, Mellin, Hilbert, Abel, and z transforms. Read chapter 12 of 

Bracewell [2] for an in-depth discussion about how these linear 

transformations relate to the Fourier transform. 



Chapter 2 

The Inverse Transform and Complex Analysis 

12.1 Finding the Inverse Transform with Complex Analysis 

To be able to perform the inversion of a function containing 

complex variables we need to be able to apply some theorems. First 

we'll introduce the residue theorem from complex variables. 

Theorem 2.1 The Residue Theorem [4, p. 183] 

Let C be a positively oriented, simple closed contour on which f is 

analytic except for a finite number of isolated singular points zl,z2,...,zn 

on the interior of C. If K],K2,...,Kn are the residues o f / at those points, 

then 

\f{z)dz = 2 xi{Kl+K2+... + Kn). 

c 

Theorem 2.2 allows us to evaluate a contour integral in either the 

upper or lower half plane. 

25 
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Theorem 2.2 [8, p.275] 

Let / be an analytic function on an open set containing the closed upper 

half plane 9t = {ze C | Im(z) > 0} (or lower half plane S£ = {ze C | 

Im(z) < 0}) except for a finite number of isolated singularities, none of 

which lie on the real axis, and there exist real constants M, p, and Ro 

Proof (see Example 4.3.5 [8, p.273]) 

(i) Choose radius R>R0 so that all poles are enclosed in the contour 

with the half-circle rR = yR + fj.R, where yR is the line contour on the real 

axis traversed from left to right and juR is the curved contour that runs 

counterclockwise around the poles. Then by the residue theorem, 

\f{z)dz = Res f ( z ) . Thus \f(z)dz + \f(z)dz = Ini^ Res/(z). 

with p > 1 and |/(z)| whenever z e J (orz e S?) and |z|> Rq . 

Then 

(i) \f{*)dx = 2/ri^ {residues o f / in J f } 

(ii) \f(x)dx = -2;r/']r {residues o f / in 2?} . 

Observe that -> 0 as R -»oo. Also 
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ou I\ <jj 

jf(z)dz J f(z)dz as R^ oo. Therefore lim ^f(x)dx = J f ( z ) d z 
Yr 

n 

2ni V Res / ( z ) . 

The proof of (ii) is similar and uses a contour in the lower half plane. 

Next we need a theorem to evaluate these residues. Theorem 2.3 

allows us to calculate residues without going to the definition of a 

residue, which uses a Laurent series expansion. 

Theorem 2.3 K p. 190] 

An isolated singular point z0 of a function / is a pole of order m if and 

only if / ( z ) can be written in the form f ( z ) = — ^ ^ m where <f>(z) is 
(z-z0)m 

analytic and nonzero at z0. Moreover, 

(i) Res f(z)= 0(zo) if m =1 
z=z0 

(ii) Res f(z)= ^ ' ) (>o) if m > 2 . z=2o (w-1)! 

Example 2.1 Find the inverse Fourier transform of F( co ) = 1 

(o + 4<y + 8 

I " ^ The inversion formula is f i t ) = —- f— e,a"dco. Note that 

elzt 

Z2+4Z + 8 
has simple poles at z = ~2±2i. Before we use Theorem 2.2, 

we need to show the conditions hold. First we note the following. 
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Claim 1 
z2 + 4z + 8 z2 + 4z + 8 

, where z = a + bi 

Proof: Trivial. 

Claim 2 There exists an N such that for all with z > N, 

< 
z2+4Z + 8| IZI2" 

Proof: lim 
z - » 0 

1 
l + 4z + 8z 

= 1 

lim 
z—>0 

z z 

= 1 

=>lim 
2—>oo z2 +4z + 8 

- 1. 

Thus 3 N 3 V z with I z > N. 

z + 4z + 8 
< 1 + 1 

< 2 z2 + 4z + 8 

_ > — 
zi2 Z2+4Z + 8 

So 
z 2 +4z + 8 z2 + 4z + 8 

(by Claim 1). 

< —— r (for appropriate t, b (see below)). 
z +4z + 8 
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< At (by Claim 2). 

Thus the conditions of Theorem 2.2 hold. 

For t > 0, we use the upper half plane in which b > 0, so e e l . 

For t < 0, use the lower half plane in which b < 0, so e'bt < 1. Thus 

e b' < 1 in both cases. 

