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A global reference for human
genetic variation
The 1000 Genomes Project Consortium*

The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by
applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report
completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combina-
tion of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We
characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide
polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased
onto high-quality haplotypes. This resource includes .99% of SNP variants with a frequency of .1% for a variety of
ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for
common disease studies.

The 1000 Genomes Project has already elucidated the properties and
distribution of common and rare variation, provided insights into the
processes that shape genetic diversity, and advanced understanding of
disease biology1,2. This resource provides a benchmark for surveys of
human genetic variation and constitutes a key component for human
genetic studies, by enabling array design3,4, genotype imputation5,
cataloguing of variants in regions of interest, and filtering of likely
neutral variants6,7.

In this final phase, individuals were sampled from 26 populations
in Africa (AFR), East Asia (EAS), Europe (EUR), South Asia (SAS),
and the Americas (AMR) (Fig. 1a; see Supplementary Table 1 for
population descriptions and abbreviations). All individuals were
sequenced using both whole-genome sequencing (mean depth 5 7.43)
and targeted exome sequencing (mean depth 5 65.73). In addition,
individuals and available first-degree relatives (generally, adult off-
spring) were genotyped using high-density SNP microarrays. This pro-
vided a cost-effective means to discover genetic variants and estimate
individual genotypes and haplotypes1,2.

Data set overview
In contrast to earlier phases of the project, we expanded analysis
beyond bi-allelic events to include multi-allelic SNPs, indels, and a
diverse set of structural variants (SVs). An overview of the sample
collection, data generation, data processing, and analysis is given in
Extended Data Fig. 1. Variant discovery used an ensemble of 24
sequence analysis tools (Supplementary Table 2), and machine-learn-
ing classifiers to separate high-quality variants from potential false
positives, balancing sensitivity and specificity. Construction of hap-
lotypes started with estimation of long-range phased haplotypes using
array genotypes for project participants and, where available, their
first degree relatives; continued with the addition of high confidence
bi-allelic variants that were analysed jointly to improve these haplo-
types; and concluded with the placement of multi-allelic and struc-
tural variants onto the haplotype scaffold one at a time (Box 1).
Overall, we discovered, genotyped, and phased 88 million variant sites
(Supplementary Table 3). The project has now contributed or
validated 80 million of the 100 million variants in the public dbSNP
catalogue (version 141 includes 40 million SNPs and indels newly

contributed by this analysis). These novel variants especially
enhance our catalogue of genetic variation within South Asian (which
account for 24% of novel variants) and African populations (28% of
novel variants).

To control the false discovery rate (FDR) of SNPs and indels at
,5%, a variant quality score threshold was defined using high depth
(.303) PCR-free sequence data generated for one individual per
population. For structural variants, additional orthogonal methods
were used for confirmation, including microarrays and long-read
sequencing, resulting in FDR , 5% for deletions, duplications,
multi-allelic copy-number variants, Alu and L1 insertions, and
,20% for inversions, SVA (SINE/VNTR/Alu) composite retrotran-
sposon insertions and NUMTs8 (nuclear mitochondrial DNA var-
iants). To evaluate variant discovery power and genotyping
accuracy, we also generated deep Complete Genomics data (mean
depth 5 473) for 427 individuals (129 mother–father–child trios,
12 parent–child duos, and 16 unrelateds). We estimate the power to
detect SNPs and indels to be .95% and .80%, respectively, for
variants with sample frequency of at least 0.5%, rising to .99% and
.85% for frequencies .1% (Extended Data Fig. 2). At lower frequen-
cies, comparison with .60,000 European haplotypes from the
Haplotype Reference Consortium9 suggests 75% power to detect
SNPs with frequency of 0.1%. Furthermore, we estimate heterozygous
genotype accuracy at 99.4% for SNPs and 99.0% for indels
(Supplementary Table 4), a threefold reduction in error rates com-
pared to our previous release2, resulting from the larger sample size,
improvements in sequence data accuracy, and genotype calling and
phasing algorithms.

A typical genome
We find that a typical genome differs from the reference human
genome at 4.1 million to 5.0 million sites (Fig. 1b and Table 1).
Although .99.9% of variants consist of SNPs and short indels,
structural variants affect more bases: the typical genome contains
an estimated 2,100 to 2,500 structural variants (,1,000 large dele-
tions, ,160 copy-number variants, ,915 Alu insertions, ,128 L1
insertions, ,51 SVA insertions, ,4 NUMTs, and ,10 inversions),
affecting ,20 million bases of sequence.
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The total number of observed non-reference sites differs greatly
among populations (Fig. 1b). Individuals from African ancestry
populations harbour the greatest numbers of variant sites, as pre-
dicted by the out-of-Africa model of human origins. Individuals from
recently admixed populations show great variability in the number of
variants, roughly proportional to the degree of recent African ancestry
in their genomes.

