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1
Cancer and cancer-related complications in bone
One in every three people in the Netherlands will suffer from cancer during their lives (Sig-
naleringscommissie Kanker van KWF Kankerbestrijding, 2007). Currently, over 100,000 
Dutch inhabitants are diagnosed with cancer yearly (Figure 1) and this number is expected 
to increase to 123,000 in 2020 (Signaleringscommissie Kanker van KWF Kankerbestrijding, 
2011). This rise can mainly be attributed to ageing, which is a major determinant for the 
development of cancer: both the total number of Dutch elderly and their life expectancy are 
sharply increasing. At the same time, cancer treatments have become increasingly effective, as 
reflected in a more or less stable mortality rate over the last decades (Figure 1). When living 
longer with cancer, patients have more time to develop severe complications after surgery, 
chemotherapy or radiotherapy, such as pain, fatigue, emotional distress, pulmonary or sexual 
dysfunction or cardiotoxicity (Siegel et al., 2012). Consequently, the treatment of these severe 
complications forms an integral part of the care of cancer patients. 

The treatment of the primary cancer often affects the bone tissue (Gralow et al., 2013; Rizzoli 
et al., 2013). In breast and prostate cancer, for example, hormonal therapy is a common tre-
atment option. The suppression of gonadal hormones is effective in the primary treatment of 
these cancers, but, as a side-effect, can induce osteoporosis (Rizzoli et al., 2013) by disturbing 
the bone remodelling process and compromising the bone mass. Such treatment-related bone 
quality compromise can be devastating (Gralow et al., 2013), especially in patients at risk of 
age-related or postmenopausal osteoporosis, as it may induce pathological fractures. 
Due to better cancer survival rates, patients have more time to develop complications caused 
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Figure 1. Cancer incidence and mortality in the Netherlands between 1989 and 2012. The dashed line repre-
sents expected incidence as projected by the Dutch Cancer Society. Source: the Netherlands Cancer Registry, 
managed by IKNL © December 2014.
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by the primary tumour or its treatment. In addition, they have higher chances to reach more 
progressive disease states, in which the development of metastases plays an important role. 
The diagnosis of metastases flags a dramatic tipping point for the patient, as the aim of the 
treatment then shifts from curative to palliative (Laitinen et al., 2012). In progressive disease 
states, primary tumour cells may spread through the body and seed distantly. Following Pag-
et’s seed and soil theory (1889), different tumour cell types have specific tissues of preference 
for distant seeding. Bone appears to be a fertile soil for primary tumour cells in breast, pros-
tate, lung, kidney and thyroid cancer (Coleman, 1997; Coleman, 2006; Laitinen et al., 2012; 
Gralow et al., 2013), some of which are among the most common cancer types. Hence, the 
incidence and disease burden of bone metastases in patients in the palliative phase of their 
disease is high.

Bone metastases
Skeletal parts that are highly vascularised or contain bone marrow are prone to tumour cell 
invasion. Consequently, the skull, ribs, spine, pelvis and long bones of the axial skeleton are 
commonly affected (Johnson et al., 2008; Laitinen et al., 2012; Mavrogenis et al., 2012). Bone 
metastases can have lytic, blastic or mixed radiographic appearances (Figure 2). Depending 
on the tumour type, malignant cells can excrete substances that induce either osteoclast or 
osteoblast activity, or both (Rizzoli et al., 2013). In breast, lung, thyroid, renal, gastrointesti-
nal cancer, and in multiple myeloma and melanoma (Coleman, 1997), tumour cells activate 
osteoclasts, resulting in local bone resorption. The resulting lesion has a lytic appearance, as 
depicted in Figure 2A. In contrast, in, amongst others, prostate, breast and lung cancer, or 
carcinoid and medullablastoma cancer (Coleman, 1997), the release of cytokines is strongly 
increased. These cytokines induce osteoblast activation (Rizzoli et al., 2013), which results 
in bone formation and the subsequent development of blastic lesions (Figure 2B). Some of 
the tumours mentioned above can induce both osteoblast and osteoclast activity, which may 
result in bone tissue extensively affected by lesions with a mixed blastic and lytic appearance 
(Figure 2C). 

Metastatic bone disease: clinical practice
Metastatic bone disease is clinically flagged by severe pain flares, hypercalcaemia, impending 
or actual fractures (Coleman, 1997; Laitinen et al., 2012), and, in case of vertebral lesions, 
spinal cord injuries. Approximately ten percent of the lesions develop in the femur (van der 
Linden et al., 2004b), which may cause actual or impending pathological fractures that seve-
rely threaten the quality of life of patients. In fact, sustaining a pathological fracture signifi-
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cantly decreases patient survival (Laitinen et al., 2012; Mavrogenis et al., 2012; Ratasvuori et 
al., 2013), as these patients fully lose their mobility and are at risk of developing comorbidities 
such as deep vein thrombosis or pulmonary embolism, not to mention the psychological 
impact of fracturing one’s leg. Furthermore, the release of bone marrow may lead to further 
spread of the tumour cells throughout the body (Ruggieri et al., 2010; Mavrogenis et al., 2012). 
In addition, pathological fractures require surgical treatment such as osteosynthesis or total 
hip replacement, which are complex procedures that lay a burden on the patient. 
In order to prevent pathological fractures, metastatic lesions identified with an impending 
fracture are treated with preventive surgery. This treatment is far less complex and has better 
survival rates than surgical treatment of actual pathological fractures (Laitinen et al., 2012; 
Mavrogenis et al., 2012; Ratasvuori et al., 2013). Lesions that do not jeopardise the mechanical 
integrity of the bone are treated conservatively with the aim to relieve pain, with (a combina-
tion of) radiotherapy, analgesics, chemotherapy, hormonal therapy or bisphosphonates (van 
der Linden, 2005). In order to decide upon the optimal treatment for the patient (conservative 

A B

C

Figure 2. Three radiographic appearances of bone metastases;  A) lytic, B) blastic and C) mixed. In figures A 
and B, lesions are indicated with brackets.
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treatment or preventive surgery), a thorough fracture risk assessment must be performed. 
Surgeons have to weigh the impact of the operation and rehabilitation against the patient’s 
physical status after treatment of the primary malignancy and remaining life expectancy (At-
tar et al., 2012).

Current clinical methods for fracture risk assessment in metastatic bone disease 
Finding an objective measure for fracture risk assessment of bones with metastases has been 
under study for several decades. The size of the lesion (Snell et al., 1964; Beals et al., 1971; 
Harrington et al., 1976; Zickel et al., 1976; Cheng et al., 1980; Miller et al., 1984; Keene et 
al., 1986; van der Linden et al., 2004a), the extent to which cortical bone is disrupted by the 
lesion (van der Linden et al., 2004a) and the radiographic appearance of the lesion (Snell et 
al., 1964; Beals et al., 1971; Zickel et al., 1976; Miller et al., 1984; Bunting et al., 1985; Keene et 
al., 1986; Mirels, 1989; Yazawa et al., 1990; van der Linden et al., 2004a) have been analysed 
as potential predictors of fracture risk, mainly by evaluating retrospective x-rays of patients 
who sustained a pathological fracture in the femur. In many of these studies, pain has been 
included as well (Parrish et al., 1970; Beals et al., 1971; Fidler, 1973; Harrington et al., 1976; 
Keene et al., 1986; Mirels, 1989; van der Linden et al., 2004a), as pain was hypothesised to be 
a measure for loss of mechanical strength (Mirels, 1989), or an indicator of excessive defor-
mation (Fidler, 1973). Unfortunately, these studies did not unequivocally identify a powerful 
predictor for the fracture risk. 
The most recent prospective clinical study on this topic was performed by Van der Linden 
et al. (2004a). They compared, amongst others, two guidelines: Mirels’ scoring system and a 
threshold for cortical disruption (van der Linden et al., 2004a). Mirels’ system scores the lo-
cation of the lesion, pain and the appearance and size of the lesion. Patients with high scores 
need immediate surgery, while patients with low scores can be treated conservatively. Had 
Mirels’ scoring system been applied to the 102 patients in the study of Van der Linden et al., 
who were treated with non-invasive radiotherapy, and in whom 9 developed an actual frac-
ture during follow-up, none of the impending fractures would have been missed but a large 
number of patients would have undergone unnecessary surgery (sensitivity = 1.0, specificity 
= 0.13). Alternatively, a threshold of 3 cm cortical disruption was proposed to identify impen-
ding pathological fractures (van der Linden et al., 2003). Had this method been applied to the 
patients in Van der Linden’s work, some of the impending fractures would have been missed 
(sensitivity = 0.86), but the power to identify non-fracture patients would have increased 
(specificity = 0.58). Thus, the new guideline using the 3 cm threshold improved upon Mirels’ 
scoring system, but difficulties in preventing unnecessary surgeries persisted. 
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A clinical case to illustrate the challenges in current fracture risk assessment. 
To illustrate the challenges in current fracture risk assessment, a recent clinical case is pre-
sented here. A 66 year old woman with recently diagnosed widespread metastatic lung cancer 
was referred for palliative local treatment of painful metastases in both femurs, before the 
start of a systemic treatment. An anterior-posterior radiograph revealed an extensive lytic 
lesion in the right femur and a smaller lesion in the left femur (Figure 3). 
Following current clinical guidelines, the right femur had a high fracture risk and the left 
femur a low risk. After vigilant consideration of the patient’s physical status, it was decided to 
treat the patient’s right femur with elective stabilizing surgery and to subsequently irradiate 
both femurs. The left femur was to receive a single fraction of 8 Gy to relieve pain, and the 
right operated femur was to receive 20 Gy in 5 fractions for stabilization of the prosthesis. The 
day after the first fraction of radiotherapy, the patient sustained a pathological fracture of the 
left femur (Figure 4), and the treatment was ended. In retrospect, cortical destruction of the 
left femur was already present on the computed tomography (CT) simulation scan made for 
the planning of the radiotherapy (Figure 5).
Elective osteosynthesis of the left femur could have prevented the occurrence of the patholo-
gical fracture. The left femur was operated on (Figure 6) and the patient regained the ability to 
walk with a walking aid. She was then treated with postoperative radiotherapy to both femora 
(20 Gy). The patient sadly died two weeks after the end of the irradiation due to an unexpec-
ted deteriorating condition.

Lytic lesion
Lytic lesion

R L

Figure 3. Preoperative X-ray of the patient. Based on this image it was decided to treat the lytic lesion in the 
right femur surgically. After surgery, both femurs were irradiated.
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This case exemplifies the difficulties in fracture risk assessments in clinical practice. So far, cli-
nical studies have mainly focussed on lesion characteristics and pain, while the original bone 
strength of the femur was largely ignored. In order to estimate the fracture risk, however, it is 
important to assess the reduction in bone strength caused by the lesion relative to the original 
bone strength. This is extremely difficult; even for experienced clinicians (as shown by the 
abovementioned case). This was also demonstrated in a study by Hipp et al. (1995), who asked 

Surgical treatment
 with gamma nail

Femoral neck fracture

R L

Figure 4. Postoperative X-ray of the patient, one day after the first fraction of radiotherapy. The right femur has 
been surgically treated with a gamma nail. The patient has now sustained a fracture in the left femur.

Gamma nail

Cortical destruction

R L

Figure 5. CT scan for planning radiotherapy.  The right femur has been surgically stabilised by a gamma nail. 
In the left femur, the metastatic lesion has caused cortical destruction.
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three orthopaedic surgeons to report the lesion size, the femoral failure load and the strength 
reduction in paired cadaver femurs with simulated lesions using CT-scans and radiographs. 
Even in this simplified condition, the surgeons only moderately agreed on defining the lesion 
size (mean difference 11%, range 2%-47%). In addition, there was no relationship between 
the failure load estimated by the surgeons and the actual failure load of the cadaver femurs. 
Hence, these results again demonstrate that a more objective and quantitative measure of 
bone strength in patients with metastatic bone disease is urgently needed.