Applying Theorem 2.2(i), the inverse Fourier transform for t > 0 

in the upper half plane is 

-l ,1 
z2 +4z + 8 

1 eizt 

2ni Res ——— 
In z=-2+2, z2 +4z +8 

= i • Res 
z=2+2i ( z - ( - 2 + 2 z ' ) ) ( z - ( - 2 - 2 / ) ) 

— i • 
z- ( - 2 - 2i) 

z = - 2 + 2 / 

i(-2+2i)l 

(-2+ 2/)-(-2-2/) 

i-e-2"2" 
Ai 

„-2i 
-(cos2/ - /sin 21). 
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For t < 0 use the pole z=-2-2i in the lower half plane. The inverse 

Fourier transform using Theorem 2.2(ii) is 

-l 1 
Z2+4Z + 8 

1 e'zt 

2ni Res ——-—— 
2n z2 + 4z + 8 

- i • Res 
-2-2. ( z - ( - 2 - 2i))(z~ ( - 2 + 2i)) 

1 • 
z- ( - 2 + 2i) 

: = - 2 - 2 i 

J(-2-2,)t 

(-2-20-(-2+ 20 

-i-e2t~lti 

-M 

4 

= (cos 2t - / s in 2t). 

Thus the inverse Fourier transform is the combined solution, 

--i 1 
(o + 4co + 8 

-2\,\ 

(cos 2t - / s in 2t) 

If a pole should lie on the real axis, we can still find the inverse 

Fourier transform. One method is to move the contour slightly off the 

real axis with an epsilon band (see example 2.2). This integral is often 
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referred to as Bromwich's integral after the English mathematician 

Thomas John l'Anson Bromwich. 

Example 2.2 [5, p.77] Find the inverse Fourier transform of 1 , 
co -a coi 

where a*0. By (1.4.1), inversion formula is 1 —: = 

a2i. We have a singularity on the real axis and on the positive 

imaginary axis. Notice that there are no singularities in the lower half 

plane, so f(t) = 0 for the case when t < 0. Now, for t > 0, modify the 

inversion integral using Bromwich's integral to effectively move the 

pole z — 0 off the real axis. 

where j indicates the integral along the contour x = t, y = -s, 

- oo < t < oo. Note that the limit of the second integral as s -> 0 gives the 

original /(t)- The inversion integral can be converted into the closed 

contour integral 

eia"dco. Set z2 -a2zi= 0 to find the poles, z = 0 and z = 
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where both of the singularities are now within the contour and are 

essentially in the upper half plane. Thus by the residue theorem, 

Xt) = — [2^i(Res(z = 0) + Res(z - a2/))] 2n 

J_ 
2 n 2ni 

( z - a 2 i ) 
+ 

z = 0 z = a ( / 

_1_ 
2;r 

2ni ' 1 ^ 
— + -T7 

v a i a i 

The final solution can be written as /(t) = \{e~a2' -lWo? where h(t) 
a 

represents the Heaviside step function, defined by h(t) - [1 t> 0 
0 t <0 

Another method of finding the inverse Fourier transform, when a 

pole lies on the real axis, is to apply a theorem. 

Theorem 2.4 T8, p.287] 

Let f^be the open lower half plane { zeC | lm(z)<0}, and let / be 

analytic on an open set containing its closure { z e C | Im(z) < 0 } except 

for finitely many isolated singularities. Suppose the ones on the real 

axis are simple poles. Then if either (i) / satisfies the conditions of 

Theorem 2.2(ii) (except for the poles on the axis) or (\i)f{z) = e ieazg(z) 
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with co > 0 and g satisfying g(z)-» 0 as z-»0 in the half plane in the 

sense that for each s> 0 there is an R(<?) such that |g(z)| < s whenever 

|z| < R(^) and z eSf, then the integral exists and 

CO 

j / ( z ) d z = —2n/ Z{residues o f / in - ni £{residues o f / on the real axis}. 

(Similarly, J f ( z ) d z = 2^-/S{residues o f / i n + niZ {residues o f / o n the 

real axis}, for the upper half plane.) 

Example 2.3 Find the inverse Fourier transform of 1 
CO (co2 +1) 

The inversion formula is 1 
co (co2 +1) 

1 "r 1 
= — e 

2n jxco(co2 +1) 
,m'dco, 

The poles are z = 0 and z = + /'. If t > 0, use the upper half plane 

containing the poles z = 0 and z = i. Thus by Theorem 2.4, 

7tt J 

a eiwt j 
dco — 

In [co (co +1) 2n 
2 ni Res . 

z (z +1) 
+ ni Res 

z(z +1) 

J _ 
2 n 2ni Res z=' z (z - i)(z + i) 

+ ni Res 
z=° z(z-i)(z + i) 

z(z + i) 
+ 

(Z-0(2 + 0 z - 0 

'"(20 
i 

+ — 
2 -i(i) 
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ie ' i 
2~+2 

_ i - q - O 
2 

If t < 0, use z = 0 and z = -i. Thus by Theorem 2.4, 

i 00 

i - f J 
oc e«ot J 

—r dm — — 
2k _J

xco{6) +\) 2n 
-2 7ti Res 

z(z +1) 
-7ZI Res = z=0 z(z

2 +1) 

_1_ 
2 7C -2m Res z=-< z(z-i)(z+i) 

•711 Res 
z(z-i)(z + i) 

i 

1 

i e'zt 

z=-i 
2 (z - i)(z + 0 z=0 

el i 1 
- i{-2i) 2 -i(i) 

ie i 
~2 2 

i(e' -1) 
2 

/ ( l - O 
Thus ^ -l 1 

+1) 
2 

Ke' -1) 

