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IONS 

ADA 
Ad Kin 
ADP 
AK 
ALL 
AMP 
AMPD 
ANAE 
AOPCP 
ara-C 
ATP 
B-ALL 
B-CLL 
BSA 
CALL 
cAMP 
CDP 
clgM 
CLL 
CMP 
ConA 
CTP 
dCF 
dCK 
DNA 
EDTA 
EHNA 
E-rosettes 
FAB 
FCS 
FITC 
5FdUMP 
bFU 
GDP 
GMP 
GTP 
Hepes 
HGPRT 
IgA 
IgG 
IgM 
IMP 
LUC 
MEM 
6MP 
MTX 
ηοπΒηοηΤ-ALL 
5'NT 
OMP 
OPRT 
PBL 
PEI 
PHA 

- adenosine deaminase 
- adenylate kinase 
- adenosine diphosphate 
- adenosine kinase 
- acute lymphoblastic leukemia 
- adenosine monophosphate 
- AMP deaminase 
- a-naphtyl acetate esterase 
- a,B-methyleneadenosine-5'-diphosphate 
- cytosine arabinoside 
- adenosine triphosphate 
- ALL with В cell phenotype 
- CLL with В cell phenotype 
- bovine serum albumin 
- ALL with the "common" phenotype 
- cyclic AMP 
- cytidine diphosphate 
- cytoplasmic IgM heavy chains 
- chronic lymphocytic leukemia 
- cytidine monophosphate 
- concanavalin A 
- cytidine triphosphate 
- deoxycoformycin 
- deoxycytidine kinase 
- deoxyribonucleic acid 
- ethylene di ami no tetraethyl acetate 
- erythro-9-(2-hydroxy-3-nonyl)adenine 
- rosettes with sheep red blood cells 
- French American British 
- foetal calf serum 
- fluorescein isothiocyanate 
- 5-fluoro-deoxyUMP 
- 5-fluorouracil 
- guanosine diphosphate 
- guanosine monophosphate 
- guanosine triphosphate 
- N-2-hydroxyethylpiperazine-N'-2 ethane sulfonic acid 
- hypoxanthine-guanine phosphoribosyltransferase 
- immunoglobulin A 
- immunoglobulin G 
- immunoglobulin M 
- inosine monophosphate 
- large unstained cells 
- minimal essential medium 
- 6-mercaptopurine 
- methotrexate 
- ALL with neither the В cell nor the Τ cell phenotype 
- purine-5'nucleotidase 
- orotidine monophosphate 
- orotate phosphoribosyltransferase 
- peripheral blood lymphocytes 
- polyethyleneimine 
- phytohaemagglutinin 



Pi 
Pipes 
PMC 
POPOP 
Ρ PO 
Preß-ALL 
PRPP 
PWM 
R-5-P 
RPMI 
SCID 
s.d. 
slg 
SLE 
SpA 
spec. act. 
T-ALL 
TDP 
6TG 
TMP 
tris 
TRITC 
TTP 
Τγ 
Tw 
Τ-Τγ 
ÜDP 
UMP 
une.-ALL 
UTP 
XLA 
XO 

- phosphate ion 
- piperazine-N,N'-bis(2-ethane sulfonic acid) 
- parafi Im microcuvette 
- 2,2'-p-phenylene-bis(5-phenyloxazole) 
- 2,5-dephenyloxazole 
- ALL with the preß phenotype 
- phosphoribosyl pyrophosphate 
- pokeweed mitogen 
- ribose-5-phosphate 
- Roswell Park Memorial Institute 
- severe combined immunodeficiency disease 
- standard deviation 
- surface immunoglobulin 
- systemic lupus erythematosus 
- protein A from Staphylococcus aureus 
- specific activity 
- ALL with the Τ cell phenotype 
- thymidine diphosphate 
- 6-thioguanine 
- thymidine monophosphate 
- tris(hydroxymethyl) aminomethane 
- tetramethyl rhodamine isothiocyanate 
- thymidine triphosphate 
- Τ cells with a receptor for the Fc portion of 
- Τ cells with a receptor for the Fc portion of 
- Τ cells depleted from Τγ cells 
- uridine diphosphate 
- uridine monophosphate 
- unclassified-ALL 
- uridine triphosphate 
- X-linked agammaglobulinaemia 
- xanthine oxidase 
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The association of genetically determined disturbances of purine 

metabolism with defects of the immune system is well documented(10,ll, 

23). Inherited deficiencies of adenosine dearainase(ADA), purine nucleo

side phosphorylase(PNP) and purine-5'nucleotidase(5'NT) are related to 

dysfunction of different lymphoid subpopulations. ADA deficiency is asso

ciated .with acombined Τ and В cell defect(lO); very low PNP activities 

were found in patients with a Τ cell dysfunction(ll), whereas lowered 

5'NT activities were observed in patients with X-linked agammaglobulin-

aemia(7). Recently PNP activity was reported to be decreased in patients 

with systemic lupus erythematosus(18), a disease in which decreased 

numbers of Τ suppressor cells have been encountered(15). Although several 

hypotheses can be brought forward, the exact pathophysiological mechan

ism^) leading to the immune defects are still not completely understood 

(21). Studying purine metabolism in isolated lymphoid subpopulations 

might not only contribute to our knowledge of pathophysiological mechan

isms in immunodiseases, but also to a better understanding of the role 

of purine metabolism in normal lymphoid cell function. 

Lymphoblastic leukemia is considered to be a malignant disorder 

of lymphocyte differentiation, the malignant transformation occurring 

at various stages of normal lymphoid differentiation(13,14). The latter 

leads to the different immunological subtypes of acute lymphoblastic 

leukemia(13). However, cells from normal differentiation stages(e.g. 

stem cells, committed progenitor cells, pre-thymocytes, etc.) are not 

or hardly available for investigation. Studying purine metabolism in the 

malignant counterpart of these normal differentiation stages might give 

more information about the relation of purine metabolism and normal 

lymphoid differentiation. Moreover, it might become clear why in some 

immunodeficiency diseases lymphoid cells from a certain lineage or 

differentiation stage are affected. The outcome of these studies may 

also provide further diagnostic tools, especially for the discrimination 

of subclasses of leukemias. 

In anti-leukemia chemotherapy, many of the drugs used have a 

rather wide spectrum of action(19); they are not only affecting 

the leukemic cells but also apparently healthy other tissues. Some 

of these anti-leukemic drugs are purine or pyrimidine derivatives 

or are interfering with purine- and pyrimidine metabolismi). 
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Well known purine and pyrimidine related anti-leukemic drugs are 

6-mercaptopurine(6MP), 6-thioguanine(6TG), methotrexate(MTX) and 

cytosine-arabinoside(ara-C). Although a certain knowledge exists 

regarding the mode of action of these compounds(4,6,20,27), in fact 

little is known about the tissue specificity of this action. Part of 

the present study was therefore undertaken in order to explore possib

ilities for anti-leukemic drugs with a better, higher degree of specif

icity. 

ENZYMOLOGICAL ANALYSIS OF PURINE METABOLISM IN LYMPHOID CELLS 

In this section the development of a micromethod and the applica

tion of this method to assay enzyme activities in different lymphoid 

subpopulations is described. The development of such a micromethod was 

necessary because systematically assaying purine interconversion enzymes 

with conventional methods would require too many cells. The amount of 

peripheral blood available from volunteers and the small recovery of 

cells derived when fractionating peripheral blood lymphocytes or other 

lymphoid tissues would become prohibitive. Moreover, sometimes it was 

not possible to obtain large quantities of leukemic cells from patients 

with childhood acute lymphoblastic leukemia(ALL). Some of these patients 

appeared to be leukopenic(cf. chapter 7). 

Conventional analysis of purine enzyme activities requires 105 

to 108 cells per assay(5,7). The described micromethod, using 1,000 to 

6,000 cells per assay, enabled us not only to systematically analyse 

purine enzyme activities in childhood ALL, but also in different sub-

fractions of human lymphoid cells(chapters 4,5,6,7 and 9). The effect 

of different methods of cell destruction on the activity of purine 

enzymes was tested(chapter 2). The best results were obtained with 

lyophilization of the cells and subsequent resuspension in a buffer 

containing the detergent triton X-100. This method of cell destruction 

was used throughout the studies outlined in this thesis. The effect of 

the addition of bovine serum albumin to the cell suspensions on the 

counting efficiency and on the enzyme activities measured was studied 

(chapter 3). 
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Our micromethod was employed in studies on different lymphoid cell 

subpopulations(chapters 4 and 5). The differences in purine enzyme 

activities between Τ and В cells and between Τ and T-T cells were 
γ Ύ 

assessed. The effect of differences in isolation procedures of lymphoid 

cells on purine enzyme activities are discussed mainly in chapter 5. 

One of the major conclusions from this set of experiments was, that the 

presence or absence of bloodplatelets in the lymphoid cell preparations 

could cause considerable differences in enzyme activities. The lymphoid 

cell preparations used in all other experiments described in this thesis 

were essentially platelet-free. 

EXPRESSION OF PURINE METABOLISM IN LEUKEMIA 

The study of purine metabolism in lymphoblastic leukemia might 

serve three purposes: 

1. The search for additional diagnostic biochemical markers in lympho

blastic leukemia. 

2. The search for a relation between biochemical markers of lymphocytic 

differentiation and the immunological markers. 

3. Based on the specific deviant enzymatic make-up of the malignant 

lymphoblasts, possibilities for specific chemotherapy might be 

explored. 

Chapter 6 contains a brief outline of differences in purine enzyme 

activities found in two major subclasses of ALL. Namely the T-ALL sub

class, mainly characterized by the receptor for sheep red blood cells 

(Ε-rosettes), and the nonBnonT-ALL subclass, which has neither immuno

globulins on the cell membrane(nonB) nor the Ε-rosette marker(nonT). 

From a clinical point of view this major subdivision has a prognostic 

value: nonBnonT-ALL patients might have a better prognosis than T-ALL 

patients(l,3). We were able to study these patients in sufficient 

numbers and to quantify the differences in purine enzyme activities. 

A number of additional markers are available at present. Greaves 

et al.(13) described four phenotypic subgroups of ALL. T-ALL is pheno-

typically defined by the presence of the Ε-rosette marker, expression 

of Τ cell antigen and a relatively high activity of terminal 
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deoxynucleotidyltransferase and acid phosphatase. Lymphoblasts of B-ALL 

patients have immunoglobulins on their cell membrane. The group of ALL 

patients classified earlier as nonBnonT-ALL patients could be subdivided 

on the basis of the presence of a common ALL(cALL) antigen. Greaves et 

al.(2,12) have developed an antiserum against this antigen, which is 

widely used now. NonBnonT-ALL patients in which the cells react posit

ively with this antiserum are designated as cALL patients. The nonBnonT-

ALL patients that could not be classified neither with the E-rosette 

marker nor with the presence of immunoglobulins on the cell membrane, 

nor with the cALL marker are designated unclassified(unc.-ALL). Vogler 

et al.(25)described a number of cALL patients, who had 

cytoplasmic IgM heavy chains present in their leukemic cell population. 

Since this marker appears to be related to preß eel Is(9), these cALL 

patients were classified as preB-ALL. Recently an ALL subclass was 

described with a mixed common/T phenotype(17). 

In order to serve the three purposes mentioned above we have 

studied enzyme activities of purine metabolism in relation with the E-

rosette marker, the cALL marker, the presence of immunoglobulins on the 

cells and the preB cell marker in patients with acute lymphoblastic 

leukemia(chapter 7). Since the group of B-CLL patients is likely to 

represent another stage of normal lymphoid differentiation(13) we also 

studied a group of B-CLL patients(chapter 8). 

NUCLEOSIDE TOXICITY IN MATURE AND IMMATURE LYMPHOID CELLS 

The differences in enzyme activities observed in different groups 

and subgroups of lymphoblastic leukemia appeared to be considerable. 

Differences in the activity levels of ADA, PNP, 5'NT and adenylate 

kinase(AdKin) appeared to be most pronounced(chapter 6,7,8). Since the 

handling of purines in the leukemic subgroups was so different, we 

studied intoxication of cells with an enzymatic make-up comparable with 

a certain subgroup of leukemia for intoxication with different nucleo

sides. As thymocytes may be considered as normal equivalents of certain 

T-ALL cells, we performed a set of toxicity studies with thymocytes. 

The toxicity was related to enzyme activities. From our results it was 

clear that some purine enzymes could probably serve as markers for 
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different subgroups of ALL. In addition we studied the possibilities of 

using purine enzyme activities as markers for differentiation in the 

intrathymic situation(chapter 10). 

Differences in nucleoside toxicity were also studied using mature 

peripheral blood lymphocytes, stimulated with mitogens known to stimul

ate different lymphoid subpopulations(16). The effects of the nucleosides 

adenosine and deoxyadenosine on DNA synthesis, protein biosynthesis 

and IgG secretion were studied. Although the exact mechanisms are not 

yet clear and the limitations of working with stimulated lymphocytes 

are known to us, it was indicated that different subpopulations of 

mature peripheral blood lymphocytes, including Τ and Τ , have a dif

ferent sensitivity towards the nucleosides mentioned. Moreover, depend

ing on the concentrations used, deoxyadenosine exerts a biphasic effect 

on poke weed mitogen stimulated peripheral blood lymphocytes(chapter 10). 

REVIEW 

Finally,in the last chapter.an overview is given of the evidence 

available to date regarding the relation between purine metabolism, 

leukemia and lymphoid cell differentiation. Reports from literature 

are reviewed and considered in relation to the findings reported in 

this thesis. 
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ENZYMOLOGICAL ANALYSIS OF PURINE METABOLISM IN LYMPHOID CELLS 

chapter 2 

MICROMETHODS FOR THE MEASUREMENT OF 

PURINE ENZYMES IN LYMPHOCYTES 

J.P.R.M. van Laarhoven, G.T. Spierenburg, 

F.T.J.J. Oerlemans and C.H.M.M. de Bruyn. 

Dept. of Human Genetics, University Hospital, 

Nijmegen, The Netherlands. 

Adv. Exp. Med. Biol., 122B(1980)415-420. 
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ABSTRACT 

A new micromethod enabling the characterization of several enzymes 

of purine metabolism in small numbers(500-5,000) of lymphocytes is pre

sented. This method is based on ultramicrotechniques, making use of 

radioactive substrates, which have been publsihed previously. 

The isolation of lymphocytes from peripheral blood by nylon wool 

filtration and Ficoll-Isopaque density centrifugation yielded a lympho

cyte fraction of about 98% purity. The lymphocyte suspensions were 

diluted to 10
5
 to 10

6
 cells/ml and aliquots of \ μΐ were pipetted into 

small incubation vessels, moulded in parafilm immediately before use 

(Parafilm-Micro-Cuvette; PMC). The cells were frozen and lyophilized 

overnight. This procedure yielded maximum enzyme activities as compared 

to sonification and freezing-thawing. Incubations were routinely done 

in fivefold; they were started by addition of 3 yl of the appropriate 

incubation mixture to each PMC. After incubation, the contents of the 

PMC were pressed directly on chromatography paper. Products and sub

strates were separated by descending chromatography or high voltage 

electrophoresis. 

The present micromethod allows to assay reproducibly with less than 

100,000 cells(500-5,000 cell/incubation) six purine interconversion 

enzymes, including hypoxanthine-guanine phosphoribosyltransferase, 

adenine phosphoribosyltransferase, adenosine deaminase, purine nucleo

side Phosphorylase, adenosine kinase and purine-5'nucleotidase. 
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INTRODUCTION 

The involvement of purine interconversion enzyme defects in impair

ment of the immune system is now well documented(5,6,7). Although it has 

been suggested that deoxypurine nucleotides might be the toxic metabol

ites in these immune diseases(l,2), the mechanism which leads to dys

functions of Τ or В cells, or both of them, is still not completely elu

cidated. A better understanding of purine interconversions in В and Τ 

cell subfractions might help to obtain a better view on В or Τ cell 

specificity in these immune diseases. One of the possibilities to achieve 

this might be a systematic analysis of purine metabolism in Τ and non-T 

lymphocytes. 

The first purpose of the present study was to investigate the effect 

of cell destruction procedures, such as sonification and lyophilization, 

on a number of purine enzyme activities. This was studied with pure 

lymphocyte preparations from human tonsils. 

Determination of nine purine enzyme activities in lymphocyte sub-

fractions from one peripheral blood sample using conventional methods 

required too much blood. Therefore, the second purpose of the present 

study was to develop new radiochemical micro techniques, which are based 

on previously described ultramicrochemical methods(3,8,9,10,14,15). 

This method has been applied to almost pure, unfractionated lymphocyte 

preparations, using 500 to 5,000 cells per assay. 

MATERIALS AND METHODS 

Isolation of Lymphocytes from Tonsils 

After removal of the surrounding tissues, tonsils were homogenized 

(Potter; Janke & Kunkel KG) in tris-buffered minimal essential medium 

(MEM; Gibco, F-14; pH 7.4) containing 152S(v/v) foetal calf serum(FCS; 

Gibco). After filtration over a wire mesh, the suspension was layered 

on Lymphoprep(gravidity 1.077 gr/ml; Nyegaard AS, Oslo). Lymphocytes 

were collected from the interphase after centrifugation for 20 min. at 

1,000 g(room temperature) and washed once with a solution containing 
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155 niM NH
4
C1, 10 mM KHC0

3
, 0.1 mM disodium EDTA(pH 7.4). Before use the 

cells were washed twice with 0.9% NaCl(w/v). 

Isolation of Lymphocytes from Peripheral Blood 

Thirty ml of defibrinated(on glass beads; 0 5 mm) venous blood was 

incubated for 15 min. at 37° C. After passage through a nylon wool 

column(4) the effluent was diluted with MEM/tris containing 15% FCS(v/v) 

to a concentration of approximately 10
9
 blood cells/ml. Subsequently 

this cell suspension was carefully layered on top of a density gradient, 

that consisted of 15 ml Ficoll-Isopaque(gravidity 1.085 gr/ml; Flcoll 

400, Pharmacia, Uppsala, Sweden; Isopaque 440 mg J/ml, Nyegaard & Co. 

AS, Oslo) and 5 ml of a lighter Ficoll-Isopaque solution(gravidity 1.055 

gr/ml). The centrifugation was carried out at room temperature(20 min., 

1,000 g). Lymphocytes could be collected from the interphase between the 

two Ficoll-Isopaque solutions. During the isolation the amounts of 

monocytes, granulocytes and lymphocytes were checked with a Hemalog D 

(Technicon Instruments Corp., Tarrytown, NY, USA). The original total 

leukocyte fraction in whole EDTA blood contained 29% lymphocytes, 7% 

monocytes, 62% granulocytes and 6% "large unstained cells"(LUC). Defib

rination and filtration over a nylon wool column according to de Pauw 

et al.(4) yielded a fraction after Ficoll-Isopaque density centrifuga

tion which contained over 97% lymphocytes and a very low contamination 

of monocytes, granulocytes and LUC. 

"Macro" Enzyme Assays with Tonsillar Lymphocytes 

Lymphocytes were lysed in several ways: freezing and thawing(-20° C, 

5 cycles), lyophilization and sonification(3 χ 10 sec, output control 7; 

Sonifier B-12, Branson Sonic Power Co., Danbury, CT, USA). For all enzyme 

assays 0.05 to 5 wgr protein per incubation was added(protein estimation 

according to Lowry et al., 12). All enzyme assays were carried out in 

triplicate and in table 1 the mean values are given. Hypoxanthine-

guanine phosphoribosyltransferase(HGPRT; E.C. 2.4.2.8) and adenine 

phosphoribosyltransferase(APRT; E.C. 2.4.2.7) were assayed essentially 

according to De Bruyn et al.(3). Purine nucleoside phosphorylase(PNP; 
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E.C. 2.4.2.1) and adenosine deaminase(ADA; E.C. 3.5.4.4) were assayed 

essentially according to previously described methods(14,15). 

"Micro" Assays with Peripheral blood Lymphocytes 

Lymphocyte suspensions containing 1,000 to 10,000 cells/μΐ were pre

pared in 0.9% NaCl. Aliquots of 0.5 μΐ were pipetted into small incuba

tion vessels prepared from parafilm(Parafi lm "M", American Can Co., 

Greenwich, CT, USA). These parafilm micro cuvettes(PMC) were prepared 

immediately before use(8,9,10). The lymphocytes were frozen in the PMC's 

at -20° С for 15 to 30 min. and subsequently lyophilized overnight. All 

enzyme assays were carried out in five-fold. For HGPRT, APRT, ADA and 

PNP the reactions were started by adding 3 μΐ of the appropriate incu

bation mixture. The concentrations were the same as described above for 

the "macro" assays except for the addition of 0.2%(v/v) triton X-100 

(Sigma) in several experiments. In the HGPRT reaction also 8-
lu
-C-

guanine(0.13mM; specific activity 55 mCi/mmol; Radiochemical Centre 

Amersham, UK) was used as a substrate; ADA was also tested with 8-
1ц
С-

deoxyadenosine(0.26 nM; specific activity 45 mCi/mmol; NEN chemicals 

GmbH, Dreieich, FRG). Incubation times were 1 to 4 hours at 37° С 

Quantification of enzyme activities was carried out as described else-

where(3,14,15). The adenosine kinase(AK; E.C. 2.7.1.20) assay was adap

ted from Meyskens and Williams(13). To the lyophilized lymphocytes, 3 μΐ 

of a reaction mixture was added, containing 3 μΜ 8-
11+
C-adenosine, 1.5 mM 

ATP(Boehringer Mannheim), 0.3 M trisodiumacetate/acetic acid(pH 5.7), 

0.6 mM MgCL·, 12.5 μΜ erythro-9-(2-hydroxy-3-nonyl)-adenine(EHNA), kindly 

supplied by Dr. H.A. Simmonds(Purine Laboratory, Guy's Hospital Medical 

School, London, UK) and 0.2% triton X-100. After incubation(4 hours at 

37° C) separation of substrate and products was performed by means of 

high voltage electrophoresis on Whatmann 3 MM paper(0.05 M citrate 

buffer, pH3.9; 70 V/cm). Purine-5'nucleotidase(5'NT; E.C. 3.1.3.5) assay; 

to the lyophilized lymphocytes 3 μΐ of a reaction mixture was added(ll) 

containing 0.05 mM tris/HCl(pH 8.5), 0.02MMgCl„, 6.25 mM 2-glycero-

phosphate(Sigma) and 0.6 mM 8-
ln
C-AMP(specific activity 61 mCi/mmol; 

Radiochemical Centre Amersham, UK). Incubation(4 hours at 37° C) was fol

lowed by separation of substrate and products as in the AK assay. 
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Table 1 : Effect of Different Methods of Cell Destruction on 5 Purine 
Enzyme Activities 

Enzyme 

HGPRT 

APRT 

ADA 

PNP-Hx 

PNP-Ino 

1 

4.3 

7.4 

49.4 

44.0 

15.2 

2 

5.9 

8.9 

85.0 

90.5 

21.8 

3 

4.6 

7.2 

52.2 

71.8 

23.5 

Procedure 
4 5 

6.1 

9.6 

84.0 

110.6 

26.0 

2.9 

7.4 

54.7 

55.0 

20.0 

6 

5.2 

8.3 

69.2 

33.0 

15.4 

7 

4.4 

8.5 

51.2 

51.1 

20.4 

8 

4.9 

7.7 

81.2 

57.6 

24.7 

Procedure 1. freezing and thawing(5 cycles, -20 C) 
2. freezing and thawing(5 cycles, -20° C), with addition of 

0.2% triton X-100 
3. lyophilization and resuspension in 0.01 M tris/HCl(pH 7.4) 
4. lyophilization and resuspension in 0.01 M tris/HCl(pH 7.4), 

with addition of 0.2% triton X-100 
5. lyophilization and somfication after resuspension in 0.01 

M tris/HCKpH 7.4) 
6. somfication preceded by lyophilization 
7. somfication 
8. somfication in the presence of 0.2% triton X-100 

Enzyme activities are expressed in 10~ moles product formed/10 cells, 
hour. For each enzyme the procedure which gives the highest activity is 
underlined. 

RESULTS AND DISCUSSION 

Effect of Various Lysate Preparations on Enzyme Activities 

Tonsillar lymphocytes, suspended in 0.01 M tris/HCl (pH 7.4) were 

lysed in eight different ways in order to investigate, which method of 

cell destruction is to be preferred for the determination of purine 

enzyme activities(table 1). After preparation of the lysate, insoluble 

particles were removed by centrifugation(300 g, 15 min.). As can be seen 

in table 1 the procedures using 0.2% triton X-100 yielded highest enzyme 

activities, especially in the case of freezing and thawing and lyophil

ization (procedures 2 and 4). This effect was seen with all enzymes tested. 

In the present studies enzyme activities are expressed on a per cell 

basis. When expressing the activities on a protein basis it was found 

that, although with some procedures much more protein was released into 

the soluble fraction than with other procedures(e.g. lyophilization + 
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Table 2: Reproducibility of the "Micro" Assay for ADA and PNP, Assayed 

in Five-Fold in the Same Sample 

probe no. net product formed 

(cpm) 

enzyme activity 

(1СГ
9
 moles/10

6
 cells.hour) 

ADA 6568 

5620 

6651 

459Θ 

7302 

57.77 
62.95 
53.40 
51.29 
71.04 

mean ± s.d. 59.29 ± 7.95 

PNP 6591 

Θ50Θ 

8549 

6132 

7302 

80.00 

78.51 

90.16 

80.73 

83.72 

mean ± s.d. 82.62 ± 4.62 

ADA assay: incubation with 1,500 cells for 4 hours at 37 C, input 

60,000 cpm S-^C-adenosine. 

PNP assay: incubation with 1,500 cells for 1 hour at 37° C, input 

30,000 cpm 8-
1M
C-hypoxanthine. 

sonification; procedure 5), the specific enzyme activities were not 

higher as compared to other procedures. For routine determinations the 

method of choice for the preparation of lymphocyte lysates turned out 

to be lyophilization with addition of 0.2% triton X-100(procedure 4). 

Table 3: Purine Interconversion Enzymes in Lymphocytes 

Enzyme Substrate Specific Activity ± s.d. 

HGPRT 

APRT 

ADA 

PNP 

AK 

5'NT 

hypoxanthine 

guanine 

adenine 

adenosine 

deoxyadenosine 

hypoxanthine 

inosine 

adenosine 

AMP 

2.95 
6.49 
8.93 

46.27 
34.36 
63.87 
12.99 

0.74 
12.26 

+ 
+ 

+ 

+ 

+ 

+ 

+ 

+ 
+ 

0.72 
2.44 
1.56 
10.94 
9.04 
16.70 
1.82 
0.47 
7.08 

Activities calculated from a group of 7 healthy individuals and 

expressed as 10
 9
 moles/10

6
 cells.hour. 
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"Micro" Chemical Enzyme Determinations 

Nine purine interconversion enzyme activities could reproducibly be 

assayed with relatively small numbers of cells(500 to 5,000). Two 

examples are given in table 2, where the raw data and calculated enzyme 

activities are given of an ADA and PNP assay; measurements were carried 

out in five-fold. 

The mean activities in purified normal human lymphocytes of nine 

enzymatic reactions involved in purine interconversions are shown in 

table 3. ADA and PNP displayed the highest activity in pure lymphocytes, 

whereas relatively low activities were found for HGPRT and AK. The rather 

wide range of specific enzyme activities was attributed to individual 

variation rather than to methodological errors. 

With the present "micro" method it becomes possible to carry out a 

great number of enzyme determinations with small numbers of cells. In 

the present study only radiochemical assays are described, but also 

other substrates(e.g. fluorogenic; Van Laarhoven et al. unpublished) can 

be employed both for experimental and diagnostic purposes. 
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ABSTRACT 

A method is presented for systematic analysis of purine enzymes in 

small lymphocyte subfractions. For the determination of 7 different 

enzymes of purine metabolism(hypoxanthine-guanine phosphoribosyltransfer

ase, HGPRT; adenine phosphoribosyltransferase, APRT; adenosine deaminase, 

ADA; purine nucleoside Phosphorylase, PNP; adenosine kinase, AK; 5'nucleo-

tidase, 5'NT; AMP deaminase, AMPD) less than 200,000 peripheral blood 

lymphocytes are needed. In micro-incubation vessels(3 μΐ), 1,000 to 6,000 

lyophilized lymphocytes are incubated with radioactive substrates for 

15 to 180 min. Separation of substrates and products is achieved by thtn-

layer chromatography on PEI-cellulose. Addition of BSA to the incubation 

mixtures results in higher specific enzyme activities and narrower ranges 

of mean values of a control group. 
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INTRODUCTION 

As a consequence of adenosine deaminase(ADA) and purine nucleoside 

phosphorylase(PNP) deficiency, accumulation of deoxypurine nucleotides, 

especially deoxyATP and deoxyGTP, may lead to dysfunction of Τ and/or В 

lymphocytes(l), although the selective toxicity of deoxynucleotides 

towards Τ or В cells is still not completely understood. Purine-5'nucleo-

tidase(5'NT) is believed to play a major role in nucleotide breakdown. 

Therefore this enzyme may be of crucial importance in the detoxification 

of deoxynucleotides. Decreased 5'NT activities have been observed in 

patients with congenital primary agammaglobulinaemia(4). 

Differences in purine interconversion pathways in Τ and В lympho

cytes might account for the selective toxicity of deoxypurine nucleoti

des. Therefore, systematic analysis of purine interconversion enzymes in 

these different cell types seems to be of interest. 

Systematic analysis of purine metabolism in peripheral Τ and non-T 

cells by conventional methods requires at least 100 ml of blood. We 

present here simple micro-methods for determining enzyme activities in 

lymphocytes obtained from only 5 to 10 ml of blood, and permitting 

enzymatic analysis of small subfractions of lymphocytes. For each assay, 

1,000 to 6,000 cells are used in incubation volumes of 3 μΐ. In addition, 

the effect of bovine serum albumin on these micro-assays has been 

investigated. 

MATERIALS AND METHODS 

Isolation of Lymphocytes from Peripheral Blood 

Venous blood(5 to 10 ml) was defibrinated and passed over a nylon 

wool column as described by De Pauw et al.(11). The resulting cell sus

pension was diluted with 2 volumes MEM/tris containing 15%(v/v) foetal 

calf serum(FCS) which had been heat inactivated and screened for virus 

and mycoplasma. Subsequently this cell suspension was carefully layered 

on top of a density gradient, consisting of 15 ml Ficoll-Isopaque(gravity 

1.085 gr/ml, Ficoll 400, Pharmacia, Uppsala, Sweden, Isopaque 440 mg J/ml, 
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Nyegaard and Co., AS, Oslo) and 5 ml of a lighter Ficoll-Isopaque solu-

tion(gravity 1.055 gr/ml). The centrifugation was carried out at room 

temperature(20 min., 1,000 g). Lymphocytes were collected from the inter

phase between the two Ficoll-Isopaque solutions. During isolation, the 

numbers of monocytes, granulocytes and lymphocytes were checked with a 

Hemalog D(Technicon Istruments Corp., Tarrytown, NY, USA). 

Micro-Assays with Peripheral Blood Lymphocytes 

Lymphocyte suspensions containing 2 χ IO
6
 to 12 χ IO

6
 cells/ml were 

prepared in 0.9%(w/v) NaCl in Eppendorf micro-test tubes(Eppendorf 

Gerä'te-bau, Hamburg, F.R.G.). Aliquots of 0.5 μΐ were pipetted into small 

incubation vessels prepared from parafilm(Parafi lm "M", American Can Co., 

Greenwich, CT, USA). These parafilm micro-cuvettes(PMC) were prepared 

immediately before use(fig. 1; 5,6,7). The lymphocytes were frozen in the 

PMC's :t -20° С for 15 to 30 min. and subsequently lyophilized overnight. 

All enzyme assays were carried out in quintuplicate. The reactions were 

started by adding 3 μΐ of the appropriate incubation mixture. 

Hypoxanthine-guanine phosphoribosyltransferase(HGPRT; E.C. 2.4.2.8) 

and adenine phosphoribosyltransferase(APRT; E.C. 2.4.2.7) were assayed 

essentially according to De Bruyn et al.(2) and Van Laarhoven et al.(18). 

In the HGPRT reaction 8-
1ц
С-пурохапіпіпе(0.13 mM; specific activity 55 

mCi/mmol; Radiochemical Centre Amersham, RCA, UK) was used as a substrate. 

Purine nucleoside phosphorylase(PNP; E.C. 2.4.2.1) and adenosine deamin-

ase(ADA; E.C. 3.5.4.4) were assayed according to previously described 

methods(15,16). ADA was tested with e-^C-adenosinefO^e mM; specific 

activity 58 mCi/mmol; RCA) and e-^C-deoxyadenosinefO^ö mM; specific 

activity 45 mCi/mmol; NEN Chemicals GmbH, Dreieich, F.R.G.). Reactions 

were allowed to proceed for 15 to 90 min. at 37° C. 

Quantification of enzyme activities was carried out by separating 

products and substrates by means of thin-layer chromatography. For HGPRT, 

APRT and PNP with 8-11(C-inosine(specific activity 60 mCi/mmol, RCA) as a 

substrate(PNP-Ino) and with 8-14C-hypoxanthine as a substrate(PNP-Hx), 

PEI-cellulose plates(Macherey-Nagel; SEL 300 PEI), prewashed overnight 

in water, were used with 0.2 M NaCl as the solvent. Unlabelled 
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Figure 1 : Incubation with lyophilized lymphocytes in parafilm micro-

cuvettes (PMC, 3 μΐ). I, II and III: preparation of the PMC in a teflon 

mould. IV: PMC is filled with cell suspension which is subsequently 

frozen and lyophilized. V: PMC with lyophilized lymphocytes is filled 

with 3 μΐ incubation mixture. VI, VII and VIII: PMC is covered with a 

second strip of parafilm and double sealed with teflon pins on a stain

less steel block. IX: after incubation in a water bath the second para

film strip is peeled off. X: the contents of the PMC can be pressed out 

on chromatography paper or an aliquot can be taken and pipetted on thin-

layer chromatography plates. 

metabolites were co-chromatographed and after detection under UV light 

the spots were cut out and counted in a liquid scintillation counter 

(Packard, TriCarb В 2450). Analysis of the ADA reaction mixture was 

performed with tert-butanol(Merck-Schuchardt 82264), Darmstadt, F.R.G.): 

ethylmethylketone(Merck 9708):water:ammonia(Merck 5426) = 20:15:10:15 on 

PEI cellulose plates. 
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The adenosine kinase(AK; E.C. 2.7.1.20) assay was adapted from 

Meyskens and Williams(lO). To the lyophilized lymphocytes 3 μΐ of a 

reaction mixture were added, containing 10 μΜ 8-
14
C-adenosine, 1.5 mM 

ATP(Boehringer, Mannheim), 0.3 M tri sodium-acetate/acetic acid(pH 5,7), 

0.6 mM MgCl„, 12.5 μΜ erythro-9-(2-hydroxy-3-nonyl )-adenine(EHNA), kindly 

supplied by Dr. H.A. Simmonds(Purine Laboratory, Guy's Hospital Medical 

School, London, UK) and 0.2%(v/v) triton X-100(Sigma T-6878). After 

incubation(l hour at 37° C) separation of substrate and products was 

performed by means of thin-layer chromatography as described above for 

HGPRT. 