Finite element models to assess femoral fracture risk 
A promising tool for the assessment of femoral fracture risk in metastatic bone disease is sub-
ject-specific finite element (FE) analysis. Although this method is widely studied to calculate 
fracture risk in osteoporosis (for example (Bessho et al., 2009; Orwoll et al., 2009; Keyak et 
al., 2013; Kopperdahl et al., 2014)), few groups have used it to assess failure load in metastatic 
bone disease in the femur (Cheal et al., 1993; Keyak et al., 2005a; Spruijt et al., 2006; Keyak et 
al., 2007). Cheal et al. (1993) were one of the first to use FE modelling for this purpose. Unfor-
tunately, they found large differences between the calculated failure loads and the failure loads 
measured in their experiments. These inferior results may be explained by the fact that they 
used a femoral FE model based on average anatomy and material behaviour data (Cheal et al., 
1993), and therefore did not capture the relevant biomechanical differences that exist amongst 

L

Figure 6. The fracture in the left femur was surgically treated with total hip arthroplasty.
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bones of different subjects. Some years later, Keyak and co-workers developed and extensively 
validated a full workflow for subject-specific FE modelling based on quantitative CT (QCT) 
images. They empirically established relationships between CT intensities and bone material 
properties (Keyak et al., 1996). Subsequently, in a mechanical test setup they loaded intact 
cadaver femurs until failure and found good agreement between the experiments and the FE 
simulations (Keyak, 2001; Keyak et al., 2005b). Additionally, they applied this workflow to fe-
murs with simulated and actual metastatic lesions (Keyak et al., 2005a; Keyak et al., 2007) and 
were able to accurately predict bone strength (r=0.97, r=0.98 and r=0.94, for intact femurs, 
and femurs with simulated and actual lesions, respectively) (Keyak et al., 2005a). Although 
these studies were performed on cadaver femurs, the results show great potential to improve 
fracture risk predictions in clinical practice.
Therefore, within the context of this thesis, a workflow for generating subject-specific finite 
element models was developed and validated. In short, this technique is based on the use 
of QCT images (Figure 7). Using the contrast in CT intensities, the femoral bone tissue is 
segmented in every CT image. By means of interpolation, this 2D geometrical information is 
converted into a 3D volume, representing the femoral anatomy of the subject. 
In addition, information on the bone density of the femur can be derived from the CT inten-
sities. A calibration phantom, containing four different known calcium hydroxyapatite con-
centrations, is scanned along with the cadaver bone (in vitro) or the actual patient (in vivo). By 
relating the CT intensities measured in the phantom tubes to the according calcium equiva-
lent densities, a calibration line can be fitted. Using this calibration line, the local CT intensi-
ties measured in the bone tissue of the subject can be converted to calcium equivalent values. 
In previous empirical research (Keyak et al., 2005b), calcium equivalent values have been 
related to ash densities and mechanical properties of bone, respectively. Hence, using these 
empirical relationships, CT intensities can be converted to non-linear elastic-plastic material 
behaviour at the element level. In this way, the FE model accounts for the patient-specific 
geometry as well as bone density and material behaviour. Finally, the boundary conditions 
for the FE model have to be defined, in order to determine the subject-specific failure load of 
the bone as a construct. When developing an FE model, the initial loading regime should be 
simple so that mechanical experiments can be reliably mimicked in the FE simulations. For in 
vivo simulations, however, a more sophisticated loading regime may be required since it has 
been demonstrated that the association between FE bone strength and osteoporotic fractures 
increases when modelling multiple loading conditions (Falcinelli et al., 2014). The variations 
in loading regime applied in these studies mainly concerned different lines of action for hip 
contact forces (resembling stance loading and fall loading), but did not incorporate muscle 
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forces. In metastatic bone disease, however, the bone quality is locally affected. Hence, it may 
be important to study the local balance between applied load and load bearing capacity. This 
requires applying a physiological loading pattern that includes hip contact forces as well as 
muscle forces, which can be determined using musculoskeletal modelling. 
In short, musculoskeletal modelling uses 3D marker trajectories and ground reaction forces 
measured during an instrumented gait analysis of the subject, in combination with a mus-
culoskeletal model to calculate joint moments using inverse dynamics principles. In a next 
step, muscle forces are determined using optimisation techniques and, subsequently, the joint 
contact forces are calculated based on the muscle force distribution at each time frame of the 
motion under study. As such, the load imposed on the femur during daily activities, such as 
walking or rising from a chair, can be determined. This sophisticated loading regime can then 
be applied to the patient-specific FE models. 

Aim and outline of this thesis
The goal of this thesis was to develop and validate a patient-specific finite element model to 
assess the femoral fracture risk in patients with metastatic bone disease. More specifically, 

Patient-specific anatomy

  

Bone density

   

Material properties

 

 

Finite element mesh

 

QCT images
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Figure 7. Workflow for generating patient-specific finite element models.
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the work aimed to validate the model predictions against mechanical experiments as well as 
prospective clinical follow-up data in actual patients, using both simple and more physiologi-
cal loading conditions. In addition, the prediction accuracy of the FE model was compared to 
an alternative state-of-the-art biomechanical tool implementing composite beam theory for 
fracture risk assessment. The following outline describes the different aspects of the thesis in 
more detail.

Validation of a subject-specific finite element model against mechanical experiments
The aim of Chapter 2 was to verify if the failure loads calculated using FE models were in 
agreement with the experimentally measured failure loads. For that purpose, mechanical 
axial loading experiments were performed on cadaveric femurs with and without artificial 
lesions, which were subsequently mimicked in finite element simulations. In addition, the 
clinical relevance of these models was determined by comparing fracture risk assessments of 
clinical experts to the FE predictions. Chapter 3 aimed to implement more realistic material 
behaviour. A parametric study was performed, in which the effect of an asymmetric yield 
criterion on the simulated failure loads and failure locations was investigated. 

Comparing the performance of FE models and an alternative state of the art biomechanical tool
Chapter 4 describes a collaborative study with the group of Prof. Snyder at the Center for Ad-
vanced Orthopaedic Studies, Beth Israel Deaconess Medical Center at Harvard University in 
Boston. In addition to FE modelling, computed tomography based rigidity analysis (CTRA) 
(Windhagen et al., 1997; Snyder et al., 2006; Snyder et al., 2009; Leong et al., 2010) constitutes 
another promising tool to improve fracture risk assessments. This method was developed and 
validated by the Harvard group. In short, this method uses composite beam theory to calcula-
te axial, bending and torsional rigidities, which are used to distinguish high-risk lesions from 
low-risk lesions. The aim of this study was to directly compare the prediction accuracy of FE 
models and CTRA analyses on the basis of the cadaveric experiments described in Chapter 2. 

In vivo validation of finite element models
Chapter 5 describes a prospective patient study that was conducted as a next step in the va-
lidation process. The goal of this study was to investigate whether the FE models were able 
to identify the patients with an impending fracture. For that purpose, patients with painful 
femoral metastases were prospectively followed during and after treatment with radiotherapy. 
Some of the patients in this study sustained an unexpected fracture in the femur during fol-
low-up. Using FE models with boundary conditions as defined in Chapter 2, the failure load 
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was calculated for the treated femurs of all patients. Subsequently, it was validated whether 
the FE models were able to classify patients with an impending fracture. In addition, these 
predictions were directly compared to clinical assessments by two radiation oncologists and 
two orthopaedic surgeons who were all experienced at assessing femoral fracture risks.

Implementation of physiological loading conditions
The in vivo FE simulations in Chapter 5 may need a more sophisticated loading regime to 
predict femoral failure, in order to capture a local decrease in bone strength caused by a me-
tastatic lesion. Such a sophisticated loading regime can be developed using musculoskeletal 
modelling. This modelling technique comprises complex biomechanical analyses and is ela-
borately studied by the Human Movement Biomechanics Research Group at the Katholieke 
Universiteit Leuven in Belgium (Ilse Jonkers, PhD). In collaboration with this group, physio-
logical loading conditions comprising muscle forces and hip contact forces were developed, 
in order to study the local balance between applied load and load bearing capacity. For that 
purpose, two studies were conducted. The aim of the first study (Chapter 6) was to investigate 
the effect of four different optimisation techniques on muscle force distribution and the sub-
sequent hip joint contact force. The results that best resembled hip contact forces measured 
in vivo (Bergmann et al., 2001), were selected to develop sophisticated loading conditions for 
the FE models. The ultimate goal of this work is to improve the sensitivity and specificity of 
fracture predictions in the femurs of patients with metastatic bone disease. As a first step, in 
Chapter 7, muscle forces and hip contact forces were applied to the FE models of two typical 
patients who sustained a fracture in the prospective study. We assessed whether modelling 
physiological load cases majorly affects failure predictions, in terms of volume of failure and 
failure location. In addition, we investigated whether the inclusion of non-linear elastic-plas-
tic material properties is required to capture these effects.

Discussion and future perspectives of FE modelling for fracture risk assessment in metastatic bone 
disease 
To conclude, Chapter 8 reflects on the outcomes of this thesis. It reviews the potential of cur-
rent FE models to predict femoral fracture risk in metastatic bone disease, and describes the 
challenges that have to be tackled before clinical implementation of these models is safe and 
viable. Moreover, it discusses future perspectives of FE modelling in metastatic bone disease 
by summarizing potential applications of biomechanical models in the daily care for these 
patients with metastatic bone disease.
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Introduction
Patients with metastatic disease in the femur are at risk of pathological fracture. In some the 
risk is low, and pain can be managed with radio- (Hoskin, 2003) or systemic chemothera-
py (Harvey, 1997), hormonal therapy (Harvey, 1997) and/or bisphosphonates (Body, 2003; 
Hoskin, 2003) for widespread disease. If the predicted risk of fracture is high, the bone is me-
chanically stabilised (Body, 2003; Wedin et al., 2005); however, assessing the risk of fracture 
can be difficult. Among the predictive factors are the plain radiological features or those on 
CT scan, which are prone to error (Hipp et al., 1995). Overall there are no indicators which 
reliably predict impending pathological fractures (Mirels, 1989; Hipp et al., 1995; Dijkstra et 
al., 1997; van der Linden et al., 2003; van der Linden et al., 2004).
Additional aspects that play an important role in the assessment of the risk of fracture are 
the initial strength of the bone and the daily activity pattern of the patient (Hipp et al., 1995). 
These aspects can be analysed using patient-specific finite element (FE) models (Keyak et al., 
1998; Cody et al., 1999; Keyak, 2001; Bessho et al., 2004; Spruijt et al., 2006; Taddei et al., 2006; 
Bessho et al., 2007), which are based on quantitative CT (QCT) scans, from which the bone 
geometry and quality is retrieved (Lenaerts et al., 2009). Mechanical properties are calculated 
from the distribution of the bone mineral density (BMD) and are then assigned to the FE mo-
del (Keyak et al., 2005; Tanck et al., 2009). A loading pattern is applied and the load at which 
the femur fails is calculated. Although essentially an in vitro method of predicting the load at 
which the femur will fail, this method could have an important clinical application.
In a previous pilot study (Tanck et al., 2009), we ranked five paired femora with and without 
artificial metastases according to their load to failure. The data were retrieved from mechani-
cal experiments, and compared with rankings predicted by the FE model and by clinical ex-
perts, respectively. Predictions using the FE model were considerably better than those made 
by the experts. However, due to the limited variety in the characteristics of the lesions in the 
femur we could not establish which determinants accounted for the differences in the accu-
racy of prediction. Moreover, in the pilot study we used FE-models that provided numerical 
stability problems in about 20% of the simulations, meaning that in those cases the results 
were not fully reliable. Obviously, if this model is to be used to analyse femoral fracture risks 
in patients, numerical problems to this extent are not acceptable.
The aim of this study was to assess whether case-specific non-linear FE models could improve 
the prediction of the load at which the femur would fail as compared with the predictions of 
experienced physicians, using improved FE models with a non-voxel based element type and 
modelling an increased variety in lesion characteristics. We defined the following research 
questions: 1) is the current FE model able to predict case-specific fracture risks under uniaxi-
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al loading in terms of load to failure and location of the failure? 2) is this FE model better at 
predicting the risk of fracture than clinical experts when a large set of metastatic and control 
femora are tested? 3) which characteristics of the lesion, such as size or location, are impor-
tant in predicting the risk of fracture, and how are these scored by clinical experts?

Materials and Methods
Ten paired fresh-frozen human cadaveric femora aged between 63 and 96 years, (mean 81.7 
years), seven male and three female, were mechanically tested to failure. Five of these pairs 
were tested previously (Tanck et al., 2009). The specimens were obtained from the Depart-
ment of Anatomy with institutional approval. After removing the soft-tissues, one of each pair 
of femora was left intact and assigned to the control group. In the contralateral femur, one or 
more artificial lytic metastases were created by drilling holes through one cortex only. The lo-
cation, size and number of these lesions varied between the specimens and resembled the cli-
nical appearance of metastases in bone, as previously discussed with orthopaedic oncologists 
(Table 1, Figure 1). All femora were embedded distally in polymethylmethacrylate (PMMA). 
Before starting the experiments, anterior-posterior and mediolateral radiographs were taken. 

1 2 3 4 5

6 7 8 9 10

Medial
40 mm

Medial
22 mm

Posterior
40 mm

Medial
45 mm

Lateral
40 mm

Medial
2x22 mm

Anterior
40 mm

Anterior
22 mm

Anterior
2x30 mm

Medial shaft
40 mm

Figure 1. Diagrams showing the varying size and location of the artificial lytic lesions created in the ten femora.
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For alignment purposes, the femora were subsequently equipped with 28 tantalum markers, 
which were glued along the femoral cortex in the sagittal and frontal plane. QCT images 
(ACQSim/Brilliance Big Bore; Philips, Eindhoven, The Netherlands) with the following set-
tings were acquired: 120 kVp, 220 mAs, slice thickness 3 mm, pitch 1.5, spiral and standard 
reconstruction, in-plane resolution 0.9375 mm. The femora were scanned in a water basin, 
positioned on top of a solid calibration phantom containing four tubes with 0, 50, 100 and 200 
mg/ml calcium hydroxyapatite (Image Analysis, Columbia, Kentucky), respectively. A stereo 
radiograph was then taken of the femora in order to calculate the three-dimensional (3D) 
position of the tantalum markers.

Table 1. Lesion characteristics and experimental results of the 20 femora in this study.

Subject Lesion site
Lesion size 

(mm)
Failure load of 

control femur (N)
Failure load of 

metastatic femur (N)
Reduction in 
failure load

1 medial, proximal 40 4141 1237 70 %
2 medial, shaft 40 5007 1853 63 %
3 medial, proximal 22 5031 2181 57 %
4 posterior, proximal 40 4728 2806 41 %
5 medial, proximal 45 7852 3002 62 %
6 lateral, proximal 40 4660 3960 15 %
7 medial, proximal & shaft 2 x 22 11034 3980 64 %
8 anterior, proximal 40 7970 5985 25 %
9 anterior, proximal 22 6821 6547 4 %
10 anterior, proximal & shaft 2 x 30 10470 8815 16 %

Mechanical experiments
In line with our pilot study (Tanck et al., 2009), the femora were fixed using a distal ball-bea-
ring and a sliding hinge, allowing only rotation around the dorsoventral axis (Figure 2). Using 
a hydraulic MTS machine, an axial load was applied on the femoral head, via a plastic cup 
(diameter 30 mm, polyoxymethylene, Delrin) with 10 N/s from 0 N until failure. During these 
load controlled experiments the force and displacement of the plunger were registered. The 
course of failure of each femur was recorded with a conventional digital camera.