/>0 

/<0 

We will finish this chapter with an example of a multivalued 

function that involves branch cuts. 
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Example 2.4 Find the inverse Fourier transform of the function 

F(a>) = 
0 
1 

a <0 

a»0 

® 3 ( < y 2 + l ) 

By the inversion formula, = — fF(a>)e""da> = 
In t 

2 7C 

co j 

e'°" da. For t > 0 use the upper half plane with the given 
'xco*(<o2+1) 

* e'" contour (see Figure 2.4.1). We have J/(z)dz — J—j— dz + 
p z3 (z2 +1) 

jzt 
J - y — — d z + J—— dz + J— dz, where R > 1 and 

/-2 z3 (z +1) -*z3(z2+1) cpz3(z2+1) Cp -7 3 (jl 

-R -P P R 

z =-i 

Figure 2.4.1 
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7t 37C p < 1. Place our branch cut so that — <9< —. At 9 = 0, the function 
2 2 

1 
— In r — . 

e 3 r V ' 
M = —*in = V r r2 +1 r2 +1 

. At e = 7c, Xz) = 
(re'")2 +1 

1, 1 
— l n r — . , 

e 3 e 3 } 

r2e2"+1 

i i 
— — r 3 e 3

 e-'r' 
r +1 

Now we shall show that the 

contribution of the circular arcs, CR and C , to the contour integral is 

zero. Observe that H dz 
c*z3(z2 +1) 

-(Im z)t 
< -2nR < 

1 
-2nR 

R3(R2 +1) R3(R2 +1) 

0 as R -» oo. Also, J- -c/z 
c"z3(z2+l) 

-(Imz)f 
• 2 7tp 

pHp2+ 1) 

< - •2kp 0 as p 0. Thus our contour integral becomes 
pHp2+ 1) 

« r 3 girt 
r f 

0
J r +1 J 
0 —00 

1 1 0 -3 -1 rt r 3 e 3 e 
r +\ 

dr. (2.4.1) 

By the residue theorem, \f(z)dz = 2xi Res / (z) = 

2 -̂/ Res 
2=1 

izt 
2n i Res 

/z( 
zTtine s— 

(z2+l) z5(z + i)(z-i) 
= 2ni-

z3 (z + i) 

ne 
T 

,-3 
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rce ne ne _ ne _ 1 
~ " cosf + zsinf ~ ~ 

'(V3 -/) . Use the 

i i 
• r 3 e 3 e c r £ (Z change of variables r = -s to evaluate dr. Thus we have 

J rl +1 

1.0 -i -irt 1 0 / !\ -i % ist 1 0 ^ ist 

f l l l — d r = - i t " f H ) / « ds = i 3 * ' f = 
1 T +1 i s 2+i J J2+i 

—"-"rr 3 eirl 

-e 3 —r dr. Back to (2.4.1), we now know that 
o r 2+l 

f—: dr - e 3*' f—; dr = —# fT'U/3-z). Hence, f^-r^—dr = 
0
J r +1 o r +1 2 0

J r +1 

K e 1 - w ^ t I • - y — — ^ which simplifies to -ne~'i. Thus the inverse Fourier 
—ni 

l-e 3 

v j 

transform for t > 0 is -~e~'i. 

For t < 0 use z = -i the lower half plane. See Figure 2.4.2. Again, 

R gizt izt ~P gizt 

we have J"f(z)dz = J— dz + J— dz + J— dz + 
c pz3(z2 +1) Cr

 Z3 (Z2 +1) ~*z3(z2+l) 

r el2i 
I — dz, but in the lower half plane. Place our branch cut so that 

cpz3(z2 +1) 

7t - — < 9 < —. Note that when we use 0 = -7t we get the sameflz), except 
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i xi 

for the factor e3 , since e~ni = eKl = -1. By doing similar computations 

as before, we can show that the contour integral becomes 
_I _I I • 

j 2 dr + J — — - dr. (*) 
o r i 

Figure 2.4.2 

By the residue theorem, J / (z) dz = 2^/Res f(z) = 
c 

g g g 
2^-/Res—; = 2;r i Res — = Ini-— 

Z~'z3(z2+1) z3(z + i)(z-i) z3(z-i) 

— 7 T E 

( - 0 3 
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•ne1 -ne' -ne' -ne1 1 , 
^ " — n e (j3+i). B y 

e=T cosfe)+/siii(f) f _ i / 2' 

applying the same change of variables as before we have 

co ^ i f t 1 . <*> t / r t i / \ co o i rt . J- J 0 — W1 * J ft 1 / . \ m f J rt T 3 ni f ^ e ' r 1 / \ ^>3 
f — T — d r - e3*' f — dr = --ne'U?>+i). Hence, f—r dr = 

0
J r +1 j r +1 2 V ' * r2+l 

;r g (V3+/) ^ ^ simpiifies to -ne'i. Thus the inverse Fourier 
—ni 

2 1 — e3 

v J 

transform for t < 0 is - - e ' i . The inverse Fourier transform for the 
2 

function is CO )) = -1 <FI. 