Purine-5'nucleotidase(5'NT; E.C. 3.1.3.5) assay(8): to the lyophil

ized lymphocytes 3 μΐ of a reaction mixture were added, containing 0.05 

M tris/HCl(pH 8.5), 0.02 M MgCl
2
, 6.25 mM 2-glycerophosphate(Sigma 

G-6251), 0.6 mM e-^C-AMPispecific activity 56 mCi/nmol; RCA) and 0.2% 

(v/v) triton X-100. Incubation(3 hours at 37° C) was followed by separ

ation of substrate and products as in the AK assay. Ecto-5'NT was assayed 

essentially according to Edwards et al.(4). In a total volume of 40 μΐ, 

100,000 intact lymphocytes were incubated for 45 to 60 min. at 37° С 

Activity estimation was carried out as described for 5'NT. 

AMP deaminase(AMPD; E.C. 3.5.4.6) was assayed essentially according 

to Leech and Newsholme(9). In a mixture containing 60 mM Pipes(Merck 

10220), 12 mM AMP(Merck 1428), 6 mM EDTA(Merck 8418), 30 mM KCl(Merck 

4933), 2.5 mM dithiothreitol (Sigma D-8255), 180 μΜ e-^C-AMPÍspecific 

activity 56 mCi/mmol; RCA) and 0.2%(v/v) triton X-100, 6,000 lyophilized 

lymphocytes were incubated for 2 hours at 37° C. 

The specific enzyme activity is calculated from the net product 

formed and is expressed in 10"9 moles/106 lymphocytes.hour. The total 

amount of radioactivity recovered after chromatography varies slightly 

for the individual incubations: this variation is due to micropipetting 

errors. To correct for this, the error in each individual measurement is 

calculated from the sum of product and remaining substrate. Thus, the 

product measured in counts per minute is not directly representative of 

the product actually formed by the enzyme reaction. 
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Table 1: Leukocyte Content at Different Stages of Lymphocyte Isolation 

Lymphocytes Monocytes Granulocytes LUC 

(%) (%) (%) (%) 

Whole EDTA blood 28 
After defibrination 
on glass beads 39 

After filtration 
over nylon wool 91 

After Ficoll-Isopaque 
density centrifugation 97 

ó 

6 

1 

0 

61 

53 

6 

1 

Hemalog D results are given. LUC: large unstained cells,- mainly 
lymphoid cells. 

RESULTS 

Lymphocyte Isolation 

The composition of the various cell suspensions during lymphocyte 

counted cell number 
(106 lymphocytes/ml) 

5 10 15 
expected cell number (106 lymphocytes/ml ) 

Figure 2: Relation between expected cell number, after dilution from a 
stock suspension and actually counted cell number. The BSA concentra
tions indicated represent the actual amounts of BSA present in the 
diluted cell suspensions. The broken line represents the position 
where the expected cell number equals the counted cell number. 
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Figure 3: Effect of the BSA concentration on 6 different enzyme activ

ities. The BSA concentrations indicated on the abscissa represent the 

final concentrations in the reaction mixtures, resulting from a six

fold dilution of the cell suspensions used. The vertical bars indicate 

the standard deviations of determinations carried out in quintuplicate. 

Specific enzyme activities(S.A.) are expressed in 10" moles/10 cells, 

hour. 

purifications is shown in table 1. This procedure of de Pauw et al.(11) 

yields a fraction which contains over 97% lymphocytes with very low 

contamination of monocytes, granulocytes and large unstained cells(LUC). 

Effects of Bovine Serum Albumin(BSA) 

Lymphocyte suspensions isolated from peripheral blood normally 

contained more than 15 χ IO
6
 cells/ml. Before pipetting the cells into 

the PMC's, suspensions were prepared in the range of 1 χ IO
6
 to 12 χ IO

6 

cells/ml in polypropylene Eppendorf micro-test tubes. When 20 ul 

aliquots were taken and checked for the number of cells, a lower number 

of cells were found with the Coulter counter than expected on the basis 

of the dilution factor(fig. 2). The presence of BSA in the cell 
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Table 2: Reproducibility of the micro-assay for ADA and PNP, assayed in 

quintuplicate on the same sample. ADA assay: incubation with 1,000 cells 

for 0.5 hour at 37° C, input 60,000 cpm 8-1"c-adenosine(0.26 m M ) . PNP 

assay: incubation with 1,000 cells for 15 min. at 37° C, input 30,000 

cpm 8- ''C-hypoxanthine (0.13 mM) . For calculation of enzyme activities 

see under Materials and Methods. 

probe no. 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

net product formed 

(cpm) 

3.137 

5.702 

5.855 

4.781 

6.698 

5.550 

6.858 

7.983 

4.472 

6.515 

(10' 

enzyme activity 

'9 moles/10 6 cells.hour) 

ADA 

PNP 

mean ± s.d. 

s.d. 

134 

139 

117 

125 

154 

134 

306 

242 

292 

256 

247 

269 

± 14 

29 

suspension gave a dilution curve, which was identical with that expec

ted. In suspensions with low numbers of cells the differences between 

the expected cell concentration and the counted number were the most 

pronounced. 

In the presence of BSA higher specific enzyme activities were ob-

served(fig. 3). This increase was not due to chance enzyme activity 

present in the BSA, since complete incubation mixtures with BSA and 

without cells were used as blanks. The addition of BSA did not produce 

a significant rise in blank values. The purine enzyme activities in 

peripheral blood lymphocytes from a control individual showed highest 

activities in the presence of more than 0.33% BSA(w/v). For routine 

determinations a concentration of 0.67%(w/v) was used. 

Reproducibility 

Table 2 gives an example of ADA and PNP assays carried out in 

quintuplicate with lymphocytes from a healthy control subject. The 

standard deviations of both measurements is approximately 10% of the 
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1000 2000 3 000 4 000 
cel ls/ incubat ion 

Figure 4: Relation between the number of lyophilized cells incubated 
and product formation in the adenosine deaminase reaction. Closed 
circles represent the mean activity of determinations carried out in 
quintuplicate. The vertical bars indicate the standard deviations. 
Enzyme activities are expressed in 10~ moles/hour. 

mean value. The reproducibility of the HGPRT, APRT, AK, 5'NT and AMPD 

assays was found to be at a comparable level(data not shown). 

Fig. 4 shows the ADA activity as a function of the number of cells 

incubated. A linear relationship is seen up to at least 4,000 cells. The 

time curve for the ADA reaction is shown in fig. 5. Under the given 

incubation conditions the reaction was linear up to 3 hours at least. 

For routine determinations a cell number of 1,000 cells/incubation and 

an incubation time of 30 min. was chosen. Based on similar determinations 

of other enzyme activities, the individual assay conditions were chosen 

as summarized in table 3. 
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enzyme activity 

300-

200 

100 

ADA 

1 2 3 h 

time 

Figure 5: Time-curve for the adenosine deaminase(ADA) reaction. Closed 

circles represent the mean activity of determinations carried out in 

quintuplicate. The vertical bars indicate the standard deviation. 

Enzyme activities are expressed in 10~
9
 moles/10 lymphocytes. 

Ezyme Activities in Control Lymphocytes 

Of the 7 different enzymes tested, PNP and AMPD displayed the high

est specific activities(table 4). The activities of the salvage enzymes 

Table 3: Micro-Assay Conditions 

Enzyme 

HGPRT 

APRT 

ADA 

PNP 

ΛΚ 

5'NT 

AMPD 

Substrate 

hypoxanthine 

adenine 

adenosine 

deoxyadenosine 

hypoxanthine 

inosine 

adenosine 

AMP 

AMP 

Incubation time 

(min.) 

90 

90 

30 

60 

15 

90 

60 

180 

120 

Cells per 

incubation 

6,000 

3,000 

1,000 

1,000 

1,000 

3,000 

6,000 

6,000 

6,000 
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HGPRT and APRT were considerably lower. The activity of ADA with deoxy-

adenosine was about half that with adenosine. The PNP-catalyzed conver

sion of hypoxanthine to inosine was considerably more active than that 

in the opposite catabolic reaction(table 4). As compared with assays 

without BSA, all enzyme activities were higher in the presence of 0.67Ï 

BSA in the reaction mixture(table 4, fig. 3). In addition, the standard 

deviations of the mean values of almost all enzymes were smaller when 

BSA was used. 

DISCUSSION 

A relatively simple approach to ultramicrochemistry has been intro

duced for enzyme assays in lyophilized cultured fibroblasts, which makes 

use of fluorogenic substrates(5,6,7). These methods have also been 

applied to radiochemical assays(2,13,15). Biochemical and kinetic studies 

may be performed with this method, even at the "single cell" level(14,16). 

A principal advantage of ultramicromethods is that a favourable 

signalrnoise ratio can be obtained. The noise, or "blank", in an enzyme 

reaction is almost invariably due to the amount of substrate employed. 

The signal:noise ratio can be improved significantly by decreasing the 

incubation volume(lower blank value) and prolonging the incubation time 

(stronger signal). Additional advantages include: 

1. Very limited amounts of material can be handled. The microtechnique 

described allows a range of biochemical studies to be performed on a 

given blood sample, which would have been impossible with conventional 

techniques. This is of special importance when lymphocyte subfractions 

are to be analyzed(18). 

2. Because of the small incubation volumes(3 μΐ) only small amounts of 

substrates and reagents are needed, which helps to reduce the cost 

of large scale routine measurements. Moreover, the complete reaction 

mixture can be analyzed and no aliquots need to be taken. 

3. Not only radioactive substrates can be used for enzyme assays in 

lymphocytes: the activity of a number of lysosomal hydrolases(e.g. 

hexosaminidase and acid phosphatase), can be readily and reliably 

determined by use of fluorogenic substrates(Van Laarhoven, unpublished 

results). 
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Before pipetting the lymphocytes into the PMC's, suspensions are 

prepared containing theoretically 1,000 to 6,000 eels per 0,5 yl aliquot. 

These suspensions are prepared in plastic Eppendorf reaction vessels. 

When aliqouts were taken for cell counting in a Coulter counter, fewer 

cells than expected are recovered. This effect is most significant in 

the range we normally use for our incubations(fig. 2). When BSA is in

cluded in the dilution medium, this effect is not seen; 0.5% BSA seems 

to be sufficient. We suspect that in the absence of BSA a certain number 

of cells stick to the wall of the polypropylene Eppendorf vessel. This 

effect is also seen when working with glassware. The smaller the absolute 

number of cells, the more pronounced the loss: e.g. in the case of 

1 χ 10
6
 cells/ml the loss is 90% and in the case of б χ IO

6
 cells/ml the 

loss is 55%. 

When enzyme activities are calculated on a per cell basis, it 

becomes evident that BSA also has a protective effect on all enzymes 

tested. This is illustrated in fig. 3. At a final concentration of 0.33% 

BSA(w/v) in the assay mixture maximum levels of activity were reached 

for almost all enzymes. The stabilizing effect was most pronounced in 

the case of ADA(a factor of 4.0; fig. 3). The enzymes are possibly pro

tected from denaturation during both the lyophilization step and incub

ation. The benificial effect of BSA is also evident in the results in 

table 4; the range of control values in the presence of BSA is smaller 

as compared with the range observed when no BSA is added. 

The reproducibility and reliability of the present microassays are 

comparable with conventional methods. This is the case not only with ADA 

and PNP(table 2), but also with the other enzymes tested. The kinetic 

analysis of enzyme reactions with only a few thousand cells(present 

study) is as feasible as conventional analysis with 2.5 χ IO
5
 cells(4) 

or 10
8
 cells(3). The range of specific enzyme activities in control 

individuals obtained with this method is comparable with the range of 

conventional enzyme determinations published by others(3,12). 

With the present micromethod a large number of enzyme activities 

can be measured in lymphocytes from a relatively small blood sample(5 to 

10 ml). The methods are especially advantageous when subfractions of 

lymphocytes are to be studied and when the availability of cell material 
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is limited, e.g. in the case of children with lympho-proliferative dis

orders. 
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ABSTRACT 

The present study was undertaken to investigate purine interconver

sion enzymes in lymphocyte subfractions in order to characterize purine 

metabolism. Thus we would like to contribute to the understanding of the 

relation between lymphocyte function and purine metabolism. 

Lymphocytes were isolated from peripheral blood by nylon wool fil

tration and Ficoll-Isopaque density centrifugation. Separation of this 

lymphocyte fraction into a Τ cell and a non-T cell subfraction was 

carried out by Ε-rosette sedimentation. The activities of 6 purine inter-

conversion enzymes(hypoxanthine-guanine phosphoribosyltransferase, 

adenine phosphoribosyltransferase, adenosine deaminase, purine nucleo

side Phosphorylase, adenosine kinase and purine-5'nucleotidase) in these 

subfractions were assayed by a newly developed micromethod. Along with 

similarities there were also differences found between the enzyme activ

ities in Τ and non-T lymphocytes. 

Mitogenic stimulation by phytohaemagglutinin and pokeweed mitogen 

was studied on purified lymphocyte fractions as well as on fractions 

contaminated with 20-30% non-lymphoid cells(by omitting the nylon wool 

filtration step from the isolation procedure). Phytohaemagglutinin had 

hardly any effect on the enzyme activities of both the pure lymphocyte 

fractions and the contaminated fractions. Pokeweed mitogen stimulation 

of contaminated lymphocyte fractions had a marked effect on the enzyme 

activities studied(e.g. up to 5 times for hypoxanthine-guanine phospho

ribosyltransferase). The effect of pokeweed mitogen on pure fractions 

was less pronounced. 

44 



INTRODUCTION 

Previously described micromethods for the determination of purine 

interconversion enzyme activitiesin lymphocytes(11) enabled us to analyse 

purine metabolism systematically in lymphocyte subfractions using a rel

atively small number of cells(500 to 5,000). A relation between purine 

interconversion defects and immune dysfunctions has been established(3, 

4,5). The mechanism by which adenosine deaminase(ADA) deficiency leads 

to impairment of the В and Τ cell and purine nucleoside Phosphorylase 

(PNP) deficiency leads to Τ cell dysfunction is not yet completely under

stood. A better understanding of purine interconversions in В and Τ cell 

subfractions might help to obtain a better view on В or Τ cell specif

icity in these immune diseases. One of the possibilities to achieve this 

might be a systematic enzymological analysis of purine metabolism in Τ 

and non-T lymphocytes. Nine purine enzyme activities were measured in Τ 

and non-T lymphocyte subpopulations using 500 to 5,000 cells per assay. 

MATERIALS AND METHODS 

Isolation of Lymphocyte Subfractions 

Lymphocytes were isolated from peripheral blood by nylon wool fil

tration and Ficoll-Isopaque density centrifugation(2,ll) and diluted to 

2 χ 10
6
 cells/ml. Sheep erythrocytes were treated with neuraminidase 

(Behringwerke) and diluted in Earle's balanced salt solution(BSS) to 

1 χ 10
8
 cells/ml. Equal volumes of lymphocytes and neuraminidase treated 

sheep erythrocytes were mixed and incubated at 37° C; after 15 min. the 

cells were spun down and Ε-rosettes were allowed to form(l hour, 0° C). 

After a second Ficoll-Isopaque density centrifugation the non-rosetted 

non-T cells were collected from the interphase(7). The rosetted Τ cells 

were obtained from the pellet, after lyzing the sheep erythrocytes with 

a solution containing 155 mM NH.C1, 10 mM KHC0
3
 and 0.1 mM disodium EDTA 

(pH 7.4). 
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"Micro" Assays with Lymphocytes 

Enzyme incubations were carried out according to Van Laarhoven et 

al.(11). The following enzymes were assayed: ADA with adenosine and 

deoxyadenosine as a substrate, hypoxanthine-guanine phosphoribosyltrans-

ferase(HGPRT) with both hypoxanthine and guanine as a substrate, adenine 

phosphoribosyltransferase(APRT), adenosine kinase(AK) and purine-5'nuc-

leotidase(5'NT) as a substrate. 

Mitogenic Stimulation of Unfractionated Lymphocyte Preparations 

The isolated lymphocytes were resuspended in tris-buffered minimal 

essential medium(MEM, Gibco F-14; pH 7.4) containing 20% human A serum. 

After dilution of the cells to a concentration of 3 χ IO
5
 cells/ml, 

portions of 1 ml each were divided into sterile tubes(Nunc nr. 1090). To 

test phytohaemagglutinin(PHA) stimulation, an equal number of tubes was 

cultured for 3 days at 37° С with and without addition of 0.5 μΐ PHA-P 

(Difco 3110-57). In similar experiments 25 μΐ/ml pokeweed mitogen(PWM; 

Gibco) was added to a final concentration of 25 pgr/ml. Cells were cul

tured for 7 days at 37° С Twentyfour hours before harvesting 0.5 yCi/ml 
3
H-thymidine(specific activity 24 Ci/mmol; Radiochemical Centre Amersham, 

UK) was added to the cultures. The cells were harvested by filtration on 

glass fiber filters (Mi H i pore AP 2002500). After incubation of the 

filters(J hour, 20° C) in liquid scintillation counting vials with 0.5 ml 

NCS tissue solubilizer(Radiochemical Centre Amersham, UK) diluted(l:3) 

with counting fluid(MI 92, Packard), 10 ml MI 92 was added, containing 1% 

acetic acid(v/v). For the enzymatic assays the cells were collected after 

3 days(PHA) and 7 days(PWM) by centrifugation(600 g, 10 min.), resuspen

ded in 0.9% NaCl(w/v) and lyophilized as described above. 

RESULTS AND DISCUSSION 

The activities of HGPRT and PNP in Τ and non-T subfractions were in 

the same range(table 1). Mean activities of APRT, AK and 5'NT were higher 

in Τ cells as compared to non-T cells. One enzyme was more active in 

non-T than in Τ cells: ADA. This was found with both deoxyadenosine and 
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Table 1 : Purine Interconversion Enzymes in Lymphocyte Subfractions 

Enzyme 

HGPRT 

APRT 

ADA 

PNP 

AK 

5'NT 

Substrate 

hypoxanthine 

guanine 

adenine 

adenosine 

deoxyadenosine 

hypoxanthine 

inosine 

adenosine 

AMP 

Τ fraction 

3.24 

5.ΘΘ 

9.82 

61.67 

35.53 

74.45 

15.56 

0.8Θ 

12.31 

± 1.01 

± 2.28 

±5.88 

± 27.73 

± 13.18 

± 43.44 

± 4.60 

± 0.63 

± 7.08 

non-T 

3.14 

5.66 

4.48 

91.62 

63.72 

66.89 

12.59 

0.47 

3.29 

fraction 

±1.68 

± 2.54 

± 2.54 

± 49.01 

± 38.65 

± 34.21 

± 4.24 

± 0.31 

± 2.46 

η 

10 

10 

10 

10 

9 

10 

10 

8 

7 

Activities±standard deviation, calculated from a group of healthy 

individuals and expressed as 10~
9
 moles product formed/10

6
 lymphocytes 

.hour. 

adenosine as a substrate(table 1). These latter findings are different 

from those reported by Huang et al.(6) who found that ADA activities of 

complement-receptor negative(T) cells were approximately 10 times higher 

than those of compiement-recetor positive(B) cells. Differences in ADA 

activity in В and Τ cells have also been reported by several other groups 

(9,10). Purine nucleoside Phosphorylase was shown to display similar 

activities in Τ and non-T cells. A number of investigators however, has 

reported that PNP activity is higher in Τ cells. PNP has even been sug

gested as a Τ cell marker on the basis of histochemical findings(l). 

These inconsistencies might be due to the differences of isolation pro

cedures used. Our isolation procedure is based on the Ε-rosette forming 

capacity. Other workers made use of other immunological markers such as 

complement-receptors(6). Moreover, our subfractions are hardly contamin-

ated(<3%) with monocytes or granulocytes. Such data are not available 

from other reports(l,6). Tritsch and Minowada(9) compared leukemic Τ 

cell lines with normal В cell lines and reported higher ADA activities 

in malignant Τ cell lines. To our knowledge there are no reports on 

HGPRT, APRT, AK and 5'NT activities in lymphocyte subfractions. 

As can be seen in table 1 there exists a rather wide range of enzyme 

activities in healthy controls. This is due to individual variation and 

not to methodological errors(ll). In addition, in a given individual 

enzyme activity ratios are constant, e.g. PNP activities are consistently 

higher than APRT activities(table 1). 
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Table 2: Effect of Culture Time on Purine Interconversion Enzymes in 

Unfractionated Lymphocytes in the Absence of Mitogens 

Enzyme 

HGPRT 

ADA 

PNP* 

5'NT 

100% 

100% 

100% 

100% 

P
1 

0 

(4.5)
3 

(99) 

(12. 

(19. 

,θ) 

• 7) 

days 

100% 

100% 

100% 

100% 

C
2 

Culture Time 

(5.7) 

(88] 

(15. 

(20, 

I 

.7) 

.0) 

3 

Ρ 

68% 

70% 

95% 

54% 

day s 

С 

83% 

74% 

76% 

77% 

7 

Ρ 

39% 

33% 

77% 

91% 

days 

С 

50% 

33% 

67% 

112% 

methods(contamination with non-lymphoid leukocytes less than 3%). 
2
"Contaminated" fractions(C) are isolated in the same way as "pure" 

fractions but the nylon wool filtration step is omitted(contamination: 

2 to 3% monocytes, 20 to 30% granulocytes). Values in parentheses 

represent the absolute enzyme activities in 10~ moles/10 cells.hour. 

""As a substrate for the PNP assay, 8- V-inosine was used. 

Mitogenic Stimulation of Unfractionated Lymphocytes 

In order to test the effect of the mitogens PHA and PWM on unfrac

tionated lymphocytes, two different lymphocyte preparations were 

employed. A "pure" fraction was obtained by the complete procedure as 

described under materials and methods. A "contaminated" fraction was 

obtained by following the same procedure, but omitting the nylon wool 

filtration step. The "pure" preparation contained more than 97% lympho

cytes, 1% monocytes and 1% granulocytes(according to Hemalog D determin

ations). The "contaminated" fraction contained 72% lymphocytes, 2% mono

cytes and 25% granulocytes. 

In order to be able to assess the real stimulation index of purine 

enzyme activities an experiment was performed in which, in the absence 

of mitogens, the activity of HGPRT, ADA, PNP, and 5'NT was tested after 

3 days(culture time for PHA stimulation test) and after 7 days(culture 

time for PWM stimulation test). Three out of four enzymes tested(HGPRT, 

ADA and PNP) showed a decrease in activity during cui turing, whereas one 

enzyme(5'NT) displayed a lower activity after 3 days, but after 7 days 

the activities were again around the original level. It was concluded 

that the results of the PHA stimulation experiments should be related 

to the control values obtained after 3 days of cui turing in the absence 
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Table 3: Effect of Mitogens on
 3
H-Thymidine Incorporation and on 

Purine Interconversion Enzymes in Unfractionated Lymphocytes 

3
H-Thymidine 

Incorporation Index 

HGPRT 

ADA 

ΡΝΡ
1
* 

5'NT 

PHA(3 

P
1 

10
3 

1.3 

1.0 

1.1 

1.2 

days) 

C
2 

120 

2.5 

1.0 

1.3 

1.0 

PWM(7 

Ρ 

25 

3.6 

2.4 

1.5 

1.1 

days) 

С 

25 

4.6 

2.3 

1.6 

3.4 

"Pure" fractions. "Contaminated" fractions.
 3
The values given repre

sent the ratio between the activity measured with and without mitogen; 

for PHA stimulation the values after 3 days of culturing were used, 

and for PWM stimulation the values after 7 days. ^As a substrate for 

the PNP assay, 8-
1
^C-inosine was used. 

of this mitogen. The same was done in the PWM experiments(culturing time 

7 days). 

The "pure" lymphocytes were hardly stimulated by PHA as judged from 

the
 3
H-thymidine incorporation. The response of the "contaminated" 

lymphocytes to PHA was considerably higher(Table 3). PWM stimulated both 

the "pure" and the "contaminated" cells to the same extent. The activit

ies of the purine enzymes tested remained unchanged after PHA stimula

tion in both lymphocyte preparations with the possible exception of 

HGPRT in the "contaminated" lymphocytes. The HGPRT activities of "pure" 

and "contaminated" lymphocytes after 7 days of PWM stimulation were 

clearly increased. A less pronounced rise was observed for ADA, whereas 

PNP activity did not show significant stimulation. The marked rise after 

PWM stimulation of 5'NT activity in "contaminated" lymphocytes as com

pared to "pure" cells was ascribed to contaminating cells, especially 

granulocytes. Our results concerning the effect of culture time on 

lymphocytic HGPRT, PNP, ADA and 5'NT activities in the absence of the 

mitogens are essentially in agreement with data reported by Raivio and 

Hovi(8) on Τ cell enriched lymphocyte preparations. On the other hand, 

our data on ADA after PHA stimulation do not show the increase in 

activity as described by the latter workers. It should be emphasized 

however, that the present study was carried out under other experimental 
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conditions. This makes comparison with other reports(6,9,10) difficult. 

On the basis of findings with PHA stimulated intact lymphocytes(8) in

creased levels of purine phosphoribosyltransferase activities might be 

expected. This is indeed the case with HGPRT in the "contaminated" cells, 

but not in "pure" cells. As judged from the 3H-thymidine incorporation, 

the "contaminated" cell population was synthetizing DNA more actively 

than the "pure" lymphocytes after PHA stimulation. Therefore, it seems 

that the rate of purine reutilization is associated with the rate of 

DNA synthesis. This phenomenon is also observed in PWM stimulated "pure" 

and "contaminated" cells. Although satisfying explanations for our 

findings cannot yet be given, the differential responses to PHA and PWM 

seem to point to differences in purine metabolism in PHA and PWM 

responsive cells. 
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ABSTRACT 

Human peripheral blood lymphocytes(PBL) were prepared by depleting 

peripheral blood mononuclear cells(PBMC) of adherent cells(AC) and 

separated in Τ and В cell enriched fractions. Τ cells were subdivided 

in Τγ and Τ-Τγ cells. Eight enzymes involved in purine metabolism were 

assayed in the fractions mentioned above. No significant differences in 

enzyme activities were noticed between the PBMC and the AC depleted PBL 

fractions. In the В cell enriched fraction the activities of hypoxan-

thine-guanine phosphoribosyltransferase(HGPRT), purine nucleoside phos-

phorylase(PNP), ecto-5'nucleotidase(5'NT), adenosine kinase(AK), AMP 

deaminase(AMPD) and adenylate kinase(AdKin) were found to be at least 

twice as high as in the Τ cell enriched fraction. Strong indications 

were obtained that platelet contamination in some of the isolated 

fractions might at least in part influence the noted differences in 

enzyme activities. When comparing Τγ and Τ-Τγ cells, higher specific 

activities of PNP and adenine phosphoribosyltransferase(APRT) were found 

in Τ-Τγ cells, whereas AdKin activity was found to be higher in the Τγ 

fraction. Due to the differences in enzymatic make-up Τγ cells might be 

more sensitive to purine nucleoside intoxication than Τ-Τγ cells. 
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INTRODUCTION 

In the last decade it has become clear, that a number of immunol

ogical diseases are related to imbalances of purine metabolism in 

lymphocyte subpopulations(7,12,26). Information regarding the enzymatic 

make-up and metabolic characteristics of lymphocyte subpcpulations, both 

in healthy individuals and in patients, might contribute to a better 

diagnosis of immunological diseases and be of importance for the devel

opment of immunoregulatory drugs. Not only Τ and В cell subpopulations, 

but also Τ and В cell subsets should be included in such studies. 

Different activity levels of enzymes involved in purine metabolism 

have been described in subpopulations of human peripheral blood lympho

cytes^,10,14,17,21,22). With respect to Τ and В lymphocytes conflicting 

data were reported on adenosine deaminase(ADA; E.C. 3.5.4.4), purine 

nucleoside phosphorylase(PNP; E.C. 2.4.2.1) and ecto-5'nucleotidase(5'NT; 

E.C. 3.1.3.5) activities. To our knowledge no systematic studies on 

these enzyme activities in Τ cell subsets have been published. 

In the present study a recently described micromethod(23) has been 

used to investigate the activities of purine interconversion enzymes 

(fig. 1) in various human peripheral blood lymphocyte subpopulations, 

including Τ and В cells and the Τ cell subset bearing surface receptors 

for the Fc portion of IgG(Ty cells). These lymphocyte fractions have 

been assayed for ADA, PNP, 5'NT, hypoxanthine-guanine phosphoribosyl-

transferase(HGPRT; E.C. 2.4.2.8), adenine phosphoribosyltransferase 

(APRT; E.C. 2.4.2.7), adenosine kinase(AK; E.C. 2.7.1.20), AMP deaminase 

(AMPD; E.C. 3.5.4.6) and adenylate kinase(AdKin; E.C. 2.7.4.3) activities. 

MATERIALS AND METHODS 

Lymphocyte Preparation 

Peripheral blood mononuclear cells(PBMC) from 5 healthy volunteers 

were prepared by centrifugation of heparinized blood, diluted with two 

volumes of Hank's balanced salt solution, on Ficoll-Metrizoate(1.077 

gr/ml; 21). For removal of adherent cells(AC), PBMC were resuspended in 
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in Hepes buffered RPMI 1640(Flow Labs., Rockville, MD) supplemented with 

20%(v/v) foetal calf serum(FCS; Microbiological Ass., Bethesda, MD) at a 

cellular concentration of 2 χ IO
7
 cells/ml. This suspension was incubated 

in a plastic Petri dish(Falcon 3045) for 1 hour at 37° C(6 ml/dish). 

Peripheral blood lymphocytes(PBL = P6MC minus AC) were separated 

in Τ and В lymphocyte fractions by density sedimentation of spontaneous 

rosettes formed by Τ lymphocytes and sheep erythrocytes treated with 

2-amino-ethyl-isothiouronium bromide(AET; 18). Τ cells were further 

separated into Τγ enriched and Τγ depleted(T-Ty) fractions according to 

Moretta et al.(13) by rosetting with ox erythrocytes coated with rabbit 

anti-bovine eryhtrocytes IgG(Nordic Lab.). Contaminating erythrocytes 

in each lymphocyte preparation were lyzed by incubation with 0.16 M 

ammonium chloride in a 0.01 M potassium bicarbonate, 0.1 mM EDTA buffer. 

Identification of monocytes and polynuclear cells was performed by the 

peroxidase reaction(16). The В cells were identified by membrane 

fluorescence(16), employing FITC/swine anti-human immunoglobulin serum 

(Nordic Lab.). Τ cells were counted as cells forming rosettes with AET 

treated sheep erythrocytes. 

Enzyme Assays 

Enzyme assays were carried out essentially according to a previous

ly described radiochemical micromethod(23). HGPRT and APRT were assayed 

by measuring the conversion of
 1 Ц

С labeled hypoxanthine and adenine to 

the corresponding mononucleotides IMP and AMP, respectively. ADA activ

ity was assayed by following the deamination of adenosine to inosine. 

PNP was assayed in the anabolic reaction: from hypoxanthine to inosine. 

AK activity was determined by measuring the conversion of adenosine to 

AMP. The a,ß-methyleneadenosine-5'diphosphate(A0PCP) inhibitable degrad

ation of AMP to adenosine was taken as 5'NT activity(5). AMPD was assayed 

by measuring the conversion of AMP to IMP(23). AdKin was assayed accor

ding to Leech and Newsholme(ll) adapting their system to our micromethod. 
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Table 1 : Characterization of the Lymphocyte Preparations 

Marker 

E
aet 
slg

6 

Peroxidase 

PBMC
1
, 

total 

82.4 ± 2.7 

14.4 ± 5.3 

13.5 ± 1.0 

PBL
2
, AC

3 

depleted 

81.2 + 2.4 

11.3 ± 3.4 

4.0 ± 1.4 

Τ 

94.0 ± 1.9 

0.2 ± 0.4 

0.5 ± 0.6 

В 

NT
5 

78.8 ± 5.4 

6.5 ± 2.5 

The figures indicate the percentage of cells(mean ± s.d.; n=5) from a 

particular fraction possessing the investigated marker.
 :
Peripheral 

blood mononuclear cells. Peripheral blood lymphocytes. Adherent 

cells. ''Cells rosetting with АЕГГ treated sheep erythrocytes.
 5
Not 

tested.
 6
Surface immunoglobulin bearing cells. Peroxidase positive 

cells. 

Statistical Analysis 

The differences in enzymatic activities between the various cell 

populations were analyzed by a two-tailed t-test of Student. 

RESULTS 

Characterization of the Lymphocyte Fractions 

The isolated PBMC from 5 healthy donors contained 82.4% E . pos

itive cells, 14.4% slg bearing cells and 13.5% peroxidase positive cells 

(mean values; table 1). After adherence of this cell population to 

plastic Petri dishes the number of E . and slg positive cells hardly 

showed any change, whereas the percentage of peroxidase stained cells 

significantly decreased. These AC depleted PBL were used for the separ

ation of Τ and В subpopulations. After E . rosette depletion the Τ cell 

pellet contained 94.0% E . positive cells, but virtually no slg bearing 

cells and no peroxidase stained cells. The Τ depleted preparations con

tained 78.8% slg bearing cells and 6.5% peroxidase positive cells 

(table 1). 
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g u a n i n e - ^ hypoxanthine adenine 

Figure 1: A simplified scheme of purine interconversion pathways. List 

of the enzymes and their abbreviations: ADA-adenosine deaminase; AdKin-

adenylate kinase; AK-adenosine kinase; AMPD-AMP deaminase; APRT-adenine 

phosphoribosyltransferase ; HGPRT-hypoxanthine-guanine phosphoribosyl-

transferase; 5'NT-purine-5'nucleotidase; PNP-purine nucleoside Phosphor

ylase. 

Enzyme Activities 

The results of the enzyme determinations in the various subfractions 

are summarized in table 2. No statistically significant differences of 

the specific activities were noticed between the unfractionated PBMC and 

the AC depleted preparations of PBL(table 2). 

When comparing the Τ and В cell subpopulations a significant dif

ference in the activities of HGPRT(p<0.01) and 5'NT(p<0.05) was seen. 

The activities of these enzymes were twice as high in the В cell popul

ation as compared to the Τ cell population. The differences in activities 

of PNP(p<0.001), AK(p<0.01), AMPD(p<0.02) and AdKin(p<0.001) between the 

Τ and В cell subpopulations were also found to be significant. In В cell 

preparations the activities were about a threefold higher when compared 

to Τ cells. 

In the Τ cell subsets, Τγ and Τ-Τγ, no significant differences could 

be found in HGPRT, ADA, 5'NT, AdKin and AMPD activities. A significant 

difference however, was found in the PNP activity in these subsets. PNP 

activity was 43% higher in Τ-Τγ cells than it was in Τγ cells(p<0.05). 

APRT activity was found to be lb% higher in Τ-Τγ cells than in Τγ cells 

(p<0.05). AK activity was twice as high in Τ-Τγ cells as compared to Τγ 

cells(p<0.02). On the other hand, though not significant(p>0.05), AdKin 
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was nearly twice as high in the Τγ cells as in the Τ-Τγ cells. 