Finite element model
Geometric information for the FE models was retrieved by segmenting the QCT images and 
converting them to a solid mesh consisting of four-noded tetrahedral elements (mean edge 
length approximately 2 mm). Calibration of the CT data and material property assignment 
was performed using software developed in our lab. Subsequently, we adopted non-linear 
isotropic material behaviour according to Keyak et al. (2005). The position of the tantalum 
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markers in the stereo radiographs and in the CT scans was used to orient the FE model in the 
experimental configuration. The experimental boundary conditions were exactly mimicked 
in the FE simulations (Figure 2); the distal fixation of the femora was accomplished by adding 
two bundles of high-stiffness springs (Tanck et al., 2009).
In the FE simulations we used a displacement-controlled loading condition. Loads were ap-
plied via a cup (diameter 30 mm) that displaced with 0.1 mm per increment. In order to pre-
vent artefacts as a result of the loading configuration, post-yield material behaviour (Keyak 
et al., 2005) was not implemented in the surface elements underneath the cup. The FE simu-
lations were performed with MSC Marc (MSC.MARC2007r1; MSC Software Corporation, 
Santa Ana, California). The total time expenditure for generating a case-specific FE model 
and running the simulation was approximately eight hours. The incremental displacement 
was registered via a reference node underneath the cup. The total reaction force in the loading 
direction was defined as the sum of the contact normal forces of all the nodes in the model. 
Structural fracture was assumed to occur when the maximum total reaction force was rea-
ched. The location of the failure was defined by elements that plastically deformed when the 
maximal total reaction force was reached (Keyak et al., 2005).

Clinical assessment
Clinicians often rely on conventional radiographs when assessing the risk of femoral fracture 
due to metastases (Mirels, 1989; van der Linden et al., 2004). Moreover, current clinical guide-

Figure 2. Diagrams showing the experimental set-up (left) and the same conditions mimicked in the finite 
element model (right). 
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lines such as Mirels’ score (Mirels, 1989) or the degree of cortical destruction (van der Linden 
et al., 2004) are based on radiological assessment. Furthermore, it has been shown by Hipp et 
al. (1995) that the estimation by clinical experts of the femoral load to failure does not impro-
ve when they are provided with CT scans in addition to conventional radiographs. Therefore, 
six experts (three orthopaedic surgeons, two radiation oncologists and one radiologist) were 
provided with the baseline anterior-posterior (AP) and medioloateral (ML) radiographs of 
the femora and information on gender, age and experimental set-up. The radiographs of one 
of the controls were missing; this femur was therefore excluded from the clinical assessment. 
The clinicians ranked the 19 remaining femora on load to failure, starting with the weakest 
femur. We did not prescribe any rules or guidelines for ranking, as it appeared from clini-
cal practice that clinicians use a combination of techniques, depending on their professional 
background. Subsequently, a short survey was conducted among them in which they reported 
their strategies for assessing the load to failure. They indicated the five most relevant factors 
they used to predict the load to failure. Five points were assigned to the most important factor, 
while the least important factor received one point and the redundant factors zero points. The 
scores per factor were then summed for all clinicians.

Analysis of data
The accuracy of the FE predictions was determined by regressing the predicted load to failure 
on the experimental failure load. Furthermore, we ranked the femora on experimental load 
to failure and on the failure load predicted by the FE model. These rankings were then com-
pared using the Kendall rank correlation coefficient (τ), which defines the degree of similarity 
between two rankings (Abdi, 2007). In the same vein, the rankings by the clinicians were 
compared to the experimental ranking, to the ranking by the FE model, and to the rankings 
by the other clinicians, respectively. Studying consistencies and inconsistencies in the predic-
tions among the clinicians could reveal which characteristics they did (or did not) take into 
account when ranking the femora with metastases. Finally, the reduction in load to failure as 
a result of the artificial metastatic lesions was defined as the difference in failure load between 
a pair of femora. We compared the reduction in load to failure measured in the experiments 
to the reductions predicted by the FE model.

Statistical analysis
Statistical analyses were performed in SPSS v16.02 (SPSS Inc., Chicago, Illinois). The fracture 
locations in the experiments were qualitatively compared to the fracture lines predicted by the 
FE model. Results were considered statistically significant if p < 0.05.
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Results
In all femoral loading experiments, the artificial lesions decreased the load to failure of the fe-
mora with metastases compared to the controls (Table 1). The experiments were all simulated 
by the FE models, without numerical problems.
In the control group, the fracture lines predicted by the FE model only moderately agreed 
with the experimental results. In most of the controls an intertrochanteric fracture was seen, 
yet the FE models mainly predicted subcapital fractures. However, in most of the metastatic 
femora, the model correctly predicted a fracture through the metastatic lesions, comparable 
to the experimental fracture lines (Figure 3). The FE model accurately predicted the load to 
failure as measured in the experiments, both for intact femora (R2 = 0.90, p < 0.001; slope = 
1.0, p < 0.001; intercept = -0.50 kN, p = 0.576) and for metastatic femora (R2 = 0.93, p < 0.001; 
slope = 0.95, p < 0.001; intercept = 0.72 kN, p = 0.119) (Figure 4). There were no significant 
differences between the regression lines in the two groups.
In the metastatic subset, the FE ranking of load to failure corresponded very well with the 
actual experimental ranking (τ = 0.87; p < 0.001), whereas none of the clinical experts ranked 
the femora in agreement with the experimental results (0.11 < τ < 0.42, p ≥ 0.089) (Table 
2). Kendall tau rank correlations between clinicians and the FE model were not significant 
and ranged from 0.16 to 0.47 (Table 2). The Kendall tau rank correlations among clinicians 
were quite variable and ranged from moderate (τ = 0.33, p = 0.180) to good (τ = 0.96, p < 
0.001; Table 2). Remarkably, the load to failure of the bone with the 40 mm posterior lesion 
in the proximal femur (Figure 1) was largely overestimated by the FE model and by five of six 

Figure 3. Finite element images predicting two representative fracture locations, showing areas of plastic de-
formity (indicated in red/orange/yellow), with experimental photographs showing fracture sites corresponding 
to those predicted by the FE model. 
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clinical experts. Therefore, an outlier analysis was performed, but none of the femora could 
significantly be defined as such (Cook’s distance ≤ 0.83 (Kleinbaum et al., 1998)). 
A more detailed analysis of the clinicians’ predictions of load to failure revealed the following: 
the experimental results showed that three femora with lesions were stronger than five of 
the intact femora (Table 1) and the FE model correctly ranked these three metastatic femora 
among the strongest femora (Figure 4). However, five clinicians predicted that all metastatic 
femora were weaker than all the control bones, thus clearly penalising the presence of lesions 
in the bones, irrespective of the initial strength of the femur. Furthermore, the load to failure 
of the femur with a 22 mm medial lesion (number 3) was overestimated by all clinicians, but 
not by the model. The femur with a 45 mm medial lesion and the femur with a double lesion 
(30 mm) on the anterior side, respectively, were stronger than estimated by five clinicians 
(numbers 5 and 10). Two femora, with a 40 mm medial lesion and a 22 mm anterior lesion 
in the proximal femur, respectively, were correctly ranked by the model and all clinicians 
(numbers 1 and 9). 
In the experiments, the relative reduction in failure load was largest (> 50%) for medial 
lesions, regardless of their size (Table 1). Anterior lesions had a smaller effect on failure load 
(≤ 25%). The FE model adequately predicted the reduction in load to failure caused by the 
metastatic lesions (R2 = 0.92, p < 0.001) (Figure 5). In the survey the clinicians indicated that 
the extent of cortical destruction is considered to be most important for the prediction of the 
risk of fracture, followed by the size of the lesion and their location (Figure 6). The distribu-
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Figure 4. Graphs of the experimental load to failure versus the load to failure predicted by the finite element 
(FE) model for A) intact and B) metastatic femora showed a strong correlation for both (R2 = 0.90 and 0.93, 
respectively). 
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 Table 2. Kendall rank correlations between experimental and predicted rankings on failure load for me-
tastatic femora. The asterisk indicates that the correlation is significant at the 0.05 level (2-tailed).

Experiment FE Clinician 1 Clinician 2 Clinician 3 Clinician 4 Clinician 5 Clinician 6
Experiment -
FE 0.87* -
Clinician 1 0.33 0.47 -
Clinician 2 0.24 0.29 0.64* -
Clinician 3 0.42 0.47 0.38 0.47 -
Clinician 4 0.20 0.33 0.78* 0.60* 0.33 -
Clinician 5 0.11 0.16 0.60* 0.60* 0.51* 0.56* -
Clinician 6 0.24 0.38 0.73* 0.64* 0.38 0.96* 0.51* -

tion of the BMD and the femoral geometry were considered by them to be of less importance 
in predicting the strength of the bone. Furthermore, they reported that their strategy in this 
study differed from clinical practice in that they normally also take into consideration the 
appearance of the lesion (lytic, blastic or mixed type) and the expected pattern of daily activity 
of the patient.

Discussion
Current clinical practice lacks an accurate predictor of the expected risk of fracture in pa-
tients with metastatic lesions in the femur. Yet, patient-specific FE models have been shown 
to be very promising in this field. In this study, we reassessed the robustness of our FE model 
and tried to link its predictions to clinical practice by focussing on the question as to why 
clinicians have difficulties in predicting load to failure of femora containing metastases.
As we found a moderate to good agreement in the predictions among our clinicians, we 
concluded that they more or less rely on the same determinants. However, their predictions 
neither corresponded to the experiments, nor to the FE predictions. On the contrary, there 
was a good correlation between the FE predictions and the experiments, from which we con-
clude that clinicians focussed on determinants that attributed less to the load to failure than 
those implemented by the FE model.
The FE model was shown to be sensitive to several characteristics of the lesions. Thus, the 
predicted fracture line often corresponded to the actual fracture line through the metastasis, 
suggesting that the model can incorporate cortical destruction. Furthermore, the FE models 
correctly predicted the relative reductions in load to failure, suggesting that they allow for 
the location of the metastasis. Most importantly, the FE models incorporated the initial bone 
strength, as they correctly ranked three metastatic femora among the strongest femora. In 
contrast, the clinicians could not incorporate the bone strength, but clearly focussed on the 
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characteristics of the lesions as shown by the ranking results and the survey. 
The relevance of accounting for initial bone strength or bone quality when assessing the femo-
ral load capacity has previously been demonstrated, both by FE models and other methods. 
Michaeli et al. (1999) showed that the total bone mineral content and the BMD were both pre-
dictive of the load to failure of femora with artificial lytic metastases whilst climbing stairs and 
in external rotation. However, the total bone mineral content is not sensitive to the location 
of the lesion and potentially less predictive in the presence of blastic metastases. Another me-
thod of assessing the loading capacity of femora is to calculate structural rigidities on the basis 
of bone material properties retrieved from QCT scans. In this way, Lee et al. (2007) found 
that the load to failure calculated on the basis of bending and axial rigidity was predictive for 
the experimental load to failure, whereas the characteristics of the lesions such as the size or 
relative width of the defect were not. The same conclusion was drawn by Snyder et al. (2006), 
who studied the accuracy of predicting fractures in patients with benign skeletal lesions. They 
showed that the sensitivity and specificity determined on the basis of bending and torsio-
nal rigidity were much higher than the sensitivity and specificity of any lesion characteristic. 
These results all emphasise that the initial strength and the biomechanical effect of metastatic 
lesions are very important for the assessment of the loading capacity of bone. 
An important limitation that is often mentioned in this type of study is that these complex 
and comprehensive methods are not ready for clinical implementation, as specific technical 
knowledge is needed in order to perform such simulations or calculations. Furthermore, in 
order to prove the clinical relevance of implementing such complicated methods to predict 
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Figure 5. Graph of the failure load reduction found in experiments versus that predicted by the finite element 
(FE) model, showing a strong correlation between the two (R2 = 0.92).
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the risk of fracture, prospective studies should be performed. In this way, the true predictive 
value of these methods can be shown, and it will then become clearer how their output can be 
translated into a concrete advice for clinicians when planning treatment. Griffith and Genant 
(2011) recently reported that imaging modalities such as FE models gradually make their way 
into clinical practice. For example, they refer to the work of Keaveny et al. (Keaveny et al., 
2008; Orwoll et al., 2009; Keaveny et al., 2010; Christiansen et al., 2011) who have extensively 
used FE modelling to study osteoporosis in a clinical setting. In one of the first prospective 
case-cohort studies, they studied 250 men over 65 years of age and showed that the femoral 
strength calculated by FE models was more strongly associated with femoral fracture than 
the bone mineral density (Orwoll et al., 2009). Such prospective studies with this number 
of participants which are analysed using patient-specific FE techniques indicate that clinical 
implementation of FE modelling will become possible in the near future. 
This study has some limitations. Although the accuracy of our FE model was in line with 
other studies (Keyak et al., 2005; Bessho et al., 2007), the case-specific under- or overestima-
tion of the load to failure could still be quite large. Obviously, these aberrant predictions need 
to be improved in order to predict patient-specific fracture risks on which diagnoses and 
treatments can be based.
Although the location of the fracture was correctly predicted in the femora with metastatic 
lesions, in intact femora there was a difference between the predicted and actual location of 
the fractures. In line with previous studies (Cody et al., 1999; Keyak, 2001; Keyak et al., 2005; 
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Figure 6. Chart showing the results of a small survey into clinicians’ strategies for assessing the load capacity 
of the femora. Five points were assigned to the most important factor, while the least important factor received 
one point and the redundant factors zero points. The scores per factor were then summed for all clinicians. 
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Bessho et al., 2007; Tanck et al., 2009), our FE model mainly predicted subcapital fractures 
in intact femora under axial loading, whereas in the experiments mostly intertrochanteric 
femoral fractures were seen. This discrepancy may be reduced by using parameters describing 
more realistic behaviour of bone such as an asymmetric yield criterion (Kopperdahl et al., 
1998; Bayraktar et al., 2004; Bessho et al., 2007; Mullins et al., 2009) or mechanical anisotropy 
(Lenaerts et al., 2009).
Moreover, the simplified laboratory conditions and the artificial lytic metastases might have 
been quite different from those seen in clinical practice. However, the loading configuration 
was simple and clearly explained to the clinicians. The geometrical appearance of the lesions 
was simplified as compared to bone metastases in patients with cancer. If these simplified 
conditions were difficult for the clinicians to imagine, they would have had even more dif-
ficulty in predicting the risk of fracture in vivo. Additionally, bone metastases often have an 
osteoblastic component, which cannot be mimicked in healthy femora. Incorporating blastic 
metastases in FE models is challenging, since it has not been definitively determined how best 
to represent the structural contribution of this radio-dense but potentially weak mineralised 
tissue.
Finally, the axial loading condition in this study eliminated torsional components that are im-
portant for predicting the risk of femoral fracture. However, in this validation stage, the essen-
ce is that the loading condition from the experiment is copied in the FE simulations, and that 
the FE results agree with the experimental results. After implementing a more complex and 
more realistic loading scenario, the load cases will have closer agreement with the patterns 
of daily activity of the patients and clinicians therefore may be better at assessing the risk of 
fracture in these situations. As a result, they might come closer to the FE results. On the other 
hand, the loading condition is more complex, and therefore more difficult to comprehend 
which might lead to even worse predictions by the clinicians.
In this study, we validated an improved, numerically stable, case-specific non-linear FE model 
against experiments. The superior predictions of the FE model relative to the predictions of 
clinicians enabled us to disentangle determinants that are important for achieving more ac-
curate predictions of load to failure. We showed that the FE model was sensitive for cortical 
destruction, the location of the lesions and the initial strength of the femur. It appeared that 
clinicians relied heavily on the cortical destruction, the size and location of the lesion, but not 
on the initial bone strength. 
We conclude that the assessment of initial bone strength is essential for the accurate clinical 
prediction of the risk of fracture in patients with femoral metastases. Obviously, for clinicians 
it is hard to glean this information from conventional imaging data, and to combine it with 
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detailed characteristics of the lesion and the patients’ medical history. In this study, we sho-
wed that FE models can accommodate these multi-factorial aspects. We therefore feel that 
FE models should be further developed into a clinical tool to clinicians to assess the risk of 
pathological fracture in patients with metastatic bone disease.
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Supplementary material
Figures showing the Kendall rank correlations between experimental and finite element 
(FE)-predicted rankings on load to failure for metastatic femora and for the total sets of me-
tastatic and intact femora.
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Figure S1. Kendall rank correlations between experimental and finite element (FE)-predicted rankings on 
load to failure for metastatic femora. The subplots show the correlations between experimental rankings and 
rankings predicted by either the FE model (left) or the six clinicians (right). The femora were ranked from weak 
(0) to strong (10). 
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Figure S2. Kendall rank correlations between experimental and finite element (FE)-predicted rankings on 
load to failure for the total set of metastatic femora (circles) and intact femora (squares). The subplots show 
the correlations between experimental rankings and rankings predicted by either the FE model (left) or the six 
clinicians (right). The femora were ranked from weak (0) to strong (19). 