The majority of variants in the data set are rare: ,64 million auto-
somal variants have a frequency ,0.5%, ,12 million have a frequency
between 0.5% and 5%, and only ,8 million have a frequency .5%
(Extended Data Fig. 3a). Nevertheless, the majority of variants observed
in a single genome are common: just 40,000 to 200,000 of the variants in
a typical genome (1–4%) have a frequency ,0.5% (Fig. 1c and
Extended Data Fig. 3b). As such, we estimate that improved rare variant
discovery by deep sequencing our entire sample would at least double
the total number of variants in our sample but increase the number of
variants in a typical genome by only ,20,000 to 60,000.

Putatively functional variation
When we restricted analyses to the variants most likely to affect gene
function, we found a typical genome contained 149–182 sites with
protein truncating variants, 10,000 to 12,000 sites with peptide-
sequence-altering variants, and 459,000 to 565,000 variant sites over-
lapping known regulatory regions (untranslated regions (UTRs),

promoters, insulators, enhancers, and transcription factor binding
sites). African genomes were consistently at the high end of these
ranges. The number of alleles associated with a disease or phenotype
in each genome did not follow this pattern of increased diversity in
Africa (Extended Data Fig. 4): we observed ,2,000 variants per gen-
ome associated with complex traits through genome-wide association
studies (GWAS) and 24–30 variants per genome implicated in rare
disease through ClinVar; with European ancestry genomes at the
high-end of these counts. The magnitude of this difference is unlikely
to be explained by demography10,11, but instead reflects the ethnic bias
of current genetic studies. We expect that improved characterization
of the clinical and phenotypic consequences of non-European alleles
will enable better interpretation of genomes from all individuals and
populations.

Sharing of genetic variants among populations
Systematic analysis of the patterns in which genetic variants are
shared among individuals and populations provides detailed accounts
of population history. Although most common variants are shared
across the world, rarer variants are typically restricted to closely
related populations (Fig. 1a); 86% of variants were restricted to a
single continental group. Using a maximum likelihood approach12,
we estimated the proportion of each genome derived from several
putative ‘ancestral populations’ (Fig. 2a and Extended Data Fig. 5).
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Figure 1 | Population sampling. a, Polymorphic variants within sampled
populations. The area of each pie is proportional to the number of poly-
morphisms within a population. Pies are divided into four slices, representing
variants private to a population (darker colour unique to population), private to
a continental area (lighter colour shared across continental group), shared

across continental areas (light grey), and shared across all continents (dark
grey). Dashed lines indicate populations sampled outside of their ancestral
continental region. b, The number of variant sites per genome. c, The average
number of singletons per genome.
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This analysis separates continental groups, highlights their internal
substructure, and reveals genetic similarities between related popula-
tions. For example, east–west clines are visible in Africa and East Asia,
a north–south cline is visible in Europe, and European, African,
and Native-American admixture is visible in genomes sampled in
the Americas.

To characterize more recent patterns of shared ancestry, we first
focused on variants observed on just two chromosomes (sample fre-
quency of 0.04%), the rarest shared variants within our sample, and
known as f2 variants2. As expected, these variants are typically geo-
graphically restricted and much more likely to be shared between
individuals in the same population or continental group, or between
populations with known recent admixture (Extended Data Fig. 6a, b).
Analysis of shared haplotype lengths around f2 variants suggests a
median common ancestor ,296 generations ago (7,410 to 8,892 years
ago; Extended Data Fig. 6c, d), although those confined within a
population tend to be younger, with a shared common ancestor
,143 generations ago (3,570 to 4,284 years ago)13.

Insights about demography
Modelling the distribution of variation within and between genomes
can provide insights about the history and demography of our

ancestor populations14. We used the pairwise sequentially
Markovian coalescent (PSMC)14 method to characterize the effective
population size (Ne) of the ancestral populations (Fig. 2b and
Extended Data Fig. 7). Our results show a shared demographic history
for all humans beyond ,150,000 to 200,000 years ago. Further, they
show that European, Asian and American populations shared strong
and sustained bottlenecks, all with Ne , 1,500, between 15,000 to
20,000 years ago. In contrast, the bottleneck experienced by African
populations during the same time period appears less severe, with
Ne . 4,250. These bottlenecks were followed by extremely rapid
inferred population growth in non-African populations, with notable
exceptions including the PEL, MXL and FIN.