Chapter 3 

Solving Differential Equations 

13.1 Using Fourier Transforms To Solve a DE 

Here we will introduce the method of using Fourier transforms to 

solve a differential equation. Our strategy is as follows: 

1. Take the Fourier transform of both sides of the DE. 

2. Also take the Fourier transform of the boundary conditions. 

3. Solve the transformed problem using appropriate methods. 

4. Take the inverse transform, if possible, back to the original 

variables. 

Now, we'll illustrate this method with an example involving the 

heat equation. 

Example 3.1 

Solve the PDE u, = u^ for - oo < * < oo, t > 0 

subject to: «(x,0) = and u(x,t) bounded. 

Take the Fourier transform of both sides, which transforms 

u(x,t) into U((o,t). 

40 
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The variable t is fixed in the transform. Using Table 1.2 for the right 

hand side of the equation we get 

Ut= -o)2U. 

Set our transformed PDE equal to zero, Ut + a>2 U = 0, and treat 

this new equation as a first order ODE of the form T' + aT = 0 with 

solution T=ce~at. So the general solution is U(o},t)=g(co)e'a}2'. Now 

take the Fourier transform of the first condition 

ST [ i / ( * , 0 ) ] = 3 r [e-*1] 

and look up the transform of e'xl from Table 1.1 to get 
-V 

£7(0,0) = 4 n e 4 . 

Direct substitution of t = 0 into the general solution shows that U(co,0) is 

also equal to g(co). Thus 

I/(®,0= ne 4 e-". 

The solution we want is the inverse Fourier transform of U(co,t), 

u(x,t) = 9r 
,2 A 
4 

-l f - 4 / - 1 2 \ 

t 
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Apply the formula -l 
,2 A 

4 a 
2 j = e'ax and choose a = to get the 

4t + l 

final solution, 

u(x,t) = $F 
-l 

4(+l -I 1 L 

V 4f+l 

= / 1 
V47TT ^ 

-1 ;r 
4f+l 

-4/-1 

= z>4l+l 
"V 4(+l c 

Example 3.2 Use the Fourier transform method to solve an ODE of the 

form y"(t) + b y'(t) + c y(t) = f(t) on -oo </ <oo, subject to the condition 

limXO = 0. 
I'b® 

First take the Fourier transform of both sides, assuming that^O e 

G(M): 

3 r y \ t ) + &"by'(t)+ &cy(t)= & / ( f ) . 

Now referring to properties in Table 1.2 we have 

to2 F(®) + b(ico) Y(co) + c Y(co) = F(co), 

which can be solved for Y( co ), 

Y(co) 
F(co) 

-co +bico + c 

To find the solution, apply the inverse Fourier transform, 
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-1 F{a>) 
-co2 + bioo + c 

1 F(w) 
2n i-co +bia> + c 

-ei0" dco. 

By convolution we can then find y{t) where the Green's function is 

i 00 1 
2 n J-co +bia> + c 

1 00 
dco — — | 

l-n- J 
1 

2n lco -bico-c 
e,a" dco. 

The poles occur where z2-biz-c = 0 so z = b + 4c gy 

considering various values of b and c, there are several possible cases. 

Let the discriminant -b2 + 4c be denoted by D. Then we can summarize 

the outcomes in the chart below. 

case: D > 0 D = 0 D < 0 

CO = bi±d b . bi±di 
2 ' 

—i 
2 2 ' 

d = 4n d = J-D 

possibilities: 2 poles Double pole on the 2 poles in either 
in J? imaginary axis JC or S£ 

2 poles Double pole 1 pole on imaginary 
ins? at the origin axis and the other at 

the origin 
2 poles 
on the 1 pole in each 

real axis half plane 
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The author of the article at [16] did the case D < 0 and b > 0. 

We will calculate the solution for two other cases. 

(1) Suppose D > 0 and b > 0. Then the poles z = y + + \ i 

are in J t Note: Butkov solved a similar ODE on page 278 using this 

case. The poles in that example were both in % which was one of the 

possibilities. By Theorem 2.2(i) where t > 0, 

j - ) , - ' lir J /-<> — ihm — / 
1 , , e"" dm = — (2 ic i £ {residues in ) 

2jt ia> -ibco-c 2n 

- e — e - i Res — + Res 
zjL+b-i z -ibz-c z -ibz-c 

V 2 2 2 2 

= / + 
d b. 