Comparing case-specific finite element analyses with predictions by clinical experts

41

2

References

Abdi H. 2007. Kendall rank correlation, in: Encyclopedia of Measurement and Statistics. 1 ed. Sage, Thousand Oaks, 
pp. 508-510.

Bayraktar HH, Morgan EF, Niebur GL, Morris GE, Wong EK, Keaveny TM. 2004. Comparison of the elastic and yield 
properties of human femoral trabecular and cortical bone tissue. J Biomech 37(1): 27-35.

Bessho M, Ohnishi I, Matsuyama J, Matsumoto T, Imai K, Nakamura K. 2007. Prediction of strength and strain of the 
proximal femur by a CT-based finite element method. J Biomech 40(8): 1745-1753.

Bessho M, Ohnishi I, Okazaki H, Sato W, Kominami H, Matsunaga S, Nakamura K. 2004. Prediction of the strength 
and fracture location of the femoral neck by CT-based finite-element method: a preliminary study on patients 
with hip fracture. J Orthop Sci 9(6): 545-550.

Body JJ. 2003. Rationale for the use of bisphosphonates in osteoblastic and osteolytic bone lesions. Breast 12: S37-S44.

Christiansen BA, Kopperdahl DL, Kiel DP, Keaveny TM, Bouxsein ML. 2011. Mechanical contributions of the cor-
tical and trabecular compartments contribute to differences in age-related changes in vertebral body strength in 
men and women assessed by QCT-based finite element analysis. J Bone Miner Res 26(5): 974-983.

Cody DD, Gross GJ, Hou FJ, Spencer HJ, Goldstein SA, Fyhrie DP. 1999. Femoral strength is better predicted by finite 
element models than QCT and DXA. J Biomech 32(10): 1013-1020.

Dijkstra PDS, Oudkerk M, Wiggers T. 1997. Prediction of pathological subtrochanteric fractures due to metastatic 
lesions. Arch Orthop Trauma Surg 116(4): 221-224.

Griffith JF, Genant HK. 2011. New imaging modalities in bone. Curr Rheumatol Rep 13(3): 241-250.

Harvey HA. 1997. Issues concerning the role of chemotherapy and hormonal therapy of bone metastases from breast 
carcinoma. Cancer 80(8 Suppl): 1646-1651.

Hipp JA, Springfield DS, Hayes WC. 1995. Predicting pathologic fracture risk in the management of metastatic bone 
defects. Clin Orthop Relat Res 312: 120-135.

Hoskin PJ. 2003. Bisphosphonates and radiation therapy for palliation of metastatic bone disease. Cancer Treat Rev 
29(4): 321-327.

Keaveny TM, Hoffmann PF, Singh M, Palermo L, Bilezikian JP, Greenspan SL, Black DM. 2008. Femoral Bone 
Strength and Its Relation to Cortical and Trabecular Changes After Treatment With PTH, Alendronate, and 
Their Combination as Assessed by Finite Element Analysis of Quantitative CT Scans. J Bone Miner Res 23(12): 
1974-1982.

Keaveny TM, Kopperdahl DL, Melton LJ, 3rd, Hoffmann PF, Amin S, Riggs BL, Khosla S. 2010. Age-dependence of 
femoral strength in white women and men. J Bone Miner Res 25(5): 994-1001.

Keyak JH. 2001. Improved prediction of proximal femoral fracture load using nonlinear finite element models. Med 
Eng Phys 23(3): 165-173.

Keyak JH, Kaneko TS, Tehranzadeh J, Skinner HB. 2005. Predicting proximal femoral strength using structural engi-
neering models. Clin Orthop Relat Res 437: 219-228.

Keyak JH, Rossi SA, Jones KA, Skinner HB. 1998. Prediction of femoral fracture load using automated finite element 
modeling. J Biomech 31(2): 125-133.

Kleinbaum DG, Kupper LL, Muller KE, Nizam A. 1998. Regression Diagnostics, in: Applied regression analysis and 
multivariate methods. 3rd ed. Books/Cole Publishing Company, Pacific Grove, pp. 212-280.

Kopperdahl DL, Keaveny TM. 1998. Yield strain behavior of trabecular bone. J Biomech 31(7): 601-608.

Lee T. 2007. Predicting failure load of the femur with simulated osteolytic defects using noninvasive imaging techni-
que in a simplified load case. Ann Biomed Eng 35(4): 642-650.

Lenaerts L, van Lenthe GH. 2009. Multi-level patient-specific modelling of the proximal femur. A promising tool to 
quantify the effect of osteoporosis treatment. Philos Trans A Math Phys Eng Sci 367(1895): 2079-2093.

Michaeli DA, Inoue K, Hayes WC, Hipp JA. 1999. Density predicts the activity-dependent failure load of proximal 
femora with defects. Skeletal Radiol 28(2): 90-95.

Mirels H. 1989. Metastatic disease in long bones. A proposed scoring system for diagnosing impending pathologic 



Chapter 2

42

fractures. Clin Orthop Relat Res 249: 256-264.

Mullins LP, Bruzzi MS, McHugh PE. 2009. Calibration of a constitutive model for the post-yield behaviour of cortical 
bone. J Mech Behav Biomed Mater 2(5): 460-470.

Orwoll ES, Marshall LM, Nielson CM, Cummings SR, Lapidus J, Cauley JA, Ensrud K, Lane N, Hoffmann PR, Kop-
perdahl DL, Keaveny TM, Osteoporotic Fractures in Men Study G. 2009. Finite element analysis of the proximal 
femur and hip fracture risk in older men. J Bone Miner Res 24(3): 475-483.

Snyder BD, Hauser-Kara DA, Hipp JA, Zurakowski D, Hecht AC, Gebhardt MC. 2006. Predicting fracture through 
benign skeletal lesions with quantitative computed tomography. Journal of Bone and Joint Surgery Am 88A(1): 
55-70.

Spruijt S, van der Linden JC, Dijkstra PDS, Wiggers T, Oudkerk M, Snijders CJ, van Keulen F, Verhaar JAN, Wei-
nans H, Swierstra BA. 2006. Prediction of torsional failure in 22 cadaver femora with and without simulated 
subtrochanteric metastatic defects - A CT scan-based finite element analysis. Acta Orthopaedica 77(3): 474-481.

Taddei F, Cristofolini L, Martelli S, Gill HS, Viceconti M. 2006. Subject-specific finite element models of long bones: 
An in vitro evaluation of the overall accuracy. J Biomech 39(13): 2457-2467.

Tanck E, van Aken JB, van der Linden YM, Schreuder HWB, Binkowski M, Huizenga H, Verdonschot N. 2009. 
Pathological fracture prediction in patients with metastatic lesions can be improved with quantitative computed 
tomography based computer models. Bone 45(4): 777-783.

van der Linden YM, Dijkstra PD, Kroon HM, Lok JJ, Noordijk EM, Leer JW, Marijnen CA. 2004. Comparative analy-
sis of risk factors for pathological fracture with femoral metastases. J Bone Joint Surg Br 86(4): 566-573.

van der Linden YM, Kroon HM, Dijkstra SP, Lok JJ, Noordijk EM, Leer JW, Marijnen CA, Dutch Bone Metastasis 
Study G. 2003. Simple radiographic parameter predicts fracturing in metastatic femoral bone lesions: results from 
a randomised trial. Radiother Oncol 69(1): 21-31.

Wedin R, Bauer HC. 2005. Surgical treatment of skeletal metastatic lesions of the proximal femur: endoprosthesis or 
reconstruction nail? J Bone Joint Surg Br 87(12): 1653-1657.



Comparing case-specific finite element analyses with predictions by clinical experts

43

2





# 3

Loes C. Derikx, Roeland Vis, Timo Meinders, Nico Verdonschot, Esther Tanck.
Comput Methods Biomech Biomed Engin 2011; 14 (2), 183-193.

Implementation of asymmetric yielding in case-specific finite 
element models improves the prediction of femoral fractures





Implementation of asymmetric yielding in case-specific finite element models 

47

3

Introduction
The pathological fracture risk is one of the most impeding complications for patients suffe-
ring metastatic bone disease in weight bearing long bones (van der Linden et al., 2003). The 
metastatic lesion weakens the bone locally, and has often a dominant effect on the risk of 
fracture. Lesions with an expected low fracture risk are treated conservatively with radiothe-
rapy for pain (Hoskin, 2003), or, if widespread disease is present, with systemic chemothe-
rapy (Harvey, 1997), hormonal therapy (Harvey, 1997) and/or bisphosphonates (Body, 2003; 
Hoskin, 2003), whereas high-risk lesions are treated surgically in order to stabilise the bone 
surrounding the lesion. In the case of femoral metastases, the surgical procedures can have a 
significant impact on the quality of life of cancer patients, since they are associated with high 
morbidity and mortality rates and an intensive period of rehabilitation. Therefore surgeons 
are critical in their judgement towards the risk of fracture and the health of the patient before 
they choose to operate on the patient. In the event that it is decided not to operate on a patient 
with a high risk lesion, a pathological fracture may occur spontaneously which dramatically 
reduces the quality of life of the patient. Thus, the reliable prediction of the femoral fracture 
risk is important for the treatment of cancer patients with bone metastases. The currently 
available clinical methods to determine the femoral fracture risk have shown to be unable 
to clearly discern the two risk categories. These methods are mainly based on lesion charac-
teristics derived from conventional X-rays, and poorly estimate the fracture risk of low risk 
lesions. In addition, they greatly over-predict the number of high risk lesions, resulting in 
large numbers of surgical overtreatment (Mirels, 1989; Hipp et al., 1995; Body, 2003; van der 
Linden et al., 2004). Therefore, there is an urgent need for a better predictor of the femoral 
fracture risk in cancer patients suffering from bone metastases. 
Case-specific non-linear finite element (FE) models have shown to be promising in the pre-
diction of the individual fracture risk both in intact and in affected femora (Keyak, 2001; Key-
ak et al., 2005a; Keyak et al., 2005b; Bessho et al., 2007; Keyak et al., 2007; Lenaerts et al., 2009; 
Orwoll et al., 2009; Tanck et al., 2009). In contrast to the currently available clinical methods, 
these models account for the individual bone strength and allow for the application of specific 
loading patterns, which has considerably improved the accuracy of the femoral fracture risk 
prediction as compared to predictions by clinical experts (Tanck et al., 2009). 
Previous non-linear finite element models adopted post-yield material behaviour, using the 
Von Mises yield criterion (VMYC) (Keyak, 2001; Keyak et al., 2005b; Tanck et al., 2009). This 
yield criterion assumes that the ultimate bone strength under tension equals the ultimate 
strength under compression. However, it is commonly known from studies on bone material 
that compressive yield strength (σy, c) is higher than the tensile yield strength (σy, t ) (Keaveny 
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et al., 1994; Kopperdahl et al., 1998; Morgan et al., 2001; Kaneko et al., 2003; Bayraktar et al., 
2004b). Asymmetric yielding can be captured by using the pressure dependent Drucker-Pra-
ger yield criterion (DPYC), as already utilised in bone specimens on the micro scale level 
(Mullins et al., 2009).
To our knowledge, asymmetric yielding using the DPYC has been applied in a few macro 
scale femur FE studies before (Bessho et al., 2007; Bessho et al., 2009), in which the parame-
ters defining the DPYC were based on limited experimental data. For example, an ultimate 
yield stress ratio of 80% was implemented, as found in one study on trabecular bone (Keaveny 
et al., 1994) and one on cortical bone (Kaneko et al., 2003). However, the literature shows very 
variable data in terms of the degree of yield asymmetry. Ratios of tensile to compressive yield 
stress range from 54% (Kaneko et al., 2003) to 91% (Kopperdahl et al., 1998). Hence, imple-
menting yield asymmetry to predict the fracture risk of metastatic bones requires a sensitivity 
analysis of the FE predictions to these variable degrees of asymmetrical failure.
Therefore, the aim of the study presented in this paper was twofold. First, it was verified that 
asymmetric yielding in bone could be captured by the DPYC and can provide better results 
than the commonly used VMYC. Second, a sensitivity analysis was performed, in which we 
focused on variations in the parameters defining asymmetric yielding, based on ranges re-
ported in literature, and the subsequent effect on bone failure, in terms of failure force and 
failure location. On the basis of these results, we defined the best parameter settings for using 
the DPYC in the prediction of the femoral bone strength by case-specific non-linear finite 
element models. 