Due to the shared ancestry of all humans, only a modest number of
variants show large frequency differences among populations. We
observed 762,000 variants that are rare (defined as having frequency
,0.5%) within the global sample but much more common (.5%
frequency) in at least one population (Fig. 3a). Several populations
have relatively large numbers of these variants, and these are typically
genetically or geographically distinct within their continental group
(LWK in Africa, PEL in the Americas, JPT in East Asia, FIN in Europe,
and GIH in South Asia; see Supplementary Table 5). Drifted variants
within such populations may reveal phenotypic associations that
would be hard to identify in much larger global samples15.

Analysis of the small set of variants with large frequency differences
between closely related populations can identify targets of recent,
localized adaptation. We used the FST-based population branch stat-
istic (PBS)16 to identify genes with strong differentiation between
pairs of populations in the same continental group (Fig. 3b). This
approach reveals a number of previously identified selection signals
(such as SLC24A5 associated with skin pigmentation17, HERC2 assoc-
iated with eye colour18, LCT associated with lactose tolerance, and the
FADS cluster that may be associated with dietary fat sources19).
Several potentially novel selection signals are also highlighted (such
as TRBV9, which appears particularly differentiated in South Asia,
PRICKLE4, differentiated in African and South Asian populations,
and a number of genes in the immunoglobulin cluster, differentiated
in East Asian populations; Extended Data Fig. 8), although at least
some of these signals may result from somatic rearrangements (for
example, via V(D)J recombination) and differences in cell type com-
position among the sequenced samples. Nonetheless, the relatively
small number of genes showing strong differentiation between closely
related populations highlights the rarity of strong selective sweeps in
recent human evolution20.

Sharing of haplotypes and imputation
The sharing of haplotypes among individuals is widely used for
imputation in GWAS, a primary use of 1000 Genomes data. To assess
imputation based on the phase 3 data set, we used Complete
Genomics data for 9 or 10 individuals from each of 6 populations
(CEU, CHS, LWK, PEL, PJL, and YRI). After excluding these indivi-
duals from the reference panel, we imputed genotypes across the
genome using sites on a typical one million SNP microarray. The
squared correlation between imputed and experimental genotypes
was .95% for common variants in each population, decreasing
gradually with minor allele frequency (Fig. 4a). Compared to phase
1, rare variation imputation improved considerably, particularly for
newly sampled populations (for example, PEL and PJL, Extended
Data Fig. 9a). Improvements in imputations restricted to overlapping
samples suggest approximately equal contributions from greater
genotype and sequence quality and from increased sample size
(Fig. 4a, inset). Imputation accuracy is now similar for bi-allelic
SNPs, bi-allelic indels, multi-allelic SNPs, and sites where indels
and SNPs overlap, but slightly reduced for multi-allelic indels, which
typically map to regions of low-complexity sequence and are much
harder to genotype and phase (Extended Data Fig. 9b). Although
imputation of rare variation remains challenging, it appears to be

BOX 1

Building a haplotype scaffold
To construct high quality haplotypes that integrate multiple variant
types, we adopted a staged approach37. (1) A high-quality ‘haplotype
scaffold’ was constructed using statistical methods applied to SNP
microarray genotypes (black circles) and, where available, genotypes
for first degree relatives (available for ,52% of samples;
Supplementary Table 11)38. (2a) Variant sites were identified using a
combination of bioinformatic tools and pipelines to define a set of
high-confidence bi-allelic variants, including both SNPs and indels
(white triangles), which were jointly imputed onto the haplotype
scaffold. (2b) Multi-allelic SNPs, indels, and complex variants
(represented by yellow shapes, or variation in copy number) were
placed onto the haplotype scaffold one at a time, exploiting the local
linkage disequilibrium information but leaving haplotypes for other
variants undisturbed39. (3) The biallelic and multi-allelic haplotypes
were merged into a single haplotype representation. This multi-stage
approach allows the long-range structure of the haplotype scaffold to
be maintained while including more complex types of variation.
Comparison to haplotypes constructed from fosmids suggests the
average distance between phasing errors is ,1,062kb, with typical
phasing errors stretching ,37kb (Supplementary Table 12).