z = — I — / 2 2 
(f+fO rf A 2= H—/ 22 y 

= / 
-e 

^ f f , 
• + 

— e 
, * •, / —+-i / 2 2 

( f + f ' M - f + f O ( - f + f O - f e + t O 

= z + 
d 

b d 
•. 2 2 ' -e > m 
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2e 2 sin dt 

v2"J 

For t < 0, we consider the lower half plane. There are no singularities 

there, so the integral is zero. Therefore the solution is 

u(x,t) = 

' JL 'df 2e 2 sin 'df 

d 
0 

, t> 0 

(2) Suppose that D > 0 and b- 0. Then the poles co = ±4c are on 91 

Using Theorem 2.4 for t < 0 we have, 

— f ~1 eia"do) =— (-;z-; I {residues on 91}) 
27C 3 a -ibeo-c 2n 

i 
2 

i 
~2 

1 -e'zt -eizt ^ Res — + Res — 
*=-Vc z -ibz — c z — ibz — t 

Res — + Res —r-
z = - V c z —c z —c 

(since b = 0) 
J 

f -e'zt ^ 

yZ-4c j 

- i J c l . 

z-fc 

< -elzt ^ 

yZ + ^C j -fc 

4c 

-i~Jc . 
~4c~ 

•2/sin(-Vcr) 

-Jc sin (Vc f) 
2c 
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Similarly, for / > 0 use the upper half plane and get - Thus 
2c 

, . . . Vcsink/clrl) the solution is u(x,t) = —— . 

2c 

Example 3.3 [ 1 1 ] 

2 1 
Solve urr +-ur = —ruu subject to the boundary condition ur = -pvaS(t) 

r c at radius r = a. 

Take the Fourier transform of both sides of the PDE 

n»rr]+n-ur] = \n«„] 
r c 

to get 

2 co2 

Urr(r,co) + - U^r,co)= r U(r,co). 
r c2 

It is easily shown that the general solution is U(r,co) = 

£ikr e-ikr 

A(co)— + B(co) , where k = f . The inverse Fourier integral is 
r r 

ikr -ikr 

A(co) -— + B(co) 
r r 

eimdca. Physical considerations require 

A(co) = 0 (see [5] p. 116). Now take the Fourier transform of the 

boundary condition. 

Ur(a,co)= - pv0F[S(t)]= - pv0 



47 

We have Ur = — | iJcr—and for the boundary condition, where 

a, Ur (a, io) = —— ) = —pv0. Thus B(a) = — — and we 
a ika +1 

have U(r,o)) = a — - — and hence 
ika+ 1 r 

•f'—1 1 ^ a ' p v 0 e < e < _ a > v 0 "f * L c 
a> to 

~ i—a -i—r x „2 

2n 3 (i*a + l)r 2 nr J 1 + ^ —00 V c ' —CO c 

Evaluate this integral by the residue theorem. We have the simple pole 

z = — i. For t - -—- > 0, close the contour with a semicircle in the upper 
a c 

half plane. By Theorem 2.2(i) we have — d c o = 2ni Res f J w J 1 4 c ,za | i 

= c. = e i " ^ ] . Thus = 
( —) z-j-i 1 a a r V c ' a 

y> Q 
For t <0 close the contour with a semicircle in the lower half 

plane. Since the function is analytic at all points interior to and on this 

closed contour C, then by the Cauchy-Goursat theorem from complex 

variables we have d —— dz = 0. Hence, our combined solution using 
r ~Z t" 1 

cf r-al 

the Heaviside step function is u{r,t) = acpv° e
 c ' h(t-*f-). 
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Example 3.4 [7] 

Solve uxx + uyy - u = 0 with -oo<*<oo, 0 < >> < 1 and subject to the 

boundary conditions uy(x,0) = Oand u(x,l) = e~x h(x). Duffy [5] presents 

this exercise on page 120 and provides an outline to assist in finding the 

solution. 

Take the Fourier transform of the PDE. 

n u x x ] + n u y y ] - n u ] = o 

-co2U + Uyy-U = 0 

Now take the Fourier transform of the boundary conditions. 

F[uy(x,0)]=5F[0] and F[u(x,l)]= F[e~x h(x)] 

Uy(co, 0) = 0 U(co,l) = —^— 

1 + COI 

The characteristic equation for the differential equation is r2 - co2 -1 = 0 

with solution r = ±^co2 +1. Let m = V®2 +1. The general solution is 

U(co, y) = A(co) cosh my + B(co) sinh my . 

The partial with respect to y is Uy (co, y) = mA(co) sinh my + mB(co) cosh my. 

So Uy(co,0) = mB(co) = 0 which gives B(co) = 0. The general solution 

simplifies to U(co,y) = A(co)coshmy. Now apply the second boundary 
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condition, U(co,\) = A(co) cosh.m = ——: which gives A(co) = 1 

1 + ®/ (l + a> i) cosh m 

Hence, the solution is U(co,y) =—-—cosh(.y a+\) i n v e r s e 
1 + ®* cosh(V®2 +1) 

1 Fourier transform is — f U(o),y)eimxdo). We now determine the poles to 
In J 

—oo 

use in applying the residue theorem. One of the poles occurs at z = /. 