Methods
Mechanical experiments
Two pairs and two single fresh-frozen cadaveric human femora (age 63 to 81; 2 women, 2 
men; institutional approval obtained) were cleaned from soft tissue. The two single femo-
ra were kept intact. In the paired femora, one was kept intact, whereas in the other femur 
artificial metastatic lesions were created by drilling holes through the cortex of the femora. 
The location and size of these lesions were discussed with experienced physicians in order to 
resemble clinical appearance of bone metastases in cancer patients. In one bone, we created a 
40 mm lesion in the medial shaft of the femur, whereas in the other femur we drilled two 30 
mm holes in the anterior shaft, located at the level of the lesser trochanter, and in the distal 
shaft of the femur, respectively. 
All femora were mechanically loaded to failure. For a detailed description of the setup of 
the mechanical experiments, the reader is referred to Tanck et al. (2009). All femora were 
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embedded in polymethylmethacrylate bone cement (PMMA) for adequate fixation in the 
experimental setup. The FE models were exactly aligned with the experimental setup, in or-
der to identically apply the load in the two setups. For that purpose, a Roentgen Stereopho-
togrammetric Analysis (RSA) was performed. All femora were equipped with 24 tantalum 
RSA pellets. Subsequently, imaging data were collected. First, quantitative CT (QCT) ima-
ges were acquired (ACQSim/Brilliance Big Bore, Philips, Eindhoven, The Netherlands). The 
following settings were used: 120 kVp, 220 mAs, slice thickness 3 mm, pitch 1.5, spiral and 
standard reconstruction, in-plane resolution 0.9375 mm. As the ultimate goal of this study is 
to enable true case-specific bone strength predictions in patients suffering bone metastases, 
we used a rather coarse resolution for the QCT-scans, common to current clinical practice 
in radiotherapeutic departments. The specimens were scanned in a water basin which was 
positioned atop a solid calibration phantom containing tubes with 0, 50, 100, and 200 mg/
ml calcium hydroxyapatite (Image Analysis, Columbia, KY, USA). Hounsfield Units (HUs) 
found in the tubes of the calibration phantom were related to their known calcium equivalent 
values (ρQCT). On the basis of these relations, grey values in the CT scans were converted to 
calcium equivalent densities. Second, for the purpose of RSA analysis, a stereo X-ray was 
taken from the femora while positioned in their experimental setup (Figure 1A). Movement 

A B

Figure 1. The methodological setup in this study. A) In the mechanical experiments, the femora were placed 
in a hydraulic MTS machine and loaded until failure. Movement of the femur was restricted to rotation around 
the dorsoventral axis by means of a distal bearing ball and a sliding hinge. B) The FE model exactly mimicked 
the boundary conditions of the experimental setup. 
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of the femora was restricted to rotation around the dorsoventral axis by using a distal bearing 
ball and a sliding hinge. A single-limb stance-type loading pattern was applied by means of 
a hydraulic MTS machine, using a plastic cup (Ø 30 mm, polyoxymethylene, Delrin®). The 
femora were loaded from 0 N until failure, with a load rate of 10 N/s. During the experiments 
failure forces and displacements were recorded. 

FE model
The QCT images served as a basis for the geometrical and mechanical properties of the FE 
model. By segmenting the CT images (Mimics 11.0, Materialise, Leuven, Belgium) the 3D 
surface geometry of the model was retrieved, which in turn was converted into a solid mesh 
(Patran 2005 r2, MSC Software Corporation, Santa Ana, CA, USA) using four-noded tetrahe-
dral elements (mean edge length ~2 mm). Using the phantom’s calibration data, HUs in the 
CT scan were automatically converted to ρQCT values using the Dicom Toolkit software pack-
age, developed in-house. Subsequently, these element specific ρQCT values were converted into 
ash densities (ρash) and bone material properties, respectively (Keyak et al., 2005b). Next, a 
non-linear isotropic post yield material behaviour was adopted, according to Keyak et al. 
(2005b).
The orientation of the model was based on the RSA analysis. The RSA pellet positions in the 
FE model, retrieved from the CT scans, were projected onto the positions of the RSA pellets 
in the X-rays. The resulting transformation matrix was applied to the FE model. In this way, 
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Figure 2. Schematic overview of post yield material behaviour. A) The Von Mises yield criterion, using post 
yield material behaviour according to Keyak et al. (2005b). This criterion assumes equal bone strength under 
tension and compression. B) A 2D representation of the Drucker-Prager yield envelope. The intersection points 
of the yield envelope and the dashed line indicate the yield points in uniaxial tension (upper right) and uniaxial 
compression (lower left). The yield points in this figure correspond to the yield points in the right panel. C) The 
Drucker-Prager yield criterion, which accounts for yield asymmetry, i.e. the absolute value of the tensile yield 
stress is smaller than the compressive yield stress. 
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the FE model was oriented exactly in the experimental position. The distal PMMA fixation 
and the distal ball bearing in the experiments were simulated by means of two bundles of 
high stiffness springs, only allowing rotation around the dorsoventral axis. Application of the 
single-limb stance-type loading pattern mimicked the experimental setup; a displacement 
driven load (0.1 mm per increment) was applied via a cup (Ø 30 mm) on the head of the fe-
mur (Figure 1B). Post yield material behaviour was not implemented in the surface elements 
underneath this cup in order to prevent distortion artefacts as a result of the load applicati-
on. FE simulations were performed using MSC software (MSC.MARC2007r1, MSC Software 
Corporation, Santa Ana, CA, USA). The total reaction force in the loading direction was 
calculated; the maximum value of this force defined failure of the FE model. Displacements 
were calculated in a reference node on the femoral head, underneath the centre of the loading 
cup. The fracture location and fracture surface in the FE models were determined by elements 
that had undergone plasticity; i.e. elements that had passed the softening phase in the post 
yield material behaviour. 

Sensitivity analysis on the parameters defining the Drucker-Prager yield criterion
In previous FE studies that were related to the prediction of the femoral bone strength, the 
VMYC was applied (Keyak, 2001; Keyak et al., 2005b; Tanck et al., 2009), assuming equal 
bone strength under tension and compression (Figure 2, left section). In this study, we first 
implemented the post yield material behaviour using the VMYC and used these predictions 
as a reference. Secondly, we adopted asymmetric yield behaviour using the DPYC (Figure 2, 
right sections) and performed a sensitivity analysis on the parameters defining the DPYC. In 
Figure 2, middle section) a 2-dimensional graphical representation of the DP yield envelope 
is presented. The horizontal axis represents the hydrostatic pressure axis, for which it holds: 

								        (1)

with p = pressure, and σ1, σ2, σ3 as the stresses in principal direction. Under uniaxial stress in 
the σ1 direction at yielding, this formula reduces to: 

								        (2)

The vertical axis represents the shear stress axis, for which the following applies: 
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								        (3)

with τmax = maximum shear stress. Combining the relationships defined in (2) and (3), we can 
derive the following relationship between p and τ:

								        (4) 

This relationship is depicted by the dashed line in Figure 2 (middle panel). The two points 
of intersection of the DP yield surface with the dashed line correspond to the yield points in 
compressive and tensile direction in the one-dimensional stress-strain curve (Figure 2, right 
panel), when the specimen is loaded in one of the principal directions. Thus, the shape of the 
DP yield surface directly relates to the degree of asymmetry and is defined by the friction 
angle φ and the cohesion factor c (Figure 2, middle section):

								        (5)

								        (6)

with σ as the tensile yield stress and α representing the degree of asymmetry in tensile and 
compressive yield strength: 

								        (7)

with σy, c as the compressive yield stress and σy, t as the tensile yield stress. From these equations 
and Figure 2 it should be clear that the position of the cone along the hydrostatic pressure axis 
depends on both α and the yield stress (σ), whereas the width of the cone is only determined 
by α. A larger difference in tensile and compressive bone strength results in a larger value of α, 
which in turn leads to an increase in c and φ, and thus in a wider yield envelope. 
In this study, the sensitivity analysis on α was based on results from experiments and expe-
rimentally calibrated FE modelling as reported in literature (Table 1). The specimens used in 
these studies were rather diverse in terms of the species and the anatomic site they originated 
from. In order to diminish an eventual effect of these inconsistencies, we used data from ex-
periments with human trabecular bone only. From these data a minimum, an average and a
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Table 1. Literature overview of yield asymmetries.

Bayraktar 
2004

Keaveny 
1994

Kopperdahl 
1998

Morgan 
2001

Kaneko 
2003

Type of bone trabecular trabecular trabecular trabecular cortical
Origin of specimens human bovine human human human
Anatomic site femur tibia vertebrae femur femur
Tensile yield stress (MPa) 82.80 15.60 1.75 10.93 83.90
Compressive yield stress (MPa) 133.60 21.30 1.92 17.45 153.00
Degree of asymmetry (α) 0.135 0.089 0.027 0.133 0.168

maximum value of α were calculated, i.e. α = 0.027, 0.082 and 0.135. The stress- strain curves 
for the three different values of α are given in Figure 3 (bottom section). Note that for these 
cases the choice was made to keep the compressive yield stress equal in all three graphs. 
Previously, the VMYC was used to describe the post yield material behaviour of bone (Keyak 
et al., 2005b). On the basis of compressive yield stress found in experiments, the VM yield 
stress (VM σy) was calculated per element using:

								        (8)

We based the sensitivity analysis on yield stress on these fitted VM results. For the implemen-
tation of this post yield material behaviour with the DPYC we first let the MARC-FE package 
calculate the yield stresses in tension and compression with its default settings, resulting in 
a more negative compressive yield stress (DP σy, c ) and a less positive tensile yield stress (DP 
σy, t ) as compared to the VM simulations and experimental results. This case was defined as 
DEFAULT (Figure 3, upper section). Next, the DP σy, c was equated to the VM σy , resulting 
in a less positive DP σy, t as compared to the VM σy . This case was defined as the compres-
sion-equated case (COMP_EQ) (Figure 3). Although the VM σy was validated against com-
pressive experiments, the calculated yield stress was applied in both tension and compression, 
since the VMYC assumes symmetric yielding. Hence, in the second variation, DP σy, t was 
fitted to VM σy , resulting in a more negative DP σy, c as compared to the VM simulations. We 
defined this condition as the tension-equated case (TENS_EQ) (Figure 3). 

Data analyses
The effects of implementing variable yield asymmetries on bone failure were evaluated in 
terms of fracture location and failure forces. The fracture locations predicted by the FE model 
at the moment of failure were qualitatively compared to the fracture locations in the experi-
ments. 