(1) Construction of haplotype 

scaffold from SNP microarray 

genotypes, using trio data

where available.

(2a) Joint genotyping and 

statistical phasing of biallelic 

variants from sequence data

onto haplotype scaffold.

(2b) Independent genotyping 

and phasing of multi-allelic 

and complex variants onto 

haplotype scaffold.

(3) Integration of variant 

calls into unified haplotypes.
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most accurate in African ancestry populations, where greater genetic
diversity results in a larger number of haplotypes and improves the
chances that a rare variant is tagged by a characteristic haplotype.

Resolution of genetic association studies
To evaluate the impact of our new reference panel on GWAS, we
re-analysed a previous study of age-related macular degeneration
(AMD) totalling 2,157 cases and 1,150 controls21. We imputed
17.0 million genetic variants with estimated R2 . 0.3, compared to
14.1 million variants using phase 1, and only 2.4 million SNPs using
HapMap2. Compared to phase 1, the number of imputed common
and intermediate frequency variants increased by 7%, whereas the
number of rare variants increased by .50%, and the number of indels
increased by 70% (Supplementary Table 6). We permuted case-con-
trol labels to estimate a genome-wide significance threshold of
P , ,1.5 3 1028, which corresponds to ,3 million independent var-
iants and is more stringent than the traditional threshold of 5 3 1028

(Supplementary Table 7). In practice, significance thresholds must
balance false positives and false negatives22–24. We recommend that
thresholds aiming for strict control of false positives should be deter-
mined using permutations. We expect thresholds to become more
stringent when larger sample sizes are sequenced, when diverse sam-
ples are studied, or when genotyping and imputation is replaced with
direct sequencing. After imputation, five independent signals in four
previously reported AMD loci25–28 reached genome-wide significance
(Supplementary Table 8). When we examined each of these to define a
set of potentially causal variants using a Bayesian Credible set
approach29, lists of potentially functional variants were ,43 larger
than in HapMap2-based analysis and 7% larger than in analyses based
on phase 1 (Supplementary Table 9). In the ARMS2/HTRA1 locus, the
most strongly associated variant was now a structural variant (esti-
mated imputation R2 5 0.89) that previously could not be imputed,
consistent with some functional studies30. Deep catalogues of poten-
tially functional variants will help ensure that downstream functional
analyses include the true candidate variants, and will aid analyses that
integrate complex disease associations with functional genomic ele-
ments31.

The performance of imputation and GWAS studies depends on the
local distribution of linkage disequilibrium (LD) between nearby var-

iants. Controlling for sample size, the decay of LD as a function of
physical distance is fastest in African populations and slowest in East
Asian populations (Extended Data Fig. 10). To evaluate how these
differences influence the resolution of genetic association studies and,

Table 1 | Median autosomal variant sites per genome
AFR AMR EAS EUR SAS

Samples 661 347 504 503 489
Mean coverage 8.2 7.6 7.7 7.4 8.0

Var. sites Singletons Var. sites Singletons Var. sites Singletons Var. sites Singletons Var. sites Singletons

SNPs 4.31M 14.5k 3.64M 12.0k 3.55M 14.8k 3.53M 11.4k 3.60M 14.4k
Indels 625k - 557k - 546k - 546k - 556k -
Large deletions 1.1k 5 949 5 940 7 939 5 947 5
CNVs 170 1 153 1 158 1 157 1 165 1
MEI (Alu) 1.03k 0 845 0 899 1 919 0 889 0
MEI (L1) 138 0 118 0 130 0 123 0 123 0
MEI (SVA) 52 0 44 0 56 0 53 0 44 0
MEI (MT) 5 0 5 0 4 0 4 0 4 0
Inversions 12 0 9 0 10 0 9 0 11 0

Nonsynon 12.2k 139 10.4k 121 10.2k 144 10.2k 116 10.3k 144
Synon 13.8k 78 11.4k 67 11.2k 79 11.2k 59 11.4k 78
Intron 2.06M 7.33k 1.72M 6.12k 1.68M 7.39k 1.68M 5.68k 1.72M 7.20k
UTR 37.2k 168 30.8k 136 30.0k 169 30.0k 129 30.7k 168
Promoter 102k 430 84.3k 332 81.6k 425 82.2k 336 84.0k 430
Insulator 70.9k 248 59.0k 199 57.7k 252 57.7k 189 59.1k 243
Enhancer 354k 1.32k 295k 1.05k 289k 1.34k 288k 1.02k 295k 1.31k
TFBSs 927 4 759 3 748 4 749 3 765 3