DISCUSSION 

The present results show no significant differences in enzyme ac

tivity levels of unfractionated PBMC and AC depleted PBL(table 2). A 

possible explanation for these findings is that the enzymatic activities 

in the peroxidase positive cells do not differ much from those of 

purified lymphocytes(4,15). Another, more likely, possibility is that, due 

to the relatively small contamination of peroxidase positive cells, no 

significant changes of enzymatic activities are seen after removal of 

these eel Is(mainly monocytes). According to Edwards et al.(6) the 5'NT 

activity in PBL is 21.9 10"
9
 moles/10

6
 cells.hour. In peripheral mono

cytes 5'NT activity is 4.2 10"
9
 moles/10

6
 cells.hour. Extrapolating 

these data to our cell preparations, this would mean that our AC contam

inated PBMC fraction would have a 5'NT activity of 19.5 10"
9
 moles/10

6 

eel Is.hour. Our AC depleted PBL fraction would have a 5'NT activity of 

21.2 10"
9
 moles/10

6
 cells.hour. Such differences are not readily 

detected with the present assay methods. 

Our data on 5'NT activities in В and Τ enriched fractions are con

sistent with some earlier reports(17,20) and at variance with others 

including ours(6,22). In our earlier studies different methods were used 

both for the lymphocyte isolation and for the 5'NT measurement. In the 

present study we used heparin as anti-coagulant and the AC were removed 

by adherence to plastic; in our previous work lymphocytes were purified 

from defibrinated blood and were filtered through a nylon wool column 

(3,22). The present procedure led to cellular preparations contaminated 

with platelets, whereas the other method led to platelet-free prepara

tions. Still more relevant is our observation that В lymphocyte prep

arations obtained after rosette forming cell depletion were much more 

enriched in platelets than the Τ lymphocytes. When comparing the enzy

matic activities between two lymphocyte preparations, it is essential 

to assess their platelet contamination since thrombocytes show consider

able PNP and AdKin activities. In earlier AC depleted PBL preparations 

that were essentially free of platelets(as a consequence of defibrination 

with glass beads) mean PNP activity was 209 10"
9
 moles/10

6
 cells.hour. 
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AdKin activity was 265 IO"
9
 moles/10

6
 cells.hour(24). In table 2(pla-

telet contaminated, AC depleted PBL) these activities were 390 and 734 

10"
9
 moles/10

6
 eel Is.hour, respectively. The other enzymes showed com

parable activities in platelet free and platelet contaminated PBL(24). 

This leads to the conclusion that the higher AdKin and PNP activ

ities in the В cell fractions, at least in part might be ascribed to 

the platelet contamination. With respect to the other enzymes, the dif

ferences in activity levels do not seem to be due to contaminating cells. 

From the foregoing it is clear that when comparing enzymatic activities 

in lymphoid cell subfractions it is necessary to carefully characterize 

the various fractions, in order to account for the different isolation 

procedures. 

Differences of ADA activity in Τ and В lymphocytes do not seem to 

be significant(14,21,22). Our present data confirm these findings. Only 

Huang et al.(10) have found a considerable higher ADA activity in cells 

bearing C
3
 receptors(B cells) as compared to cells which lacked this 

receptor(T cells). 

The statistically significant differences found in APRT, PNP and 

AK activities in Τγ and Τ-Τγ cells cannot be obscured by the presence 

of platelets, since the latter are removed in the first Ε-rosette deple

tion step. The lower activity of PNP in Τγ cells seems inconsistent with 

the data of Levinson et al. (12). These authors found in Τ lymphocytes 

from patients with systemic lupus erythematosus(SLE) a decreased activity 

of PNP as compared to Τ cells from control individuals. In SLE decreased 

numbers of Τ suppressor cells(Ty cells) have been reported(8). From our 

finding, that Τγ cells have lower PNP activity than Τ-Τγ cells, it would 

be expected that in patients with relatively few Τγ cells, the PNP 

activity in total Τ lymphocytes should increase. 

The present results on Τγ and Τ-Τγ cells suggest that Τγ cells might 

be more sensitive to purine nucleoside intoxication as compared to the 

Τ-Τγ cells. As a consequence of a higher capacity for nucleotide tri

phosphate synthesis(AdKin) and a lower breakdown capacity for nucleotides 

(5'NT), deoxyribonucleotides may more easily be accumulated. Deoxyribo-

nucleotides(e.g. deoxyATP) are well known inhibitors of ribonucleotide 
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reductase, and may thus lead to impairment of DNA synthesis(19). This 

selective sensitivity was illustrated in experiments where cells were 

stimulated with concanavalin A and phytohaemagglutinin under ADA defic

ient conditions, The phytohaemagglutinin stimulated cells(mainly Τμ 

cells; 9) were much less sensitive to adenosine and deoxyadenosine in

toxication than concanavalin A stimulated cells(both Τμ as well as Τγ 

cells; 9,25). 
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ABSTRACT 

The purpose of the present study was to investigate whether certain 

purine enzymes might be useful as differentiation markers in acute 

lymphoblastic leukemia. A micromethod has been developed for radiochem

ical assays of adenosine deaminase, purine nucleoside Phosphorylase and 

5'nucleotidase. In Τ type acute lymphoblastic leukemia hardly detectable 

levels of 5'nucleotidase were consistently observed in lymphoid cells 

derived from bone marrow. Adenosine deaminase showed very high activ

ities as compared to normal Τ lymphocytes, whereas purine nucleoside 

Phosphorylase levels were significantly lower than those in normal cells. 

In nonBnonT type acute lymphoblastic leukemia no deviant 5'nucleotidase 

activities were observed. Adenosine deaminase activity however, was 

three-fold higher as compared to control values. The enzymes studied are 

indeed useful as biochemical markers. In addition, attractive possibil

ities for enzyme directed chemotherapy might be opened up by taking 

advantage of the differences in enzymatic make-up in various leukemic 

and normal cells. 
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INTRODUCTION 

Enzymes of purine nucleotide synthesis in lymphoid cells from 

patients with acute lymphoblastic leukemia(ALL) have been studied by a 

number of investigators. Scholar and Calabresi(10) reported that activ

ities of several enzymes of purine metabolism in leukemic lymphoid cells 

were changed as compared to activities in normal lymphocytes. 

Elevated levels of adenosine deaminase(ADA; E.C. 3.5.4.4) were found 

in lymphoid cells from patients with ALL. In T-ALL ADA activities were 

found to be seven-fold(ll) or even fourty seven-fold(5) higher than in 

normal lymphocytes. In contrast, ADA levels in nonBnonT-ALL were only 

slightly elevated, two to four-fold(5). 

Purine nucleoside phosphorylase(PNP; E.C. 2.4.2.1) was reported to 

be decreased only in T-ALL(2). In normal mononuclear cells the median 

activity was 79 units, whereas in T-ALL cells the median was significant

ly lower(38 units). 

In T-ALL an inverse linear relation has been reported between 

5'nucleotidase(5'NT; E.C. 3.1.3.5) activity and the number of E-rosette 

positive cells. The mean 5'NT activity in Τ lymphocytes was significantly 

lower as compared to normal lymphocytes and null lymphoblasts(9). 

A recently described micromethod(13) enabled us to assay nine dif

ferent enzyme activities of the purine interconversion pathway in 

lymphoid cells from patients with ALL. Activities of ADA, PNP, assayed 

in the anabolic direction, 5'NT assayed both with intact cells(ecto-

enzyme) and with lyophilized cells(total 5'NT activity, hypoxanthine-

guanine phosphoribosyltransferase(HGPRT; E.C. 2.4.2.8), adenine phospho-

ribosyltransferase(APRT; E.C. 2.4.2.7), adenosine kinase(AK; E.C. 

2.7.1.20), adenylate kinase(AdKin; E.C. 2.7.4.3) and AMP deaminase(AMPD; 

E.C. 3.5.4.6) were assayed in lymphoid cells from 20 controls, 24 

patients with nonBnonT-ALL and 12 patients with T-ALL. 
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MATERIALS AND METHODS 

Patients 

At the time of diagnosis, 36 chidren with ALL(aged between 1 and 14 

years) were investigated. In all cases the diagnosis was obtained on 

bone marrow aspirates and confirmed at the Reference Centre of the Dutch 

Working Group on Leukemia in Children(SNWLK), The Hague, The Netherlands. 

Immunological classification of ALL 

The immunological classification was performed only in almost com

pletely homogeneous(>95%) leukemic cell populations from bone marrow 

and/or peripheral blood. The leukemic cells were isolated by the Fi col 1-

Isopaque gradient centrifugation method as described previously(l). Sheep 

erythrocyte(E) rosettes were used as a standard Τ cell marker(l). If more 

than 20% of the leukemic cell population formed Ε-rosettes at 4° C, the 

diagnosis Τ cell-ALL was made. As a criterion for В cell-ALL the presence 

of more than 20% surface immunoglobulin(slg) bearing cells was used. 

Immunofluorescence studies were performed using tetramethyl rhodamine 

isothiocyanate(TRITC)-labeled anti-human Ig(1 ). Leukemic cell populations 

that did not meet the criteria mentioned above were classified as 

nonBnonT-ALL. As antisera against the common-ALL antigen could not yet 

be used in all cases studied, the last subgroup of ALL could not be sub

divided^) into "common-ALL" and "unclassified-ALL" according to the 

Greaves' nomenclature^). 

Enzyme Assays 

The nine enzymes indicated previously, were assayed with radioactive 

substrates, using 1,000 to 6,000 cells per assay, according to the micro-

method published earl i er(13). AdKin was assayed according to Leech and 

Newsholme(8) adapting their system to our micromethod. Lymphoid cells 

from controls were isolated from peripheral blood(13), whereas in the 

case of patients the cells were taken from peripheral blood and/or bone 

marrow(see Immunological Classification). 
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Table 1 : Purine Enzymes in Lymphoid Cells from Controls and ALL-Patients 

Enzyme 

HGPRT 

APRT 

ADA 

PNP 

5'NT 

ecto-5'NT 

AK 

AMPD 

AdKin 

Controls 

(n=20) 

6.9 

13.6 

134 

209 

18.4 

7.6 

7.9 

267 

265 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

3.3
1 

4.2 

46 

70 

11.7 

3.0 

3.6 

106 

183 

nonBnonT-ALL 

(n=24) 

13.8 

10.2 

491 

200 

25.9 

8.3 

6.8 

314 

791 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

7.1 

5.9 

333 

97 

23.1 

7.7 

4.4 

347 

411 

T-ALL 

(n=12) 

11.4 

6.9 

1069 

124 

1.0 

0.8 

6.3 

151 

283 

± 5.1 

± 2.6 

± 467 

± 69 

± 1.8 

± 0.7 

± 2.6 

± 120 

± 230 

Mean specific activities ± standard deviations in 10
 9
 moles/10

6
 cells, 

hour. 

Statistical Evaluation 

Statistical evaluation was performed using the two tailed Student 

t-test for grouped values with separate variance estimate. 

RESULTS 

In table 1 the activities of nine different enzymes involved in 

Table 2: Statistical Evaluation of Purine Enzyme Activities in Control 

Lymphocytes vs. Leukemic Cells 

Enzyme nonBnonT-ALL T-ALL 

HGPRT 

APRT 

ADA 

PNP 

5'NT 

ecto-5'NT 

AK 

AMPD 

AdKin 

++
1
(p<0.001) 
3
(p<0.05) 

(p<0.001) 
5 

+ 

+ (p<0.01) 

f(p<0.02) 

+ +
 1,
(p<0.001) 

t + (p<0.001) 

+ (p<0.01) 

++ (p<0.001) 

++ (p<0.001) 

n.s. 

+ (p<0.02) 

n.s. 

++Highly significant increased activity in leukemic cells. -t-Signific-

antly increased activity in leukemic cells. Hsignificantly decreased 

activity in leukemic cells. "Ч+НідЫу significant decreased activity in 

leukemic cells, n.s. No significant difference. 
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purine interconversions are shown. Lymphoid cells isolated from normal 

healthy controls, patients with nonBnonT-ALL and from patients with 

T-ALL were used. Statistical evaluation of these data revealed that when 

comparing enzyme activities in control lymphoid cells with enzyme activ

ities in nonBnonT-ALL lymphoid cells, HGPRT, ADA and AdKin values were 

higher in nonBnonT-ALL than in controls, whereas APRT showed a lower 

activity(table 2). 

Comparing control values with T-ALL values, significantly lower 

enzyme activities of APRT, PNP, 5'NT, ecto-5'NT and AMPD were observed 

in T-ALL lymphoid eel Is(tabi e 2). On the other hand HGPRT and ADA activ

ities were higher in T-ALL(table 2). 

The activity of APRT, PNP, 5'NT, ecto-5'NT and AdKin were signif

icantly lower in T-ALL cells as compared to nonBnonT-ALL cells(table 3). 

Only ADA activities were higher in T-ALL than in nonBnonT-ALL. 

DISCUSSION 

The reported data on ADA(5,12), PNP(2) and 5'NT(9) in acute lympho

blastic leukemia are confirmed in this study. ADA is clearly elevated 

in T-ALL, whereas in nonBnonT-ALL intermediate values between T-ALL and 

control enzyme activities are found. PNP is significantly decreased only 

in T-ALL. 5'NT activity assayed in lyophil i zed cells, or in intact cells 

Table 3: Statistical Evaluation of Purine Enzyme Activities in Leukemic 

Cells from T-ALL vs. nonBnonT-ALL. 

HGPRT n.s.
1 

APRT +
2
(p<0.05) 

ADA t+
3
(p<0.001) 

PNP + (p<0.02) 

5'NT 4· + " (p<0.001) 

ecto-5'NT 4·+ (p<0.001) 

AK n.s. 

AMPD n.s. 

AdKin 4· (p<0.02) 

n.s. No significant difference.
 2
+Significantly decreased in T-ALL. 

3
t+Highly significa 

decreased in T-ALL. 

3
t+Highly significant increased in T-ALL. "Ч+Highly significant 
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as an ecto-enzyme,was hardly detectable in cells from T-ALL patients. 

The elevated HGPRT activity and the decreased APRT activity in ALL 

have not been reported earlier according to our knowledge. The increased 

AdKin activity in nonBnonT-ALL is consistent with other data obtained by 

our group. It was found that the intracellular concentration of ATP was 

significantly elevated in cells from nonBnonT-ALL patients(6). 

Data obtained in our laboratory and from others show that ADA, PNP 

and 5'NT activities fluctuate in several stages of lymphoid cell differ

entiation and maturation(3,4). Human thymocytes, immunologically charac

terized as young lymphoid cells, showed high ADA and low 5'NT activities. 

The ADA/PNP activity ratio in these cells was much higher than in 

peripheral blood lymphocytes(14). One might suspect that the differences 

in enzymatic activities in the subclasses of the leukemias mentioned 

reflect the stage of maturation in which the cells have been arrested, 

rather than an alteration caused by the leukemic transformation itself. 

The most suitable enzymatic parameter to discriminate between 

normal lymphocytes on the one hand and leukemic lymphoblasts on the 

other hand seems to be the ADA activity. A clear cut discrimination 

between T-ALL and nonBnonT-ALL is provided by 5'NT(lower inT-ALL), and 

AdKin(also lower inT-ALL). 

Due to these differences in enzymatic make-up one might speculate 

on employing these differences in the design of a more selective 

"enzyme directed chemotherapy". Theoretically, 6-mercaptopurine(6MP), 

a widely used anti-leukemic analogue of hypoxanthine, might be metab

olized more effectively to its toxic nucleotide form by ALL cells than 

by normal lymphoid cells, since HGPRT activities are found to be lower 

in the latter(tables 1 and 2). Another illustration is the inhibition 

of ADA by analogues of adenosine, such as coformycin. Accumulation of 

nucleosides(e.g. deoxyadenosine) might be more toxic to Τ leukemic cells 

than to normal lymphocytes and nonBnonT leukemic cells. Phosphorylation 

of deoxyadenosine to deoxyAMP and susequently to deoxyATP can occur in 

non-leukemic and in leukemic cells to a comparable extent. However, 

since leukemic Τ cells hardly possess the capacity to dephosphorylate 

toxic deoxyribonucleotides(low 5'NT) this might lead to inhibition by 
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deoxyATP of ribonucleotide reductase and thus impairment of DNA 

synthesis(ll). 

The data presented in this paper suggest that enzymes of purine 

metabolism, -can be used as additional diagnostic tools in acute lympho

blastic leukemia, 

-might be interesting as markers for lymphoid cell differen

tiation, 

-might be suitable targets for enzyme directed chemotherapy. 

Further studies to verify these statements are underway in our laboratory. 
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ABSTRACT 

Adenosine deaminase(ADA), purine nucleoside phosphorylase(PNP), 

5'nucleotidase(5'NT), ecto-5'NT, hypoxanthine-guanine phosphoribosyl-

transferase(HGPRT), adenine phosphoribosyltransferase(APRT), adenosine 

kinase(AK), AMP deaminase(AMPD) and adenylate kinase(AdKin) activities 

were assayed in leukemic cells from bone marrow and/or peripheral blood 

of 43 newly diagnosed children with acute lymphoblastic leukemia(ALL). 

These enzyme activities have been investigated in relation to some 

other immunological markers. ADA activity was higher in Ε-rosette pos

itive leukemia(E
+
 ALL), while HGPRT, APRT, PNP, 5'NT, ecto-5'NT and 

AdKin activities were found to be lower in E ALL as compared to E ALL. 

In common ALL(cALL) antigen positive leukemia, mean ADA activity was 

significantly lower as compared to cALL" leukemia, whereas PNP, 5'NT, 

ecto-5'NT and AdKin activities were significantly higher. cALL cells 

with cytoplasmic immunoglobulin M(IgM) heavy chains were found to have 

mean 5'NT activities twice as high as cALL cells lacking cytoplasmic 

IgM heavy chains. In two patients who had surface immunoglobulins(slg) 

on their cell membranes, low 5'NT activities were found. When measuring 

enzyme activities after 2 to 4 days of prednisone monotherapy, only 

mean ADA and HGPRT activities decreased in nonBnonT-ALL. These decreases 

were not significant in T-ALL patients. Mean enzyme activities in the 

leukemic cells of five patients with relapse, were comparable to those 

in newly diagnosed patients, except for 5'NT, which was found to be 

within the activity range of control peripheral blood lymphocytes. It 

is concluded that ADA and AdKin activities are suitable as markers for 

E ALL and cALL leukemias, respectively. 5'NT might help to distinguish 

between cALL cells having and lacking preß characteristics. Since 5'NT 

activity may also be decreased in B-ALL, it is not suitable as a T-ALL 

marker. Enzymes of purine metabolism in leukemic relapse need further 

investigation. 
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INTRODUCTION 

Studies on patients with immunological dysfunctions have revealed 

that genetically determined deficiencies of certain enzymes of purine 

metabolism are intimately related to lymphocytic malfunction(14,15). 

This as a consequence of a differentiation and/or maturation block 

originating from the enzyme deficiencies(26). Since lymphoblastic 

leukemia may be cosidered as a disorder of lymphocyte differentiation 

(17), it is of interest to study systematically purine metabolism in 

lymphoid cells from patients with acute lymphoblastic leukemia(ALL). 

Such a study might serve three purposes: 

1. The search for additional diagnostic biochemical markers in acute 

lymphoblastic leukemia. 

2. The search for a relation between biochemical markers of lymphocytic 

differentiation and the immunological markers. 

3. Based on the specific deviant enzymatic make-up of the malignant 

lymphoblasts, possibilities for specific chemotherapy might be 

explored. 

In previously published studies, which focussed on a single or a 

few enzymes, inconsistent data have been reported on altered purine 

enzyme activities in ALL. Scholar and Calabresi(23) reported that activ

ities of several enzymes of purine metabolism(various nucleotide kina

ses, adenosine deaminase and purine nucleoside Phosphorylase) in 

lymphoid cells from two patients with ALL were not consistent. In one 

patient an adenosine deaminase(ADA) activity comparable with the 

control value was observed. In the other a seven-fold increased ADA 

activity was found. In ALL patients with a Τ cell phenotype(T-ALL), 

ADA activities were found to be 7-fold(25) or even 47-fold(9) higher 

than in normal lymphocytes. On the other hand, ADA levels in ALL 

patients without a Τ cell or а В cell phenotype(nonBnonT-ALL) were 

reported to be only two to four-fold elevated(25). Contrasting data 

were also reported to be higher in lymphoid cells from ALL patients 

than in peripheral blood lymphocytes(PBL) from controls, it should be 

mentioned, that in nonBnonT-ALL a higher ADA activity was observed than 

in T-ALL(24). Liso et al.(20) did not find a difference in ADA activity 

between nonBnonT-ALL and T-ALL. 
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Purine nucleoside phodphorylase(PNP) was reported to be decreased 

only in T-ALL(3). In T-ALL an inverse linear relationship has been 

reported between the 5'nucleotidase^'NT) activity and the number of 

Ε-rosette positive cells(21). The mean activity of 5'NT in malignant 

Τ lymphoblasts was significantly lower as compared to normal lympho

cytes and leukemic nonBnonT lymphoblasts. 

In the present study we have systematically assayed nine different 

enzymes, namely: ADA(E.C. 3.5.4.4), PNP(E.C. 2.4.2.1), 5'NT(E.C. 3.1.3.5), 

ecto-5'NT, hypoxanthine-guanine phosphoribosyltransferase(HGPRT; E.C. 

2.4.2.8), adenine phosphoribosyltransferase(APRT; E.C. 2.4.2.7), 

adenosine kinase(AK; E.C. 2.7.1.20), AMP deaminase(AMPD; E.C. 3.5.4.6) 

and adenylate kinase(AdKin; E.C. 2.7.4.3). These enzyme activities have 

been related with a number of clinical and immunological parameters in 

a series of 43 successive ALL patients. 

We studied enzyme activities in relation to prednisone monotherapy 

in order to investigate the usefulness of enzyme activities as markers 

for the effectiveness of the chemotherapeutic regimen. From earlier 

studies by our group it was known that the mean percentage of cells in 

(S+G
?
+M)-phase is lower after prednisone treatment(2). 

MATERIALS AND METHODS 

Patients 

Fourty-three children with ALL(aged between 1 and 14 years) were 

investigated at the time of diagnosis. The study was made on bone marrow 

aspirates, except for the patients 38, 39, 57 and 67(table 1). The 

diagnosis was confirmed at the Reference Centre of the Dutch Working 

Group on Leukemia in Children(SNWLK), The Hague, The Netherlands. Out 

of this group, cells from 22 patients were investigated enzymologically 

again after 2 to 4 days prednisone monotherapy(dose 40 mg/m
2
 once daily). 

Isolation of Lymphoid Cells from Bone Marrow and/or Peripheral Blood 

The lymphoid cells were isolated by the Ficoll-Isopaque gradient 
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centrifugation method as described previously(2), using tris buffered 

minimum essential medium(MEM) containing 5%(v/v) foetal bovine serum. 

These cells were used both for immunological and enzymological charac

terization. 

Immunological Classification of ALL 

The immunological classification was performed as a rule in almost 

completely homogeneous(>95%) leukemic cell populations from bone marrow 

and/or peripheral blood. Sheep erythrocyte(E) rosettes were used as a 

Τ cell marker(2). If more than 20% of the leukemic cell population 

formed Ε-rosettes at 4° C, the diagnosis Τ cell ALL was made. In a 

number of cases anti-T cell antiserum(Anti-Leu-l monoclonal antibody, 

Beckton Dickinson, Sunnyvale, CA, USA) could be used in an indirect 

immunofluorescence assay, using fluorescein isothiocyanate(FITC)-labeled 

goat anti-mouse IgG antiserum. Again the 20% borderline was used as a 

criterion for positivity. As a criterion for В cell ALL the presence of 

more than 20% surface immunoglobulin(slg) bearing cells was used. 

Immunofluorescence studies were performed using tetramethyl rhodamine 

isothiocyanate(TRITC)-labeled anti-human Ig(2). Leukemic cell populations 

that did not meet the criteria mentioned above were classified as 

nonBnonT-ALL. 

Antisera against common-ALL antigen(cALL) could not be 

used in all cases studied. However, after anti-cALL antibody became 

available(J5 Coulter Clone monoclonal antibody, Coulter Electronics Inc., 

Hialeah, FL, USA), a number of patients of the nonBnonT-ALL group could 

be classified as cALL(more than 20% cALL positive cells) or unclassified-

ALL(unc.-ALL; no significant numbers of membrane markers) according to 

Greaves' nomenclature(16). The binding of J5 to the leukemic cells was 

assessed by indirect immunofluorescence with fluoresceinated goat anti-

mouse IgG antiserum. 

PreB cell characterization was performed in an immunofluorescence 

assay on cytocentrifuge preparations of fixed bone marrow cells using 

TRITC-labeled anti-human IgM and FITC-labeled anti-human light chains 

(к or λ) antisera. Cells lacking detectable slg(deterained as described 

above) but containing cytoplasmic IgM heavy chains in the absence of 
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light chains were denominated as preB cells(4). 

Enzyme Assays 

The activities of ADA, PNP, 5'NT, HGPRT, APRT, AK, AMPD and AdKin 

were assayed with radiochemical substrates, making use of our micro-

methods described previously(28). PNP was assayed using e-^C-hypoxan-

thine as a substrate. 5'NT was assayed on lyophilized cells, whereas 

ecto-5'NT activity was measured in intact cells, essentially according 

to Edwards et al.(11). With respect to AMPD and AdKin, the method of 

Leech and Newsholme(19) was adapted to our microsystem(28). Both bone 

marrow and peripheral blood samples were assayed from 16 patients, 

whereas in another 6 patients only peripheral blood samples were 

assayed(table 1). 

Statistics 

The data were statistically analyzed using the two-tailed Student's 

t-test with separate variance estimate. 

Flow Cytophotmetric Studies 

The number of bone marrow cells in (S+Gg+MJ-phase was determined 

(Dept. of Hematology, University Hospital, Nijmegen, The Netherlands) 

using a flow cytophotometric technique described earlier(2). 

In Vitro Effects of Prednisone and Prednisolone 

To test the possible in vitro effects of prednisone and prednisol

one, control peripheral blood lymphocytes were assayed for the enzymes 

as described onder "Enzyme Assays", in the presence of 10 ng/ml(0.03 yM) 

of one of the compounds. 
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RESULTS 

Immunological Markers of the Patients 

Several immunological characteristics determined in a group of 43 

children with ALL are listed in table 1. In our group of patients, 29 

cases could be classified as nonBnonT-ALL; subdivision in cALL and 

une.-ALL was only possible after an anti-cALL antiserum became available 

to us(fig. 1). Eighteen nonBnonT-ALL patients(from the group of 29) 

could be investigated with the recently available anti-cALL serum. 

Sixteen cases were of the cALL type and 2 remained unclassified(fig. 1). 

From the 14 patients in our group, who didnot have a nonBnonT phenotype 

12 were Ε-rosette or anti-T cell serum positive(>20% positive cells) 

and classified as T-ALL. Two patients in our group were of the В cell 

type(>20% slg bearing cells). 

Though in patients 6 and 7 most immunological markers could not be 

Figure 1 : Immunological classification of the ALL patients studied. 

l=nonBnonT-ALL patients; no further marker studies performed. 

2=nonBnonT-ALL patients; cALL positive. 

3=nonBnonT-ALL patients; unclassified ALL. 
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Table 1 : Characteristics of Acute Lymphoblastic Leukemia Patients in 

this Study 

Patient 

1 

6 

7 

θ 

10 

11 

12 

13 

14 

15 

18 

21 

23 

25 

26 

29 

31 

32 

35 

37 

3Θ 

39 

40 

43 

45 

46 

50 

53 

55 

57 

59 

61 

62 

63 

64 

65 

67 

6Θ 

500 

501 

502 

503 

539 

Classific

ation 

nonBnonT 

nonBnonT 

nonBnonT 

nonBnonT 

nonBnonT 

nonBnonT 

une. 

nonBnonT 

τ 
Τ 

nonBnonT 

nonBnonT 

common 

common 

nonBnonT 

nonBnonT 

В 

une. 

Τ 

Τ 

common 

common 

common 

common 

common 

common 

Τ 

Τ 

common 

Τ 

common 

common 

common 

common 

common 

common 

common 

Τ 

Τ 

Τ 

Τ 

Τ 

Β 

WBC 

22.0 

15.θ 

6.9 

4.0 

6.4 

0.8 

232 

1.Θ 

308 

142 

7.2 

434 

13.2 

27.8 

12.9 

5.6 

91.8 

38.3 

317 

28.4 

4.2 

5.0 

3.4 

8.3 

2.2 

7.6 

126 

365 

41.7 

122 

3.4 

12.9 

5.5 

10.4 

11.3 

189 

16.8 

121 

-
-
-
-
-

%blasts 

90 

100 

88 

80 

95 

90 

95 

98 

95 

95 

95 

98 

90 

99 

65 

92 

95 

82 

87 

36 

-
-

94 

78 

90 

94 

86 

90 

97 

91 

91 

99 

96 

90 

72 

94 

-
88 

-
-
-
-
-

%Ε 

0 

-
3 

4 

1 

3 

3 

0 

37 

86 

2 

4 

1 

0 

0 

0 

2 

16 

76 

56 

-
-
1 

5 

2 

2 

74 

80 

3 

19 

1 

1 

2 

2 

1 

0 

-
78 

>20 

>20 

>20 

>20 

-

%slg 

0 

-
-
0 

0 

0 

0 

0 

-
0 

0 

0 

-
0 

0 

0 

77 

1 

-
1 

-
-
0 

1 

2 

0 

0 

0 

2 

5 

1 

1 

0 

1 

0 

3 

-
0 

-
-
-
-

>20 

%cALL 

-

-
-
-
-
-
0 

-
-
-
-
-

85 

60 

-
-
-
3 

1 

-
-
-
74 

93 

60 

81 

0 

52 

88 

70 

87 

91 

38 

92 

87 

92 

-
63 

-
-
-
-
-

%anti-T 

-

-
-
-
-
-
0 

-
-
-
-
-
1 

1 

-
-
-
-
-
-
-
-
-
-
-
-
-

21 

4 

68 

2 

78 

6 

3 

8 

1 

-
70 

-
-
-
-
-

ΒΜ/ΡΒ 

m 

m 

m 

m 

m 

m 

m,b 

m 

m 

m,b 

m,b 

m 

m,b 

m,b 

m,b 

m,b 

m,b 

m,b 

m,b 

m 

b 

b 

m,b 

m,b 

m 

m 

m,b 

m,b 

m 

b 

m 

m,b 

m 

m 

m,b 

m 

b 

m 

m 

m 

m 

m 

b 

The patients are numbered according to our computerized datafile. Mis

sing numbers represent patients with other hematological malignancies. 

Initial white blood cell counts(WBC) are given in 10
9
 cells/liter. The 

percentage of lymphoblasts is determined microscopically, using bone 

marrow smears stained with May-Grünwald Giemsa technique. Patients 38, 
39, 57, and 67 were classified on the basis of peripheral blood findings. 
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determined, these patients were classified as nonBnonT-ALL on the basis 

of morphological aspects and a stimulatory capacity in the mixed lympho

cyte reaction. In the peripheral blood of patients 38 and 39 more than 

20% E cells were found. The percentage of cALL cells were 25 and 54, 

respectively. These patients were diagnosed as cALL, because the percen

tage of malignant cells in the peripheral blood were 29 and 54, respec

tively. The E cells most probably represent the normal peripheral Τ 

cells. In the bone marrow of these patients no elevated numbers of E 

cells were found. In patient 61, besides a high percentage of cALL 

eells{91%) also many anti-T positive cells(78%) were found. This patient 

could be classified as belonging to a subgroup expressing both the cALL 

and T-ALL antigens(a "minor T-ALL" subtype according to Greaves' clas-

sification(16), or a "c/T-ALL subtype according to the classification 

of Huhn et al.(18)). By taking into account clinical parameters, as 

white blood cell count and mediastinal mass, we preferred to include 

the patient in the cALL group. Clinical parameters were also decisive 

for the diagnosis T-ALL in patients 53, 57 and 68, who showed amounts 

of cALL and anti-T positive cells comparable to those found in patient 61. 

Enzyme Activities and the E-rosette Marker 

A relation between enzyme activities of purine metabolizing enzymes 

and subgroups of ALL according to the Greaves' classification(16) have 

been described by us before(29). In the present investigation we have 

looked for relationships with immunological markers in those groups of 

ALL patients having different enzyme activities. When plotting the 

enzyme activities measured, against the Ε-rosette marker, two groups of 

enzyme activities could be distinguished. With respect to ADA a group 

of patients with low to intermediate values(fig. 2) and relatively few 

The immunological markers E(rosette forming cells with sheep erythro

cytes), slg(surface immunoglobulin bearing cells), cALL(cells positive 

for the common-ALL antiserum) and anti-T(cells positive for the anti-T 

cell serum) are given as the percentage of positive cells. The cells 

used for enzymological characterization were isolated from bone marrow 

(m) and/or peripheral blood(b). Samples of the patients numbered 500-539 

were kindly provided to us by colleagues from other clinics in the 

Netherlands. Detailed immunological phenotypes were not available to us. 
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Figure 2: ADA, PNP, and 5'NT activitydO
 9
 moles/10

6
 cells.hour) in 

relation to the percentage of cells forming rosettes with sheep eryth

rocytes (E) in ALL. The grey area represents the range of these para

meters in control peripheral blood lymphocytes. Correlation coefficients 

(r) and the significances (p vâitae)of these correlations are given. 

E-rosetting cells and a group with high ADA activities and relatively 

many E-rosetting cells could be seen. In a similar way, distinctions 

could also be made in the case of low versus high activities of PNP, 

5'NT(fig. 2), ecto-5'NT and AdKin. In order to perform statistics, a 

distinction had to be made between E and E leukemias. Quite arbitra

rily, but considering that this figure was already used in the immunol

ogical classification, the borderline between E and E ALL'S was con

sidered to be at 20% Ε-rosette positive cells. It should be noted that 

shifting this border-line up or down 10% did not have any effect on the 

ρ values noted in table 2; only minor effects on the mean enzyme activ

ities could be seen. 
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Table 2: Purine Enzyme Activities in Leukemic Bone Marrow Cells: 

the Ε-rosette marker 

Enzyme 

HGPRT 

APRT 

ADA 

PNP 

5'NT 

ecto-5'NT 

AK 

AMPD 

Ad Kin 

E-Rosetting 

<20%(n=26) 

15.4 ± 7.0 

10.8 ± 7.2 

491 ± 314 

218 ± 116 

26.3 ± 25.0 

8.1 + 7.3 

6.3 ± 4.1 

290 + 315 

973 ± 531 

Cells 

>20%(n=ll) 

10.8 ± 5.6 

6.7 ± 2.8 

1088 ± 452 

115 ± 71 

1.3 + 1.9 

0.7 ± 0.5 

6.3 ± 2.7 

157 ± 124 

220 ± 143 

ρ value 

<0.05 

<0.05 

<0.001 

<0.005 

<0.001 

<0.001 

n. s. 

n.s. 

<0.001 

Enzyme Activities are expressed in 10
 9
 moles/10

6
 cells.hour(mean ± 

s.d.). n.s.=not significantly different. 