Chapter 3

54

The accuracy of the FE strength predictions was evaluated by determining the correlation and 
the linear regression equations between the actual experimental bone strength and the bone 
strength predicted by the FE model. More specifically, using SPSS (SPSS 16.02, SPSS Inc., 
Chicago, IL, USA), the coefficient of determination (R2), the regression coefficient and inter-
cept were calculated. In addition, we compared the mean, minimum and maximum relative 
differences between the experimental failure force and the failure forces predicted by the FE 
models for every parameter setting. The FE model adopting the VMYC served as a reference. 
The results of the sensitivity analysis of the two DP parameters were compared to this VM 
simulation in a descriptive manner.
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Figure 3. Overview of the different parameter settings in the sensitivity analysis on post-yield material behavi-
our, implemented using the DPYC. For the variations in fitting the yield stress (upper panels), the DP yield stress 
was not equated to the Von Mises yield stress (DEFAULT), equated to the Von Mises yield stress in compression 
(COMP_EQ), or in tension (TENS_EQ). For the variations in the degree of yield asymmetry (lower panels), the 
minimal and maximal values of α were based on yield asymmetry data reported in literature (Kopperdahl et 
al., 1998; Bayraktar et al., 2004b), and the average value was calculated as the mean of these two values. 
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Results
Fracture location
In the four bones without artificial metastases, the prediction of the fracture location im-
proved by the implementation of the DPYC. For example, in Figure 4, the fracture location 
in one of the experiments, the VM simulation and the DP simulation (with a maximal α and 
the yield stress equated in compression, COMP_EQ) are shown. For two of the intact bones, 
a considerable improvement in the prediction of the fracture line was seen, whereas in the 
remaining two bones a more subtle effect of the use of yield asymmetry was found. In the 
experiments, intertrochanteric and transcortical fractures were seen. This pattern was reaso-
nably reproduced when the DPYC was used but was not reproduced in the VM simulations. 
More specifically, the VM simulations mainly predicted subcapital fractures, whereas the im-
plementation of the DPYC resulted in a fracture that was located more towards the greater 
and lesser trochanter. It was found that a larger degree of yield asymmetry, i.e. higher values 
of α, better predicted the fracture line. Variations in the yield stress did not have an effect on 
the location of the fracture line.
In the bones with artificial metastases, the VM simulations correctly predicted the fracture 
locations through the lesions. The same fracture location was found when using the DP yield 
criterion. 

Failure force
The implementation of the DPYC improved the prediction of the ultimate bone strength. 
Due to the small number of specimens in this study, no significant differences were found 
between the different parameter settings in this study. However, we found a number of inte-

Experiment FE Von Mises FE Drucker-Prager

Figure 4. Location of fracture in the experiment, FE simulation using the VMYC and FE simulation using the 
DPYC. The fracture location was better predicted in the DP simulation than in the VM simulation. 



Chapter 3

56

resting trends in this study. The predictions by the FE models using the VMYC were already 
fairly good (R2 = 0.91, slope = 0.92, intercept = -629), but the correlations between the actual 
and predicted failure forces in the DPYC simulations were higher (R2 values ranged from 
0.91 to 0.94) (Figure 5A). The variations in the yield stress had a large effect on the predicted 
failure force. The DEFAULT simulations best approached the actual failure forces with high 
correlations (0.91 < R2 < 0.94) and slopes that were close to 1 (0.93 < slope < 1.01) (Figure 
5). Equating the DP compressive yield stress to the VM yield stress (COMP_EQ) resulted in 
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Figure 5. The accuracy of the FE strength predictions. We compared the bone strength predicted by the FE 
model to the actual experimental bone strength in terms of the correlation (A), and the slopes (with 95% con-
fidence intervals) of the linear regression equations (B).
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high correlations as well (R2 = 0.94 in all three settings of α) and slopes ranging between 0.77 
and 0.86 (Figure 5). In the same vein, fitting the DP tensile yield stress to the VM yield stress 
(TENS_EQ) showed R2 in between 0.91 and 0.94, whereas the slopes ranged between 0.95 and 
1.25 (Figure 5). The intercepts of the regression equations ranged from -459 to -116, but were 
never significantly different from 0. 
The mean, minimum and maximum absolute differences (in %) between the predicted and 
experimental failure forces are depicted in Figure 6. The simulations with a DEFAULT yield 
stress condition showed the lowest absolute differences compared to the experiments. From 
these results, and the finding that a larger degree of yield asymmetry improves the prediction 
of fracture locations, the best settings to implement asymmetric yielding in the FE prediction 
of the femoral bone strength were defined as a maximal degree of asymmetry and a default 
yield stress (i.e. no fit to the VM yield stresses under either compression or tension).
Furthermore, the combined variations in both α and yield stress had a synergetic effect on 
the failure forces. For example, the effect of variations in the yield stresses was larger when 
implemented with a larger degree of asymmetry (Figure 7).
In addition, we found that the effect of the sensitivity analysis was dependent on the ultimate 
strength of the bone (Figure 8). In the weakest bone, the range of predicted failure forces was 
1000 N, whereas in the strongest bone this range increased to almost 5000 N, which in both 
cases approximated 50% of the failure force.
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Figure 6. The mean (black circles), minimum (triangles, dotted) and maximum (triangles, dashed) absolute 
differences (in %) between the experimental failure force and the failure forces predicted by the FE models for 
every parameter setting. 
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Discussion
The aim of this study was to verify that asymmetric yielding in bone can be captured by the 
DPYC and can provide better results than the commonly used VMYC. In addition, we per-
formed a sensitivity analysis on the parameters defining asymmetric yielding. We studied the 
subsequent effect on bone failure, in terms of failure force and failure location, and defined 
the best possible settings for using the DPYC in the prediction of the femoral bone strength 
by case-specific non-linear finite element models. 
Although the highest correlations between predicted and actual failure forces were found 
when using the DPYC, all FE models in this study were able to adequately predict the femoral 
bone strength. FE predictions of the failure force related to the experimental failure force 
with coefficients of determination ranging between 0.91 and 0.94. These results are in line 
with previously reported work (R2 values ranging between 0.83 (Keyak et al., 2005b) and 0.96 
(Bessho et al., 2009)). 
The variation in the degree of yield asymmetry mainly affected the fracture location, whereas 
variations in yield stress had a marked effect on the failure force. In the femora without me-
tastatic lesions, fracture locations were better predicted by models using a large yield asym-
metry. These results may be explained as follows. In studies based on experiments with hu-
man bone, it was shown that compressive bone strength is higher than the tensile strength 
(Keaveny et al., 1994; Kopperdahl et al., 1998; Morgan et al., 2001; Kaneko et al., 2003; Bay-
raktar et al., 2004b), thus the use of a symmetric yield criterion such as the VMYC would 
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Figure 7. Force-displacement curves for combinations of variations in the yield asymmetry and the yield stress, 
which had a synergetic effect on the predicted failure forces.
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consequently either overestimate the tensile bone strength or underestimate the compressive 
bone strength. In either case, the failure prediction by an FE model using the VMYC will be 
biased towards failure under compression. Under single-limb stance-type loading, as utilised 
in this study, the proximal-lateral femoral neck is assumed to be mainly loaded in tension, 
whereas the distal-medial part is mainly loaded in compression. Using a symmetric yield cri-
terion would therefore lead to fractures that initiate in the distal-medial parts of the femoral 
neck, as predicted in the VM simulations. The use of an asymmetric yield criterion can ac-
count for this bias towards failure under compression. Indeed, when using the DPYC, the FE 
model predicted more failure in elements that were loaded under tension, and the resulting 
fracture locations were more in line with the experimental fracture locations. In the femora 
with artificial lesions, we found virtually no differences in fracture location predicted in VM 
simulations and DP simulations. The artificial lesions were located in the medial and anterior 
femoral shaft. Under single-limb stance-type loading, these areas are loaded primarily under 
compression, so that the effect of implementing yield asymmetry is reduced. In addition, 
by drilling holes that mimicked artificial metastases, the femoral cortex was interrupted. As 
a result, the large forces directed along the shaft of the femur had to be redirected through 
much weaker, trabecular bone. Consequently, extensive failure in the elements surrounding 
the artificial lesion was found. This effect might have overruled the more subtle effect of the 
implemented yield asymmetry. In order to verify this hypothesis, more femora with artificial 
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Figure 8. The sensitivity to the various parameter settings of the asymmetric yield criterion is dependent on 
the global bone strength. For every femur, the largest and smallest failure forces predicted by models using the 
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lesions in other locations (e.g. the lateral shaft or the femoral neck) should be tested.
The variations in the yield stress had a large effect on the failure forces predicted by the FE 
models. On the basis of the current set of specimens the best possible failure force prediction 
was obtained when using a yield stress not fitted to the VM yield stresses in tension nor com-
pression (DEFAULT), in combination with the largest degree of yield asymmetry. 
The combined variations in the degree of yield asymmetry and yield stress had a synergetic ef-
fect on the failure force. On the element level, the variations in yield stress gradually lead to an 
increase in the cohesion factor, in which COMP_EQ < DEFAULT < TENS_EQ. Furthermore, 
a larger degree of yield asymmetry (a larger value of α) increases both the friction angle (φ) 
and the cohesion factor (c) on the element level. A larger friction angle and cohesion factor 
result in a wider yield envelope and thus in a larger effect of the hydrostatic pressure on the 
yield stress. Thus, the increase in predicted bone strength as a result of variations in the degree 
of asymmetry and yield stress is depending on the 3D stress distribution, which implies that 
the effect on the global bone strength is sometimes difficult to comprehend. 
In addition, on the global level, the effect of variable DP parameters was dependent on the 
ultimate bone strength. Variations in α and yield stress affect the ratio between the tensile and 
compressive yield strength. Therefore, absolute difference between tensile and compressive 
yield strength is larger in FE models with stronger elements. Again, this effect on the bone 
strength is dependent on the 3D stress distribution, such that the effect on the global strength 
is not so straightforward. 
The results in this study are in line with previous studies investigating the implementation 
of asymmetric yielding on the micro level. Mullins et al. (2009) showed that micro level FE 
models implementing the DPYC better predicted bone failure parameters retrieved by na-
noindentation than FE models using the VMYC. Furthermore, Keaveny and co-workers de-
veloped validated micromechanical FE models using an asymmetric yield criterion (Niebur 
et al., 2000; Bayraktar et al., 2004b) or a multiaxial yield surface (Bayraktar et al., 2004a), 
with which they were better able to capture experimentally measured yield behaviour of both 
human and bovine bone. In contrast, Keyak et al. (2000) performed a sensitivity analysis on 
global femoral FE models using various yield criteria. Their results showed that the imple-
mentation of complex yield behaviour (e.g. asymmetric yielding) worsened the prediction as 
compared to the use of symmetric, more simple yield criteria. However, they did not consider 
the implementation of the Drucker-Prager yield criterion which, as this study shows, has the 
capacity to improve the predictions relative to experimental measurements. 
A few limitations of this study should be considered. First, it should be noted that we only 
used 4 intact femora and 2 femora with metastatic lesions, which is from a statistical point of 
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view a small population. With this number of specimens there is a lack of statistical power to 
qualify the one parameter setting above and beyond another one, i.e. no statistically signifi-
cant differences were found between the various parameter settings. However, as a result of 
the three variations in α, three variations in the yield stress and one VM simulation, we ran 
60 non-linear simulations in total. In order to confine calculation time, we used a limited 
number of specimens. In future work the best possible parameters found in this study will 
be applied to, and validated in, a larger population. Furthermore, we congregated the failure 
data of intact and metastatic femora. Since the failure process of those two groups is fairly 
different, this might affect the homogeneity of the sample and therefore the interpretation of 
the results. However, in a previous study of our group (Tanck et al., 2009) we found that the 
accuracy of the predictions by the FE model further increased when separately considering 
the results in the two groups. Obviously, analyses on large numbers of intact and metastatic 
femora are needed to confirm these results. 
Second, in the intact femora, the predicted fracture locations did not perfectly overlay on the 
fracture locations as found in the experiments. The FE models predicted the fracture locations 
more towards the subcapital region, whereas the experimental fractures were located more in 
between the greater and lesser trochanter. This may be due to the fact that mechanical anisot-
ropy was not implemented in this model. It has been shown that a significant part of the varia-
tion in bone strength is explained by the variable trabecular orientation of the bone (Lenaerts 
et al., 2009). According to Wolff ’s law, trabeculae in the femoral head and neck orient towards 
the physiological loading direction. More specifically, two different trabecular patterns can be 
distinguished, (i.e. a compressive band and a tensile band), which traverse in the centre of the 
femoral head (Kyle et al., 1995). The trabeculae in these bands are stronger when loaded in the 
preferential direction. Thus, by implementing anisotropy, elements in the subcapital region 
become more resistant to single-limb stance-type loading, being a daily physiological loading 
condition. Consequently, elements located more towards the greater trochanter might fail 
earlier, and the fracture location might be further improved. However, it is very difficult to re-
trieve local anisotropy parameters in vivo (Lenaerts et al., 2009), but taking into account these 
trabecular bands maybe a first step towards implementation of anisotropy in the FE models. 
Finally, we used a single-limb stance-type loading pattern, allowing us to exactly mimic the 
experiments. However, with this loading type, we could not cover complex loading conditi-
ons in daily activities. Although FE models incorporating this simple loading configuration 
have shown to be successful, more sophisticated loading patterns might further improve the 
accuracy of the FE predictions. Therefore, future work will focus on the application of muscle 
forces and hip joint contact forces determined by musculoskeletal models in order to apply 
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such complex loading configurations to the FE model.
In conclusion, in this study we further developed our subject specific non-linear finite ele-
ment model. By implementing a large degree of yield asymmetry using the DPYC, we showed 
an improvement in the prediction of bone strength as well as in the prediction of the fracture 
location.

Acknowledgments
This project has been funded by the Dutch Science Foundation NWO-STW (NPG.06778), 
the Furlong Research Charitable Foundation and Stichting Anna Fonds.

References

Bayraktar HH, Gupta A, Kwon RY, Papadopoulos P, Keaveny TM. 2004a. The modified super-ellipsoid yield criterion 
for human trabecular bone. J Biomech Eng 126(6): 677-684.

Bayraktar HH, Morgan EF, Niebur GL, Morris GE, Wong EK, Keaveny TM. 2004b. Comparison of the elastic and 
yield properties of human femoral trabecular and cortical bone tissue. J Biomech 37(1): 27-35.

Bessho M, Ohnishi I, Matsumoto T, Ohashi S, Matsuyama J, Tobita K, Kaneko M, Nakamura K. 2009. Prediction of 
proximal femur strength using a CT-based nonlinear finite element method: Differences in predicted fracture 
load and site with changing load and boundary conditions. Bone 45(2): 226-231.