Filtered LoF 182 4 152 3 153 4 149 3 151 3
HGMD-DM 20 0 18 0 16 1 18 2 16 0
GWAS 2.00k 0 2.07k 0 1.99k 0 2.08k 0 2.06k 0
ClinVar 28 0 30 1 24 0 29 1 27 1

See Supplementary Table 1 for continental population groupings. CNVs, copy-number variants; HGMD-DM, Human Gene Mutation Database disease mutations; k, thousand; LoF, loss-of-function; M, million; MEI,
mobile element insertions.
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in particular, their ability to identify a narrow set of candidate func-
tional variants, we evaluated the number of tagging variants (r2 . 0.8)
for a typical variant in each population. We find that each common
variant typically has over 15–20 tagging variants in non-African
populations, but only about 8 in African populations (Fig. 4b). At
lower frequencies, we find 3–6 tagging variants with 100 kb of variants

with frequency ,0.5%, and differences in the number of tagging
variants between continental groups are less marked.

Among variants in the GWAS catalogue (which have an average
frequency of 26.6% in project haplotypes), the number of proxies
averages 14.4 in African populations and 30.3–44.4 in other contin-
ental groupings (Supplementary Table 10). The potential value of
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the population in which the maximum value was achieved.
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multi-population fine-mapping is illustrated by the observation that
the number of proxies shared across all populations is only 8.2 and,
furthermore, that 34.9% of GWAS catalogue variants have no proxy
shared across all continental groupings.

To further assess prospects for fine-mapping genetic association
signals, we performed expression quantitative trait loci (eQTL) dis-
covery at 17,667 genes in 69 samples from each of 6 populations
(CEU, CHB, GIH, JPT, LWK, and YRI)32. We identified eQTLs for
3,285 genes at 5% FDR (average 1,265 genes per population). Overall,
a typical eQTL signal comprised 67 associated variants, including an
indel as one of the top associated variants 26–40% of the time (Fig. 4c).
Within each discovery population, 17.5–19.5% of top eQTL variants
overlapped annotated transcription factor binding sites (TFBSs), con-
sistent with the idea that a substantial fraction of eQTL polymorph-
isms are TFBS polymorphisms. Using a meta-analysis approach to
combine pairs of populations, the proportion of top eQTL variants
overlapping TFBSs increased to 19.2–21.6% (Fig. 4d), consistent with
improved localization. Including an African population provided the
greatest reduction in the count of associated variants and the greatest
increase in overlap between top variants and TFBSs.

Discussion
Over the course of the 1000 Genomes Project there have been sub-
stantial advances in sequence data generation, archiving and analysis.
Primary sequence data production improved with increased read
length and depth, reduced per-base errors, and the introduction of
paired-end sequencing. Sequence analysis methods improved with
the development of strategies for identifying and filtering poor-qual-
ity data, for more accurate mapping of sequence reads (particularly in
repetitive regions), for exchanging data between analysis tools and
enabling ensemble analyses, and for capturing more diverse types of
variants. Importantly, each release has examined larger numbers of
individuals, aiding population-based analyses that identify and lever-
age shared haplotypes during genotyping. Whereas our first analyses
produced high-confidence short-variant calls for 80–85% of the ref-
erence genome1, our newest analyses reach ,96% of the genome
using the same metrics, although our ability to accurately capture
structural variation remains more limited33. In addition, the evolution
of sequencing, analysis and filtering strategies means that our results
are not a simple superset of previous analysis. Although the number of
characterized variants has more than doubled relative to phase 1,
,2.3 million previously described variants are not included in the
current analysis; most missing variants were rare or marked as low
quality: 1.6 million had frequency ,0.5% and may be missing from
our current read set, while the remainder were removed by our filter-
ing processes.