Significant differences in specific activities of purine enzymes 

were observed(table 2, fig. 2) from E
+
 ALL(n=ll) and from E~ ALL(n=26). 

Mean ADA activity was about 2.5 times higher in bone marrow cells from 

E
+
 ALL as compared to E~ ALL(p<0.001). On the other hand the mean PNP 

activity in E~ ALL was about twice the value of that in E ALL(p<0.005). 

Although considerable variation in 5'NT activities in ALL was observed, 

significantly lower and nearly undetectable 5'NT activities in bone 

marrow cells from E ALL were evident. AdKin activity was significantly 

higher in E" ALL than in E
+
 blasts(p<0.001). 

In part of the patients(n=16), the above mentioned enzyme activities 

were also assayed in lymphoid cells from peripheral blood(data not shown). 

Statistical analysis of these data revealed that the same differences 

were found as with bone marrow cells, although the ρ values were less 

significant. 

In fig. 2. it can be seen that there is a small overlap of ADA 

activity in the E and E~ ALL cases. One E ALL(patient 68) is in the 

ADA activity range(mean ± s.d.) of the E" ALL and three E~ ALL'S 

(patients 11, 12 and 40) are in the ADA activity range(mean ± s.d.) of 

the E ALL. Though the mean PNP activities are significantly different, 

the overlap in enzyme activity of the E and E ALL is considerable. 

ALL E cases, except one(patient 68) are,in the lower part of the 
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E" ALL activity range. 5'NT is low in all cases of E ALL(fig. 2). Four 

patients(patients 12, 25, 31 and 32) from the E~ ALL group showed 5'NT 

activities in the E ALL range. The difference between the two distinct 

populations was highly significant(p<0.001, table 2). With the membrane-

bound enzyme ecto-5'nucleotidase, essentially the same data were obtain-

ed(p<0.001). 

Enzyme Activities and the cALL Marker 

There was a marked difference(fig. 3, table 3) in ADA activity 

between cALL (>20% cALL antiserum positive cells; n=15) and cALL" bone 

marrow cells(<20% cALL antiserum positive cells; n=4). ADA activity was 

higher in cALL" blasts(p<0.01). On the other hand PNP, 5'NT and AdKin 

Spec, act 
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V. CALL* cells 

Figure 3: ADA, 5'NT and AdKin activity(10
-9
 moles/10

6
 cells.hour) in 

relation to the percentage of cells positive for the cALL antiserum in 

ALL. The grey area represents the range of the respective enzyme activ

ities in control peripheral blood lymphocytes. Correlation coefficients 

(r) and the significances(p-value) of these correlations are given. 
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Table 3: Purine Enzyme Activities in Leukemic Bone Marrow Cells: 

the Common ALL Marker 

Enzyme 

HGPRT 

APRT 

ADA 

PNP 

5'NT 

ecto-5'NT 

AK 

AMPD 

Ad Kin 

<20%l 

10.8 

7.8 

1186 

88 

0.6 

0.7 

5.2 

116 

220 

CALL 

!n=4) 

± 1.6 

± 2.0 

± 296 

+ 24 

± 0.8 

± 0.6 

± 1.2 

± 70 

± 41 

Positive Cells 

>20%(n=15) 

14.5 ± 8.4 

9.8 ± 7.4 

511 ± 330 

197 ± 114 

28.5 ± 26.9 

8.8 ± 6.9 

5.1 ± 2.9 

251 ± 329 

982 ± 517 

ρ value 

n.s. 

n.s. 

<0.01 

<0.005 

<0.001 

<0.001 

n.s. 

n.s. 

<0.001 

Enzyme activities are expressed in 10 ' moles/10
6
 cells.hour(mean ± 

s.d.). n.s.=not significantly different. 

activities were higher(table 3) in bone marrow cells from cALL leukemia 

(p<0.005, p<0.001 and p<0,001, respectively). Again these differences 

in enzymatic activities were less pronounced in cells derived from per

ipheral blood(data not shown). 

From fig.3 it becomes clear that two patients(patients 40 and 53) 

out of the cALL group have an ADA activity that is in the range of the 

cALL" patients. Concerning the 5'NT activity, two cALL patients(patients 

25 and 53) are in the cALL" activity range. In the case of AdKin this 

overlap is seen in one patient(patient 53). 

Enzyme Activities and the Cytoplasmic IgM Heavy Chain Marker 

Recently we have had the opportunity to test leukemic cells for 

the preB cell phenotype as defined by the presence of cytoplasmic IgM 

heavy chains(4). We tested 7 of our patients, who were classified as 

cALL. In the 3 patients who had cytplasmic IgM heavy chains present in 

their leukemic cells(patients 55, 65 and 67), the mean 5'NT activity was 

found to be 78.1 ± 2.7 10"
9
moles/10

6
 cells.hour. On the other hand the 

patients who did not show this preB marker(patients 40, 62, 63 and 64), 

had a mean 5'NT activity of 31.5 ± 20.3 10"
9
 moles/10

6
 cells.hour 

(p<0.02). A comparable difference was observed with ecto-5'NT(p<0.05). 
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HGPRT activity was higher in the cases in which no cytoplasmic IgM heavy 

chains were seen(21.5 + 4.2 10"
9
 moles/10

6
 eel Is.hour), compared to 

cytoplasmic IgM heavy chains containing cells(8.6 ± 1.5 10"
9
 moles/10

6 

cells.hour). The ρ value was found to be below 0.005. All other enzymes 

tested showed comparable activities in these two groups of patients. 

Enzyme Activities and the slg Marker 

Two patients(patients 31 and 539) appeared to have more than 20% 

slg
+
 cells. ADA activities(144 and 88 10

- 9
 moles/10

6
 cells.hour, respec

tively) were found to be lower than ADA activities found in cALL 

leukemia(table 3) and E ALL(table 2). PNP activities were found to be 

variable(440 and 135 10"
9
 moles/10

6
 cells.hour, respectively). A very 

low activity was seen for 5'NT(0.9 and 0.1) and ecto-5'NT(0.2 and 0.1 

10"
9
 moles/10

6
 cells.hour, respectively), which was comparable to 

activities found in E ALL. AdKin activities were in the range of E ALL. 

Enzyme Activities after Prednisone Monotherapy 

In 22 of the ALL patients the systematic analysis of purine inter-

conversion enzymes was repeated after 2 to 4 days of monotherapy with 

prednisone(dose: 40 mg/m
2
 once daily in the morning). Bone marrow samples 

were obtained in the morning about 24 hours after the last dose of 

prednisone. The mean activities of HGPRT, APRT, ADA, PNP, AK, AMPD and 

AdKin in nonBnonT-ALL seemed to be decreased after prdenisone therapy 

(table 4). However, these differences were only statistically significant 

in the case of ADA(p<0.01) and HGPRT(p<0.05). In fig. 4 it can be seen 

that, with the exception of three cases, ADA activities decrease after 

prednisone therapy. Such a pattern was not seen with other enzymes. 

Prednisone and prednisolone were also tested in vitro for inhibition or 

stimulation of the various enzymes. Both compounds did neither inhibit 

nor stimulate the enzyme acticities determined. 
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Table 4. Purine Enzyme Activities in Leukemic Bone Marrow Cells. 

Effect of Prednisone Monotherapy 

Enzyme 

HGPRT 

APRT 

ADA 

PNP 

5'NT 

ecto-5'NT 

AK 

AMPD 

AdKin 

nonBnonT-

before 

monotherapy 

15.4 

10.6 

550 

201 

36.8 

10.0 

5.6 

368 

949 

± 7.9 

± 6.6 

± 327 

± 117 

± 26.3 

± 8.1 

± 3.8 

± 379 

± 497 

-ALL(n=17) 

after 

monotherapy 

11.9 ± 6.0 

7.4 ± 2.8 

373 ± 177 

196 ± 109 

39.5 ± 25.3 

12.1 ± 13.7 

4.9 + 2.8 

327 ± 409 

840 + 410 

ρ value 

<0.05 

n.s. 

<0.01 

n.s. 

n. s. 

n.s. 

n.s. 

n.s. 

n.s. 

Specific enzyme activities(10" moles/10 cells.hour) in bone marrow 

lymphoid cells of patients with nonBnonT-ALL before and after monother

apy with prednisone. n.s.=not significantly different. 

Enzyme Activities and Leukemic ReTapse 

Leukemic cells from 5 nonBnonT-ALL patients(not included in table 1) 

have been enzymatically analyzed during relapse. Comparison of enzyme 

activities showed that in 26 newly diagnosed nonBnonT-ALL patients mean 

5'NT activity was 27.6 ± 24.5 Η Γ
9
 moles/10

6
 cells.hour. In the 5 

patients who were in relapse, mean 5'NT activity was found to be 

10.0 ± 8.5 10"
9
 moles/10

6
 cells.hour. The calculated ρ value was <0.01 

which was considered to be statistically significant different. Other 

enzyme activities showed no statistically significant differences between 

newly diagnosed patients and patients in relapse. 

DISCUSSION 

Correlations between enzymological membrane markers in ALL and 

activities of enzymes of purine metabolism have been described by 

several authors(3,9,21,23,25,29). Our present findings confirm and extend 

these earlier reports. ADA was found to have the highest activities in 

E
+
 ALL(1088 ± 452 10"

9
 moles/10

6
 cells.hour, table 2), when comparing 

with E" ALL(491 ± 314 10"
9
 moles/10

6
 cells.hour, table 2) and normal 



Spec. act. 

Days prednisone 

Figure 4: ADA activities(10~ moles/10 cells.hour) in bone marrow cells 
from ALL patients, before and after 2 to 4 days monotherapy with pred
nisone. The vertical bars indicate the mean ± s.d. in nonBnonT-ALL(·; 
cALL and une.-ALL included) and T-ALL(T). The grey area represents the 
range of ADA activities in control peripheral blood lymphocytes. The 
numbers refer to the patients in table 1. 

control peripheral blood lymphocytes(134 ± 46 10~9 moles/106 cells.hour, 

ref. 29). In cALL lymphoblasts the ADA activity was lower than in cALL 

leukemia and comparable with that of E- ALL(tables 2 and 3). The ADA 

activity of E~ ALL and cALL leukemias is intermediary between the 

enzyme activity of E ALL and control lymphocytes. The relative differ

ences in ADA activity between control lymphocytes and lymphoblasts from 

cALL patients was in the same range as described by others(9,25). The 

patients in the E ALL group are mostly diagnosed as T-ALL; the E ALL 

group showed an almost complete overlap with the cALL group, whereas 

a similar overlap was observed between the E ALL and the cALL- group. 
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Coleman et al.(9) however, found an ADA activity in T-ALL patients 

that was about 30 times higher than in control lymphocytes. The ADA 

activity in our group of E ALL patients is about 8 times higher than 

in control lymphocytes. In our enzyme assay lyophil i zed lymphoid cells 

were used. Coleman et al.(9) assayed ADA activity in cell extracts pre

pared from sonicated lymphoid cells. We have previously shown that in 

sonicated control lymphocytes ADA activity is considerably lower than 

in lyophilized cells(27). This might be a reason for the differences in 

absolute ADA activity in sonicated cells(58 10~
9
 moles/10

6
 cells.hour, 

ref. 9) versus lyophilized cells(143 10"
9
 moles/10

6
 cells.hour, ref. 29). 

Apparently ADA activity in Τ lymphoblasts is not markedly affected by 

this difference in the lyzing procedure, since comparable ADA activities 

were found by both groups(9,29). 

The essentially different results of Liso et al.(20), who found no 

difference of ADA activity between nonBnonT-ALL and T-ALL, may be as

cribed to the different age of their patients. We were dealing with 

childhood ALL(1 to 14 years), whereas Liso's patients were mostly 

adults(12 to 68 years). Extrapolation of the biochemical findings des

cribed in the present paper to adult ALL, therefore does not seem to be 

valid. 

The relatively low ADA activity found by Simpkins et al.(24) in 

T-ALL as compared to nonBnonT-ALL might be explained by the different 

way of expressing(per mg protein) the enzyme activity. If a much higher 

protein content per cell in T-ALL is present, the specific activity 

expressed on a protein basis becomes relatively lower than when expressed 

on a per cell basis. 

In our two cases with slg ALL the ADA activity seems to be in the 

normal range or slightly dereased, the latter finding being in agreement 

with Coleman et al.(9). Recently in one patient with B-ALL an elevated 

ADA activity, as compared to normal lymphocytes, nonBnonT and Τ leukemic 

cells, was reported(22). Interestingly, the blasts of the latter patient 

were morphologically classified as being of the L~ subclass(FAB classif

ication). Our patients and those described by Coleman et al. (9) were 

found to be of the L,(Burkitt's type) subclass. These data seem to in

dicate that heterogeneity exists in malignant В lymphoblasts, and that 
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ADA activity might be of help in the diagnosis of the different subclas

ses. However, the number of B-ALL patients investigated should be exten

ded before this hypothesis can be confirmed or denied. 

PNP activity in E ALL was significantly lower than in E~ lympho-

blasts. In control lymphocytes the PNP activity was about twice(209 ± 70 

10"
9
 moles/10

6
 cells.hour, ref. 29) that of the activity in E

+
 ALL. 

These data are in agreement with findings by others(3,22). However, in 

one s Ig ALL we found a PNP activity that seemed decreased and was in 

the E ALL range. In the other slg
+
 ALL patient we noted a PNP activity 

about twice that of control lymphocytes(29). Reaman et al.(22) have 

reported a PNP activity in a B-ALL patient, which was in the range of 

the Τ leukemic cells. In our opinion these different data can hardly be 

due to the different assay methods used. They could be merely due to the 

heterogeneity of В lymphoblasts derived from the B-ALL patients in the 

different studies. 

5'NT activity in E
+
 ALL is very low. Hardly any AMP degrading activ

ity was seen in these lymphoblasts. In our cALL leukemias the mean 5'NT 

activity(28.5 ± 26.9 10"
9
 moles/10

6
 cells.hour, table 3) was about twice 

that of normal lymphocytes(18.4 ± 11.7 10"
9
 moles/10

6
 cells.hour, ref. 

29). A possible explanation for the extremely large range in 5'NT activ

ity^.d. is about 100% of the mean) is the heterogeneity within this 

subgroup of ALL. In this context an interesting observation was made. 

In three cALL
+
 patients with preB characteristics the activity of 5'NT 

was about twice as high as in the cells of four cALL patients without 

cytoplasmic IgM heavy chains. A similar difference was found with regard 

to HGPRT, but not with the other enzymes. Our finding of a higher mean 

5'NT activity in cALL
+
 leukemia's than in control lymphocytes is contra

dictory with the findings of Reaman et al.(21). Whether this difference 

is due to the different ways of correcting for phosphatase activity, 

which is not specific for the ribose-5'-P bond, is not clear. But it is 

known that such phosphatases can even be markers for certain subtypes 

of leukemia(6). 

Our findings concerning ADA and PNP activities in s Ig ALL are 

partly in contradiction to the findings of others. However, the findings 

on the 5'NT activity in this subgroup of ALL seem rather unanimous. Like 
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other authors(9,22), we observe in both cases of B-ALL a decreased 5'NT 

activity that is in the range of the E ALL. In conclusion, we cannot 

agree with the suggestion that 5'NT activity is an enzymological marker 

for distinct subclasses of ALL. 

To our knowledge the differences in HGPRT and APRT activity in E 

ALL and E" ALL have not been described earlier. These differences were 

found to be not significant when comparing cALL and cALL leukemias. 

However, the numbers of patients were rather limited. Further exploration 

of the possible diagnostic value of these findings is indicated. 

The activity of AdKin is significantly higher in E~ and/or cALL 

leukemias than it is in E
+
 and/or cALL" leukemias. To our knowledge this 

has not been described before. The higher activity of this nucleotide 

metabolizing enzyme in E" and/or cALL
+
 leukemia is in agreement with 

other data obtained by our group(lO). It was shown that nonBnonT lympho-

blasts had a significantly higher ATP concentration(1005 ± 205 10"
1 2 

moles/10
6
 cells) than control lymphocytes(500 ± 150 10"

1 2
 moles/10

6 

cells). In Τ lymphoblasts the ATP content is not significantly elevated. 

The possible implications of the elevated ATP concentration in certain 

cases of ALL for the energy charge of leukemic blasts are subject of 

further investigation. 

Since it is assumed that lymphoblasts from patients with ALL are 

arrested in a certain stage of their differentiation(17) it is interes

ting to compare our biochemical findings in ALL with normal lymphoid 

cells from various differentiation stages. Lymphoid cells derived from 

the thymus are known to have relatively low 5'NT(12,30), high ADA 

(1,5,30) and low PNP(30) activities. In 6 separate thymocyte subfractions 

the ecto-5'NT activity ranged from 0.4 to 2.0 10"
9
 moles/10

6
 cells.hour 

(30). Since lymphoblasts from T-ALL might have been arrested at different 

stages of the thymic differentiation, this can explain the relatively 

wide range of 5'NT activity in T-ALL. The same is the case with ADA and 

PNP activity. In relatively immature(phytohaemagglutinin unresponsive) 

thymocytes the ADA activity is about half the activity in relatively 

mature(phytohaemaggluti ni η responsive) thymocytes(30). PNP activity in 

the latter fractions is comparable with normal peripheral blood Τ lympho

cytes, whereas in the immature fractions PNP activity is about 10% of 
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that value. 

The biochemical consequences of the differences in purine enzyme 

activities for the leukemic cells have not been studied extensively yet. 

However, since the major differences found are in the ADA, PNP, 5'NT 

and AdKin activities, it might be anticipated that handling of purine 

nucleosides in E ALL differs from that in cALL or in preB-cALL. Due to 

the relatively low 5'nucleotidase/kinase activity ratio, nucleosides 

(e.g. adenosine, deoxyadenosine, guanosine and deoxyguanosine) can be 

phosphorylated to a much higher extent in E ALL than in other subtypes 

of ALL. Under certain conditions these phosphorylated nucleosides are 

toxic,especially to lymphoid cells(5,13). E ALL cells e.g., might be 

more vulnerable to deoxyguanosine intoxication than other subclasses of 

leukemia. Such toxic effects were already found in thymocytes with a 

comparable enzymatic make-up(8). On the other hand the deaminating 

capacity(ADA activity) towards adenosine and deoxyadenosine in E ALL 

cells is very high. Therefore adenosine and/or deoxyadenosine might be 

less toxic to these cells. Systematic analysis of purine nucleoside 

metabolism in leukemia might become helpful, not only in diagnosis but 

also for the development of a more selective chemotherapy in ALL. 

The impact of the significantly decreased ADA and HGPRT activities 

in nonBnonT-ALL patients(table 4, fig.4) after prednisone monotherapy 

is not clear. No correlation appeared to exist neither with the ADA 

activity and the number of leukemic blasts in bone marrow, nor between 

the ADA activity and the number of cells in (S+G2+M)-phase. Since nearly 

all patients showed a decreased ADA activity after prednisone therapy 

(fig. 4), further investigation seems to be justified. 

It was surprising that when comparing newly diagnosed nonBnonT-ALL 

patients with patients in relapse, all purine enzyme activities were in 

the same range, except 5'NT. The finding that in nonBnonT-ALL relapse 

a lower 5'NT activity was observed might point to the development of a 

different leukemic (sub)clone. Before any final conclusions can be drawn 

more patients have to be studied. Longitudinal studies should be perform

ed, measuring 5'NT and other purine enzymes, in order to establish 

whether such enzyme activities have also any prognostic significance in 

leukemic relapse. 

94 



ACKNOWLEDGEMENTS 

Mr. F. van de Brandt and Miss H. Zanders are gratefully acknowledged 

for excellent technical assistance. The authors thank Dr. A.J.P. Veerman 

(Dept. of Pediatrics, University Hospital, Free University, Amsterdam, 

The Netherlands) and Dr. R.K.B. Schuurman(Dept. of Immunohematology, 

University Hospital, Leiden, The Netherlands) for providing samples from 

T-ALL patients and a B-ALL patient, respectively. This study was suppor

ted by the "Queen Wilhelmina Fund"(Dutch Cancer Organization), grant 

SNUKC 1977-7. 

REFERENCES 

1. Adams, A. and Harkness, R.A.(1976). Adenosine deaminase activity in 
thymus and other human tissues. Clin. Exp. Imnunol., 26, 647-649. 

2. Bakkeren, J.A.J.M., De Vaan, G.A.M, and Hillen, H.F.P.(1979). Inter
relationship of immunologic characteristics, proliferation pattern 
and prednisone sensitivity in acute lymphoblastic leukemia of child
hood. Blood, 53, 883-891. 

3. Blatt, J., Reaman, G.H., Levin, N. and Poplack, D.G.(1980). Purine 
nucleoside Phosphorylase activity in acute lymphoblastic leukemia. 
Blood, 56, 380-382. 

4. Brouet, J.C., Preud'homme, J.L., Penit, C , Valensi, F., Rouget, P. 
and Seligmann, M.(1979). Acute lymphoblastic leukemia with preß cell 
characteristics. Blood, 54, 269-273. 

5. Carson, D.A., Kaye, J. and Seegmiller, J.E.(1977). Lymphospecific 
toxicity in adenosine deaminase deficiency and purine nucleoside 
Phosphorylase deficiency: Possible role of nucleoside kinase(s). 
Proa. Natl. Acad. Soi. USA, 74, 5677-5681. 

6. Catovsky, D., Cherche, M., Greaves, M.F., Janossy, G., Pain, С and 
Kay, H.E.M.(1978). Acid phosphatase reaction in acute lymphoblastic 
leukemia. Lancet, i, 749-751. 

7. Chechik, B.E., Rao, J., Greaves, M.F. and Hoffbrand, A.V.(1980). 
Human thymus/leukemia associated antigen(a low molecular weight form 
of adenosine deaminase) and the phenotype of leukaemic cells. Leuk. 
Res. , 4 343-349. 

8. Cohen, À., Lee, 3.W.W., Dosch, H.M. and Gelfand, E.W.(1980). The 
expression of deoxyguanosine toxicity in Τ lymphocytes at different 
stages of maturation. J. Immunol. , 125, 1578-1582. 

9. Coleman, M.S., Greenwood, M.F., Hutton, J.J., Holland, P., Lampkin, 
В., Krill, С. and Kastelic, J.E.(1978). Adenosine deaminase, terminal 
deoxynucleotidyltransferase(TdT), and cell surface markers in child
hood acute leukemia. Blood, 52, 1125-1131. 

10. De Abreu, R.A., Van Baal, Ü.M., Bakkeren, J.A.J.M., De Bruyn, С.H.M.M. 
and Schretlen, E.D.A.M.(1982). A high performance liquid chromato
graphic assay for identification and quantitaion of nucleotides in 
lymphocytes and malignant lymphoblasts. J. Chromatogr. , 227, 45-52. 

95 



11. Edwards, N.L., Magilavy, D.B., Cassidy, J.T. and Fox, LH.(1978). 
Lymphocyte ecto-5'nucleotidase deficiency in agammaglobulinemia. 
Science, 201, 628-630. 

12. Edwards, N.L., Gelfand, E.W., Burk, L., Dosch, H.M. and Fox, I.H. 
(1979). Distribution of 5'nucleotidase in human lymphoid tissue. 
Proc. Natl. Aoad. Sci. USA, 76, 3474-3476. 

13. Gelfand, E.W., Lee, J.J. and Dosch, H.M.(1979). Selective toxicity 
of purine deoxynucleosides for human lymphocyte growth and function. 
Proc. Natl. Acad. Sci. USA, 76, 1998-2002. 

14. Giblett, E.R., Anderson, J.E., Cohen, F., Pollara, В. and Meuwissen, 
H.J.(1972). Adenosine deaminase deficiency in two patients with 
severely impaired cellular immunity. Lancet, ii, 1067-1069. 

15. Giblett, E.R., Ammann, A.J., Wara, D.W., Sandman, R. and Diamond, 
L.K.(1975). Nucleoside Phosphorylase deficiency in a child with 
severely defective Τ cell immunity and normal В cell immunity. 
Lancet, i, 1010-1013. 

16. Greaves, M. and Janossy, G.(1978). Patterns of gene expression and 
the cellular origins of human leukaemias. Biochim. Biophys. Acta, 
516, 193-230. 

17. Gunz, F. and Barke, A.G.(1974). Leukemia. Grune & Stratton, New York. 
18. Huhn, D., Thiel, E., Rodt, Η. and Andreewa, P.(1981). Cytochemistry 

and membrane markers in acute lymphoblastic leukemia(ALL). Scand. 
J. Haematol., 26, 311-320. 

19. Leech, A.R. and Newsholme, E.W.(1980). Radiochemical assays for 
adenylate kinase and АИР deaminase using polyethyleneimine-cellulose 
thin layers. Anal. Biochem., 90, 576-589. 

20. Liso, V., Tursi, Α., Specchia, G., Grocolli, G., Loria, M.P. and 
Bonomo, L.(1978). Adenosine deaminase activity in acute lymphoblastic 
leukemia: Cytochemical, immunological and clinical correlations. 
Scand. J. Haematol., 21, 167-175. 

21. Reaman, G.H., Levin, N., Muchmore, Α., Hol iman, B.J. and Poplack, 
D.G.(1979). Diminished lymphoblast 5'nucleotidase activity in acute 
lymphoblastic leukemia with Τ cell characteristics. New Engl. J. Med., 
300, 1374-1377. 

22. Reaman, G.H., Blatt, J. and Poplack, D.G.(1981). Lymphoblast purine 
pathway enzymes in В cell acute lymphoblastic leukemia. Blood, 58, 
330-332. 

23. Scholar, E.M. and Calabresi, P.(1973). Identification of the enzy
matic pathways of nucleotide metabolism in human lymphocytes and 
leukemia cells. Cancer Res., 33, 94-103. 

24. Simpkins, H., Stanton, A. and Davis, B.H.(1981). Adenosine deaminase 
activity in lymphoid subpopulations and leukemias. Cancer Res., 41, 
3107-3110. 

25. Smyth, J.F., Poplack, D.G., Holiman, B.J., Leventhal, В.G. and Yarbro, 
G.(1978). Correlation of adenosine deaminase with cell surface 
markers in acute lymphoblastic leukemia. J. Clin. Invest., 62, 
710-712. 

26. Thompson, L.F. and Seegmiller, J.E.(1980). Adenosine deaminase 
deficiency and severe combined immunodeficiency disease. Adv. 
Enzymol. , 51, 167-210. 

27. Van Laarhoven, J.P.R.M., Spierenburg, G.T., Oerlemans, F.T.J.J, and 
De Bruyn, C.H.M.M.(1980). Micromethods for the measurement of purine 
enzymes in lymphocytes. Adv. Exp. Med. Biol., 122B, 415-420. 

28. Van Laarhoven, J.P.R.M., Spierenburg, G.T. and De Bruyn, С.H.M.M. 
(1980). Enzymes of purine metabolism in human lymphocytes. J. Immunol. 

Methods, 39, 47-58. 

96 



29. Van Laarhoven, J.P.R.M., Spiereburg, G.T., Bakkeren, J.A.J.M., 
Schretlen, E.D.A.M., Geerts, S.J. and De Bruyn, C.H.M.M.(1982). 
Enzymes of purine metabolism as diagnostic tools in acute lympho
blastic leukemia. In: Progress in Clinical Enzymology, Vol. 2, 
Goldberg, D. and Werner, Μ., eds., Masson Publishing Company, 
New York, in press. 

30. Van Laarhoven, J.P.R.M., Schuurman, H.J., Spierenburg, G.T., 
Broekhuizen, R., Brekelmans, P., Figdor, C G . and De Bruyn, C.H.M.M. 
(1982). Purine metabolism in thymocyte fractions. This thesis, 
chapter 9. 

97 



98 



EXPRESSION OF PURINE METABOLISM IN LEUKEMIA 

chapter 8 

ENZYMOLOGICAL STUDIES IN CHRONIC LYMPHOCYTIC LEUKEMIA 

J.P.R.M. van Laarhoven
1
, G.C. de Gast

2
, 

G.T. Spierenburg
1
 and С.H.M.M. de Bruyn

1
. 

^ept. of Human Genetics, University Hospital, 

Nijmegen, The Netherlands. 
2
Dept. of Bloodtransfusion, University Hospital, 

Utrecht, The Netherlands. 

Submitted for publication in Leukemia Research 

99 



ABSTRACT 

Adenosine deaminase(ADA), 5' nucleotidase(5'NT), ecto-5'NT, purine 

nucleoside phosphorylase(PNP), hypoxanthine-guanine phosphoribosyltrans-

ferase(HGPRT), adenine phosphoribosyltransferase(APRT), adenosine kinase 

(AK), AMP deaminase(AMPD) and adenylate kinase(AdKin) activities were 

assayed in peripheral blood lymphoid cells from 20 patients with В cell 

type chronic lymphocytic leukemia(CLL). Significantly decreased mean 

activities of ADA, 5'NT, ecto-5'NT, PNP and AMPD were observed when com

paring B-CLL lymphoid cells with control peripheral blood lymphocytes 

(PBL). AK and AdKin) activities however, were found to be higher in B-CLL. 

Relatively wide ranges of ADA and 5'NT activity were observed. In 

patients with paraproteinaemia, 5'NT activity was found to be relatively 

high and in the range of the activities in normal PBL. ADA activity 

seemed to'be slightly higher in patients without paraproteinaemia. No 

correlation could be found between the enzyme activities and the number 

of cells rosetting with sheep erythrocytes or bearing surface immuno-

globulin(slg). A relationshipwas suggested between 5'NT activity and Ig 

production. 
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INTRODUCTION 

In the last decennium considerable differences in the activities 

of enzymes of purine metabolism have been described in various groups 

of human leukemias. In those papers data have been reported on a few 

enzymes in chronic lymphocytic leukemia(CLL): adenosine deaminase(ADA, 

1,6,11,13,16), purine nucleoside phosphorylase(PNP, 1,2,13) and 5'nuc-

leotidase(5'NT, 9,10). No simultaneous studies on several enzymes of 

purine metabolism in a group of CLL patients have been described. Mean 

ADA activity in leukemic cells from patients with CLL was reported to be 

2 to 3-fold lower than in normal peripheral blood lymphocytes(PBL, 6,11). 

Simpkins et al.(14) however, recently described ADA activities in CLL 

lymphoid cells which were comparable to ADA activities in control PBL. 

In 6 out of 7 patients, Borgers et al.(2) found a weak histochemical 

staining for PNP in CLL lymphoblasts, in contrast to the clear staining 

of control PBL. In only one patient the histochemically determined PNP 

activity was comparable to the pattern observed in control lymphocytes. 

Ambrogi et al.(l) confirmed the decreased ADA and PNP activities in CLL. 

In their studies ADA activity was 2 to 3-fold lower and PNP activity was 

3 to 6-fold lower as compared to PBL from normal donors. 5'NT activity 

was found to be low in lymphocyte membranes in 7 out of 10 CLL patients 

(9). In crude lymphocyte homogenates comparable results were obtained(9). 

We have undertaken a systematic analysis of activities of nine 

enzymes involved in purine metabolism in lymphoid cells from 20 patients 

with B-CLL. ADA, PNP, 5'NT, ecto-5'NT, hypoxanthine-guanine phosphorib-

osyltransferase(HGPRT), adenine phosphoribosyltransferase(APRT), 

adenosine kinase(AK), AMP deaminase(AMPD) and adenylate kinase(AdKin) 

activities have been assayed in lymphoid cells from CLL patients. 

MATERIALS AND METHODS 

Patients 

Eight female and twelve male patients, aging from 44 to 77 years, 

were investigated. Several immunological markers are listed in table 1. 

The percentage of cells with surface immunoglobulins(slg) varied from 
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Table 1 : Immunological Markers of Chronic Lymphocytic Leukemia Patients 

Patient 

529 

530 

531 

532 

533 

534 

535 

536 

537 

538 

540 

541 

542 

543 

544 

545 

546 

547 

548 

549 

Age 

62 

58 

77 

45 

75 

65 

52 

59 

44 

73 

53 

62 

76 

54 

52 

64 

71 

60 

58 

69 

Sex
1 

f 

f 

f 

m 

m 

f 

m 

m 

m 

m 

m 

m 

f 

f 

m 

m 

m 

m 

f 

f 

Paraproteins 

-

-
-
IgM/: 

-
-
IgM/I 

-
-
-
-
-
-
IgMX 

-
-
IgG< 

IgG< 

-
-

IgGK 

:gGX 

E
 3 

s 

1 

16 

5 

2 

7 

3 

8 

6 

18 

0 

5 

13 

18 

3 

2 

5 

7 

2 

8 

25 

E * 
m 

75 

62 

65 

5 

84 

16 

3 

55 

79 

35 

40 

78 

35 

16 

87 

51 

51 

36 

71 

52 

slg
5 

39 

70 

90 

70 

88 

90 

70 

75 

69 

61 

76 

60 

70 

90 

73 

50 

49 

80 

80 

77 

The patients are numbered according to our computerized data file. The 

missing number represents a patient with another hematological malig

nancy. m=male, f=female. Paraproteins present or paraproteins absent 

(-). The percentage of cells forming rosettes with sheep erythrocytes. 

The percentage of cells forming rosettes with mouse erythrocytes. The 

percentage of cells bearing surface immunoglobulins. 

39 to 90%; the percentage of cells rosetting with mouse erythrocytes(E ) 

ranged from 13 to 87%. In the 4 patients with a relatively low amount 

of E
m

+
 cells(<20%), the percentage of slg

+
 cells was 70 to 90%. Para-

protei naemi a was observed in 5 patients, 3 of them had a low percentage 

of E cells. In two cases a double paraproteinaemia was found(table 1). 

Isolation of Lymphoid Cells 

Cells were isolated from heparinized blood by Ficoll-Hypaque 

gradient centrifugation(d=1.077 gr/ml). Τ cells were identified by their 

capacity to spontaneously form rosettes with sheep red blood cells(E ) 

and В cells were recognized by rosetting with mouse red blood cells(E ), 

as described by Gupta et al.(5) and by the presence of slg. The 
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percentage of slg bearing cells was determined by immunofluorescence 

using affinity purified FITC-labelled antibodies as described by Gathings 

et al.(4). 

Enzyme Assays 

Enzyme activities were assayed making use of radiochemical sub

strates with an earlier described micromethod(17). HGPRT(E.C. 2.4.2.8) 

and APRT(E.C. 2.4.2.7) were assayed by measuring the conversion of 

hypoxanthine and adenine to their nucleotides, IMP and AMP respectively. 

PNP(E.C. 2.4.2.1) was assayed in both the catabolic and the anabolic 

direction. Since both methods essentially showed the same results, only 

the anabolic activity is given. The deamination of adenosine to inosine 

was measured as the ADA(E.C. 3.5.4.4) activity. 5'NT(E.C. 3.1.3.5) ac

tivity was determined in lyophilized cells as well as in intact cells 

(ecto-5'NT) with methods described by Ip and Dao(7) and by Edwards et al. 

(3), respectively. The two activities showed good correlations. Only 5'NT 

activity is given in tables 2 and 3. AK(E.C. 2.7.1.20) activity was 

assayed by following the conversion of adenosine to AMP. AMPD(E.C. 

3.5.4.6) and AdKin(E.C. 2.7.4.3) were essentially assayed according to 

Leech and Newsholme(8) adapting their method to our micromethod. Enzyme 

activities are expressed in 10"9 moles product formed/106 cells.hour. 