Since the hyperbolic cosine function is zero at the points — + nn 
v2 , 

where n is an integer, we can calculate the other singularities using 

algebra. The other simple poles occur at z = ^ Let 

a„ = y]n2(2n + Y)2 +4. (Following the proof of Theorem 2.2, that theorem 

is valid for a countable number of singularities, if the limits exist. 

Assuming that U(o,y) e G(9?), the limits do exist.) 

Now apply the residue theorem. For x > 0 use the upper half 

plane. Calculate the easier residue at z = i to get 

coshoV*2 +l)e'zx _ c o s h ( y 4 z 2 +\)eiz> Res- = -ie x, 
i (z - i) cosh (Vz2 +1) i cosh(Vz2 +1) 

Now calculate the sum of the other residues in the upper half plane. 

V1 B TTf ^ «•« ^ coshtyVz2 +i)e'2X 

L Res U(z,y)e = £ T==-
«=o «=o i(z - i) cosh(V z +1) 

f A f A 

z-
V 2 

2 
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Take the limit as z-> —-. We observe that lim 2 

>^cosh (A/Z2 +1) 
can be 

evaluated using L'Hospital's rule: lim V7+T 
^ s i n h ( V T T l ) z s i n h ^ - 4 +1 ^ 

(2/1 + 1) 
sinh (^-(^y1)/) o-n 

;r(2n + l)*' 
(-1)" a. 

The summation becomes 

c o s h ^ f ^ Q n (2n +1)/ .-(fox Applying the identity cosh(z'z) = cos z 

and the fact that (-1)" = —-— we get 
( -1)" & 

n=0 (2 —0"„) 
e z cos 

So by Theorem 2.2(i) the inverse Fourier transform of U(a>,y) for x > 0 is 

2K •2ni ie ' + 
00 (-l)"*-(2/i + l)i f(2n + l)xy 
n-0 cr„(2-cr„) 

cos 

? + 2 , — — c o s 

n=0 ff.K "2) 
(2w + l);r.y 

For x < 0, use the infinite poles in the lower half plane. The calculation 

of the inverse Fourier transform is analogous except there is no "extra" 

pole at z = i. The combined solution where sgn(x) = i * > ° is 
-1 x < 0 

u(x,y) = e x h(x) + 2;r]T (-1)"(2» + 1) 
(sgn(x)cr„ -2) 

cos (2w + l);rj> 
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d4 

Example 3.5 [3, p.283] Solve the ODE EI—f = q(x)-cy(x), - o o c x c o o , 
dx 

where q(x) is the external force per unit length on a beam resting on an 

elastic foundation, y{x) is the displacement, and c, E, and I are 

constants. 

Take the Fourier transform of both sides and solve. 

dx 

EI a>4 Y(co) = Q(co) - c Y{co) 

EI 6) +c 

Now find the inverse Fourier transform, 

S R L 

2n i EIco + c yEIeo + c j 

Let q(x) - PS(x), where P is a constant. Then Q(co)=fJr [PS(x)] = P 

P % eil0X 

We can pull the constant outside of the integral, — -:—dco y hr J FTs*4 4-/. 

f f i t A D cc- «"°x 

Rename — as a4. Then EI . . 4 

c 

In EIco +c 

Q(<o) 
yEIco* +Cj 

P r e 1 
dco 

2nc i£Lo>4+1 

® „ia>x 

f e — d c o . Make the change of variables co = —. Then 
2nc ia co +1 a 

1 P °f e a 

dco = —ds and s = aco. Our integral becomes ——ds 
a 2nac +1 
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3 mi 

The poles occur where z4 +1 = 0 or at the points zl = e 4 , z2 = e 4 , 

- 3 mi 

z3=e 4 , z4 = e 4 with rectangular coordinates + 

+ For x < 0 use z3 =e 4 and 4 2 S 4 2 4 2 . 

- 3 RTI 

z4 = e 4 in the lower half plane. By Theorem 2.2 (ii), the integral 

becomes 

/ 

•Ini 
\ 

e " e a 

Res — + Res — 
- ^ z 4 + l - ^ z 4 + l 

\7.-e 4 z=e 4 

— —Ini 
e " 

7 7 7 
-3>ri 

(z-e 4 ) + 
z4 +1 

(z-e 4 ) 

= -2n i 
e -

(z-e4)(z-e 4 )(z-e'4) 
+ 

(z-e4)(z-e 4 )(z-e~4 ) 

f -fix 

= -2.lt i , 4 2 X 4 2 X 

•fix 
> 

•2V2/ + 2V2 l
cos^r_/sin"2« -2V2/-2V2 

( c o s # + / s i n # ) 

= -2;r i 
(-2V2/ - 2V2 )(cos -f^- - i sin + (-2V2z + 2V2 )(cos - f / + / sin ) ^ g 2a 

- 1 6 

= — ( - 4 V 2 / c o s ^ + 4 > / 2 i s i n ^ ) . 
8 

. 2o 
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rr , . V2x p 
= — ^ ( c o s ^ - s i n ^ ) e 2a . Multiplying this residue by we get the 

solution . 
4ac x 2a 2a ' 

xi 3 7i i 

For x > 0 use z, = e4, z2 = e 4 the upper half plane. The 

calculation of the residues is similar and the integral is 

+ The solution is ^ ( c o s # + s i n # ) e ^ ~ , for 
2 4 ac 

this case. Using absolute values, we can combine the solutions from 

-V21 
/ V2U1 . V2U1I Icos-^ + s in-^k 

4 ac 
Pyfl ( \ both cases to give the final solution y(x) = (cos + sin je 2a . 