These same technical advances are enabling the application of
whole genome sequencing to a variety of medically important sam-
ples. Some of these studies already exceed the 1000 Genomes Project
in size34–36, but the results described here remain a prime resource for
studies of genetic variation for several reasons. First, the 1000
Genomes Project samples provide a broad representation of human
genetic variation—in contrast to the bulk of complex disease studies
in humans, which primarily study European ancestry samples and
which, as we show, fail to capture functionally important variation in
other populations. Second, the project analyses incorporate multiple
analysis strategies, callsets and variant types. Although such ensemble
analyses are cumbersome, they provide a benchmark for what can be
achieved and a yardstick against which more practical analysis strat-
egies can be evaluated. Third, project samples and data resulting from
them can be shared broadly, enabling sequencing strategies and ana-
lysis methods to be compared easily on a benchmark set of samples.
Because of the wide availability of the data and samples, these samples
have been and will continue to be used for studying many molecular
phenotypes. Thus, we predict that the samples will accumulate many

types of data that will allow connections to be drawn between variants
and both molecular and disease phenotypes.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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Extended Data Figure 1 | Summary of the callset generation pipeline. Boxes indicate steps in the process and numbers indicate the corresponding section(s)
within the Supplementary Information.
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Extended Data Figure 2 | Power of discovery and heterozygote genotype
discordance. a, The power of discovery within the main data set for SNPs and
indels identified within an overlapping sample of 284 genomes sequenced to
high coverage by Complete Genomics (CG), and against a panel of .60,000
haplotypes constructed by the Haplotype Reference Consortium (HRC)9. To
provide a measure of uncertainty, one curve is plotted for each chromosome.
b, Improved power of discovery in phase 3 compared to phase 1, as assessed in a

sample of 170 Complete Genomics genomes that are included in both phase 1
and phase 3. c, Heterozygote discordance in phase 3 for SNPs, indels, and
SVs compared to 284 Complete Genomics genomes. d, Heterozygote
discordance for phase 3 compared to phase 1 within the intersecting sample.
e, Sensitivity to detect Complete Genomics SNPs as a function of sequencing
depth. f, Heterozygote genotype discordance as a function of sequencing
depth, as compared to Complete Genomics data.
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Extended Data Figure 3 | Variant counts. a, The number of variants within the phase 3 sample as a function of alternative allele frequency. b, The average
number of detected variants per genome with whole-sample allele frequencies ,0.5% (grey bars), with the average number of singletons indicated by colours.
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Extended Data Figure 4 | The standardized number of variant sites per
genome, partitioned by population and variant category. For each category,
z-scores were calculated by subtracting the mean number of sites per genome
(calculated across the whole sample), and dividing by the standard deviation.

From left: sites with a derived allele, synonymous sites with a derived allele,
nonsynonymous sites with a derived allele, sites with a loss-of-function allele,
sites with a HGMD disease mutation allele, sites with a ClinVar pathogenic
variant, and sites carrying a GWAS risk allele.
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Extended Data Figure 5 | Population structure as inferred using the admixture program for K 5 5 to 12.
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Extended Data Figure 6 | Allelic sharing. a, Genotype covariance (above
diagonal) and sharing of f2 variants (below diagonal) between pairs of
individuals. b, Quantification of average f2 sharing between populations. Each
row represents the distribution of f2 variants shared between individuals from

the population indicated on the left to individuals from each of the sampled
populations. c, The average number of f2 variants per haploid genome. d, The
inferred age of f2 variants, as estimated from shared haplotype lengths, with
black dots indicating the median value.
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Extended Data Figure 7 | Unsmoothed PSMC curves. a, The median PSMC
curve for each population. b, PSMC curves estimated separately for all
individuals within the 1000 Genomes sample. c, Unsmoothed PSMC curves
comparing estimates from the low coverage data (dashed lines) to those

obtained from high coverage PCR-free data (solid lines). Notable differences
are confined to very recent time intervals, where the additional rare variants
identified by deep sequencing suggest larger population sizes.
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Extended Data Figure 8 | Genes showing very strong patterns of
differentiation between pairs of closely related populations within each
continental group. Within each continental group, the maximum PBS statistic

was selected from all pairwise population comparisons within the continental
group against all possible out-of-continent populations. Note the x axis shows
the number of polymorphic sites within the maximal comparison.
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Extended Data Figure 9 | Performance of imputation. a, Performance of
imputation in 6 populations using a subset of phase 3 as a reference panel
(n 5 2,445), phase 1 (n 5 1,065), and the corresponding data within

intersecting samples from both phases (n 5 1,006). b, Performance of
imputation from phase 3 by variant class.
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Extended Data Figure 10 | Decay of linkage disequilibrium as a function of
physical distance. Linkage disequilibrium was calculated around 10,000
randomly selected polymorphic sites in each population, having first thinned

each population down to the same sample size (61 individuals). The plotted line
represents a 5 kb moving average.
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