Table 2 : Activities of Purine Enzymes in Peripheral Blood Lymphoid 
Cells from B-CLL Patients and from Normal Controls 

Enzyme Controls(n=20) B-CLL(n=20) 2p value 

HGPRT 
APRT 
ADA 
PNP 
5'NT 
AK 
AMPD 
AdKin 

1 -9 
Enzyme activities(mean ± s.d.) are expressed in 10 moles of product 

6.9 ± 3.31 

13.6 ± 4.2 
134 ± 46 
209 ± 70 
18.4 ± 11.7 
7.9 ± 3.6 
267 ± 106 
265 ± 183 

7.0 ± 4.9 
13.2 ± 6.5 
49.2 ± 43.3 
132 ± 96 
3.8 ± 6.8 
17.3 ± 6.7 
190 ± 105 
768 ± 425 

n.s. 
n. s. 
<0.001 
<0.01 
<0.001 
<0.001 
<0.02 
<0.001 

formed/106 cells.hour. 
p-values in the two tailed Student's t-test using the separate variance 
estimate 
n.s.=not significantly different. 
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Figure 1: ADA, PNP, 5'NT and ecto-5'NT activities(IO
-9
 moles/10

6
 cells, 

hour) in control peripheral blood lymphocytes and lymphoid cells from 

patients with B-CLL. The mean values are indicated with a horizontal 

line. +=CLL patients with paraproteinaemia. 

RESULTS 

The mean activities obtained in the enzymatic analysis of a group 

of 20 B-CLL patients are depicted in figs. 1 and 2. Data on individual 

patients are given. Mean activities of ADA, PNP, 5'NT and ecto-5'NT in 

cells from CLL patients are significantly lower than in normal peripheral 

blood lymphocytes. Mean ADA activity is about — of the control value, 

whereas PNP is only slightly lower(table 2). The most pronounced decrease 

in activity is found for 5'NT. In PBL from B-CLL patients the mean 5'NT 

activity is 3.8 10"
9
 moles/10

6
 cells.hour(table 2). In contrast to the 

decreased enzyme activity levels described above, significantly higher 

values in B-CLL were observed for AK and AdKin. AK activity was about 

twice as high in B-CLL than in control PBL, whereas for AdKin a 3-fold 
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higher activity was found in B-CLL(table 2). Computerized Statistical 

evaluation of the biochemical and immunological data was performed. No 

statistical differences or correlations in enzyme activities were detec

ted in CLL patients in relation to the E or slg markers. However, a 

correlation between the E marker and the 5'NT and ecto-5'NT activity 
m 

seemed to exist. The correlation coefficients were -0.57 and -0.50 for 

5'NT and ecto-5'NT, respectively, with a statistical significance 

(p value) of 0.004 and 0.013, respectively. 

When comparing CLL patients with and without paraproteinaemia, a 

significant difference was observed(table 3). The mean 5'NT activity was 

about 10-fold higher(table 3, fig. 1) in CLL patients with paraprotein-

aemia(range 5.1 to 30.1 10"
9
 moles/10

6
 cells.hour) than in CLL patients 

without paraproteinaemia(range 0.1 to 3.4 10"
9
 moles/10

6
 cells.hour). 

Spec- act. 

HGPRT 
p=0.955 

5 

controls CLL 
(n=21) (n.20) 

45-
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2 0 

1 Ы 

10-

5 -

APRT 
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. 

и 
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I 

* 

0.818 

t 

" —r-
X 
• 
τ 
. 

controls CLL 
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3 5 -

30-

2 5 · 

2 0 1 

15-
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A К 

p.0.000 

9 

* 
! 
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. 
i 

« 
• 

! 

ν 

• 
! 
-
t 

4 0 0 · 

300 

2 0 0 

100-

AMPD 
Ρ 

i 

I 

t 

t 

0 . 0 2 3 

• 

; 

• 

-^-

л 
•t 

» 

AdKin 
p . 0 . 0 0 0 

controls CLL 
(n=21) (n=20) 

controls CLL 
(n.22) (n.20) 

controls CLL 
(n=8) ln=20> 

Figure 2: HGPRT, APRT, AK, AMPD and AdKin activities(IO
-9
 moles/10

6 

cells.hour) in control peripheral blood lymphocytes and lymphoid cells 

from patients with B-CLL. The mean values are indicated with a horizon

tal line. +=CLL patients with paraproteinaemia. 

105 



Table 3 : Purine Enzyme Activities in B-CLL Patients with or without 

Paraproteinaemia 

Enzyme Patients WITH 

Paraproteinaemia 

(n=5) 

Patients WITHOUT 

Paraproteinaemia 

(n=15) 

ρ value 

HGPRT 

APRT 

ADA 

PNP 

5'NT 

AK 

AMPD 

AdKin 

7.1 ± 3.9
1 

13.5 ± 6.7 

28.8 ± 8.7 

154 ± 126 

11.5 ± 10.6 

19.5 ± 9.5 

232 ± 161 

915 ± 377 

6.9 ± 5.3 

13.1 ± 6.7 

56.0 ± 48.3 

125 ± 88 

1.2 ± 1.5 

16.6 ± 5.8 

176 ± 81 

720 ± 441 

n.s. 

n.s. 

<0.05 

n.s. 

<0.05 

n.s. 

n.s. 

n.s. 

Enzyme activities(mean ± s.d.) are expressed in 10~
9
 moles/10

6
 cells, 

hour.
 2
P values in the two tailed Student's t-test using the separate 

variance estimate. n.s.=not significantly different. 

DISCUSSION 

In contrast with findings in acute lymphoblastic leukemia(ALL, 18) 

mean ADA activity in B-CLL was a factor 3 lower than in normal PBL 

(table 2). This is in agreement with data reported by others(l,6,16). 

However, in contrast to the findings of Huang et al.(6) and Ambrogi et 

al.(l), who only observed ADA activities below the mean control level, 

we observed a considerable range from 8%(patients 533 and 537) to 116% 

of the mean control value(table 2). The ADA activity of four patients 

(patients 529, 531, 538 and 542) was within our control range(fig. 1). 

These conflicting results might be due to the fact that in the studies 

mentioned only limited numbers of patients were studied(8 and 4, respec

tively). 

The correlation between ADA activity and the percentage of В cells 

in CLL patients that was described by Tung et al.(16), could not be 

confirmed in our group of patients. In the present study В cells were 

defined by the E and s Ig markers. The complement receptor was used as 

а В cell marker in the study of Tung et al.(16). The fact that Simpkins 

et al.(14) reported comparable ADA activities in CLL lymphoid cells and 

in control lymphocytes, might be due to the difference in the enzyme 

assay. Simpkins et al.(14) used the indirect photometric assay of Tung 

et al.(16) in hypotonically lyzed cells. A selective lysis of cells 
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night be consequence of this method. Together with expressing the enzyme 

activity on a protein basis and not on a per cell basis, as we do, this 

might lead to different results. When comparing the ADA activities in 

CLL with various immunological markers, a significant difference was only 

found between CLL patients with paraproteinaemia and CLL patients 

without paraproteinaemia. 

Although it is rather difficult to compare the histochemical 

findings of Borgers et al.(2) with our biochemical studies, they seem 

to be in agreement. The weak staining for PNP of the majority of lymphoid 

cells in 6 B-CLL patients most probably represents the relatively low 

PNP activity in most of the CLL patients. Like Borgers et al., we also 

find CLL patients, who show a PNP activity comparable to control values. 

As was also the case with ADA, Ambrogi et al.(l) observed a relatively 

narrow range of low PNP activity in B-CLL patients. In our group of CLL 

patients however, 7 patients had PNP activities within our control range 

(fig. 1). Again this discrepancy might be attributed to the relatively 

limited number of patients(n=7) studied. 

Our findings of 5'NT activity in CLL are in agreement with data 

reported by others(lO). In our group of patients a 5-fold lower mean 

5'NT activity was observed than in control PBL. This difference would 

even be more pronounced when CLL В cells were compared with normal 

peripheral В cells, because these have a higher 5'NT activity than 

peripheral Τ cells(12,15,19). In our group, 4 out of the 20 patients 

showed 5'NT activities within our normal range(fig. 1). These patients 

(patients 532, 535, 543 and 546) all had paraproteinaemia(tabie 1). A 

significant correlation between the number of cells rosetting with 

mouse erythrocytes(E ) and the 5'NT(r=-0.57, p=0.004) and ecto-5'NT 

(r=-0.50, p=0.013) activities was found. When plotting these parameters, 

leukemic cell populations with relatively low 5'NT activity and a low 

percentage of E cells as well as populations with low 5'NT activity 

and a high percentage of E cells were seen. This apparent relation 

needs further investigations before conclusions can be drawn. 

The differences in mean AK, AMPD and AdKin activities in CLL 

lymphoid cells as compared to PBL were found to be statistically signif-

icant(table 2). The ranges of AMPD in CLL patients and in control persons 
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were almost completely overlapping. Only the distribution of the indiv

idual activities in these ranges seemed to differ(fig. 2). The difference 

in mean AK and AdKin activities were more pronounced. Though 7 CLL 

patients fell in the normal range of the AK activity, none of the activ

ities of the patients were below the mean control value(fig. 2). In the 

case of AdKin only one control value was found to be in the CLL activity 

range(fig. 2). 

It should be noted that in general the activities of the catabolic 

enzymes 5'NT, ADA and PNP are lower in CLL patients than in control 

individuals. In contrast, the anabolic enzymes AK and AdKin show in

creased activities in CLL lymphocytes as compared to control PBL. Since 

AK and AdKin are involved in the synthesis and interconversion of 

nucleotides in cells, these enzymatic changes might have severe con

sequences for the energy charge in lymphoid cells from CLL patients. 

Analysis of intracellular concentrations of purine nucleotides has to 

be done to clarify this point. 

Considering the mean 5'NT activity in B-CLL patients with and 

without paraproteinemia, a significant difference was observed. The 

patients without paraproteinemia showed a 10-fold lower mean 5'NT 

activity as compared with the patients with paraproteinaemia(table 3, 

fig. 1). A correlation between Ig production and 5'NT activity has been 

established earlier(3). It was shown that in patients with congenital 

agammaglobulinaemia 5'NT activities were decreased. In this disease the 

relatively low 5'NT activity might in part be attributed to the absence 

of peripheral В cells(12). Since В cells appear to have higher 5'NT 

activity than Τ cells(12,15,19), the consequence of this shift in 

lymphoid cell populations might be a lower net 5'NT activity. However, 

also in Τ cells of congenital agammaglobulinaemia a decreased 5'NT 

activity was observed(15). This supports the hypothesis that abnormal 

Τ cells may be responsible for the perpetuation of the disease and the 

low 5'NT activities. 

Our findings may support a relationship between 5'NT activity and 

Ig production because B-CLL patients with a paraproteinaemia, which was 

related to the leukemic cell population, had a much higher 5'NT activity. 

However, the higher 5'NT activity may also be a reflection of a more 
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mature В cell population in the CLL patients with paraproteinaemia, 

irrespective of the capacity of Ig production. Moreover a relationship 

with the occurrence of IgM heavy chains in the cytoplasma has also been 

established in ALL cells, where preß leukemias(having cytoplasmic IgM 

heavy chains) had a twice as high 5'NT activity(18) as the nonBnonT-ALL 

patients(not having cytoplasmic IgM heavy chains). It should be 

emphasized however, that further studies have to be performed on the 

role of 5'NT activity in В and Τ lymphocyte differentiation and function. 
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ABSTRACT 

Separation of human thymocytes according to size was performed 

using centrifugal elutriation. Six fractions were obtained. Two fractions 

(1 and 2) predominantly containing small sized thymocytes appeared to 

be poorly stimulated by phytohaemagglutinin(PHA). The number of cells 

agglutinating by peanut agglutinin(PNA) was relatively high in these 

fractions, whereas the number of cells staining for a-naphtyl acetate 

esterase(ANAE) was relatively low. It was concluded that fractions 1 

and 2 mainly exist of immature thymocytes. The fractions predominantly 

containing medium sized cells(3 to 6), were considered to be relatively 

mature thymocytes. Fractions 3 to 6 were PHA responsive, contained a 

high number of ANAE staining cells and relatively few cells agglutin

ating by PNA. The activities of adenosine deaminase(ADA), purine nuc 

leoside phosphorylase(PNP), ecto-5'nucleotidase(ecto-5'NT) and deoxy-

cytidine kinase(dCK) were greatly different in these thymocyte fractions. 

Fractions 1 and 2 exhibited relatively low ADA, PNP and dCK activities, 

whereas these activities were higher in fractions 3 to 6. Ecto-5'NT 

activity was the highest in fraction 3. It could be shown that the 

ADA/PNP activity ratio is a marker for thymocyte maturation. Within 

thymocyte fractions a good correlation was found between the ecto-5'NT 

/dCK activity ratio and the inhibition of the PHA response by the 

nucleosides deoxyguanosine and deoxyadenosine. From these studies it 

was concluded that, since the number of cells contributing in the PHA 

response and the number of cells contributing in the purine enzyme 

activities differ considerably, it is not allowed to relate purine 

enzyme make-up with toxic effects of nucleosides in unseparated 

thymocytes. 
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INTRODUCTION 

The relevance of an intact purine metabolism for lymphoid cell 

function has been documented by a number of reports. Inherited deficien

cy of adenosine deaminase(ADA) is associated with a defect in both Τ 

and В cell development in a considerable number of patients with severe 

combined immunodeficiency disease(12,16). Purine nucleoside phosphoryl-

ase(PNP) deficiency is associated with selective Τ cell dysfunction 

(13,23). A relatively low 5'NT activity has been described(8) in patients 

with congenital X-linked agammaglobulinaemia. A metabolic consequence 

arising from ADA and PNP deficiency is the accumulation of deoxynucleo-

sides in all somatic cells. Normally these compunds can be broken down 

to purine bases. Especially the lymphoid system has a high capacity to 

phosphorylate (deoxy)nucleosides to (deoxy)nucleotides(3,5,29). The 

latter compounds subsequently inhibit ribonucleotide reductase(lO), an 

enzyme essential for DNA synthesis. 

Not only with respect to lymphoid cell function, but also in 

relation to lymphocyte maturation, purine enzymes play an important 

roll. This is particularly true with regard to Τ cell maturation. The 

activities of deoxycytidine kinase and ecto-5'nucleotidase were found 

to be different in Τ cells at various stages of maturation. Thymocytes 

had a relatively low activity of ecto-5'nucleotidase(ecto-5'NT, 6) as 

compared to peripheral blood Τ lymphocytes(PBL-T). Deoxycytidine kinase 

(dCK) was higher in thymocytes than in PBL-T. The findings of relatively 

high ADA and low ecto-5'NT activities in thymocytes seem to parallel the 

findings of high ADA and low ecto-5'NT activities in Τ cell acute 

lymphoblastic leukemia(ALL, 18,22,27). The latter studies suggest that 

purine enzymes might be used as markers of Τ cells at various differen

tiation stages(4) and that the pathways of purine nucleoside handling 

can differ considerably during Τ cell differentiation. Thymocytes appear 

to possess a relatively high phosphorylating capacity for deoxynucleo-

sides(6). Furthermore, due to a low ecto-5'NT activity(6,9) these cells 

have a low capacity to break down toxic nucleotides. Although evidence 

is accumulating that due to their enzymatic make-up, thymocytes are very 

vulnerable in inherited ADA and PNP deficiency, the exact mechanism of 

disturbed lymphocytic differentiation is not yet completely understood. 
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The different sensitivity towards deoxynucleosides of mature and 

immature Τ cells has been studied in vitro in relation to the prolifer

ative response(6). However, these studies have been performed in unsep-

arated Τ cells from peripheral blood and lymphoid organs(thymus, tonsil, 

etc.)· Little is known about the intra-organ development and maturation 

of lymphoid cells. This applies particularly to the thymus: data on 

proliferative responses in which only a minority of cells is assayed(19) 

are related to enzyme activities in unseparated suspensions where all 

cells are assayed. We therefore studied purine metabolism at the intra-

thymus level using fractions enriched in mitogen responsive cells. Using 

centrifugal elutriation we were able to separate six subsets of thymo

cytes. The enzymatic make-up of the various thymocyte fractions were 

studied in relation to the inhibition of proliferative response by 

deoxynucleosides. 

MATERIALS AND METHODS 

Thymocytes and Thymocyte Separation 

Human thymus tissue was obtained from children(aged 2 to 7 months), 

undergoing cardiac surgery for other purposes. All thymus tissue included 

in this study shared a normal architecture in histological examination 

(formalin fixed and paraffine embedded tissue, stained with hematotoxilin 

eosin). The tissue was minced in small pieces; the thymocytes were har

vested in Hepes buffered RPMI 1640 and washed twice. Separation accor

ding to size was performed by centrifugal elutriation under sterile con

ditions at 4° C, using a Beekman J21C centrifuge equipped with a JE-6 

elutriation rotor. This procedure has been extensively described else-

where(ll). By stepwise decreasing the rotor speed, б fractions were 

obtained: the percentage of cells recovered in each fraction as well as 

the composition of each fraction is given in table 1. The data on phyto-

haemagglutinin(PHA) mitogen stimulation(stimulation indexes) in the 

fractions are also given(table 1). Data on immunological phenotyping 

for peanut agglutinin(PNA) binding capacity, for terminal deoxynucleo-

tidyl transferase(TdT) staining(markers for immature cortical thymocytes) 

and for a-naphtyl acetate esterase(ANAE) staining(a marker for more 

mature, mainly medullary thymocytes) are depicted in figure 1. The 
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Table 1: Some Characteristics of Thymocyte Fractions After Separation 
on Size 

Fraction 

Unseparated 
thymocytes 
1 
2 
3 
4 
5 
6 

Cell 
recovery 

(%) 

100 
50 
30 
8 
4 
3 
1 

Mono-* 
cytes 

(%) 

2 
0 
0 
0 
1 
2 
9 

Large 
sized 
cells 

(%) 

4 
0 
0 
1 
5 
10 
20 

Medium1 

sized 
cells 

(%) 

24 
7 
15 
52 
57 
54 
55 

Small' 
sized 
cells 

(%) 

70 
93 
85 
47 
37 
34 
16 

PHA2 

SI 

27 
3 
4 
26 
4b 
22 

6 

May Grünwald Giemsa staining. Results of PHA response are given as 
stimulation indexes(SI, 5 χ IO5

 cells/culture). 

160-

80 

60-

Figure 1: Relative shifts in percentages of PNA binding, TdT positive 

and ANAE positive cells in various fractions obtained by separation on 

size of human thymocytes. Results are given as mean percentages of pos

itive cells(± s.d.), the initial values being set to 100%. 
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nature and characteristics of the present cell populations have been 

published in more detail elsewhere(19). 

Peripheral Blood Τ Lymphocytes(PBL-T) 

Heparinized blood was obtained from the donor of the thymus and 

from healthy control donors. Mononuclear cells were isolated by Ficoll 

Isopaque(d=1.077 gr/ml) density gradient centrifugation. Τ lymphocytes 

were purified by sheep erythrocyte rosetting, Ficoll-Isopaque density 

centrifugation and isotonic ammonium chloride lysis of erythrocytes, 

following well established procedures. The sheep erythrocytes were pre-

treated with 2-aminoethyl isothiouronium bromide hydrobromide(Sigma 

A-5879, ref. 15). 

Mitogen Stimulation Tests 

Cultures were performed in round-bottom microtiter plates(Greiner, 

Alphen, The Netherlands) in RPMI 1640 with bicarbonate, L-glutamin, 

antibiotics and 20% heat inactivated human AB serum. Cells were tested 

at 10
5
 cells/culture. This amount of cells was chosen to enable compar

ison with PBL-T(usually cultured at 5 χ IO
5
 cells/culture). The rather 

low proliferative response after mitogen stimulation of unseparated 

thymocytes or of thymocyte subfractions was enhanced by supplementing 

the culture medium with both conditioned medium of human thymic epithe

lial monolayer cultures(17) and medium of human peripheral blood mono

nuclear cells after allogeneic and PHA stimulation. To obtain this 

latter conditioned medium, blood mononuclear cells of two donors were 

incubated together in the presence of PHA for two days, followed by ex

tensive washing of the cells. After a second incubation for two days, 

the supernatant was harvested. Both conditioned media were used in the 

culture medium at a dilution of l:30(optimal dilution assessed in prior 

experiments). The conditioned media showed no mitogenic effect in 

thymocytes nor blood mononuclear cells; the media had an enhancing 

effect on the proliferative response after PHA stimulation of unsepara

ted thymocytes and of thymocyte subfractions, whereas no effect was 

observed on the response of peripheral blood mononuclear cells. The 
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culture medium, including the supplements, showed neglegible activity 

of purine enzymes. In mitogen stimulation 16 pg PHA(HA15, Wellcome, 

Beckenham, U.K.) was applied. In the study on (deoxy)nucleoside inhib

ition of the response, deoxyguanosine(Sigma D-900) was added in a final 

concentration of maximum 3 mM with a stepwise dilution(l:3) to a minimum 

of 1 μΜ. Deoxyadenosine(Sigma D-5875) was added in final molarities of 

maximal 300 μΜ and minimal 0.14 μΜ, in combination with deoxycoformycin 

(Warner-Lambert, Detroit, USA) in a molarity of 5 μΜ. In the inhibition 

studies with (deoxy)adenosine, cell cultures were first incubated with 

deoxycoformycin for 20 minutes to block all activity of adenosine 

deaminase present, followed by addition of (deoxy)adenosine. Cultures 

were incubated for about 90 hours at 37° С in humidified air with 5% 

COp. During the last 16 to 18 hours 1 pCi (methyl-
3
H)-thymidine(5 Ci/mol, 

Radiochemical Centre, Amersham, U.K.) was present in each culture. The 

cells were harvested on glassfiber filters with an automatic harvester 

(Skatron, Lierbyen, Norway). Air dried filters were sampled in scintil

lation vials(Packard) and counted in toluene scintillator(Packard, 

containing 0.1 gr/1 Р0Р0Р and 5 gr/1 РР0). All cultures were performed 

in quadruplicate. Stimulation indexes(SI) were calculated as the mean 

counts per minute in mitogen stimulated cultures, divided by the mean 

counts per minute in unstimulated cultures. From (deoxy)núcleos i de 

inhibition curves(counts per minute vs. concentration of inhibition) the 

concentration of nucleoside was determined, at which the proliferative 

response was 50% of the PHA response in absence of inhibitors. 

Enzyme Assays 

The activities of adenosine deaminase(ADA, E.C. 3.5.4.4) and 

purine nucleoside phosphorylase(PNP, E.C. 2.4.2.1) were assayed by 

making use of an earlier described micromethod(26), using radiochemically 

labeled adenosine and hypoxanthine, respectively. In 1,000 cells the 

ADA activity was determined by measuring the deamination of adenosine 

to inosine. Substrate and product were separated on PEI-cellulose thin 

layer chromatography plates. The specific activity was calculated from 

the amount of labeled inosine formed and expressed in 10"9 moles of 

inosine formed/106 cells.hour. Essentially the same method, with hypo

xanthine as a substrate, was used to determine the PNP activity. 
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Ecto-5'nucleotidase(ecto-5'NT, E.C. 3.1.3.5) activity was assayed in 

intact cells using
 1M

C-AMP as a substrate. This method has been described 

earlier by Edwards et al.(8). Deoxycytidine kinase(dCK, E.C. 2.7.1.74) 

was assayed essentially according to Ullman et al.(25). In a 8 μΐ para-

film microcuvette(26) J μΐ of a cell suspension(12 χ IO
6
 cells/ml) was 

pipetted. The cells were frozen(15 min, -20° С) and lyophilized over

night. Threeyl of an incubation mixture containing 5 μΜ
 14
C-deoxycytidine 

(Radiochemical Centre, Amersham), 2 mM ATP, 5 mM MgCl
?
, 0.5 mM cytidine, 

0.5 mM deoxyuridine, 50 mM K
2
HP0

4
/KH

2
P0

4
(pH 7.4) and 0.33%(v/v) triton 

X-100(Packard Instrument, Brussels, Belgium) were added; incubation 

(1 hour, 37° C) was stopped in ice. One μΐ of the reaction mixture was 

spotted on PEI-cellulose thin layer chromatography plates(Machery-Nagel, 

SEL 300 PEI). The plates were prewashed in distilled water overnight. 

The chromatography was performed using 0.15 M NaCl as a solvent. 

Unlabelled deoxycytidine and deoxyCMP were cochromatographed and after 

detection under UV light the spots were cut out and counted in a liquid 

Spec. act 

1500 

1250-

1000 

750 

500-
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Figure 2: ADA and PNP activities(10
-9
 moles/10

6
 cells.hour) in thymo

cyte fractions(1 to 6), unseparated thymocytes(U) and peripheral blood 

Τ lymphocytes(Τ). The mean values(± s.d.) of five separate experiments 

are indicated. 
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Figure 3: Ecto-5'NT and dCK activities(10
-9
 moles/10

6
 cells.hour) in 

thymocyte fractions(1 to 6), unseparated thymocytes(U) and peripheral 

blood Τ lymphocytes(Τ). The mean values(± s.d.) of 5 separate exper

iments are indicated. 

scintillation counter. Specific activity was expressed as 10~
9
 moles 

deoxycytidine nucleotides/10
6
 cells.hour. 

RESULTS 

Enzyme Activities 

The activities of ADA, PNP, ecto-5'NT and dCK were assayed in 

peripheral blood Τ lymphocytes(PBL-T), unseparated thymocytes(U) and 

thymocyte subfractions separated on size with the elutriation technique. 

The mean specific enzyme activities of 5 separate experiments are shown 

in the histograms of figs. 2 and 3. ADA activity was found to be relat

ively low in PBL-T(156 10"
9
 moles/10

6
 cells.hour). In unseparated 

thymocytes ADA activity was considerably hicjiier(721 IO"
9
 moles/10

6
 cells, 

hour). In the PHA unresponsive fractions 1 and 2, ADA activity was 722 

and 772 10"
9
 moles/10

6
 cells.hour, respectively. In the PHA responsive 
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fractions ADA activity ranged from 936 to 1357 10"9 moles/106 cells.hour 

(fractions 3 to 6). In contrast to the ADA activity PNP activity was 

highest(fig. 2) in the PBL-T(51 10"9 moles/106 cells.hour). In thymocyte 

subfractions the PNP activity increased with the fraction number and 

ranged from 35 10"9 moles/106 cells.hour in fraction 1 to 172 10"9 moles/ 

106 cells.hour in fraction 6. 

The activity of dCK(fig. 3) was found to be comparable in unsepar-

ated thymocytes and PBL-T(0.088 and 0.064 10-9 moles/106 eel Is.hour, 

respectively). As was the case with ADA and PNP the lowest dCK activities 

in thymocyte subfractions were found in the PHA unresponsive fractions 

1 and 2(0.082 and 0.098 10"9 moles/106 cells.hour, respectively). In the 

PHA responsive fractions 3 to 6 the dCK activity ranged from 0.156 to 

0.38 10"9 moles/106 cells.hour. The results of ecto-5'NT activity deter

minations were essentially different compared to the enzyme activities 

described above(fig. 3). Whereas an increasing enzyme activity was seen 

with the fraction number in the case of ADA, PNP and dCK, the maximal 

ecto-5'NT activity in thymocyte subfractions was observed in fraction 3 

(2.0 10"9 moles/106 cells.hour). The activity in the remaining subfrac

tions ranged from 0.4 10~9 moles/106 cells.hour in fraction 1 to 1.4 

10"9 moles/106 cells.hour in fraction 4. Ecto-5'NT activity in PBL-T 

was about 12-fold higher than in unseparated thymocytes. It should be 

emphasized that, although the standard deviations especially from 

ecto-5'NT are rather high, the activity patterns in all five experiments 

are basically comparable; e.g. in every experiment maximal 5'NT activity 

was found in fraction 3. 

Inhibition of PHA Response by (Deoxy)nucleosides 

Deoxyadenosine and adenosine were added in different concentrations 

to PHA stimulated cultures after pre-incubation for 20 min. with 5 yM 

deoxycoformycin. Deoxyguanosine was used without any further additives. 

In fig. 4 the results of an experiment carried out in quadruplicate are 

shown. The results are presented as the (deoxy)nucleoside concentration 

at which the PHA response was 50% of the response without any addition. 

Four comparable experiments were carried out, which essentially showed 

the same results. The mean PHA responses without any addition of 
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Figure 4: Inhibition of proliferative responses after PHA stimulation 

by adenosine(χ), deoxyadenosine(o) and deoxyguanosine(·) in thymocyte 

fractions(3 to 6), unseparated thymocytes(U) and peripheral blood Τ 

lymphocytes(Τ). The (deoxy)nucleoside concentrations given, indicate 

the concentration at which 50% of the PHA response without any addition 

is seen(n=4). 

nucleosides or deoxycoformycin in the experiments of fig. 4 are for 

PBL-T: 35,000 cpm; unseparated thymocytes(U): 7,000 cpm; fraction 3: 

15,000 cpm; fraction 4: 50,000 cpm; fraction 5: 30,000 cpm; fraction 6: 

40,000 cpm. Fractions 1 and 2 were considered to be unresponsive(<1500 

cpm). When deoxyguanosine was added, the PHA responses of PBL-T and 

unseparated thymocytes were inhibited to a comparable extent. Thymocyte 

fractions 3, 4, 5 and 6 were inhibited each to an increasing extent by 

deoxyguanosine(fig. 4). Fractions 1 and 2 could not be evaluated because 

these fractions showed only marginal proliferative responses after PHA 

stimulation. Comparing the effects of deoxyadenosine and adenosine in 

the presence of the ADA inhibitor deoxycoformycin, cells were more 

sensitive to deoxyadenosine than they were to adenosine. Again PBL-T 

and unseparated thymocytes were inhibited by deoxyadenosine to a 
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comparable extent. In thymocyte subtractions this inhibition was minimal 

in fraction 3, whereas fraction 6 was mostly inhibited. 

DISCUSSION 

The application of a micromethod using 1,000 to 6,000 cells per 

incubation on one hand and an elutriation technique for the isolation 

of small subpopulations of thymocytes(11) on the other hand enabled us 

to study several aspects of purine metabolism in thymocyte subfractions. 

The finding of relatively high ADA activity in thymocytes as com

pared to PBL-T is compatible with the high levels of ADA activity 

observed in T-ALL(4,22,27). Using an immunohistochemical technique, 

Chechik et al.(4) have elegantly shown that cells positive for a human 

thymus associated leukemia antigen, which appeared tobe ADA, were predominan 

present in the cortical regions of the thymus. In the thymic medulla, 

ADA positive cells were observed less. It has been shown that the thymic 

cortex contains less mature lymphocytes than the medulla(2). Apparently 

it is not correct to compare the qualitative results of Chechik et al. 

with the quantitative data we have obtained. In our experiments highest 

ADA activities are observed in the PHA responsive(i.e. more mature, 

medullary thymocyte containing) fractions. Fractions 3 to 5 contained 

relatively high numbers of ANAE positive cells and little PNA positive 

cells(fig. 1). This indicates that fractions 3 to 5 are relatively 

mature as compared to fractions 1 and 2. 

In rat thymocytes fractionated on Ficoll-Hypaque density gradients 

the highest levels of ADA activity were observed in fractions enriched 

in immature cortical thymocytes(l). These results lead to the conclusion 

that intrathymic ADA activities in the rat are expressed differently 

from humans. In contrast to the findings on ADA, the findings on PNP 

activities in rat and human thymocyte subfractions seem to be similar. 

As was the case in our PHA unresponsive human thymocyte fractions, 

lowest PNP activities are also found in rat thymocyte fractions enriched 

for cortical thymocytes(i.e. less mature). Higkest PNP activities are 

found in PHA responsive human thymocyte fractions(figs. 1 and 2) and in 

medullary rat thymocyte enriched fractions(l). Although there is an 
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Figure 5: ADA/PNP and ecto-5'NT/dCK activity ratios in thymocyte frac

tions (1 to 6), unseparated thymocytes(U) and peripheral blood Τ lympho

cytes (Τ). The mean values(± s.d.) of 5 separate experiments are indicated. 

apparent contradiction regarding ADA activity between the results ob

tained in rats and in humans, it seems justified to state that stages 

in Τ cell maturation in the thymus can be characterized by either the 

absolute level of PNP or the relative levels of ADA and PNP(fig. 5). 

PHA unresponsive thymocytes have relatively high ADA/PNP activity ratios 

(21 and 19), whereas PHA responsive thymocytes have relatively low 

ADA/PNP activity ratios(14 to 7). The same applies to unseparated 

thymocytes and peripheral blood cells. The mean ADA/PNP ratio in thymo

cytes is found to be 15, in PBL-T this ratio is 1. 

Although ADA and PNP appear to be of vital importance for normal lymphoid 

cell differentiation, little is known about the exact role of both 

enzymes in precursor Τ cells. Shore et al.(21) have shown that precursor 

Τ cells derived from ADA deficient patients may be induced to form 

rosettes with sheep red blood cells by incubation with normal thymic 

epithelial monlayers. When these monolayers are treated with an ADA 

inhibitor, this induction is inhibited. It is known that deoxyadenosine 
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in the presence of an ADA inhibitor blocks proliferative responses(28). 

however, from the fact that, when once entered blastogenesis thymocytes 

become less vulnerable to the addition of deoxyadenosine and deoxycofor-

mycin(24), it might be concluded, that ADA activity is more vital for 

thymocytes in early maturation stages. 

The ratio of deoxynucleoside phosphorylating capacity and deoxy-

nucleotide dephosphorylating capacity has been subject of a number of 

studies. Since no substantial difference between deoxynucleotide forming 

capacities was observed between Τ and В lymphoblasts(29), another 

metabolic basis for the differential toxicity of deoxynucleosides was 

suspected(5,7). The higher levels of ecto-5'NT activity in В cells was 

found to provide В cells with a more effective way of breaking down 

deoxynucleotides(3). In order to predict the possible effects of nucleo

sides on Τ cells of various maturation stages, the activity ratio of 

ecto-5'NT/dCK was calculated. The relatively low ecto-5'NT activity in 

thymocytes as compared to PBL-T was described previously(6,9). The dif

ference found between dCK activity in PBL-T and thymocytes(6) was not 

found in our studies. Comparable activities of dCK were observed in 

thymocytes and PBL-T(fig. 3). Whereas dCK activity was increasing with 

cell size, ecto-5'NT had a maximal activity in fraction 3. When the 

relationship between nucleoside toxicity and the nucleotide synthesis/ 

nucleotide breakdown ratio also applies to the intrathymic situation, 

the conclusion seems justified that the cells in fraction 3 are most 

vulnerable to nucleoside toxicity. 

Inhibition studies with nucleosides showed a comparable effect of 

deoxyguanosine and deoxyadenosine to PBL-T and unseparated thymocytes. 