Bessho M, Ohnishi I, Matsuyama J, Matsumoto T, Imai K, Nakamura K. 2007. Prediction of strength and strain of the 
proximal femur by a CT-based finite element method. J Biomech 40(8): 1745-1753.

Body JJ. 2003. Rationale for the use of bisphosphonates in osteoblastic and osteolytic bone lesions. Breast 12: S37-S44.

Harvey HA. 1997. Issues concerning the role of chemotherapy and hormonal therapy of bone metastases from breast 
carcinoma. Cancer 80(8 Suppl): 1646-1651.

Hipp JA, Springfield DS, Hayes WC. 1995. Predicting pathologic fracture risk in the management of metastatic bone 
defects. Clin Orthop Relat Res 312: 120-135.

Hoskin PJ. 2003. Bisphosphonates and radiation therapy for palliation of metastatic bone disease. Cancer Treat Rev 
29(4): 321-327.

Kaneko TS, Pejcic MR, Tehranzadeh J, Keyak JH. 2003. Relationships between material properties and CT scan data 
of cortical bone with and without metastatic lesions. Med Eng Phys 25(6): 445-454.

Keaveny TM, Wachtel EF, Ford CM, Hayes WC. 1994. Differences between the Tensile and Compressive Strengths of 
Bovine Tibial Trabecular Bone Depend on Modulus. J Biomech 27(9): 1137-1146.

Keyak JH. 2001. Improved prediction of proximal femoral fracture load using nonlinear finite element models. Med 
Eng Phys 23(3): 165-173.

Keyak JH, Kaneko TS, Rossi SA, Pejcic MR, Tehranzadeh J, Skinner HB. 2005a. Predicting the strength of femoral 
shafts with and without metastatic lesions. Clin Orthop Relat Res 439: 161-170.

Keyak JH, Kaneko TS, Skinner HB, Hoang BH. 2007. The effect of simulated metastatic lytic lesions on proximal 
femoral strength. Clin Orthop Relat Res 459: 139-145.

Keyak JH, Kaneko TS, Tehranzadeh J, Skinner HB. 2005b. Predicting proximal femoral strength using structural 
engineering models. Clin Orthop Relat Res 437: 219-228.

Keyak JH, Rossi SA. 2000. Prediction of femoral fracture load using finite element models: an examination of stress- 
and strain-based failure theories. J Biomech 33(2): 209-214.

Kopperdahl DL, Keaveny TM. 1998. Yield strain behavior of trabecular bone. J Biomech 31(7): 601-608.

Kyle RF, Cabanela ME, Russell TA, Swiontkowski MF, Winquist RA, Zuckerman JD, Schmidt AH, Koval KJ. 1995. 



Implementation of asymmetric yielding in case-specific finite element models 

63

3

Fractures of the proximal part of the femur. Instr Course Lect 44: 227-253.

Lenaerts L, van Lenthe GH. 2009. Multi-level patient-specific modelling of the proximal femur. A promising tool to 
quantify the effect of osteoporosis treatment. Philos Trans A Math Phys Eng Sci 367(1895): 2079-2093.

Mirels H. 1989. Metastatic disease in long bones. A proposed scoring system for diagnosing impending pathologic 
fractures. Clin Orthop Relat Res 249: 256-264.

Morgan EF, Keaveny TM. 2001. Dependence of yield strain of human trabecular bone on anatomic site. J Biomech 
34(5): 569-577.

Mullins LP, Bruzzi MS, McHugh PE. 2009. Calibration of a constitutive model for the post-yield behaviour of cortical 
bone. J Mech Behav Biomed Mater 2(5): 460-470.

Niebur GL, Feldstein MJ, Yuen JC, Chen TJ, Keaveny TM. 2000. High-resolution finite element models with tissue 
strength asymmetry accurately predict failure of trabecular bone. J Biomech 33(12): 1575-1583.

Orwoll ES, Marshall LM, Nielson CM, Cummings SR, Lapidus J, Cauley JA, Ensrud K, Lane N, Hoffmann PR, Kop-
perdahl DL, Keaveny TM, Osteoporotic Fractures in Men Study G. 2009. Finite element analysis of the proximal 
femur and hip fracture risk in older men. J Bone Miner Res 24(3): 475-483.

Tanck E, van Aken JB, van der Linden YM, Schreuder HWB, Binkowski M, Huizenga H, Verdonschot N. 2009. 
Pathological fracture prediction in patients with metastatic lesions can be improved with quantitative computed 
tomography based computer models. Bone 45(4): 777-783.

van der Linden YM, Dijkstra PD, Kroon HM, Lok JJ, Noordijk EM, Leer JW, Marijnen CA. 2004. Comparative analy-
sis of risk factors for pathological fracture with femoral metastases. J Bone Joint Surg Br 86(4): 566-573.

van der Linden YM, Kroon HM, Dijkstra SP, Lok JJ, Noordijk EM, Leer JW, Marijnen CA, Dutch Bone Metastasis 
Study G. 2003. Simple radiographic parameter predicts fracturing in metastatic femoral bone lesions: results from 
a randomised trial. Radiother Oncol 69(1): 21-31.





# 4

Lorenzo Anez-Bustillos, Loes C. Derikx, Nico Verdonschot, Nathan Calderon, 
David Zurakowski, Brian D. Snyder, Ara Nazarian, Esther Tanck.

Bone 2014; 58, 160-167.

Finite element analysis and CT-based structural rigidity analysis 
to assess failure load in bones with simulated lytic defects





Finite element analysis and CT-based structural rigidity analysis to assess failure load 

67

4

Introduction
After lungs and liver, bone tissue constitutes the third most common site for the development 
of metastases in cancer (Schulman et al., 2007). Carcinomas of the breast, prostate, lungs, 
and thyroid are the most prone to metastasizing to the skeleton, accounting for approxima-
tely 80% of all bone metastases (Hage et al., 2000; Coleman, 2006; Clezardin et al., 2007). 
Although prognosis after development of metastatic bone disease is better than that seen after 
visceral invasion, the morbidity associated with these lesions considerably affects patients’ 
quality of life. Main clinical features include intractable pain, metabolic alterations such as hy-
percalcaemia, neurological deficit in cases of spinal involvement, and spontaneous patholo-
gical fracture (Coleman, 2006; Toma et al., 2007). The latter is considered the most important 
and troublesome complication for both the patient and the physician. Management of these 
types of fractures accounts for the majority of the calculated national cost burden of patients 
with metastatic bone disease, estimated to be $12.6 billion in the United States (Schulman et 
al., 2007). As survival rates from patients with primary cancer continue to improve, so will the 
incidence of these major complications (Papagelopoulos et al., 2006).
Primary cancer site, presence of pain, and risk of fracture represent main factors to consider 
while choosing the most appropriate treatment following the diagnosis of a suspiciously ma-
lignant bone lesion (Johnson et al., 2008). Given the detrimental effects of bone fractures, the 
main challenge for the treating physician is to effectively determine the extent of the lesion, 
and decide whether it has weakened the bone enough to cause a pathological fracture. Pa-
tients with a low risk of pathological fracture are effectively treated for pain using nonsurgical 
approaches such as radiation therapy, immunotherapy, endocrine or cytotoxic chemotherapy, 
and bisphosphonates (Houston et al., 1995; Bickels et al., 2009). On the other hand, operative 
treatment is indicated for cases of impending and pathological fractures in long bone and 
pelvic girdle metastases. As for patients with spinal lesions, surgical intervention is recom-
mended when evidence of spinal cord compression and/or spinal instability ensues (Bickels 
et al., 2009). 
Although evolving, fracture risk assessment is still based on inaccurate predictors estima-
ted from previous retrospective studies. In 1989, Mirels proposed a weighted scoring system 
combining clinical and radiographic criteria to quantify the risk of sustaining a pathologic 
fracture through a metastatic long bone lesion (Mirels, 1989). Although Mirels’ score is often 
used for screening of metastatic appendicular skeletal lesions, it is associated with a variety 
of limitations. It is based on a 2D radiographic representation of a 3D lesion which is ra-
ther imprecise in evaluating the size and nature of the lesions compared to current imaging 
modalities such as computed tomography and magnetic resonance imaging. Despite the low 
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false-positive rate for lesions with scores of 9 and above, the low specificity of less than 35% 
(Damron et al., 2003) means that strict application of these criteria will result in unnecessary 
surgery in approximately two thirds of cases. A comparative analysis of risk factors conducted 
by Van der Linden et al. (2004) provided proof of the overestimation of fracture risk when 
making decisions based on conventional risk factors. As an alternative to existing methods, 
Van der Linden et al. proposed an approach based on axial cortical involvement, the accu-
racy of which was further demonstrated in a randomised trial (van der Linden et al., 2003). 
There are also conflicting data on reproducibility and reliability of the results obtained from 
different specialties (El-Husseiny et al., 2010) and anatomical sites (Evans et al., 2008), further 
emphasizing the need for a more accurate clinical tool to assess fracture risk in the presence 
of metastatic lesions. 
We have previously demonstrated the effective use of non-invasive imaging techniques using 
quantitative computed tomography (QCT) for the assessment of structural rigidity and pre-
diction of failure loads in ex vivo and in vivo models (Whealan et al., 2000; Hong et al., 2004; 
Snyder et al., 2006; Nazarian et al., 2010; Entezari et al., 2011). Additionally, using the same 
principle, we and others have shown that case-specific finite element (FE) models are ca-
pable of effectively simulating the mechanical behaviour of bones under axial loading with 
a relatively high level of precision (Cody et al., 1999; Keyak et al., 2003; Taddei et al., 2006; 
Bessho et al., 2007; Schileo et al., 2008; Tanck et al., 2009; Derikx et al., 2012b). However, the 
prediction accuracies of computed tomography rigidity analysis (CTRA) and FE analysis have 
never been directly compared. In the current study we aim to establish and assess statistical 
comparisons between QCT structural rigidity analyses and FE analyses, in their accuracy for 
the estimation of femoral failure load. For that purpose, we use an experimental dataset and 
the corresponding FE simulations as described previously (Tanck et al., 2009; Derikx et al., 
2012a). Based on these experiments, we performed a QCT structural rigidity analysis and 
compared these results to the results from the FE analyses. 

Materials and Methods
Quantitative Computed Tomography and Mechanical Experiments
For the validation of CTRA and FEA we relied on the exact results of mechanical experiments 
as performed previously (Tanck et al., 2009; Derikx et al., 2012a). For an elaborate description 
of the setup of these experiments, the reader is referred to this previous work. In short, ten 
paired femurs from fresh-frozen human cadavers (mean age 81.7 ± 10.65 years) were obtain-
ed from the Department of Anatomy, Radboud university medical center, with institutional 
approval. One of the femurs in each pair was left intact and assigned to the control group. 
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The contralateral femur was assigned to the metastatic group, while one or more defects were 
created. Size and location of these lesions resembled clinical appearance of lytic metastatic 
lesions, as discussed with orthopaedic oncologists (Table 3). Hence, they were not related to 
the femoral size or geometry. QCT images were acquired with the following settings: 120 kVp, 
220 mA, slice thickness 3 mm, pitch 1.5, spiral and standard reconstruction, in-plane reso-
lution 0.9375 mm (ACQSim/Brilliance Big Bore, Philips, Eindhoven, The Netherlands). The 
femurs were scanned in a water basin, on top of a solid calibration phantom (Image Analysis, 
Columbia, KY, USA). Following imaging, the specimens underwent mechanical testing in a 
hydraulic mechanical testing system (MTS) machine. An axial load was applied on the head 
of the femur, with 10 N/s from 0 N until failure, while force and displacement of the plunger 
were recorded. The failure location of each femur was photographically documented.

Finite Element Analysis
The mesh generation for the FE models was accomplished by segmenting the QCT images 
and converting them to a solid mesh (Patran 2005 r2, MSC Software Corporation, Santa Ana, 
CA, USA) (Derikx et al., 2012a). Calibration of the QCT scans and material property assign-
ment was performed using the DICOM Toolkit software package, developed at the Orthopae-
dic Research Lab in Nijmegen (Derikx et al., 2012a). The experimental boundary conditions 
were reproduced in the FE simulations (Figure 1). The FE simulations, adopting non-linear 
isotropic material behaviour (Keyak et al., 2005), were performed using MSC Marc (MSC.

Figure 1. Anterior view of the FE-model, generated from a QCT scan. Displacement was applied to the model 
via the cup on the head of the femur, while the bottom of the model was fixated by means of high stiffness 
springs. 
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MARC2007r1, MSC Software Corporation, Santa Ana, CA, USA). The global failure load 
(FFE) was defined as the maximum total reaction force, i.e., the sum of the contact normal 
forces in the model. The elements that plastically deformed at the moment of maximal total 
reaction force defined the failure location (Derikx et al., 2012a).
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da

da = dx . dy

Neutral Axis; Centroid:

Axial Rigidity:

Bending Rigidity:

(Equation 1)

(Equation 2)

(Equation 3)

Figure 2. Schematic diagram illustrating the pixel-based CTRA analysis algorithm to calculate axial (EA) and 
bending (EI) rigidities. Each grid element is intended to represent one pixel (the exaggeration of the grid ele-
ment size is done solely for illustration purposes). The different equations are presented, where ρ represents 
bone density, xi and yi represent the distance of each pixel from the x and y axes respectively, da represents the 
area of each pixel, Ei represents Young’s modulus of elasticity (defined as the ratio of tensile strength to strain 
in the linear region), and Gi represents the shear modulus (defined as the ratio of shear stress to shear strain 
in the linear region). 
The modulus neutral axis and centroid (Equation 1) are determined based on the coordinates of the ith pixel, its 
modulus (Ei ), area (da), and total number of pixels in the bone cross-section (n).  Axial rigidity, which provides 
a measure of the bone’s resistance to deformation when subjected to uniaxial tensile or compressive loads 
(Equation 2), is estimated by summing the products of each pixel’s elastic modulus (Ei ) and pixel area (da). 
Bending rigidity provides a measure of the bone’s resistance to flexure deformation when subjected to bending 
moments. Its rigidity about the y-axis (Equation 3) is the sum of the products of the elastic modulus (Ei ), square 
of the ith pixel distance to the neutral axis (ȳ), and the pixel area (da). 
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CT-based Structural Rigidity Analysis
For CTRA, the grey values in the CT scan were converted to equivalent mineral density by 
using the linear relationship between Hounsfield units (HU) and equivalent mineral density 
as established by the hydroxyapatite phantom scanned with each bone. Then, the mineral 
density of each pixel was converted to modulus of elasticity (E) for axial (EA) and bending 
(EI) rigidity measurements, using empirically derived constitutive relationships for cancel-
lous (Rice et al., 1988) and cortical (Snyder et al., 1991) bone (Figure 2). The modulus neutral 
axis and centroid were calculated based on the coordinates of the ith pixel and its correspon-
ding area (da), modulus (Ei), and total number of pixels in the cross section (n), as depicted 
in Equation 1.