Chapter 4 

Fourier and Laplace Joint Transforms 

• 4.1 The Joint Transform Method 

We know that Fourier and Laplace transforms can be used 

separately to solve partial differential equations. Interestingly, they 

can be applied together for the same purpose. This undertaking 

requires a double inversion, which can be a difficult task. Techniques 

like the Caignard-de Hoop method have been successfully used in 

finding the joint inverse. 

In the Fourier-Laplace joint transform, we apply a Fourier 

transform to eliminate the spatial dimension and the Laplace 

transform to remove the time dependence. The resulting joint 

transform can then be solved using algebra or ordinary differential 

equation methods. Then we are faced with the double inversion. The 

order in which we do them depends on the character of the joint 

transform. The pattern we encounter in this chapter is: Fourier 
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transform, Laplace transform, inverse Laplace transform, inverse 

Fourier transform. 

Example 4.1 [3, p.606] 

Solve uxx—\u,t =S(x-^)S(t-r), where - o o < x < o o and t> 0 
c 

subject to u(x,0) = 0, w,(x,0) = 0, and u approaches zero as x -» ±oo. 

First, we will take the Fourier transform with respect to x. 

= S(t-T)F[S{x-&] 
c 

-co2U{co,t)-\ua{(0,t) = S(t-T)e-imt 
c 

The Fourier transform of the conditions are <F[h(x,0)] = £F[0] and 

^[i/,(x,0)] = ^[0], that is, U(a>,0) = 0 and Ut(<o,0) = 0. 

Now apply the Laplace transform to t, 

-co2^\U]{(o,s) - \(s2S£[U](co,s) - sU(co,0) - I/,0»,0)) = e~TS e'it04. 
c 

Using the initial conditions we have 

-Q>2Sg[U](a,s) - = 
c 

Thus the joint transform of this PDE is 

-c2 e~TS e~i<a* 
S?[U] (*,*) = 2 2 2 . 

C 6) +S 
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Now take the inverse Laplace transform U(co,t) — S? 1 
{ 2 —TS —IO)£ \ — c e e 

2 2 2 
v C CO+S 

= - c V " * s?" 2 2 2 
v c CO+S , 

By combining rules 23 and 10 from the 

Laplace transform tables in [9], the inverse Laplace transform is 

U(co,t) 
•c e * 

cco 
sin(c c o i f - r ) ) h ( l - r ) . 

Take the inverse Fourier transform 

u(x,t) = -l - c e 
-itog 

CO 
-sin(c coif- r))/?(/ - r) 

-l 
CO 

- sin(c coif- r)) 

-ch(t — T) — f sin (cco(t-r))ei(axdco. 
I t T ' sn 2 K i CO 

We know from [3, p.265] that 1 °°r 2 . ak _ikx „ 
- 7 = J—sin—e ,kxdk = 
V^iV* k 

1, |x| < a 

0, Ixl > a 

Thus u M = t ^ 
42It V 2 y f ^ J j T t CO 

- c h ( t - T ) ,„ I £ - x < c ( f - r ) _ . , . . . _ „ 2 1 1 . This solution can be rewritten as follows. 
0, | £ - x | > c ( t - T ) 

For the case when t<r, the function is 0 (since h(t- r) = 0). When 

t>r, we have for | £ - x | < c ( t - r ) , which can be expressed as 
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- c 
(h{%-x + c(t-T))-h(%-x-c(t-T))). To summarize, the solution is 

2 

-c 
{h{%-x + c ( t - T ) ) - h ( % - x - c { t - T ) ) \ t>x 

t <r 

u(x,t)= 2 

0, 

Example 4.2 [14, p.197] 

Solve EI uxxxx +ku + mutt = P0 S(x)S(t) with - oo < x < oo, / > 0 subject to 

the initial conditions u(xfi) = 0 and ut{x,0) = 0 and u approaches zero 

as x -» ±oo. 

The steps required to apply the Fourier-Laplace joint transform 

of this PDE are outlined in [5, p.276]. First take the Fourier transform 

of both sides, &[EIuxxxJ + P[ku] + & [mutt] = ^ [P0S(x)S(t)]. 

Pulling out the constants we have EI <F[uxxxx] + kdr[u]+ utt\ = 

P0 5{t)^[8(x) ], which gives us 

The Fourier transform of the initial conditions become U(oo,0) = 0 and 

Ut(co, 0) = 0 . 