Previously it was reported that thymocytes are more vulnerable towards 

deoxyguanosine intoxication than PBL-T(6). In the latter study 50% 

inhibition of the PHA response was observed at a deoxyguanosine concen

tration of 150 uM in PBL-T. This lower level of deoxyguanosine intoxica

tion as compared to our studies might be explained by the different 

numbers of cells used. Cohen et al.(6) used 5 χ IO
4
 cells/well, whereas 

we used 10
5
 cells/well. Yet, why the relative effects on PBL-T and 

thymocytes are found to be different, remains unclear to us. It might 

well be that the addition of the conditioned media in order to enhance 

proliferative responses accounts for this phenomenon. The activities of 
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PNP as well as ADA were assayed in these supplements and found to be 

neglegible. A change in deoxynucleoside toxicity induced by the con

ditioned media might be possible in the more immature cells. Deoxy-

guanosine and deoxyadenosine are believed to interfere with DNA synthesis 

through their phosphorylated derivatives deoxyGTP and deoxyATP, respec

t i v e l y ^ ^ ) . These nucleotides inhibit ribonucleotide reductase which 

catalyzes the formation of deoxyribonucleotides necessary for DNA syn-

thesis(lO). In the thymocyte subpopulations, which were all cultured 

under identical conditions, we find an excellent correlation between 

deoxyguanosine and deoxyadenosine effects on the PHA response and the 

enzymes that may influence the concentrations of deoxyGTP and deoxyATP. 

Relatively low ecto-5'NT activity may provide the cells with a rather 

poor possibility to breakdown formed nucleotides. Previously the reduced 

rate of deoxyATP degradation in Τ cell lines as compared to В cell lines 

was explained by a relatively low 5'NT activity(3,29). Nucleoside kina

ses, the enzymes that catalyze the phosphorylation of deoxyguanosine and 

deoxyadenosine to their respective nucleotides, are supposed to play an 

essential role in the specific intoxication of the lymphoid system in 

ADA and PNP deficiency(25). From our experiments in thymocyte subfrac

tions it is indicated that the activity ratio of ecto-5'NT/dCK(fig. 5) 

is related to nucleoside toxicity in these subfractions. When the stat

istical correlation is calculated between the ecto-5'NT/dCK activity 

ratio of fractions 3 to 6 and the concentration of (deoxy)nucleosides 

at which 50% of the PHA response is seen, a highly significant correla

tion coëfficient(Pearson's correlation coefficients >0.9) is found for 

the three nucleosides tested. In other words, the higher the ratio, the 

higher deoxynucleoside concentrations are needed to obtain 50% inhibition 

of the PHA response. 

The knowledge of this biochemical heterogeneity with regard to 

enzymatic make-up and nucleoside toxicity in the intrathymic situation 

is of importance when studying mechanisms of cytotoxicity in relation 

to mitogenic responses. Since cells contributing to the PHA response 

(fractions 3 to 6) and cells hardly contributing to the PHA response 

(fractions 1 and 2) differ considerably in their relative and absolute 

enzyme activities(figs. 2, 3 and 5), and a relation is indicated 

between some of these enzyme activities and nucleoside intoxication, it 

is not allowed to relate enzyme activities and nucleoside induced 
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inhibition of the PHA response in unseparated thymocytes. 
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ABSTRACT 

Human peripheral blood lymphocytes were stimulated with different 

mitogens(phytohaemagglutinin, PHA; pokeweed mitogen, PWM; concanavalin 

A, ConA; and protein A, SpA) known to activate different subpopulations 
3
H-Thymidine and

 3
H-leucine incorporation were studied in the presence 

and absence of adenosine, deoxyadenosine and the adenosine deaminase 

inhibitor erythro-9-(2-hydroxy-3-nonyl)-adenine hydrochloride(EHNA). 

In addition the effects on in vitro IgG secretion induced by PWM or SpA 

have been studied. 

Adenosine and deoxyadenosine added to the cultures together with 

EHNA inhibit the Τ cell mitogenic response.
 3
H-Thymidine incorporation 

in ConA and PWM stimulated Τ cells is more affected by EHNA and (deoxy)-

adenosine than in PHA stimulated cultures. At very low EHNA concentra

tions a facilitating effect on the protein secretion is observed in the 

PHA stimulated cultures. These findings suggest that different subsets 

of Τ cells have different sensitivities. EHNA and adenosine inhibit the 

IgG production by PWM stimulated cells. This inhibition might be secon

dary to a blockade of either the В cell or the T-helper cell activity, 

or to enhancement of T-suppressor activity. We favour the latter pos

sibility. Deoxyadenosine in combination with EHNA enhances IgG secretion 

in PWM stimulated cells at low concentrations, whereas higher concen

trations have an inhibitory effect. 
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INTRODUCTION 

Adenosine and deoxyadenosine are known inhibitors of the in vitro 

proliferative response of peripheral blood lymphocytes(PBL) to various 

mitogens(3,4,9,ll,13,18,19). Erythro-9-(2-hydroxy-3-nonyl)-adenine 

hydrochloride(EHNA), an inhibitor of the enzyme adenosine deaminase(ADA), 

potentiates the inhibitory effects of both adenosine and deoxyadenosine. 

The incorporation of
 3
H-leucine into protein appeared to be a more sen

sitive index of adenosine toxicity than the incorporation of
 3
H-thymidine 

(3). A differential sensitivity of cultured human Τ and В lymphoblasts 

towards the toxic effects of adenosine and deoxyadenosine has been ob

served: Τ cells are more sensitive than В cel Is(5,15). On the basis of 
3
H-thymidine incorporation, mouse splenic cells stimulated by lipopoly-

saccharide(LPS) were less sensitive to the addition of adenosine than 

the concanavalin A(ConA) stimulated cells(17). Using a plaque forming 

cell assay, a biphasic effect of adenosine was seen on the in vitro 

antibody production in mice. Concentrations of adenosine around ImM 

stimulated antibody production in vitro, whereas concentrations above 

1.5 mM had inhibitory effects(17). 

The effects of adenosine and deoxyadenosine on subpopulations of 

regulatory lymphoid cells are poorly documented, both in animal models 

and in humans. In a first approach to this issue we have compared the 

effects on
 3
H-thymidine and

 3
H-leucine incorporation in parallel cultures 

stimulated with different mitogens known to activate different subpop

ulations (phytohaemaggluti ni η , PHA; ConA; pokeweed mitogen, PWM; protein 

A from Staphylococcus aureus, SpA). In addition, the effects on in vitro 

IgG secretion induced by PWM or SpA(both Τ dependent polyclonal В cell 

activators) have been studied. 

Adenosine and deoxyadenosine probably exert their effects according 

to different mechanisms. These may include intra- and extracellular 

events. Intracellular accumulation of deoxyATP, decreased phosphoribosyl-

pyrophosphate(PRPP) availability and inhibition of transmethylation 

reactions might occur(for review see 16). Ectracellular mechanisms might 

involve activation of adenosine receptors leading to increased or de

creased levels of cyclic AMP within the cell depending on the type of 

adenosine receptor involved(2). It seems likely that different types of 
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cells involved in the immune response express different sensitivity to 

one of these mechanisms. 

MATERIALS AND METHODS 

Cell Preparation 

PBL from healthy volunteers were prepared by centrifugation of 

heparinized blood, diluted with two volumes of Hank's balanced salt 

solution on Ficoll-Metrizoate(gravity 1.077 gr/ml; 1). 

Mitogens 

PHA(PHA-P, Wellcome) was used in a final concentration of 1 pgr/ml; 

ConA and PWM were purchased from Gibco and used at a final dilution of 

5 ygr/ml and l/100(v/v), respectively. Purified protein A was obtained 

from Pharmacia Fine Chemicals AB(Uppsala, Sweden, batch No. C12414); it 

was used in a final concentration of 10 pgr/ml. 

Culture Conditions 

Cel ls(25 χ 10
1
*) were cultured in flat bottomed mi cropl ates (Micro-

test II, No. 3040F; Falcon, B.D. Oxnard CA) in 250 μΐ culture medium. 

This consisted of Hepes buffered RPMI 1640(Flow Labs., Rockville, MD) 

supplemented with 40 mM glutamine, 40 ygr/ml gentamycin, 0.05 μΜ 

2-mercaptoethanol and 102(ν/ν) foetal calf serum(FCS; Microbiological 

Ass., Bethesda, MD, batch No. 90874). All cultures were set up in 

triplicate. Incubation was performed at 37° С in a humidified atmosphere 

with or without 5% C0-. 

Measurement of DNA Synthesis 

Five microCuries of methyl-
3
H-thymidine(specific activity 10 Ci/ 

mmol, IRE., Fleurus, Belgium) in 0.05 ml RPMI was added to the culture 
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18 hours prior to harvesting. Cells were collected on glass fiber filter 

paper(Reeve Angel fibre filter, grade: 934 AH, Whatman Inc., NJ, USA) 

using a MASH II cell harvester(Microbiological Ass., Bethesda, MD, USA). 

The
 3
H-thymidine incorporation was determined by counting the radioac

tivity of the filter discs in a Tri-Carb liquid scintillation counter 

(Packard Instrument Co.). 

Assessment of Protein Synthesis 

Twentyfour hours before harvest, the microplates were centri fuged, 

the cells washed once with leucine free RPMI 1640, and the pellet resus-

pended in leucine free culture medium supplemented with 20 mCi/ml
 3
H-

leucine(specific activity 53 Ci/mmol, The Radiochemical Centre, Amersham). 

No further mitogen was added at this time. After 24 hours at 37° C, the 

plates were centrifuged and replicate supernatants were collected pooled 

and frozen at -40° С before determination of their Ig content. Cells were 

then collected on glass filter paper and the
 3
H-leucine incorporation 

was determined by counting the radioactivity of the filter discs. For 

determination of protein secretions the supernatants were precipitated 

by trichloroacetic acid(5%(w/v) final concentration). 

Measurements of Ig Secretion 

The assay for the measurement of Ig secretion was performed in 

microplates: 50 μΐ of the supernatant(see above) was mixed with 50 μΐ 

of monospecific sheep antihuman Fe serum; either anti-Fc of IgG, or 

anti-Fc of IgA, or anti-Fc of IgM. After 60 min. incubation at room 

temperature, the mixture was supplemented with 50 μΐ of a solution con

taining 30 ugr of either IgG, IgA or IgM purified myeloma protein. These 

purified myeloma proteins were added in large excess in order to achieve 

a maximal precipitation efficiency in each assay. All assays were per

formed in triplicate. The myeloma proteins and the corresponding anti sera 

were prepared as previously described(6,7). The antisera were used at a 

dilution providing antibody excess as determined by precipitation assays. 

Their specificity has been assessed by a combination of Ouchterlony and 

immunoelectrophoresis(14). The plates were then sealed and incubated 
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overnight at room temperature. The precipitates were collected on glass 

filter paper(Whatman GF/B) and washed with cold phosphate buffered saline 

using a Skatron(Flow Lab.) cell harvester. The dried discs were first 

treated with 200 μΐ Soluene II(Packard Instrument Co.) before addition 

of 7 ml toluene scintillation fluid. For each assay, the non-specific 

binding was measured on supernatants from heat-killed cells, processed 

under exactly the same conditions. After subtraction of the non-specific 

binding(mean ± standard deviation), the results were expressed in cpm 

per 250,000 cells originally present in the culture. 

RESULTS 

Mitogenic Responses to PHA, ConA and PWM 

The
 3
H-thymidine incorporation into both PHA and ConA stimulated 

cells is inhibited at concentrations of EHNA exceeding 10 uM(fig. la 

and lb). However, in the ConA stimulated cultures the inhibitory effect 

of EHNA is more pronounced. Adenosine(10 μΜ) potentiates these effects 

but again the ConA stimulated cultures seem more sensitive than the PHA 

stimulated cultures(fig. la and lb). In the presence of 1 μΜ deoxyadeno-

sine hardly any thymidine incorporation at all EHNA concentrations tested 

is observed. EHNA inhibits the proliferative response of the PWM stim

ulated cells to an extent comparable to the ConA stimulated cultures 

(fig. lb and lc). This inhibitory action is strongly potentiated by 

adenosine and even more by deoxyadenosine. 

Parameters of Τ Lymphocyte Activation 

PHA stimulation was studied in more detail, using
 3
H-thymidine in

corporation as a parameter for proliferative response and
 3
H-leucine 

incorporation as a parameter for protein biosynthesis. Labelling of both 

intracellular and excreted proteins was inhibited at EHNA concentrations 

higher than 10 yM(fig. 2a). Adenosine and deoxyadenosine increased this 

inhibitory effect. In the presence of adenosine(10 μΜ) the proliferative 

response was effected at EHNA concentrations above 10 μΜ. With deoxy-

adenosine(l μΜ) significant inhibition was already observed at an EHNA 
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Figure 1: Effect of EHNA only(·) and with addition of adenosine (10 μΜ; 

χ) or deoxyadenosine(1 μΜ; о), on the proliferative response of human 

peripheral blood lymphocytes stimulated by PHA, ConA and PWM. The means 

(s.d. <15%) of three experiments carried out in three-fold are indicated. 

The hatched area represents the mean normal control value ± two standard 

deviations. 

concentration of 1 μ Μ ( ^ . 2a). In PHA stimulated cultures EHNA affected 

intracellular
 3
H-leucine incorporation more profoundly than the

 3
H-

thymidine incorporation: at 10 μΜ EHNA, protein synthesis was clearly 

depressed, whereas
 3
H-thymidine incorporation was not(fig. 2b and 2a). 

Addition of 10 μΜ adenosine greatly enhanced the inhibitory effect of 

EHNA on
 3
H-leucine incorporation. Deoxyadenosine(l μΜ) abolished leucine 

incorporation at EHNA concentrations above 1 μΜ, whereas at 0.1 μΜ EHNA 

no significant inhibition was observed(fig. 2b). The labelling of ex

creted proteins(fig. 2c) seemed less affected by EHNA than the labelling 

of intracellular proteins. On the contrary at 0.1 μΜ EHNA even increased 

amounts of radioactivity were measured in the excreted protein fraction 

(fig. 2c). An inhibitory effect of EHNA alone was only seen at the 

highest concentration used(100 μΜ). Even more clearly as was the case 

with thymidine incorporation, adenosine(10 μΜ) and deoxyadenosine(l μΜ) 

potentiated the effect of EHNA. 

135 



10 100 1000 

Η-leucine 
incorporât 

В 

f 
V 

on 

τ—^ 

PHA 

0.1 1 10 100 1000 10 
ΕΗΝΑ(μΜ) 

Figure 2: Effect of EHNA only(·) and with addition of adenosine(10 μΜ; 

χ) or deoxyadenosine(1 μΜ; о), on the proliferative response, protein 

synthesis and protein secretion of human peripheral blood lymphocytes 

stimulated by PHA. The means(s.d. <15%) of three experiments carried 

out in three-fold are indicated. The hatched area represents the mean 

normal control value ± two standard deviations. 

Parameters of Τ cell Dependent В Lymphocyte Activation 

In this set of experiments PWM and SpA were used as Τ cell depen

dent В lymphocyte mitogens. Since essentially the same results were ob

tained with both mitogens, only the data on PWM are reported. Next to 
3
H-thymidine and

 3
H-leucine incorporation, the secretion of

 3
H-IgG, 

3
H-IgA and

 3
H-IgM was studied in the PWM stimulated cultures. Only the 

data on IgG are reported, since IgA and IgM measurements essentially 

showed the same results. 

In PWM stimulated cultures, EHNA alone inhibits IgG synthesis at 

concentrations higher than 100 μΜ. Both adenosine(10 μΜ) and deoxyaden-

osine(l μΜ) show a strong synergistic action(fig. 3c). As IgG production 

is not necessarily related to lymphocyte proliferation, the influence of 

the above compounds on
 3
H-thymidine and

 3
H-leucine uptake in parallel 
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Figure 3: Effect of EHNA only(·) and with addition of adenosinedO μΜ; 

χ) or deoxyadenosine(1 μΜ; о), on the proliferative response, protein 

synthesis and IgG secretion of human peripheral blood lymphocytes 

stimulated by PWM. The means(s.d. <15%) of three experiments carried 

out in three-fold are indicated. Th hatched area represents the mean 

normal control value ± two standard deviations. 

cultures has been assessed. The results indicate that parallelism exists 

between the inhibition of labeled IgG secretion and the intracellular 

thymidine and leucine incorporation(fig. 3a, 3b and 3c). In PWM stimul

ated cultures, EHNA alone showed only at 1000 μΜ clear inhibitory effects 

on both thymidine and leucine incorporation. As in the PHA stimulated 

cultures(fig. 2a en 2b), the presence of EHNA and 10 μΜ adenosine en

hanced these effects. In the presence of 1 μΜ deoxyadenosine, thymidine 

and leucine incorporation were even more reduced; at EHNA concentrations 

of 100 and 1000 μΜ incorporation levels were at the limit of detection 

(fig. 3a and 3b). 

Using increasing amounts of adenosine with 1 μΜ EHNA, incorporation 

of thymidine and leucine and secretion of IgG appeared to be dose depen

dentif ig. 4a, 4b and 4c). Note that in cultures without any EHNA added, 

adenosine had no significant effect on these three parameters. In 
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Figure 4: Effect of adenosine with(x) or without(·) addition of EHNA 

(1 μΜ) on the proliferative response, protein synthesis and IgG secre

tion of human peripheral blood lymphocytes stimulated by PWM. The means 

(s.d. <15%) of three experiments carried out in three-fold are indicated. 

The hatched area represents the mean normal control value ± two standard 

deviations. 

parallel experiments deoxyadenosine alone(l to 1000 μΜ) had no striking 

effect on thymidine and leucine incorporation, nor on
 3
H-IgG secretion 

(fig. 5a, 5b and 5c). In the presence of 1 μΜ EHNA however, a dramatic 

inhibition of thymidine uptake was already observed at 0.1 μΜ deoxy

adenosine. This was in contrast with the biphasic effect on the
 3
H-

leucine and
 3
H-IgG secretion. At 0.1 and 1 μΜ deoxyadenosine, labelling 

was significantly increased in the presence of 1 μΜ EHNA, whereas at 

10 and 100 μΜ deoxyadenosine a striking decrease of leucine incorporated 

and
 3
H-IgG secreted was seen. In cultures performed in the presence of 

0.1 μΜ deoxyadenosine and 1 μΜ EHNA an inhibition of thymidine uptake 

was coexistent with an increase of
 3
H-leucine incorporation and IgG 

secretion(fig. 5). 
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Figure 5: Effect of deoxyadenosine with(x) or without(·) addition of 

EHNA(1 μΜ) on the proliferative response, protein synthesis and IgG 

secretion of human peripheral blood lymphocytes stimulated by PWM. The 

means(s.d. <15%) of three experiments carried out in three-fold are 

indicated. The hatched area represents the mean control value ± two 
standard deviations. 

DISCUSSION 

The present results confirm and extend previous findings: in the 

presence of an ADA inhibitor, Τ cell mitogenic responses are inhibited 

by adenosine and deoxyadenosine(3,13,18). When comparing thymidine and 

leucine incorporation as parameters, the latter seems a more sensitive 

index(fig. 2a and 2b; ref. 3). 

Inhibiting ADA activity with varying amounts of EHNA will eventually 

lead to an accumulation of a certain amount of adenosine and deoxyaden

osine. Apparently this has no detrimental effect on thymidine and leucine 

uptake in the PWM stimulated cultures. On the other hand when inhibiting 

ADA with a fixed EHNA concentration and adding extra adenosine or deoxy

adenosine, the accumulation of these compounds and their derivatives 

might lead to effects mediated by the different mechanisms mentioned in 
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the introduction, depending on the respective concentrations. 

The present results show that
 3
H-thymidine incorporation in cultures 

stimulated by ConA and PWM is more sensitive to the inhibitory effects 

of EHNA and (deoxy)adenosine than in the PHA stimulated cultures(fig. 1). 

These results suggest that subsets of Τ cells are differently affected. 

Indeed it has been shown that PHA and ConA stimulate different though 

overlapping Τ cell subsets(lO). ConA stimulates both suppressor and 

helper cells and PHA mainly stimulates T-helper cells. Due to this fact, 

one might speculate that T-suppressor cells are more vulnerable as com

pared to T-helper cells to the inhibitory effects of adenosine and deoxy-

adenosine in combination with EHNA. It should be pointed out that the 

relative amounts of thymidine and leucine incorporated may vary between 

different experiments. For instance in comparable experiments, fig. la 

and fig. 2a, the thymidine incorporation in the presence of 10 μΜ EHNA 

and 10 μΜ adenosine is 75% and 50% of the untreated control, respectively. 

However, within one experiment the variation was never more than 10 to 

15%. This stresses the importance of a precise definition of both the 

methods used to purify mononuclear cells and the culture conditions(8). 

Among these the nature of the serum is particularly critical. Indeed it 

is known that serum differs in adenosine and ADA content, even after 

heat inactivation. 

Interesting is the observation of the parallelism observed in the 

PHA stimulated cultures between the effects of these compounds on 

thymidine incorporation on one hand and leucine incorporation on the 

other hand. However, inhibition is more pronounced in the latter situa-

tion(fig. 2). Still more interesting is the observation of a facilitating 

effect of a very low concentration of EHNA(0.1 μΜ) on the protein 

secretion. At present no explanation can be given for this finding. 

From the data in fig. 3c and 4c, it is evident that the combination 

of EHNA and adenosine inhibits the
 3
H-IgG production by PWM stimulated 

cells. This inhibition might be secondary to a blockade of either the В 

cell, or to enhancement of T-suppressor activity. 

As opposed to adenosine, deoxyadenosine exerts a biphasic effect 

(fig. 5). At low concentrations and in the presence of EHNA and 1 μΜ 
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deoxyadenosine it enhances labeled IgG secretion, whereas higher concen

trations have an inhibitory effect. This enhancing effect is associated 

with a reduction in thymidine uptake. As it is known that DNA synthesis 

is necessary for suppressor activity and not for T-helper activity(12), 

these data could be interpreted as indicating a blockade of suppressor 

cells at deoxyadenosine concentrations below 1 μΜ. The above hypothesis 

is amenable to experimental testing, namely by comparing the effects of 

adenosine to those of deoxyadenosine in the presence of EHNA on purified 

preparations of T-helper and T-suppressor cells. 
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INTRODUCTION 

After Giblett and associates(65) in 1972 had postulated a causal 

relationship between a genetic deficiency of an enzyme of purine metab

olism, adenosine deaminase(ADA), and a combined deficiency of Τ and В 

cell function, a serious effort has been made to elucidate the role of 

purine metabolism in immune function(120,136,170). The metabolic basis 

for immunodeficiencies, the selective sensitivity of the immune system 

for deficiencies of enzymes of purine metabolism and the different 

susceptibility for deoxynucleosides between Τ and В cells, have been 

subject of extensive studies during the last decade. 

These studies were mainly carried out in in vitro systems. Mouse 

3T6 fibroblasts(69), human lymphoblastoid cell lines(104) as well as 

freshly isolated eel Is(81) are some examples of these in vitro systems. 

Both animal(177) and human(133) in vivo studies were also done for 

investigating the relation between purine metabolism and the immune 

system. These studies provided evidence that purine metabolism plays an 

essential role in the development of the immune sytem. This was also 

illustrated by the finding, that different activity levels of purine 

metabolizing enzymes were found in various stages of lymphoid differen

tiation. 
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Studies on purine metabolism in lymphocytic leukemia showed that 

the enzymatic make-up of lymphoid cells in certain types of lymphocytic 

leukemia was comparable to the enzymatic make-up of lymphoid cells in 

certain stages of their development. Therefore, this paper discusses 

the intimate realtionship between immunodeficiency diseases, normal 

lymphocytic differentiation, lymphocytic leukemia and purine metabolism. 

In scheme 1, relevant enzymatic reactions and metabolites of purine 

and pyrimidine metabolism are depicted(scheme 1 is located at page 179). 

1. INBORN ERRORS OF PURINE METABOLISM AND IMMUNODEFICIENCY DISEASE 

Adenosine Deaminase Deficiency 

ADA catalyzes the deamination of adenosine and deoxyadenosine to 

inosine and deoxyinosine(scheme 1, fig. 1). Giblett et al.(65) were the 

first to report absence of ADA activity in red cell lysates from two 

young unrelated girls. These girls had a clear dysfunction of Τ and В 

cells, which was manifested by recurrent infections, delayed hypersen

sitivity reaction, poor in vitro mitogenic stimulation, low IgG and 

IgM plasma levels, lack of blood group antigens and other defects. After 

this first report on ADA deficiency related with severe combined immuno

deficiency disease(SCID) several other patients were described(115,116, 

162,190). It appeared that 22% of the SCID patients was ADA deficient 

(89). Skeletal abnormalities next to the presence of a rudimentary 

thymus with no clear architecture and small lymph nodes were reported 

(190). ADA activity levels in lymphocytes from SCID patients who had 

no detectable ADA activity in their red blood cells, were less than a 

few percent of normal lymphocytic ADA activity(76,114). Studies on 

normal tissues and tissues from SCID patients revealed that in the 

normal tissues ADA activity was highest in the thymus(87). ADA deficient 

SCID patients showed only residual ADA activities in the tissues studied 

(85,87,148,178). The relative residual ADA activity however, was found 

to be highest in the liver(31%) and not in lymphoid organs such as 

thymus(0.2%), spi een(1.1%) and lymph node(3.6%). 

In one study on red cell lysates from a SCID patient, evidence 

was presented that the deficient ADA activity was due to a genetically 
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Figure 1: Purine enzyme defects associated with immunodeficeincy. ADA= 

adenosine deaminase. 5'NT=purine-5'nucleotidase. PNP=purine nucleoside 

Phosphorylase. 

programmed production of an ADA inhibitor(173). General agreement 

however, exists that the inherited deficiency of ADA is caused by a 

structural mutation(44,86). In a case were no tissue or tissue culture 

material was available from a child who died of SCID, the mutant ADA 

was investigated in cell hybrid clones, derived from one of the hetero

zygous parents(76). In this study it was shown that a structural muta

tion on chromosome 20 was causally related to the SCID. Similar data 

were obtained in a study on fibroblasts from 4 SCID patients with red 

blood cell ADA deficiency. The residual enzyme activities in fibroblast 

lysates from these patients ranged up to 27% of the mean control value 

(85). 

Two cases with residual ADA activity have been reported with 

an apparently normal immune function. The so called Kung boy, who 

had strongly decreased ADA activity in red blood cells but only mildly 

decreased ADA activity in leukocytes and cultured fibroblasts, showed 
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normal levels of serum immunoglobulins, normal mitogenic stimulation 

of peripheral blood lymphocytes and normal numbers of Τ and В lympho-

cytes(96). A 20 month old male child white normal white blood cell 

counts and normal responses to mitogen but with less than 1% of normal 

red blood cell ADA activity was described more recently(88). In lymphoid 

cell lines from this patient ADA activity was about 30% of normal values 

and about 50-fold higher than in lymphoid cell lines from ADA deficient 

SCID patients. This patient is resembled by a patient, described by 

Perignon et al.(127) who had less than 1% red blood cell ADA activity, 

but a residual ADA activity in the lymphocytes. These data on ADA 

deficiency in relation to SCID indicate that the nature of the mutations 

that lead to ADA deficiency must be rather heterogeneous. In this con

text the term "deficiency" is meant to indicate a mutant ADA activity 

resulting in SCID. 

Altered levels of purine metabolites have been described in cells 

and body fluids from SCID patients. Elevated levels of adenosine and 

deoxyadenosine, both substrates for ADA, have been observed in urine 

(49,106). In plasma of these patients, elevated levels of adenosine 

were reported(38,106,117,130). Levels of phosphorylated derivatives 

of adenosine and deoxyadenosine, namely ATP and deoxyATP, were reported 

to be increased in red blood cells(38,43,49,92,117) as well as in mono

nuclear cells from ADA deficient SCID patients(49,147). However, also 

ATP values within the normal range were reported(2). The presence of 

elevated levels of adenosine and deoxyadenosine and their nucleotides, 

ATP and deoxyATP, in body fluids, erythrocytes and mononuclear cells 

from ADA deficient SCID patients indicated that these purines might 

play an essential role in the pathophysiological mechanism(s) leading 

to the immune dysfunction. A review on ADA deficiency and SCID has been 

published by Thompson and Seegmiller(170). 

Purine Nucleoside Phosphorylase Deficiency 

Purine nucleoside phosphorylase(PNP) catalyzes the conversion of 

inosine and deoxyinosine to hypoxanthine and (deoxy)ribose-l-phosphate 

and of guanosine and deoxyguanosine to guanine and the deoxyribose 

moiety(scheme 1, fig. 1). In several patients with severely defective 
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Τ cell immunity but with apparently normal В cell function, a deficiency 

of purine nucleoside Phosphorylase was found(4,66,72,156). In PNP 

deficient patients generally lymphopenia, decreased PHA responses and 

recurrent infections were noted. The number of cells bearing surface 

immunoglobulins(slg) and the formation of antibodies were found to be 

normal(141). Kinetic studies in erythrocytes of two PNP deficient 

brothers suggested that PNP deficiency is caused by a mutation in the 

structural gene(58). The heterogeneity in the expression of the disease 

may be accounted for by different residual activities caused by differ

ent mutations. 

Inosine concentrations were found to be elevated in plasma(51,157) 

and relatively high inosine and guanosine concentrations(51,141,157) as 

well as deoxyinosine and deoxyguanosine(36) were detected in urine. In 

contrast low plasma levels of uric acid were observed(36,141,157). 

Guanosine and deoxyguanosine can be phosphorylated by a kinase to GMP 

or deoxyGMP, which are subsequently converted to GTP or deoxyGTP. The 

substrates for these enzymatic reactions(scheme 1) are present at rel

atively high levels in body fluids of PNP deficient patients. Therefore, 

elevated levels of GTP and deoxyGTP in red and white blood cells of 

these patients can be expected. Indeed elevated deoxyGTP and GTP concen

trations have been reported in erythrocytes of these patients(37,113). 

Since there is hardly any production of the free purine bases hypo-

xanthine and guanine in PNP deficiency, the formation of GMP and IMP 

through the salvage enzyme hypoxanthine-guanine phosphoribosyltrans-

ferase(HGPRT, scheme 1) will not be of any significance. This might 

lead to elevated levels of PRPP, the cosubstrate of this salvage reac

tion. Indeed elevated PRPP levels were described in the erythrocytes, 

but not in the fibroblasts, from a PNP deficient child(36) 

In lyzed lymphocytes of one single patient with common variable 

immunodeficiency, decreased PNP(15% of control value) activity , and a 

decreased activity(15% of control value) of purine-5'nucleotidase was 

described(125). Although the number of Ε-rosette forming cells was 

rather high, a clearly depressed response of the Τ cells on phytohaem-

agglutinin(PHA) was observed. В cells were virtually absent and serum 

Ig levels were clearly decreased. The activity of ADA in this patient 

appeared to be in the normal range. It could not be shown whether this 
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case represents causal relation between purine metabolism and immune 

dysfunction: in the case of a maturational block the altered enzyme 

activities might merely reflect a stage of maturation in which these 

cells were arrested(paragraph 3). 

The same might be said about the decreased PNP activity described 

in Τ cells from a patients with the autoimmune disease systemic lupus 

erythematosus(107). The alterations in the balance of several subsets 

of white blood cells might be the cause of this, only slightly, decreased 

PNP activity. Any causal relation cannot be assumed from the data 

reported(107). 

Purine-5'nucleotidase Deficiency 

Purine-5'nucleotidase(5'NT) catalyzes the first enzymatic step 

in the degradation of purine nucleotides(e.g. AMP, deoxyAMP, GMP), 

leading to the formation of the corresponding nucleosides(scheme 1, 

fig. 1). Johnson et al.(97) and Edwards et al.(52) described decreased 

activities of 5'NT in patients with X-linked agammaglobulinaemia(Bruton 

type, XLA), measured both in lymphocyte lysates and in intact lympho

cytes. These findings were confirmed and extended(186). It was shown 

that 5'NT activities were up to 25% of control value in XLA patients 

when using different mononucleotide substrates. ADA and PNP activities 

and several other purine enzyme activities were normal in these patients. 

The data described above were doubted by other authors(50). It was 

postulated that the increased amount of monocytes in XLA patients, which 

lack or have only low 5'NT activity(53,98), was responsible for the 

decreased 5'NT activity. The 5'NT activity in lymphocytes would be in 

the normal control range(50). However, this hypothesis was disproven in 

experiments on rosetting peripheral blood mononuclear cells(53). These 

E-rosetting cell populations in XLA patients, which contained less than 

2% monocytes, showed a clearly decreased ecto-5'NT activity as compared 

to control peripheral blood rosetting cells. Whether this decreased ac

tivity should be ascribed to the В or Τ cell population or to both, 

could not be concluded according to the authors. More recent studies 

(39,54,169) indicated that both Τ and В cells have decreased 5'NT 
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activities in XLA. The presence of normal 5'NT activity in fibroblasts 

and T-colony lymphocytes indicate that a mutation in the structural 

gene for 5'NT is not likely. The findings of low 5'NT activity in XLA 

patients might be the reflection of a maturational disturbance of their 

lymphoid cells. Accumulation of deoxyribonucleotides in white and red 

blood cells of XLA patients has not been observed(113). 

2. PATHOPHYSIOLOGICAL MECHANISMS OF LYMPHOTOXICITY 

Elevated levels of adenosine and deoxyadenosine have been found in 

body fluids from ADA deficient patients with SCID(38,49,106,117,130,158) 

Intracellular levels of ATP, deoxyATP and cyclic AMP(cAMP) were found to 

be increased(38,43,49,92,117,147,170). In PNP deficient individuals 

increased levels of guanosine,deoxyguanosine, inosine and deoxyinosine 

were noted(36,141). Also elevated intracellular levels of deoxyGTP and 

PRPP have been reported in different cells of these patients(36,37,113). 

With these findings in mind, it is evident that much research has been 

focussed on the metabolic fate and the enzymatic handling of these 

compounds. Biochemical and biological studies have been performed in in 

vitro models and in human tissues. Five possible mechanisms that might 

lead to immune dysfunction have been proposed. Parameters as prolifera

tive capacity, protein synthesis and immunocompetence have been inves

tigated. Main attention will be given to ADA and PNP deficiency, since 

these "inborn errors of metabolism" have most extensively been studied. 

A. Adenosine Induced Pyrimidine Starvation 

Based on the finding that adenosine caused elevated levels of purine 

nucleotides and reduced levels of pyrimidine nucleotides, Green and 

co-workers postulated that adenosine toxicity might be mediated by 

pyrimidine nucleotide starvation(69,93). Comparable results were 

obtained in the human lymphblastoid cell line MGL-5, that was esta

blished from blood cells of a patient with infectious mononucleosis. 

When culturing this cell line with adenosine at concentrations higher 

than IO-6 M, growth was strongly affected. This effect was not seen 

when uridine was provided as an extra source of pyrimidines(69,93). 

150 



This phenomenon indicated that indeed the lack of pyrimidines media

ted the adenosine induced toxicity. 