EIo}V(co,t) + kU((o,t) + mUlt(co,t) = P0S(t). (4.2.1) 
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Now, apply the Laplace transform to (4.2.1), EIco4 SB[U](co,s) + 

kS£[U](o),s) + m(s2^£[U\{co,s)-sU(co,Q)-Ut(coS))) = P0S?[S(t)]. B y 

applying the transformed initial conditions and factoring we get 

(EIco4 + k + ms 2) S£[U\(a),s) =P0. Thus the joint transform of our PDE 

is Sf[U\(e>,s) = 
EIco +k + ms' 

. (4.2.2) 

Now we will apply the inverse Laplace transform to (4.2.2), 

U(co,t) = S£~ \EIa>4 + k + ms2 j 
-l 1 

EIco +k + ms 
r * 2 EI Let a = — . m 

Thus U(co,t) = ^ ^ 
m ya2a>4+j- + s2 ; V m y We shall use the well-known 

formula -l 
s2+b2 = sinbt. Let b = Ja2co4 . We then have V m 

4 a
2co* ™ 

Ja V + i 
s2 +a2co4 

, which can be written as 

2co4 + A m ̂
sinyja2co4+^t. (4.2.3) 

The last step is to take the inverse Fourier transform of (4.2.3). 

TT * M i m ^a
2co4 

m'ei<oxdca 

2 nm 

|.sin {t-Ja V + i 
V + A 

, . °°fsin \ t J a W + ± ) . . 
cos(&> x + i J ——======—- sin(® x)dco 

v + i 
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Notice that since the first integrand was even and the second integrand 

was odd, we could reduce to the last integral. The original paper goes 

through seven additional steps to rewrite the solution with physical 

considerations. However, their solution is still in integral form. For 

our purposes, we express the solution as 

For another example of the Fourier-Laplace joint transform, the 

reader can consult the journal article [13]. In this paper, the authors 

apply the Fourier transform followed by the Laplace transform to 

Maxwell's equations, which govern radiation and propagation of 

electromagnetic fields. Using this method, integral representations for 

the electric field and the magnetic induction can be found. 

14.2 The Double Fourier Transform 

There are several other joint transforms that we could explore. 

But since the emphasis of this paper is the Fourier transform we ask 

the question can the Fourier transform be used jointly with itself in 
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solving a PDE? The answer is yes. In certain situations, after taking 

the Fourier transform once and examining the result, it might be 

appropriate to use the Fourier transform a second time. This method 

is sometimes called a multiple Fourier transform [15, p.329] or the 

Fourier-Fourier transform. Since this method can be used in the same 

way that a joint transform is used but uses only one kind of transform, 

we will call it the double Fourier transform. 

Example 4.3 

Solve ut - uxx - uyy = 0 with t> 0, - o o < x < o o , - oo < < oo and subject 

to u(x,y,Q) = f ( x , y ) . Assume / eG(SR). 

Take the Fourier transform of both sides with respect to x, 

F[ut] - F[uxx] - F[uyy] = F[0], which is U, +a>2U-Uyy =0. The 

Fourier transform of the initial condition is £F[u(x,y,0) ] = 9F[f{x,y)\, 

o r U(a>,y,0) = F(o},y). 

Now apply the Fourier transform again, this time with respect 

to the variable y, Ut ] + co 2U ] - Uyy J = ^"[0]. So we have 

U, + co2 U + s2U = 0, which can be expressed as Ut + (<y2 + s2 )U = 0 . 

The Fourier transform of the initial condition is now £F[U(co,y,0)] = 
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or U(co,s,0) = F(co,s) . This ODE is an initial-value 

problem with solution U{co,s,t) = F(a>,s)e~{a,1+s2)t. 

Take the inverse Fourier transform with respect to s and apply 

convolution (see 1.4.2), 

¥ ~l[U(co,s,t)] = & 'l[F(o),s)e'{a,2+s2)l ] 

1 oo -(y-$y 

U(o),y,t) = —f= iF(a>,^)e~a'2' e 4< 
t 

Lastly, take the inverse Fourier transform with respect to co, 

i ® - ( y - f ) 2 

- j = \F(co,^)e'a'2' e 4' d£ 
^7tt i 

1 
In 1 

1 ® -(y-sr 

' \F(co,t)e-«2'e 4< 
V4ret i 

el(OX d^dco. (4.3.1) 

Note that — [ F(co^)e~oj2' e"°x doj = {F{co^)e~B>2') by definition of 
—oo 

the inverse Fourier transform. Thus by applying convolution again 

we have \f{r],£i)—== e 4' drj. Therefore, (4.3.1) can be rewritten 
i 

1 r 
as - = = I 

l 

au -(*-vY 
4' dr] 

-{y-SY 

e 4' to give us the final 

solution, 

1 «o « -^-nf-(y-i)1 

u(x,y,t) = — j j f ( T , , Z ) e 41 drjdZ. 
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