Not only increased purine nucleotide and decreased pyrimidine 

nucleotide pools were observed, but also an accumulation of orotic 

acid was found to be induced by adenosine(93). Adenosine is capable 

of trapping Pi by phosphorylation to its nucleotides. Under physiol

ogical conditions the decrease of intracellular Pi concentrations is 

accompanied by the inhibition of PRPP formation(paragraph 2B). Thus 

the accumulation of orotic acid might be explained by the ability of 

adenosine to limit the intracellular concentration of PRPP, a substrate 

for orotate phosphoribosyltransferase(128). This is not in accordance 

with the findings of Snyder et al.(77,167), who found mutants of the 

WI-L2 lymphoblast cell line deficient in adenosine kinase(AK) to be 

as sensitive to adenosine as the AK positive cell line. This sugges

ted that adenosine does not need to be converted to its nucleotide 

in order to cause pyrimidine nucleotide starvation. 

Some arguments can be given to doubt a major role of adenosine 

induced pyrimidine starvation in the toxic mechanism(s), leading to 

immune dysfunction. 

1. Only mildly elevated levels of adenosine in plasma of ADA def

icient patients have been reported. These levels were below 5 μΜ 

(38,117), whereas pyrimidine starvation induced toxicity occurred 

at adenosine concentrations of 10 μΜ or higher. 

2. Concentrations of the pyrimidine nucleotides UTP and CTP as well 

as deoxyTTP and deoxyCTP were found to be elevated in lymphocytes 

from ADA deficient SCID patients(92,147). The elevation of deoxy

TTP and deoxyCTP seems to be contradictory with the inhibition of 

ribonucleotide reductase(paragraph 2D). This finding may be ex

plained by the erythrocyte transfusions given to this child(92). 

3. ADA deficient children do not excrete elevated amounts of orotic 

acid(118,158). 
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В. PRPP Starvation 

Adenosine reduces the intracellular PRPP concentration in 

erythrocytes(59,128) and in human lymphoblasts(165,166). As PRPP is 

an important substrate for purine salvage(HGPRT and adenine phospho-

ribosyltransferase, APRT; scheme 1) as well as for purine and pyri-

midi ne(orotate phosphoribosyltransferase, OPRT; scheme 1) de novo 

synthesis, decrease of PRPP levels might have consequences for the 

absolute and relative amounts of the different purine and pyrimidine 

nucleotides in the cell. 

Nucleosides are capable of increasing or decreasing the intra

cellular PRPP concentrations in vitro. When Pi is abundantly avai

lable, nucleosides stimulate PRPP synthesis. When Pi is limiting, 

nucleosides inhibit PRPP formation. A decrease of the physiological 

intracellular Pi concentration accompanies the inhibition of PRPP 

formation(128). Nucleosides are capable of reducing intracellular 

Pi levels. This is related both to nucleosides that are predominant

ly degraded to the purine base and to those that are substantially 

phosphorylated. Both these pathways trap Pi. It was shown that when 

erythrocytes were incubated under physiological Pi conditions the 

PRPP levels drop upon addition of nucleosides(128). However, in 

packed erythrocytes of a PNP deficient patient elevated levels of 

PRPP were found(36); this as a consequence of blocked purine salvage 

pathways and a sparing effect of PRPP. Therefore it becomes rather 

unlikely that in PNP deficiencies PRPP is an important mediator 

for the toxic effects. Further investigations are warranted. 

С Inhibition of S-Adenosyl Homocysteine Hydrolase(SAHH) by Adenosine 

and Deoxyadenosine 

As mentioned before, in body fluids of ADA deficient patients 

increased levels of adenosine and deoxyadenosine were found(49,106, 

117,130). From experiments with mutant AK deficient lymphoblastoid 

lines it appeared that adenosine needs not to be phosphorylated to 

exert inhibitory effects(167). Therefore eventual inhibition of SAHH, 

by adenosine and/or deoxyadenosine seemed to be a process that needed 
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Figure 2 : The metabolic pathway of s-adenosylhomocysteine in ADA and 

PNP deficiency. R=methylreceptor like RNA, DNA, lipids, etc. SAHH= 

s-adenosylhomocysteine hydrolase. CS=cystathione synthetase. The broken 

lines represent irreversible inhibition of SAHH (modified from 104). 

investigation. 

SAHH catalyzes the reversible hydrolysis of s-adenosylhomocys-

teine(AdoHcy) to adenosine and homocysteine(fig. 2, 48). Under phys

iological conditions this reaction favours the catabolic direction 

(hydrolysis of AdoHcy in adenosine and homocysteine). The reaction 

products adenosine and homocysteine are readily removed by adenosine 

deaminase and cystathione synthetase(fig. 2), respectively. The 

equilibrium constant however, is most favourable for the anabolic 

direction(48). In experiments where adenosine(l μΜ) was incubated with 

crude lymphoblasts extracts, adenosine was preferently recovered from 

one peak after gelfiltration of the lysate. This protein peak had 

neither ADA nor AK activity. However, this peak appeared to have 

AdoHcy synthesizing capacity(78). It was concluded that SAHH binds 

adenosine with high affinity. In several systems it was shown, that 

addition of adenosine increased the level of AdoHcy. Mice 
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intraperitoneally injected with different concentrations of adenosine 

and homocysteine produced a dose related increase of AdoHcy levels 

in blood, liver and brain(145). Incubation of WI-L2 lymphoblasts and 

AK deficient mutants with adenosine and the ADA inhibitor EHNA leads 

to striking elevations of AdoHcy in these cells(104). Not only aden

osine, but also deoxyadenosine appears to have an AdoHcy elevating 

effect in human lymphoblasts(79,80) and in erythrocytes(81). In this 

same study the binding of deoxyadenosine to SAHH appeared to cause 

an irreversible inactivation of the catalytic activity. This irre

versible inhibition was also seen with adenosine(33). 

Among the nucleosides accumulating in PNP deficiency only 

inosine was able to cause a phosphate dependent irreversible inac

tivation of human SAHH(82). This probably explains the low levels 

of SAHH found in hemolysate from PNP deficient patients(82,100). 

Hypoxanthine facilitated the SAHH inactivation by inosine. Hypo-

xanthine probably shifts the equilibrium of the PNP reaction into 

the direction of inosine formation. This might explain the decreased 

activity of SAHH in Lesch-Nyhan patients, who lack HGPRT activity. 

Inhibition of SAHH will lead to increased levels of AdoHcy, which is 

a potent inhibitor of numerous s-adenosylmethionine dependent methyl 

transfer reactions(81,99,146). Such inhibition appears to account 

for nucleotide independent adenosine toxicity to mouse(103) and 

human lymphoblasts(104). 

The inhibition of SAHH is an event that may also occur in ADA 

deficient patients, where adenosine and deoxyadenosine is accumulated. 

Recently it has been reported(119) that in an ADA deficient SCID 

patient the urinary excretion of AdoHcy is elevated. In an ADA 

deficient patient, who was not immunodeficient, no elevated urinary 

excretion of AdoHcy was reported. However, also SCID patients with 

apparently normal ADA activity with elevated AdoHcy excretion have 

been found(119). Although adenosine and/or deoxyadenosine induced 

inhibition of methylation pathways may play an important role in the 

mediation of the toxic defects in immunodeficiency, the exact role 

of this process has still to be elucidated. 
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D. Inhibition of Ribonucleotide Reductase by DeoxyATP and DeoxyGTP 

Much attention has been focussed on the allosteric inhibition 

of ribonucleotide reductase by deoxyribonucleotides. This enzyme 

catalyzes the conversion of ribonucleotides, at the diphosphate level, 

to deoxyribonucleotides; the conversions of ADP to deoxyADP, GDP to 

deoxyGDP, UDP to deoxyUDP and CDP to deoxyCDP(fig. 3). Since this is 

the only route known for synthesis of deoxynucleotides in mammalian 

cells(122,140), its action is essential for DNA synthesis. Using 

highly purified calf thymus ribonucleoside diphosphate reductase, it 

was shown that deoxyATP at a concentration of 5 μΜ inhibits 50% of 

the ADP, GDP, CDP and UDP reduction(56). The reduction of GDP, CDP 

and UDP was inhibited by deoxyGTP at concentrations of 50 to 100 μΜ. 

In ADA and PNP deficient patients, deoxyadenosine and deoxyguanosine 

are accumulated, respectively. These deoxyribonucleosides can be 

phosphorylated to monodeoxyribonucleotides which subsequently 

increase the intracellular levels of deoxyATP and deoxyGTP. Elevated 

deoxyATP and deoxyGTP levels have been found in cells of immuno-

deficient patients(paragraph 1). Inhibition of ribonucleotide reduc

tase by either one of these compounds(fig. 3) will cause a disbalance 

of the intracellular deoxyribonucleotide pools and thus impairment 

of DNA synthesis. 

The phosphorylating capacity of the thymus, spleen and peri

pheral lymphocytes is high when compared with other tissues(26). In 

experiments with the human Τ lymphoblast MOLT-4 and the В lymphoblast 

MGL-8 cell lines it was seen that, when culturing both cell lines 

with deoxyadenosine or deoxyguanosine, the cell growth was much more 

inhibited in the Τ cell line than it was in the В cell line(121). 

Together with this sélectivité toxicity a selective accumulation of 

deoxyATP and deoxyGTP in the Τ lymphoblasts was observed(121). In 

comparable experiments with deoxyadenosine in , partly other, Τ and 

В cell lines, this selective toxicity was confirmed(27). However, 

measuring the deoxyadenosine kinase activity(catalyzing the phosphor

ylation of deoxyadenosine to deoxyAMP, scheme 1), showed that the 

explanation of this selectivity could not simply be given by the 

relative amounts of this enzyme present. Studies carried out in 

mouse Τ cell lymphoma lines(30,70) showed that deoxyguanosine, 
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Figure 3 : The inhibition of ribonucleotide reductase by deoxyATP and 

deoxyGTP in ADA and PNP deficiency(modified from 136). 

guanosine and deoxyinosine inhibited cell growth. A drop of deoxy

CTP and deoxyATP levels, accompanied by a sharpe rise in deoxyGTP 

levels, pointed to a mechanism related to inhibition of ribonucleo

tide reductase(fig. 3). 

As indicated above, the higher toxicity for Τ cell lines could 

not be explained solely by a significantly higher kinase activity 

than in В cell lines(27,124). Differences in 5'NT activities between 

Τ and В cells might contribute to this selectivity(chapter 5, 169, 

183). The most rapid accumulation of deoxyATP upon incubation with 
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deoxyadenosine was seen in Τ cell lines in several studies(28,121,188). 

The phosphorylating capacity of deoxyadenosine did not differ signif

icantly in Τ and В cell 1 ines(121,188). However, marked differences 

in the nucleotide degrading capacity were noticed. 5'NT, the enzyme 

dephosphorylating deoxyAMP and other mononucleotides, to give the 

corresponding nucleosides, was found to have a much lower activity 

both in freshly isolated and in cultured Τ and В cells(chapter 5, 

169,183,188). Thus, the more rapid accumulation of deoxyATP might 

be considered to be the net result of both kinase and nucleotidase 

activity. This mechanism was not only suggested in the case of deoxy

ATP accumulation, but also in the case of deoxyTTP(28) and deoxy-

GTP accumulation(121). 

Although the deoxynucleotide toxicity seems rather plausible, 

several points of criticism have to be made: 

1. It is hard to explain the selective toxicity towards Τ and В cells, 

only on the basis of differences in the 5'NT activity, an enzyme 

of which a considerable part of the catalytic activity is located 

at the outer surface of the cell membrane. Data supporting this 

doubt have recently been published(18). ADA deficient cell lines, 

which have relatively high ecto-5'NT activities exhibit a sensit

ivity to deoxyadenosine intoxication, comparable to ADA deficient 

cell lines with relatively low ecto-5'NT activities. However, no 

data are given in this paper on the activity of nucleoside kina

ses. The recent finding of a soluble deoxynucleotidase in lympho-

blasts, that is distinguishable from the membrane bound enzyme(29), 

might throw new light on this matter. 

2. A mutant human lymphoblastoid cell line that lacked deoxycytidine 

kinase, had less than 10% of the deoxyadenosine phosphorylating 

capacity as compared to the wild type(176). Deoxycytidine kinase 

is believed to catalyze the phosphorylation of deoxyguanosine and 

deoxyadenosine(105). With regard to growth this mutant was as 

sensitive to the toxic effects of deoxyadenosine as the wild type. 

A WI-L2 mutant deficient in adenosine kinase activity showed no 

significant difference in deoxyadenosine phosphorylating activity 

when measured in extracts as compared to the wild type. However, 

this mutant was 3-fold less sensitive to deoxyadenosine and 

accumulated far less deoxyATP from exogenous deoxyadenosine. 
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A mutant cell line lacking both adenosine and deoxycytidine kinase 

activities was less sensitive to deoxyadenosine than the adenosine 

kinase deficient mutant and did not accumulate deoxyATP. It was con

cluded that although deoxyadenosine phosphorylation was associated 

with deoxycytidine kinase, the physiologically important deoxyaden

osine phosphorylating capacity is associated with the adenosine 

kinase activity. 

E. Adenosine Induced Elevation of Intracellular cAMP 

It is known that PHA induced human lymphocyte blastogenesis(25, 

161) is inhibited by cAMP. Carson and Seegmiller(25) reported that, 

when normal peripheral blood lymphocytes were cultured with cAMP or 

dibutyryl-cAMP(db-cAMP), 3H-thymidine incorporation was inhibited. 

It was suggested that the action of cAMP was mediated by adenosine 

to which it has been catabolized. This can be concluded from exper

iments in which EHNA(a potent inhibitor of adenosine catabolism) 

enhanced the cAMP effect. Not only lymphocyte blastogenesis could be 

inhibited by cAMP, also the excretion of antibodies(161) and lympho

cyte mediated toxicity(19,168) were affected by this compound. 

db-cAMP nearly abolished cytotoxicity at a concentration of 1 mM. 

cAMP also caused a reduction of the concentrations of UTP and CTP 

in lymphocytes(166). Apparently, through breakdown to adenosine, cAMP 

is capable of causing a pyrimidine nucleotide starvation in human 

lymphoblasts. The effect could be reversed by the addition of uridine 

(25,166). 

Adenosine and deoxyadenosine are known to increase intracellular 

concentrations of cAMP(35,187). As a result of elevated adenosine 

and deoxyadenosine levels in ADA deficiency, intracellular cAMP 

levels in cells of the lymphoid system might be increased either as 

a result of metabolic transformation of adenosine to cAMP or as a 

consequence of adenyl cyclase activation, the enzyme that catalyzes 

the conversion of ATP to cAMP. 

Whether the elevation of intracellular cAMP plays an important 

role in the biochemical mechanisms leading to immune dysfunction in 
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Table 1: Possible Pathophysiological Mechanisms in ADA Deficiency 

Accumulation Consequence 

Adenine ribonucleotides -Pyrimidine ribonucleotide 

starvation 

-PRPP starvation 

S-adenosylhomocysteine -Decreased methylation of DNA, 

RNA, proteins, etc. 

Adenine deoxyribonucleotides -Inhibition of ribonucleotide 

reductase 

cAMP -Impaired inmune response 

ADA deficiency, is not yet clear. ADA deficient leukocytes contained 

a cAMP concentration^ pmol/10
6
 cells) twice as high as in control 

leukocytes(2.6 pmol/10
6
 cells, 147). In the reports described above, 

severe inhibitory effects of cAMP were seen only at concentrations 

over 100 wM(25,166). Moreover, mutants from S49 cells(mineral oil 

induced, Τ cell lymphosarcomas obtained from Balb/c mice) defective 

in some component of cAMP action or metabolism, are resistant to 

killing by isoproterenol, a hormone that increases cAMP levels, 

whereas they are sensitive to killing by adenosine and EHNA(175). 

Through these findings it becomes doubtful whether this mechanism is 

essential in the mediation of toxic effects of ADA deficiency. 

In table 1 the possible pathophysiological mechanisms in immuno

deficiency disease are summarized. It is not likely that either one of 

these mechanisms is solely responsible for the immunodeficiencies caused 

by ADA or PNP deficiency. It is more likely that a combination of any 

of these mecahnisms may finally result in the immune defect. In view 

of the moderately elevated concentrations of adenosine(paragraph 2A), 

the elevated levels of PRPP in PNP deficiency(paragraph 2B) and the 

moderately elevated levels of cAMP in ADA deficient leukocytes(paragraph 

2E), the possibilities discussed under А, В and E in this paragraph, 

most probably will not play an essential role. Only low concentrations 

of adenosine and deoxyadenosine appear to be able to inhibit SAHH(para-

graph 2C). DeoxyATP(3 μΜ) inhibits 50% of ribonucleotide reductase activ-

ity(paragraph 2D). In conclusion, the inhibition of SAHH and/or ribo

nucleotide reductase is likely to play a major role in the pathophys

iological mechanisms of immunodeficiency disease. 
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3. ENZYMOLOGICAL ASPECTS OF LYMPHOID CELL DIFFERENTIATION 

The lymphocyte part of the immune system in birds and mammals con

sists of two major differentiation pathways, which have a common origin. 

Lymphopoietic precursor cells migrate from yolk sac, fetal liver, spleen 

and bone marrow via the blood stream to the central lymphoid tissues, 

the thymus and the bursa of Fabricius in birds or its equivalent, fetal 

liver and bone marrow, in mammals. After having reached the thymus or 

the bursa equivalent, lymphocyte precursor cells undergo proliferation 

and differentiation to become immunologically competent lymphocytes. 

The newly differentiated lymphocytes migrate from the central lymphoid 

tissues to the peripheral lymphoid tissues(spleen, lymph nodes and gut-

associated lymphoid tissues) where .subpopulations populate distinct 

anatomical locations(55). Peripheral lymphocytes, which have undergone 

differentiation in the thymus before emigrating to peripheral lymphoid 

tissues, are referred to as Τ lymphocytes or Τ cells. Mature Τ cells 

are responsible for cell mediated immunological reactions. Peripheral 

lymphocytes, which differentiated in the bursa of Fabricius or its 

mammalian equivalent, are referred to as В lymphocytes or В cells. 

Mature cells are responsible for antibody mediated immunological reac

tions. Cooperative interactions between Τ cells, macrophages(cells with 

a highly phagocytic capacity) and/or В cells are required for most 

immunological reactions to occur(55). 

Differences in Purine Metabolism in Normal Lymphoid Cells 

In cells from immunologically different lymphoid subpopulations, 

as well as in cells from subpopulations in various differentiation 

stages, differences in purine metabolism have been described. Differen

ces in ADA activity between mature Τ and В lymphocytes do not seem to 

be significant(chapter 5, 124,174,183). Only one report(123) describes 

a significantly higher(40%) activity of ADA in Τ than in В cells. 

Although the relative activities of the Τ and В cell fractions in this 

report are in the same range as in other reports, in the latter this 

difference is not considered significant. 

PNP activity has been suggested as a histochemical marker for 
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Τ cells in man(15). However, the data on this enzyme are rather confu

sing. Whereas in one report the higher PNP activity in Τ cells is con-

firmed(123), we could not find a significant difference between Τ and 

В lymphocytes(chapter 5, 183). 

Many reports have been dealing with differences of 5'NT activity 

in Τ and В lymphocytes. It is generally accepted that ecto-5'NT activity 

is higher in human peripheral blood В cells than in Τ cells(chapter 5, 

53,142,169,183). The relative differences however,vary from a moderately 

(53) to even a 15-fold(169) higher activity in В cells. The activity of 

ecto-5'NT appeared to be age dependent both in Τ and in В cel Is(17). 

From 40 years of age on, 5'NT activity decreases in peripheral blood 

Τ cells. In В cells a decreased ecto-5'NT activity was only seen at ages 

of 60 years or higher. To our knowledge no data have been reported on 

differences in AK activity between Τ and В cells. 

Relatively little is known about differences in purine enzyme 

activities in Τ cell subfractions. We found that APRT, PNP and AK activ

ities are significantly higher in Τ-Τγ peripheral blood cells than in 

Τγ cells(cells with a receptor for the Fc portion of IgG; chapter 5, 

183). In contrast.a higher ADA activity was found in Τγ cells. Although 

in our studies this difference had no statistical significance, it 

should be mentioned that comparable results were reported by another 

group(159). Τγ cells have lower 5'NT activity than Τ-Τγ cells(chapter 5, 

17,183). It was postulated that this difference in 5'NT together with 

the relative increase in the number of Τγ cells with age, explains the 

relatively low 5'NT activity in senescence(17). 

According to the hypothesis that a relatively low 5'NT/kinase 

activity ratio causes cells to be more vulnerable towards deoxynucleo-

side toxicity(paragraph 2), one can reason that Τ cells are more vul

nerable than В cells and that Τγ cells can be affected more easily than 

Τ-Τγ cells. However, especially concerning the last comparison more 

data have to be collected. 

Not only peripheral blood lymphocytes exhibiting different pheno-

types, but also lymphocytes from various lymphoid organs have been 

studied. Two major reasons could be given to study purine metabolism 
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in different lymphoid organs: 

1. To know the possible variation of purine enzymes in different stages 

of lymphoid development may contribute to a better understanding of 

the role of purine metabolism in normal lymphoid differentiation. Not 

only differences between various subsets of PBL, but also differences 

between lymphocytes at various differentiation stages may cause selec

tive sensitivity for purine nucleosides or their analogues. 

2. If differences were found, this might help to a better understanding 

of the relation between purine metabolism and immune function. 

Purine Metabolism in Different Mammalian Tissues 

ADA activity, measured in several human tissues, was found to be 

high in thymus(chapter 9, 1,26,87,184). Intermediate ADA activities 

were found in human spleen(26,87) and peripheral blood lymphocytes 

(chapter 9, 31,87,184) and lymph node(l,87). Brain, kidney, liver and 

lung were found to have relatively low ADA activities(26,87). Consider

able activities of several deoxynucleoside kinases were predominantly 

found in lymphoid tissues, where the thymus seemed to have the highest 

activity(26,40). 

In contrast to the high activities of ADA and several deoxynucleo

side kinases found in thymus tissue, a reletively low activity of 5'NT 

was seen(chapter 9, 40,53,184). The 5'NT activity in thymocytes could 

be increased by culturing them in medium containing thymic epithelial 

cell derived factors(41). As could be expected, the different enzymatic 

make-up of thymocytes as compared to PBL, leads to a different sensit

ivity towards deoxynucleosides. When culturing both thymocytes and PBL 

with deoxyguanosine, the proliferative response was affected mostly in 

the thymocytes(40). It was assumed that this phenomenon was due to the 

relati vily poor ability of thymocytes to breakdown the accumulated 

deoxyGTP. 

Our findings were not completely in agreement with these data 

(chapter 9). This might be ascribed to the different culturing condi

tions used. In our experiments thymocytes were cultured in the presence 

of thymic epithelial derived factor. Such factors are capable of 
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inducing 5'NT activity in thymocytes(chapter 9, 41), thus providing 

these cells with a better possibility to breakdown toxic deoxyribonuc-

leotides. In experiments with deoxyadenosine comparable data were 

obtained(chapter 9, 184). Experiments carried out in thymocyte subfrac

tions showed a good correlation between the ecto-5'NT/deoxycitidine 

kinase activity ratio and deoxynucleoside induced inhibition of PHA 

response(chapter 9, 184). Thymocytes were separated on size, with a 

centrifugal elutriation technique. It appeared that the fractions con

taining predominantly small sized cells were relatively immature. The 

fractions containing predominantly medium sized cells were found to be 

relatively mature(149). The thymocyte fraction with the highest ecto-

5'NT/deoxycytidine activity ratio was affected least after culturing in 

the presence of deoxynucleosides, whereas the fraction with the lowest 

ratio was most seriously affected. 

Besides differences in ecto-5'NT and deoxycytidine kinase activity, 

also differences in ADA and PNP activity were detected at the intrathymic 

level. Using an immunohistochemical technique, Chechik et al.(31) have 

shown that ADA positive cells were predominantly seen in the cortical 

regions of the human thymus. In the thymic medulla, ADA reactivity was 

observed only occasionally. It has been shown that the thymic cortex 

contains less mature lymphocytes than the medulla(chapter 9, 20). In 

the thymocyte fractions described above, the ADA/PNP activity ratio was 

highest in the relatively immature fractions and relatively low in the 

mature fractions(chapter 9, 184). From our experiments and ADA and PNP 

measurements in different rat lymphoid organs, where similar data were 

obtained(chapter 9, 11,12), it was suggested that the ADA/PNP activity 

ratio is a marker for Τ cell development. Deficiencies of each of these 

enzymes might affect Τ cells at separate stages of differentiation. 

Although the physiological consequences of deficiencies of some 

purine enzymes have been extensively studied(paragraphs 1 and 2), the 

physiological role of purine metabolism in immune function is not yet 

fully understood. 
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Effects of Purine Derivatives on Lympoid Cells 

The mechanisms which can lead to eventual cytotoxicity have exten

sively been discussed above(paragraph 2). From a number of in vitro and 

in vivo studies(177) it becomes more· and more evident that purine 

analogues, metabolized especially by ADA and PNP, can act as regulators 

of several immune functions. 

cAMP seems to be a good candidate for modulating the immune res

ponse. It is known that cAMP can stimulate both lymphocyte transforma

tion and antibody secretion(83,84,101,161). Similar effects were seen 

with low concentrations of adenosine(150,180,183). These functions are 

inhibited by high concentrations of adenosine(chapter 10, 180). This is 

compatible with the finding that increased antibody production is 

related to increased ADA activity(71). 

Astaldi et al.(9) have performed some interesting studies on a 

serum factor, which appeared to be adenosine. It was shown that this 

serum factor(adenosine), which could not be derived from thymectomized 

myasthenia gravis patients, was mainly active on the thymocytes(5,8). 

Among thymocytes the activity of the serum factor(adenosine) was found 

to be restricted to hydrocortisone sensitive(relatively immature) 

thymocytes(6). In vitro it was found that the serum factor increased 

cAMP levels in thymocytes(7). Protein synthesis was found to increase 

in thymocytes 15 min. after the serum factor(adenosine) was added(189). 

It was suggested that adenosine binds to thymocytes and then stimulates 

adenylate cyclase with a subsequent rise in intracellular cAMP. It is 

likely that this leads to an activation of protein kinases, which are 

responsible for the phosphorylation of proteins. 

In relation to the sensitivity for theophylline(an inhibitor of 

phosphodiesterase, the enzyme that breaks down cAMP), different Τ cell 

subsets have been described(108). Those cells whose ability to bind 

sheep eryhtrocytes is not affected by theophylline treatment, are termed 

theophylline resistant(T ), while those cells that lose the ability to 

form rosettes with sheep erythrocytes are termed theophylline sensitive 

(T ). The Τ fraction contained mainly Τγ cells, whereas the Τ subset 

predominantly contained Τμ cell s(154). When adenosine is incubated with 
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peripheral blood Τ cells, an increase of the percentage of Τγ cells is 

seen(13). Adenosine however, not only increases the proportion of Τγ 

cells but also causes a loss of helper activity(13). 

Comparable results were obtained with deoxyadenosine. In experi

ments where the number of plasma cells was counted after 7 days of 

cui turing of PBL, in the presence of PWM a decrease of the number of 

plasma cells induced was significantly correlated with the concentration 

of deoxyadenosine added(73). It was concluded that deoxyadenosine, under 

the conditions used, affected the Τ helper cells. At very low deoxy

adenosine concentrations however, the Τ helper function seems to be less 

affected than the Τ suppressor function(chapter 10, 180). Adenosine 

also seems to affect the Τμ cell subset(bearing the receptor for the Fc 

part of IgM). It was described(62,151) that this Τ cell subset also 

contains the precursors of the effector cells for cell mediated lympho-

lysis. Wolberg et al. showed that adenosine inhibited the lymphocyte 

mediated lysis of tumor cells(187). Using a plaque forming cell assay, 

it was shown that deoxyguanosine at concentrations above 1 μΜ abol

ished Τ suppressor activity(64). 

Apart of the studies mentioned in other paragraphs of this paper, 

some other data have to be mentioned about the relation of ADA and 

immune function. As could be expected from the foregoing, ADA plays an 

important role in Τ cell maturation. Incubation of precursor Τ cells 

from ADA deficient patients with thymic epithelial monolayers or 

thymosin, induced receptors for sheep erythrocytes(143,155). This induc

tion could be prevented by adding the ADA inhibitor EHNA to the cultures 

(155). This indicated that, in particular at early stages of Τ cell 

maturation, the metabolic action of ADA is of importance. These results 

are compatible with data reported earlier(10,129). After 5 days of cul-

turing, tonsil derived lymphoid precursor cells, inable to form rosettes 

with sheep erythrocytes, developed the capacity to form E-rosettes. 

When coformycin was added to the culture, no significant rosette 

forming capacity was found, even at 10 days of culturing(lO). Addition 

of ADA to lymphocyte cultures of an ADA deficient SCID patient, restored 

the proliferative capacity of these cells(129). 

Thuillier et al.(171) showed that immunocompetent rat thymocytes 
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were able to produce a Τ cell growth factor(TCGF) upon mitogen stimul

ation, but were not able to do so under ADA deficient conditions. 

Immuno-incompetent rat thymocytes differentiate and maturate in response 

to concanavalin A(ConA) if TCGF is added. This process can be inhibited 

by adding deoxycoformycin and deoxyadenosine. Through its catabolic 

activity, adenosine deaminase has been proposed as an enzyme controlling 

the amount of substrate available to xanthine oxidase(scheme 1). The 

latter enzyme produces 0„ radicals accompanying plasma membrane pertur

bation during phagocytosis of polymorphonuclear leukocytes(172). This 

illustrates that, when studying nucleoside toxicity towards the immune 

system, not only lymphoid cells should be considered. 

The above data strongly indicate that normal immune function is 

strongly related to a properly functioning purine metabolism. These 

studies reported indicate that purine nucleosides not only affect the 

differentiation of Τ cells, but also modulate the functional activity 

of these cells. Adenosine, deoxyadenosine and deoxyguanosine may be 

considered as immunosuppresive and immunostimulatory agents, depending 

of the concentrations used, with a certain selectivity in their action. 

4. BIOCHEMICAL PHENOTYPES OF CHILDHOOD ACUTE LYMPHOBLASTIC LEUKEMIA(ALL) 

Patients with ALL can be classified by means of immunological 

markers. ALL patients with bone marrow that contains predominantly 

malignant cells bearing slg, are referred to as B-ALL(table 2). When 

the lymphoblasts are predominantly forming Ε-rosettes and/or are posit

ive with the anti-T cell antiserum, the patients are classified in the 

T-ALL group(68). The major subclass of ALL is the nonBnonT-ALL group 

(table 2), which can be discriminated from B-ALL by the absence of 

immunoglobulins on the lymphoblast membranes, and from T-ALL by the 

absence of E-rosetting capacity or reactivity with anti-T cell antiserum 

(57,68). However, patients who apparently had a considerable number of 

anti-T cell antiserum positive cells, have also been classified in the 

nonBnonT-ALL group, because no Ε-rosettes could be detected and the 

number of cells positive for the cALL(ALL with the major or common 

phenotype) antiserum(24,67), was predominant(34,68,91,181). The cALL 

antiserum provides a marker for further division of the nonBnonT-ALL 
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Table 2: Immunological Classification of Acute Lymphoblastic Leukemia 

Classification Relative Incidence Markers 

nonBnonT-ALL 

une.-ALL 

CALL 

preB-ALL 

T-ALL 

B-ALL 

+ 80% 

± 15% 

± 65% 

± 20% 

± 2% 

± 20% 

Ε , 

Ε , 

E , 

E , 

+ 
E , 

Ε", 

slg , 

slg , 

slg , 

slg , 

slg , 

+ 
slg , 

anti-T 

anti-T 

anti-T 

anti-Τ 

anti-T 

anti-T 

CALL 

cALL
+ 

CALL 

CALL 

CALL 

clgM 

CALL patients may occasionally have an anti-T phenotype, whereas some 

T-ALL patients may occasionally have an E phenotype. E=rosette forming 

capacity with sheep erythrocytes. slg=surface immunoglobulins. anti-T= 

anti-T cell antiserum. cIgM=cytoplasmic IgM heavy chains. cALL=common-

ALL antiserum. 

group. NonBnonT-ALL patients with leukemic cells positive for this anti

serum are referred to as cALL(table 2), whereas the remaining patients, 

cALL negative, Ε-rosette negative, anti-T cell antiserum negative and 

slg negative, are referred to as unclassified-ALL(unc.-ALL, table 2). 

The presence of cytoplasmic IgM heavy chains(cIgM) in the absence of 

slg can be considered as a preß cell marker(63,135). Thus, nonBnonT-ALL 

patients with cells containing clgM can be considered to be of the 

preB-ALL type(23,181). 

In table 2 the classification of ALL patients is summarized. It 

appears that about 80% of the ALL patients cannot be classified as T-

or B-ALL. From this nonBnonT-ALL group, about 65% of the patients can 

be classified as cALL, whereas about 15% remains unclassified(unc.-ALL, 

68). From the cALL patients about 20% appeared to have clgM and could 

be classified as preB-ALL(185). The phenotypes T-ALL and B-ALL were 

observed in about 15% and 2% of the ALL patients(68). 

Although the data reported are not completely unanimous, a rather 

consistent picture of the biochemical phenotypes of different subclasses 

of ALL is emerging. Elevated levels of ADA in ALL lymphoblasts, as 

compared to control PBL, have been described in childhood ALL(chapter 

6 and 7, 42,112,139,163,179,181). Conflicting findings by others(104, 

159,191) can be explained by the fact that the group of patients was 

not completely in the childhood range(109,159) or that the patients 
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were not newly diagnosed, but were in relapse or in remission(191). In 

our studies it has been shown that this might affect purine enzyme 

activities (chapter 7, 181). The highest ADA activities were found in 

T-ALL, whereas ηοπΒηοηΤ-ALL patients had ADA activities intermediate 

between control PBL and T-ALL lymphoblasts(chapter 6, 42,139,163,179). 

generally an ADA activity in the range of control PBL has been found in 

B-ALL lymphoblasts(chapter 7, 42,181). 

Differences in PNP activities in the various subgroups of ALL were 

not as pronounced as differences in ADA activity. In nonBnonT-ALL PNP 

activity levels were in the range of control PBL. In T-ALL however, 

a markedly decreased PNP activity was found(chapter 6, 14,179). The 

data on PNP activities in B-ALL patients are rather confusing. Patients 

with decreased(chapter 7, 139,181) as well as with increased PNP activ-

ity(chapter 7, 181) have been described. These different findings may 

indicate a heterogeneity in the leukemic cells isolated from B-ALL 

patients. 

An inverse linear relationship has been found with Τ lympho

blasts, isolated from patients with T-ALL,between the number of E-rosette 

forming cells and the 5'NT activity(138). The 5'NT activity in T-ALL 

was significantly lower than in nonBnonT-ALL or in control PBL(chapter 

6, 102,138,139,179). The mean 5'NT activity in nonBnonT-ALL seemed to 

be elevated as compared to control PBL(chapter 6, 102,179). Kramers et 

al.(102) described a mean 5'NT activity of 2.9 ± 1.5 10"
9
 moles/mg 

protein.min. in normal lymphocytes. In nonBnonT-ALL cells a mean 5'NT 

activity of 5.2 ± 2.0 10"
9
 moles/mg protein.min. was found. In compar

able experiments described earlier(chapter 6, 179), we.found mean 5'NT 

activities of 18.4 ± 11.7 and 25.9 ± 23.1 10"
9
 moles/10

6
 cells.hour in 

control PBL and nonBnonT leukemic cells, respectively. Due to the huge 

standard deviations, these differences were not found to be significant. 

When analyzing the cells of a number of nonBnonT-ALL patients in more 

detail, we found a possible explanation for this phenomenon. NonBnonT-

ALL patients with clgM appeared to have a significantly higher 5'NT 

activity than patients not having this preß cell marker(chapter 7,181). 

The number of patients who were investigated in this respect was rather 

limited. Nevertheless, when separating the group of nonBnonT-ALL 

patients in those with and those without clgM in their cells, it 
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appeared that the first group(only 3 out of 7 patients) is responsible 

for the rather wide standard deviation and elevated mean 5'NT activity 

in the ηοπΒηοηΤ-ALL group. Considering the data described above, 5'NT 

activity cannot be a diagnostic marker for classification of subgroups 

of ALL. 

In a systematic analysis of purine metabolizing enzymes in ALL, 

described in chapter 6(179), also differences in subgroups of ALL with 

respect to other enzymes became apparent. In nonBnonT-ALL significantly 

higher activities of HGPRT and adenylate kinase(AdKin) were found as 

compared to these activities in control PBL. APRT activity on the other 

hand was found to be lower in nonBnonT-ALL. Since HGPRT is catalyzing 

the supply of nucleotides via the purine salvage pathway and AdKin 

regulates the conversions of adenine nucleotides, these findings seem 

to be in agreement with the elevated ATP concentrations found in 

nonBnonT-ALL cells(47). In T-ALL, where the ATP concentrations were not 

significantly elevated, HGPRT was only moderately higher and AdKin 

showed activities comparable to control PBL(chapter 6, 179). APRT 

activity in T-ALL was about half the mean activity of control PBL. 

When speculating on the biochemical differences caused by the 

different enzymatic make-up in nonBnonT-ALL and T-ALL, one might pos

tulate that 5'NT is a key enzyme in this respect. Since 5'NT activity 

in nonBnonT-ALL seems to be normal to somewhat elevated, breakdown of 

adenine and other purine nucleotides can occur at a normal rate. Since 

ADA activity is higher, the catabolic action of 5'NT might be followed 

by rapid deamination of adenosine to inosine. Since there is no reason 

to assume that the apparently normal PNP activity is rate limiting in 

any way, the consequence of this might be a more extensive production 

of hypoxanthine and subsequently a more extensive loss of the purine 

base in uric acid. However, the cell has two rescue mechanisms. The 

first is the elevated capacity of HGPRT to salvage hypoxanthine formed, 

and recycle it into the nucleotide pool. The second is an elevated AdKin 

activity which helps the cell to protect the adenine nucleotides, formed 

from either IMP or the action of AK(scheme 1), from dephosphorylation 

by 5'NT more effectively. This is demonstrated by the elevated ATP pools 

in nonBnonT leukemic cells. 

169 



In the case of T-ALL, the very high ADA activity might be relativ

ely unimportant, since both the relatively low 5'NT and PNP activity 

might be rate limiting in the catabolism of adenine nucleotides. In 

T-ALL the malignant lymphoblasts represent relatively early stages of 

Τ cell differentiation(chapter 9). Apparently a low nucleotide break

down and a high adenosine catabolism is necessary for differentiating 

Τ cells. In this case the cell apparently does not need to have either 

high HGPRT or AdKin activity as is the case in nonBnonT-ALL. 

5. BIOCHEMICAL PHENOTYPES OF CHRONIC LYMPHOCYTIC LEUKEMIA(CLL) 

In B-CLL patients markedly altered activities of ADA, PNP and 5'NT 

have been described. ADA activity in several patients with CLL was found 

to be considerably lower than in control PBL(chapter 8, 3,90,112,137, 

174,182) In a number of CLL patients ADA activity was in the range of 

the control value(chapter 8, 162,181). This apparently wide activity 

range in patients with CLL becomes also evident from the finding that 

B-CLL patients with paraproteinemia had a significantly lower ADA ac

tivity than patients without paraproteinaemia(chapter 8, 182). 

Mean PNP activity was found to be relatively low in patients with 

CLL(chapter 8, 3,16,182). A comparable wide activity range was found 

with respect to PNP activity in CLL as was the case with ADA. However, 

no differences between CLL patients with and without paraproteinaemia 

were noted(chapter 8, 182). 5'NT activity was found to be low in CLL 

patients(chapter 8, 102,110,134,160,182). However, a clear distinction 

between the CLL patients with different phenotypes must still be made. 

5'NT activity was only found to be lowin B-CLL. In two patients with 

T-CLL a 5'NT activity comparable to the level found in control PBL was 

observed(102). In the B-CLL patients a considerable range in 5'NT ac

tivities was seen(chapter 8, 110,182). In B-CLL with paraproteinaemia 

5'NT activity was 11.5 10~
9
 moles/10

6
 cells.hour, whereas patients 

without paraproteinaemia had a mean 5'NT level of 1.2 10~
9
 moles/10

6 

cells.hour(chapter 8, 182). 

Significantly elevated activity levels of enzymes involved in 

adenine nucleotide metabolism(AK and AdKin) have been found(chapter 8, 
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182). Whether these different enzyme activities have any consequences 

for the nucleotide pools in B-CLL lymphoblasts, remains to be inves

tigated. 

6. RELATIONS BETWEEN LYMPHOBLASTIC LEUKEMIA AND NORMAL LYMPHOID CELL 

DIFFERENTIATION 

The immunological markers typical for different subgroups of 

leukemia, are believed to reflect the stage of differentiation of the 

malignant clone(68). Thus, in principle, in should be possible to "map" 

the several subgroups of human lymphoid malignancies along the different 

lymphoid differentiation lines. Knowledge of the enzymatic make-up 

in various differentiation stages might contribute to a better under

standing of the role of purine metabolism during normal lymphoid 

differentiation and in leukemia. 

Greaves and Janossy(68) proposed in their "phenotypic map of human 

malignancies" that the nonBnonT-ALL group represented a common stage in 

early В and Τ cell lineage. Indeed there is evidence that the so called 

nonBnonT-ALL(neither slg nor Ε-rosette positive, table 2) is a hetero

geneous group of leukemias. A number of leukemias with undetectable 

conventional Τ and В cell markers appeared to have cIgM(chapter 7, 181, 

185) a preß cell marker(63). The cells of the latter patients were 

positive with the cALL antiserum. Stimulation of bone marrow cells from 

patients with nonBnonT-ALL with thymic factors, induced immuno-competent 

Τ cells as detected by a local Graft versus Host reaction(152,153). 

Chiao et al.(34) cultured cells lacking В and Τ lymphocyte markers from 

peripheral blood of two ALL patients in the presence of medium produced 

from PHA stimulated allogeneic lymphocytes. Within 18 hours these cells 

acquired the capacity to form rosettes with sheep erythrocytes and to 

bind IgM or IgG. These data support the view that the nonBnonT cell 

compartment of peripheral blood mononuclear cells appears to contain 

precursor cells capable of generating the entire spectrum of lympho

poietic cells(32). As Greaves and Janossy stated: "some of the nonBnonT 

or common ALL'S are preB, some preT and some may be 'frozen' at the 

level of a common(T and B) lymphoid precursor cell or a pluripotent 

stem cell"(68). 
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Figure 4: The relative enzyme activities in different subtypes of 
human leukemia as compared to the enzyme activities in control per
ipheral blood lymphocytes(=100 arbitrary units) is indicated. The 
relative enzyme activities from nonBnonT-ALL(chapter 6, 179), T-ALL 
(chapter 6, 179), T-CLL(102), preB-ALL(chapter 7, 181), B-ALL(chapter 
7, 181) and B-CLL(chapter 8, 182) are extrapolated from data obtained 
mostly by our own group, which are reported elsewhere. NT=not tested. 

As the nonBnonT-ALL can be considered as the malignant equivalent 

of a common lymphoid precursor cell, T-ALL can be considered as the 

malignant counterpart of a stage in the Τ cell lineage(68). This type 

of ALL could more or less be a phenotypical equivalent to the thymo

cytes. The mature Τ cell has its equivalent in the T-CLL subgroup(68). 

As in the Τ cell lineage, several stages of the В cell lineage 

have their maligant counterparts. The preB ALL represents the preß cell 

differentiation stage, the mature В cells are represented by B-ALL and 

B-CLL(68). Myeloma cells are the malignant equivalent of actively Ig 

secreting В lymphocytes or plasma cells. 

Taking the peripheral blood cells as reference, a hypothesis for 

the enzymatic changes in human lymphoid differentiation based on the 
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data described above can be proposed(fig. 4). 

In nonBnonT-ALLa relatively high ADA activity is observed. T-ALL 

cells have ADA activities comparable to those in thymocytes, whereas 

in T-CLL, ADA activity was found to be in the range of control peripheral 

Τ cells(174). As depicted in fig 4., ADA activity is intermediate at the 

level of the lymphoid precursor cell, high at the preT/thymocyte level 

and relatively low in the more mature Τ cell. In the В cell lineage the 

ADA activity seems to be maximal in the very early differentiation 

stages(cf. nonBnonT/preB-ALL). In the more mature differentiation stages 

(cf. B-ALL and B-CLL) mean ADA activity is relatively low. 

The changes in PNP activity in this model of lymphoid cell differ

entiation are not as pronounced as is the case with ADA. Both in В and 

Τ cell lineage the PNP activity levels of the common lymphoid stem cell 

compartment(cf. nonBnonT-ALL) are comparable to the activities in 

peripheral В and Τ cells. The intermediate stages of Τ cell differen

tiation seem to have a moderately lower(cf. T-ALL) PNP activity. In 

B-CLL the PNP activity is slightly decreased. 

In relatively early(cf. nonBnonT-ALL) and relatively late(cf. 

T-CLL and PBL-T) stages of differentiation in the Τ cell lineage, com

parable 5'NT activities were found. Intermediate stages of the Τ lineage 

seem to be characterized by low, if any, 5'NT activity(chapter 9, 184). 

The situation in the В cell lineage model seems to be rather different 

(fig. 4). Not only higher activities of 5'NT in peripheral В lympho

cytes than in Τ lymphocytes were seen, but in contrast with preT cells, 

in preß cells a relatively high 5'NT activity was observed(chapter 7, 

181). 

AdKin activity seemed to be highest in the common В and Τ cell 

precursor cells(cf. nonBnonT-ALL). The stages of Τ cell differentiation 

comparable with T-ALL were found to have relatively low AdKin activities 

that were not changed significantly. An increased AdKin activity in 

В cell lineage apparently occurred at all differentiation stages shown 

(fig. 4), except for the stage that was related to B-ALL. 

The schematic representation of В and Τ cell lineage should be 
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considered as very provisional. The leukemias are depicted in positions 

equivalent to normal cells to which they appear to have the closest 

phenotypic resemblance(68). When studies are performed in more detail, 

it might become clear that, for instance T-ALL and thymocytes or B-CLL 

and B-ALL should be shifted somewhat along their respective lineages. 

Also with regard to T-CLL and the B-ALL subclasses, more patients should 

be investigated in order to establish a more realistic scheme. 

However, these points probably will not significantly alter the 

general conclusions, that 

1. T-cells at various stages of differentiation have higher ADA activ

ities than differentiating В cells. 

2. PNP activities only seem to drop in preT cell stages. 

3. As compared to mature Τ cells, preT cells are characterized by high 

ADA, low PNP, low 5'NT and essentially normal AdKin activities. 

4. As compared to mature В cells, preB cells are characterized by inter

mediate to low ADA, normal PNP, high 5'NT and high AdKin activities. 

Unfortunately, since the normal counterparts of these malignancies 

are not easily available, it is only possible to test these conclusions 

on a few points. From the foregoing it must be clear that not only the 

immunological phenotype of T-ALL cells is alike that of thymocytes, but 

also the biochemical characteristics have much in common. Τ lymphoblasts 

as well as thymocytes can be characterized by high ADA, low 5'NT and 

relatively low PNP activity. From the enzyme activities found in T-CLL 

and in B-CLL/B-ALL it might be concluded that the normal counterparts 

are indeed situated quite near the mature Τ and В cells in their respec

tive lineages. The enzyme activities of PNP, ADA and 5'NT in T-CLL and 

B-CLL/B-ALL only show minor differences with the activities found in Τ 

and В cells, respectively. As suggested before, B-CLL and B-ALL might 

have to change places along the В cell axis. However, with regard to one 

enzyme activity(AdKin), they clearly seem to have more in common with 

the preB phenotype than with the mature В cell. 

The expression of purine enzyme activities during the differentia

tion of lymphoid cells deserves to be studied in detail. Then enzymes 

of purine metabolism cannot only serve as diagnosticai markers in 

various lymphoid malignancies, but since a different enzymatic make-up 
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of purine metabolism might cause different sensitivities towards several 

purine analogues, this might also eventually lead to a chemotherapy 

specifically directed towards the (malignant) cells in a certain stage 

of lymphoid differentiation. If this approach appears to be successful, 

certain types of leukemia might be treated with less side effects on 

the normal lymphoid population and other tissues. 

7. NUCLEOSIDE TOXICITY AND POSSIBILITIES FOR ENZYME DIRECTED CHEMO

THERAPY 

The point of view that chemotherapy with purine analogues can be 

directed against certain cells with a specific purine enzymatic make-up 

is supported by some experimental evidence. Some cells seem to be 

resistent against the broadly used anti-cancer agent and purine deriv

ative 6-mercaptopurine(6MP). In a review(22) Broekman argued that not 

only bacteria, but also neoplastic cells resistant to 6MP and 8-aza-

guanine lacked the capacity to form nucleotides of these analogues. 

This failure seemed to be a consequence of a marked decrease or loss 

of HGPRT activity. It was suggested that loss of HGPRT activity in human 

leukemia cells should be recognized as a clinical resistance mechanism 

(21,22,46). Alternative explanations for resistence to purine analogues 

were among others: decrease or loss of kinase activity which prevents 

cells to form eventually toxic nucleotides and increased degrading 

capacity of the purine analogues to 6-thioxanthine or 6-hydroxypurines 

(22,75). 

Extrapolating these findings to leukemia, this might mean that 

leukemic cells having relatively high HGPRT(nucleotide synthesis, 

scheme 1) and low 5'NT(nucleotide breakdown) are affected more than 

normal cells with lower HGPRT and higher 5'NT activities. These 

enzymatic properties can be found in T-ALL lymphoblasts(chapter 6, 179). 

When these cells would be treated with 6MP, the formation of the toxic 

intermediate 6-thio-IMP pool can be expected to be more extended than 

in normal lymphocytes or preß leukemic cells that can easily breakdown 

(normal or high 5'NT activity, scheme 1) this nucleotide(chapter 7, 

181). Moreover in T-ALL blasts the side-way conversion of 6MP to 6-thio-

inosine by the action of PNP would be rather limited. 
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Not only enzyme activiti es are capable of influencing specific 

chemotherapeutic sensitivity in human lymphoid cells. Also altered 

kinetic properties may play a role in this respect. Jackson et al.(94) 

demonstrated that cultured lymphoid cells with a decreased affinity of 

dihydrofolate reductase for methotrexate(MTX) is accompanied by resis

tance to the drug. Similar alterations in kinetic properties of dihydro

folate reductase have been seen in human lymphoblastoid lines resistant 

to MTX(95). 

Resistance towards 5-fluorouracil(5FU) was seen(74) in cells where 

thymidilate synthetase has lost the binding capacity of 5-fluoro-deoxy-

UMP(5FdUMP). 5FdUMP is the activated inhibitor of 5FU which exerts a 

strong feed-back inhibition of thymidilate synthesis(45). Examples like 

these emphasize the need, not only for systematic analysis of purine 

and pyrimidine interconversions in malignant cells, but also for kinetic 

studies with respect to the affinity of antimetabolites or their deriv

atives towards their targets. 

Perhaps even more important than the chemotherapeutic actions of 

synthetic drugs, the inhibitory effects of accumulated naturally occur

ring purine and pyrimidine nucleosides may be considered. The differen

tial sensitivity of Τ and В cells towards purine nucleosides has been 

discussed in another part of this paper(paragraph 2). Fox et al.(61) 

have shown that some nonBnonT leukemic cell lines exhibited a sensitiv

ity towards deoxyguanosine, deoxyadenosine, deoxycytidine and thymidine 

comparable to the sensitivity shown in some leukemic Τ cell lines. 

According to these authors, the sensitivity of Τ and nonBnonT cells and 

the relative non-sensitivity of В cells could not be ascribed to a dif

ference in ecto-5'NT activity as postulated before. NonBnonT leukemic 

cell lines were found to have ecto-5'NT activities significantly higher 

than Τ leukemic cell lines and in the range of Epstein-Barr-virus(EBV)-

transformed В cell lines(60). Recently, in a report from the same group, 

it was shown that Τ and nonBnonT cell lines were essentially deficient 

of ecto adenosinetriphosphatase(ecto-ATPase) activity, whereas В cell 

lines displayed a considerable activity of this enzyme. As this cell 

surface enzyme seems to have a broad substrate specificity and deoxyATP 

and deoxyGTP are believed to be the major toxic metabolites, low ecto-

ATPase activity may represent a mechanism for increased sensitivity to 
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deoxynucleoside growth inhibition(89). The many examples of the appar

ently enzymatically regulated cytotoxicity of nucleosides, make these 

compounds appropriate candidates for developing lymphoid cell subtype 

specific chemotherapy based on the enzymatic make-up of the present 

subtype. 

Based on studies on the biochemical mechanisms leading to a combined 

immune defect in ADA deficiency and the enzymatic differences between 

leukemic and normal lymphoid cells, an alternative approach to anti-

leukemia chemotherapy was explored. Prentice and his group were able to 

induce a considerable decrease in lymphoblasts in bone marrow of two 

patients with T-ALL, who were resistant to conventional forms of chemo

therapy. These authors(132) were able to induce an almost complete 

remission of leukemic blasts, using the ADA inhibitor deoxycoformycin 

(dCF). The dCF treatment was accompanied by a severe lymphopenia and 

the patients died of a progressive measles infection and leukemic menin

gitis, respectively. In subsequent more extensive studies, dCF was admin

istered to ALL patients irrespective of the subtype of the leukemias 

(131,164). In these studies also a severe lymphopenia was noted. In most 

of the patients no decrease in neutrophils, platelets and Hb in per

ipheral blood were seen after 1 or more moderate courses of dCF(164). 

Only after 5 courses of 0.25 mg dCF/kg body weight, moderate decreases 

of these parameters were noted(164). In the 7 patients studied by Smyth 

et al.(164) three partial responses were seen. In the studies performed 

by Poplack et al.(131) dCF exerted an anti-tumor activity in 8 out of 

26 ALL patients, two of whome experienced a complete remission. 

The above data illustrate that the success of purine enzyme di ree- · 

ted chemotherapy might be related to the enzymatic make-up of the 

leukemic cells. Since nonBnonT and preB leukemias have normal to 

elevated activities of 5'NT, the accumulation of toxic deoxynucleotides 

from adenosine can relatively easily be overcome by the breakdown of 

these compounds by 5'NT. It can be surmized that the heterogeneous 

reactions to dCF in the patients in the two studies described above are 

due to the difference in enzymatic make-up of the subtypes of ALL. 

A correlation of dCF induced remission and deoxyATP accumulation 

has been reported recently(133,144). Subtypes of ALL which, due to the 
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enzymatic make-up, could not be expected to accumulate deoxyATP, do not 

respond to dCF therapy. From the 12 patients with T-ALL, treated with 

dCF, 7 went into complete remission, 2 others showed a good partial 

response and 3 patients were resistant to dCF(133). Three patients show

ing a rapid in vitro accumulation of deoxyATP in the blast cells, 

achieved complete remission. Two patients, with no clinical response, 

showed poor deoxyATP accumulation. One case, having an intermediate 

pattern, had a good partial remission. When studying these patients in 

more detail, it appeared that the patients with complete remission 

accumulated deoxyATP relatively fast in the lymphoid cells. The deoxy

ATP accumulation was accompanied by a reduction in ADA activity and the 

lymphoid blast count. In a patient with partial remission these proces

ses went relatively slow and in the poorly responding patients a 

decrease in blasts was seen rather late(144). The inactivation of SAHH 

activity was following the decrease in the number of leukemic blasts. 

Thus potentially decreased methylation pathways, as a consequence to 

lowered SAHH activities, seem of limited importance in the toxic actions 

as a consequence of nucleoside intoxication. 

These data emphasize that a careful systematic analysis of adenine 

nucleotide metabolism anda selective use of dCF may contribute to the 

success of this approach. Although effects of dCF on other tissues(e.g. 

nervous system, 111) should be evaluated, it seems that "nucleoside 

intoxication" might be promising with respect to certain types of ALL. 
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4 - PNP, purine nucleoside Phosphorylase 
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SUMMARY 

After the intr ductory remarks(chapter 1), the developement of an 

enzymatic micromethod and its application in the enzymatic analysis of 

purine metabolism in lymphocytes and subpopulations is described in the 

section "Enzymological Analysis of Purine Metabolism in Lymphoid Cells". 

Lyophilization of the cells and subsequent resuspension of the freeze-

dried material appeared to yield maximum enzyme activities(chapter 2). 

The method was improved by adding 0.67%(v/v) BSA to the cell suspensions 

(chapter 3). Purine enzyme activities in lymphocytes stimulated with PHA 

did not change significantly, whereas in PWM stimulated lymphocytes, 

contaminated with some monocytes, markedly increased HGPRT, ADA and 5'NT 

activities were observed(chapter 4). Differences in purine enzyme 

activities found in subpopulations of human peripheral blood lymphocytes 

are described in chapter 5. Τ cells have lower HGPRT, AK, 5'NT and AMPD 

activities than В cells. Differences in PNP and AdKin activities found 

in the subpopulations could, at least in part, be ascribed to platelet 

contamination of the В cell fraction. When comparing enzyme activities 

in lymphoid cell subfractions it is necessary to carefully characterize 

the various subfractions, in order to account for the different isolation 

procedures. Τγ cells had lower activities of APRT, PNP and AK than Τ-Τγ 

cells. It is suggested that Τγ cells might be more vulnerable to purine 

(deoxy)núcleosi de intoxication than Τ-Τγ cells. 

In the second section, the expression of purine metabolism in dif

ferent lymphoid leukemia's is described. In chapter 6 evidence is 

presented that certain purine enzymes can be useful as markers for the 

subclassification of the two major ALL subclasses, T-ALL and nonBnonT-

ALL. As compared to control PBL, cells from patients with nonBnonT-ALL 

have higher HGPRT, ADA and AdKin activities and a lower APRT activity. 

In T-ALL, HGPRT and ADA activities were also elevated as compared to 

control PBL, whereas APRT, PNP, 5'NT and AMPD activities were found to 

be lower. In chapter 7 several purine enzyme activities have been cor

related with immunological markers of ALL patients. Relatively high ADA, 

low PNP and low 5'NT activities were associated with the presence of the 

Ε-rosette marker and the absence of the cALL marker. Intermediate ADA 

activities and high AdKin activities were associated with the presence 

of the cALL marker and the absence of the E-rosette marker. PreB-cALL 
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cells appeared to have about twice the 5'NT activity of cALL cells 

lacking the preB marker. The enzymatic make-up of malignant cells from 

two B-ALL patients differed markedly. 5'NT activity was found to be low 

in these patients. Therefore, 5'NT cannot serve as a biochemical marker 

for different subtypes of ALL. On the other hand,ADA and AdKin activity 

seem to be promising in this respect. The decrease in ADA activity in 

nonBnonT-ALL patients after prednisone monotherapy could not be correl

ated with a decrease in the number of proliferating cells. NonBnonT-ALL 

patients in relapse show 5'NT activities of about 30% of the 5'NT activ

ities in leukemic cells from newly diagnosed nonBnonT-ALL patients. It 

is concluded that due to the specific enzymatic make-up several sub

groups of ALL will display a different sensitivity towards purine (deoxy)-

nucleosides. In lymphoblasts from CLL patients(chapter 8) low ADA, 5'NT 

and PNP activities and high AK and AdKin activities as compared to 

control PBL have been observed. CLL patients without paraproteinemia 

had about twice as high an ADA activity and about 10 times as low a 

5'NT activity as compared to patients with paraproteinaemia. A relation 

between 5'NT activity and Ig production is suggested. No correlations 

between purine enzyme activity levels and the Ε-rosette marker or the 

slg marker were found. The percentage of cells rosetting with mouse 

erythrocytes however, seemed to correlate significantly with 5'NT 

activity. 

Some aspects of nucleoside toxicity in mature and immature lymphoid 

cells are described in the third section. Thymocytes appeared to have 

higher ADA, lower PNP and lower ecto-5'NT activities than peripheral 

blood Τ cells. When separating thymocytes into six subfractions accor

ding to stage of maturation, it appeared that the ADA/PNP activity ratio 

was highest in fraction l(containing the relatively most immature cells) 

and lowest in fraction 6(containing the relatively most mature thymo

cytes). It was concluded that the ADA/PNP activity ratio was a marker 

for intrathymic maturation. The ecto-5'NT/dCK activity ratio was found 

to be maximal in fraction 3. This activity ratio parallelled the inhib

ition of the PHA response by (deoxy)núcleosi des. From the experiments 

described in chapter 10 it was concluded that Τ suppressor cells might 

be more vulnerable to (deoxy)nucleoside intoxication than Τ helper 

cells. In these experiments, where the mitogen induced proliferative 

response, protein synthesis and Ig secretion were assessed, it was 
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shown that deoxyadenosine at low concentration enhanced Ig secretion, 

whereas the proliferative response was inhibited. 

In chapter 11 the relation between purine metabolism, leukemia and 

lymphoid cell differentiation is reviewed and considered in the context 

of the findings reported in this thesis. 
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SAMENVATTING 

Na enkele introducerende opmerkingen(hoofdstuk 1), is in de sectie 

"Enzymological Analysis of Purine Metabolism in Lymphoid Cells" de ont

wikkeling vaneen enzymatische micromethode en de toepassing hiervan bij 

de enzymatische analyse van het purine metabolisme in lymphocyten en 

subpopulaties beschreven. Droogvriezen van de cellen en het vervolgens 

weer opnemen van het droog gevroren materiaal bleek maximale enzymacti

viteiten te geven(hoofdstuk 2). De methode werd verbeterd door 0.67% 

(v/v) BSA aan de celsuspensie toe te voegen(hoofdstuk 3). Purine enzym

activiteiten in lymphocyten, gestimuleerd door PHA, veranderen niet of 

nauwelijks, terwijl in door PWM gestimuleerde lymphocyten, vermengd met 

enkele monocyten, aanmerkelijk verhoogde activiteiten van HGPRT, ADA en 

5'NT werden gemeten(hoofdstuk 4). Verschillen in purine enzymactivitei

ten, die gevonden zijn in subpopulaties van menselijke perifeer bloed 

lymphocyten, zijn beschreven in hoofdstuk 5. Τ cellen hebben een lagere 

activiteit van HGPRT, AK, 5'NT en AMPD dan В cellen. De verschillen in 

PNP en AdKin activiteit, die gevonden zijn in deze subpopulaties, konden, 

tenminste voor een deel, worden toegeschreven aan verontreiniging van 

de В cell fractie met bloedplaatjes. Als men de enzymactiviteiten in 

lymphoide cell subfracties vergelijkt, is het noodzakelijk om de ver

scheidene subfracties zorgvuldig the karakteriseren i.v.m. de 

verschillende isolatie procedures. Τγ cellen hebben een lagere activi

teit van APRT, PNP en AK dan Τ-Τγ cellen. De suggestie wordt gedaan dat 

Τγ cellen kwetsbaarder zouden kunnen zijn voor purine (deoxy)nucleoside 

vergiftiging dan Τ-Τγ cellen. 

In de tweede sectie wordt de expressie van het purinemetabolisme 

in verschillende lymphoide leukemieën beschreven. In hoofdstuk б 

worden gegevens gepresenteerd, die ondersteunen dat bepaalde purine 

enzymen bruikbaar kunnen zijn bij de subclassificatie van de twee voor

naamste ALL subclassen, T-ALL en nonBnonT-ALL. Vergeleken met controle 

PBL hebben cellen van patiënten met nonBnonT-ALL hogere HGPRT, ADA en 

AdKin activiteiten en een lagere APRT activiteit. In cellen van patiënten 

met T-ALL werden de activiteiten van HGPRT en ADA ook verhoogd gevonden 

ten opzichte van controle PBL, terwijl de activiteiten van APRT, PNP, 

5'NT en AMPD lager waren. In hoofdstuk 7 zijn verscheidene purine 

enzymactiviteiten gecorreleerd met immunologische kenmerken van ALL 
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patiënten. Relatief hoge ADA, lage PNP en lage 5'NT activiteiten waren 

geassocieerd met het aanwezig zijn van het E-rozet kenmerk en de afwezig

heid van cALL kenmerken. Intermediaire ADA activiteiten en hoge AdKin 

activiteiten werden geassocieerd met de aanwezigheid van het cALL pheno-

type en de afwezigheid van het E-rozet kenmerk. PreB-cALL cellen bleken 

ongeveer de dubbele 5'NT activiteit te hebben van cALL cellen die het 

preß kenmerk misten. De enzymatische "make-up" van maligne cellen van 

twee B-ALL patiënten verschilde aanzienlijk. Onder andere werd een lage 

5'NT activiteit gevonden bij deze patiënten. Daarom kan 5'NT niet dienen 

als biochemische parameter voor de verschillende subtypen van ALL. 

Anderzijds schijnen ADA en AdKin in dit opzicht veel belovend te zijn. 

De verlaging van de ADA activiteit in patiënten met nonBnonT-ALL na 

Prednison monotherapie kon niet worden gecorreleerd met een verlaging 

van het aantal delende cellen. Patienten met nonBnonT-ALL in "relapse" 

hebben 5'NT activiteiten, die ongeveer 30% zijn van de 5'NT activiteiten 

in nieuw gediagnostiseerde patiënten met nonBnonT-ALL. De conclusie 

wordt getrokken, dat door de specifieke enzymatische "make-up" verschei

dene ALL subgroepen een verschillende gevoeligheid voor purine (deoxy)-

nucleosiden zullen hebben. In lymphoblasten van patiënten met CLL(hoofd-

stuk 8) zijn lage ADA, 5'NT en PNP activiteiten en hoge AK en AdKin 

activiteiten gevonden, vergeleken met de controle PBL. CLL patiënten 

zonder paraproteinaemie hadden ongeveer een twee maal zo hoge ADA 

activiteit en een ongeveer 10 maal lagere 5'NT activiteit dan de patiën

ten met paraproteinaemie. Een relatie tussen de 5'NT activiteit en Ig 

productie wordt gesuggereerd. Er zijn geen relaties gevonden tussen 

purine enzymactiviteiten en het E-rozet kenmerk. Het percentage cellen, 

dat rozetteert met muizen rode bloed cellen, scheen echter significant 

te correleren met de 5'NT activiteit. 

Enkele aspecten van nucleoside intoxicatie in rijpe en onrijpe 

lymphoide cellen worden beschreven in de derde sectie. Thymocyten bleken 

een hogere ADA, lagere PNP en lagere ecto-5'NT activiteit te hebben dan 

perifeer bloed Τ cellen. Als thymocyten gescheiden werden in zes sub

fracties, naar het stadium van rijping, bleek dat de ADA/PNP activiteits 

ratio het hoogst was in fractie l(de meeste onrijpe cellen) en het 

laagst in fractie 6(het meeste rijpe cellen). De conclusie was, dat de 

ADA/PNP activiteits ratio een kenmerk is voor de rijping in de thymus. 

De ecto-5'NT/dCK activiteits ratio was maximaal in thymocyten fractie 3. 
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Deze ratio liep parallel aan de remming van de PHA respons door (deoxy)-

nucleosiden. Uit de experimenten beschreven in hoofdstuk 10 werd gecon

cludeerd, dat Τ suppressor cellen kwetsbaarder zouden kunnen zijn voor 

(deoxy)nucleosiden vergiftiging dan Τ helper cellen. In deze experimen

ten, waarin de mitogeen geïnduceerde delingsrespons, eiwit-synthese en 

Ig secretie werden bepaald, werd aangetoond dat lage concentraties van 

deoxyadenosine de Ig secretie verhoogden, terwijl de delingsrespons 

geremd werd. 

In hoofdstuk 11 wordt een overzicht gegeven van de relatie tussen 

purine metabolism, leukemie en lymphoide cell differentiatie en 

beschouwd in samenhang met de bevindingen beschreven in dit proefschrift. 
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STELLINGEN 

bij het proefschrift 

STUDIES ON PURINE METABOLISM 

IN RELATION TO LEUKEMIA 

AND LYMPHOID CELL DIFFERENTIATION 



I 

De verandering in de ratio van de activiteit van adenosine deaminase 

en purine nucleoside Phosphorylase is een goed kenmerk voor Τ cel 

differentiatie. 

II 

Het is niet geoorloofd om het effect van purine nucleosiden op de 

stimulatie van de totale thymocyten populatie door phytohaemagglutinine, 

te relateren aan de activiteit van purine nucleosiden metaboliserende 

enzymen. 

III 

Bij de interpretatie van verschillen in activiteiten van enzymen uit 

het purine metabolisme tussen lymphoide cel subpopulaties, speelt de 

methode van celscheiding een essentiële rol. 

IV 

Bij het ontwikkelen van chemotherapeutica dient meer dan voorheen 

aandacht geschonken te worden aan specifieke metabole eigenschappen 

van maligne cellen. 

V 

Recente ontwikkelingen bij de bestudering van o.a. hematologische af

wijkingen, immuun deficiënties en spi'erklachten, wijzen op de noodzaak 

van screening van purine- en pyrimidine verbindingen bij een groot 

aantal patiënten. 



VI 

Het vermelden van de resultaten van de koude lymphocytotoxische anti-

lichaam test zonder opgave van de isolatieprocedure van de targetcellen, 

is weinig zinvol 

VII 

Bij de diagnostiek van maligne lymphomen heeft onderzoek naar het 

immunologisch phenotype aan celsuspensies geïsoleerd uit de lymfeklier 

een beperkte waarde. 

VIII 

De biochemische screening van patiënten met mentale retardatie is 

slechts van betrekkelijke waarde. 

IX 

Ook dragers van volledige gebits-prothesen moeten jaarlijks naar de 

tandarts. 

X 

Als medium om hoog radioactief afval op te slaan is "synrock" beter 

geschikt dan glas. 

XI 

De huidige consumptie van sojaproducten in de westerse wereld draagt 

niet bij tot het oplossen van het hongerprobleem in Latijns-Amerika. 



XII 

Beperken van de kosten van de gezondheidszorg is meer een kwestie van 

beheersing dan van bezuiniging. 

XIII 

Door inkomensmatiging en het daardoor toenemend aantal werkzoekenden 

zal de werkloosheid niet afnemen. 

XIV 

Het inzetten van de Chinese graskarper als slootreiniger dient 

achterwege te blijven. 

XV 

In de kaken van Homo sapiens is steeds minder plaats voor verstands

kiezen. 

XVI 

In het kader van de kostenbeheersing in de gezondheidszorg dient de 

uitdrukking "de pil vergulden" uit het nederlands taalgebruik geschrapt 

te worden. 
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