			   	 (1)

where xi and yi represent the distance of each pixel from the x and y axes, respectively. The 
Young’s modulus of elasticity (Ei) is defined as the ratio of tensile strength to strain in the 
linear region.
Axial rigidity provides a measure of the bone’s resistance to uniaxial (tensile or compressi-
ve) loads, whereas bending rigidity provides a measure of the bone’s resistance to bending 
moments. For each trans-axial image, EA and EI were calculated by summing the modu-
lus-weighted area of each pixel within the bone contour by the position of the pixel relative to 
the centroid of the bone cross-section as described in Equations 2 and 3:

								        (2)

								        (3)

The cross-section through the affected bone that has the lowest rigidity value is the weakest 
and assumed to govern failure of the entire bone. Therefore, the cross section with the lowest 
rigidity in the tested area is considered the failure region.

Data Analysis
CTRA-based axial (EA) and bending (EI) rigidities and FE-based failure load results were 
correlated with the experimental failure load from mechanical testing. Paired t-tests were 
used to assess the mean difference in failure load (N) determined by mechanical testing (Fmech) 
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and CTRA-based EA and FE-based failure load (FFE). 
The Bland-Altman technique was applied to assess agreement in CTRA-based axial rigidity 
and FE-based failure load compared to the gold standard mechanical testing with limits of 
agreement determined as mean difference ± 1.96 standard deviations (i.e. 95% confidence in-
terval of the difference) (Bland et al., 1986). The Bland-Altman technique is based on plotting 
the difference between two sets of measurements and plots the difference on the y-axis and 
the average of the two measurements on the x-axis (this is done for each pair of observations; 
hence the paired comparison between the two methods). By convention, a line is drawn to 
represent the mean difference and this is called the “bias”. In addition, two lines are drawn to 
represent the precision of agreement, called the “limits of agreement” and are calculated as 
1.96 x standard deviations of the mean difference (i.e., these are analogous to the 95% confi-
dence interval) and by definition will encompass 95% of the data points.
The correlation between the difference in CTRA-based EA and FE-based failure load with the 
gold standard failure load was calculated to assess whether the bias was constant across the 
range of possible loads to failure. Although CTRA does not provide a direct failure load pre-
diction, the output parameters in FE (failure load in N) and CTRA-based EA (axial rigidity in 
N) are the same and therefore comparable using the Bland-Altman method. In contrast, the 
output parameters in CTRA-based EI (in Nm2) are not the same unit-wise and therefore not 
directly comparable using this particular analysis. 
To test the robustness of the two methods in predicting failure load, the size and location of 
the artificial lesions were varied as much as possible. Obviously, this makes it impossible to 
study lesion-specific prediction accuracy between the two methods as a large variation in 
lesion characteristics comes with a small number of specimens per variation. Therefore we 
studied differences in prediction accuracy between subgroups, i.e. for the intact specimens 
and the specimens with a defect, in addition to the analyses on total group of specimens.
In addition, the output parameters were used to rank the femurs from weak to strong; this was 
done for both the outcome parameters of FE and CTRA. These rankings were subsequently 
compared with the experimental ranking and with each other using the Kendall rank cor-
relation coefficient (τ), which allowed for studying prediction accuracy among the different 
methods. 
The fracture locations in the experiments were qualitatively compared to the fracture lines 
predicted by the FE model and to the cross-section that was assumed to govern failure of the 
femur in the CTRA analysis.
Power analysis indicated that 10 femur pairs (n = 20) were required (Moore et al., 2003). Sta-
tistical analyses were performed using MedCalc version 12.2.1 (MedCalc Software, Mariaker-
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ke, Belgium) and STATA (Statistics/Data Analysis 11.2, College Station, TX, USA) software 
packages. Two-tailed p < 0.05 was considered statistically significant. 

Results
As reported previously (Derikx et al., 2012a), mechanical testing procedures were successful-
ly completed on every specimen. Overall, the axial and bending rigidities obtained through 
CTRA correlated well with the load capacity obtained from mechanical testing (Figures 3A 
and 3B). The coefficients of determination for the femurs were 0.82 for EA and 0.86 for EI (p < 
0.001 for all cases). As shown in previous work, the simulated FE models accurately predicted 
the failure load of the intact as well as the metastatic femurs as measured in the experiments 
(R2 = 0.89 and p < 0.001) (Figure 3C). 
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Figure 3. Linear regression between failure load from mechanical testing versus A) axial rigidity and B) bending 
rigidity and C) failure load predicted by the FE models. 
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When considering all specimens, paired t-tests did not indicate differences between CTRA-
based EA index and mechanical testing with an average underestimation of 534 N for failure 
load (Table 1, p = 0.06). FE demonstrated a mean difference of -9 N compared to mechanical 
testing, which was not significant (p = 0.96). Bland-Altman analysis revealed that the limits 
of agreement defined as 95% confidence intervals were moderate for CTRA-based EA (Figure 
4A). For example, the mean difference of 534 N for EA is associated with a precision between 
-1779 to 2847 N, implying that 95% of the time, EA will provide an estimate of failure in this 
range compared to the gold standard. For EA, the bias was constant across the magnitude of 
failure load as judged by non-significant correlation between the average versus the difference
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Figure 4. Bland-Altman plots for CTRA based axial rigidity (A) and FE based failure load (B). In Figure 4A, 
the Bland-Altman plot compares the force (N) between mechanical testing and EA for 20 human femurs and 
shows that the mean difference is 534 N, indicating that on average, force as measured by mechanical testing 
was 534 N greater than force determined by EA (solid line). The dashed lines represent the 95% limits of agree-
ment and indicate that the difference between the two methods, while averaging 534 N, may range between 
1779 N lower to 2847 N higher for mechanical testing compared to EA. There was no significant correlation 
between the difference on the y-axis and the mean on the x-axis of the two methods, suggesting that the bias 
is approximately constant throughout the range of values for the 20 human specimens. Regarding Figure 4B, 
the Bland-Altman plot shows the mean difference in force between mechanical testing and finite element (FE) 
analysis to be only -9 N, meaning that on average the difference or bias between the two sets of measure-
ments is very close to 0, (i.e., about 9 N greater with FE than with mechanical testing). In addition, the limits 
of agreement as denoted by the dashed lines (+/- 1.96 x SD of the mean difference) reveals that 95% of the 
time the force using mechanical testing can be somewhere 1776 N lower than FE to 1757 N higher than FE. 
Again, the bias appears to be constant throughout the range of values, meaning that the variability of the paired 
measurements between mechanical and FE vary almost equally above and below the mean (solid) line. The 
Bland-Altman plots in essence provide an excellent graphical representation for assessing agreement between 
two different methods of measurement and the limits of agreement demarcate the width of the difference that 
can be expected 95% of the time. The Bland-Altman technique does not require having a “gold standard,” but 
typically the “new method of interest” (e.g., EA or FE) is subtracted from the conventional method (in this case, 
mechanical testing) on the y-axis. 
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Table 2. Correlations between rankings of the femurs in the experiments and the predictions by FE and 
CTRA using Kendall Tau ranking coefficients

Intact femurs Defect femurs
Experiments vs. FE 0.73 * 0.87 *

EA 0.64 * 0.73 *
EI 0.64 * 0.73 *

* indicates significant correlations at the p-level of 0.05.

(r = 0.36, p = 0.12). FE showed more accurate estimates of failure load than each of the two 
CT-based rigidity parameters (all p < 0.001, paired t-tests on the deltas versus mechanical 
testing). The limits of agreement in the Bland-Altman plot indicate that the FE estimated 
failure load on average is nearly the same as mechanical testing (mean difference of -9 N) 
and provides estimates that are within the range of -1776 to 1757 N (Figure 4B, Table 1). 
Moreover, the bias throughout the magnitude of possible failure loads is constant as indicated 
by a non-significant correlation between the average versus the difference (r = 0.20, p = 0.39). 

To further study differences in prediction accuracy between the two methods, the paired 
t-tests and Bland-Altman analysis were repeated for the intact and defect specimens sepa-
rately (Table 1). Paired t-tests then showed a significant difference between mechanical tes-
ting and EA for the intact femurs and between mechanical testing and FE for the metastatic 
femurs. In addition, for EA the bias varied over the different analyses (total group and both 
subgroups), but the limits of agreement were constant. For FE there were differences in both 
the bias and the limits of agreement over the analyses. The more narrow limits of agreement 
in the subgroup analysis of the defect specimens suggested a higher accuracy at the cost of a 
larger systemic error (as the bias was larger than in the overall analysis). For the defect femurs, 
which are of main interest here, CTRA showed the smallest bias (120 N vs. -535 N for FE), 
whereas FE showed a higher agreement among predictions (SD 615 N vs. 1108 N for CTRA).
High Kendall rank correlations between the experiments and the predictions by either FE 
or CTRA (all significant at the p = 0.05 level) were found (Table 2). Furthermore, Kendall 
rank correlations between the FE rankings and the CTRA rankings showed moderate to good 
correlations (Figure 5). No significant differences in prediction accuracy were found between 
the two methods. 
The fracture locations in the experiments were qualitatively compared to the fracture lines 
predicted by the FE model and to the minimum rigidity cross-section from CTRA analysis. 
(Figure 6 provides a graphic presentation of a representative specimen). The results indicated 
that the fracture locations were always directed through the lesion in the defect specimens, if 
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applicable. Overall, the fracture locations were reasonably well predicted by both FE (Derikx 
et al., 2012a) and CTRA methods as highlighted in Table 3.

Discussion
In recent years, different diagnostic tools have been developed to address the common quan-
dary encountered by physicians when assessing fracture risk prediction in patients found 
to have a metastatic bone lesion. The choice for the most appropriate therapeutic approach 
should be objectively determined by methods that consider bone as a structure, whose me-
chanical behaviour depends on both material and geometric properties. This study compa-
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Figure 5. The output parameters (failure load for FE and EA and EI for CTRA) were used to rank the femurs 
from weak to strong. These rankings were subsequently compared by calculating the Kendall rank correlation 
coefficient (τ). This figure shows Kendall rank correlation coefficients between failure load predicted by the 
FE models and axial (left panel) and bending (right panel) rigidities calculated by CTRA, both for intact (τi , 
triangles) and metastatic femurs (τd , circles).
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red the prediction accuracy of CTRA to the prediction accuracy of FEA, determined on the 
basis of actual mechanical experiments using paired femurs with and without simulated lytic 
lesions. We were able to demonstrate that structural rigidity retrieved from CTRA, as well 
as failure loads predicted by FE correlated well with the actual failure loads obtained from 
mechanical testing. There were no significant differences in prediction accuracy between the 
two modelling techniques.
As reported previously (Derikx et al., 2012a), the correlation coefficients between the FE pre-
dicted and the actual measured failure forces (R2 = 0.89) were similar to those obtained in 
other FE studies (Bessho et al., 2004; Keyak et al., 2005; Tanck et al., 2009; Dragomir-Daescu 
et al., 2011). Similarly, relatively high correlation coefficients between CTRA and mechanical 
testing data were evidenced (R2 = 0.82 and 0.86, EA and EI respectively). These results are 
comparable to those obtained by Hong et al. (2004), who showed high coefficients of deter-
mination when comparing reductions in failure loads versus reductions in axial, bending 
and torsional rigidity (R2 = 0.84, 0.80 and 0.71, respectively) in samples from whale trabe-
cular bone. Similarly, Whealan et al. (2000) demonstrated the effectiveness of QCT derived 
measurements of rigidity for the prospective prediction of yield loads of vertebrae with simu-
lated lytic lesions (rc = 0.74). Finally, by assessing fracture prediction through benign skeletal 
lesions in children and young adults, Snyder et al. (2006) indicated that bending and torsional 
rigidities were each highly significant predictors of fracture occurrence and combined, these 
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Figure 6. Fracture location as demonstrated by mechanical testing (A), FE (B) and CTRA analysis (C and D) 
on a representative specimen. The grey band highlights the failed area as outlined from mechanical testing 
(panel A). The FE results indicate the elements that underwent plastic deformation in this region (red to yellow 
sections in panel B), and the bending and axial rigidities (panel C and D) show the lowest EI and EA values 
for the CT slices residing in the grey fracture zone. The horizontal bar at the top provides the EA and EI axes, 
and the vertical axis (not shown in axis, which is collinear with the long axis of the bone) is the slice number 
of the CT data stack. 
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measures could predict femoral fractures with 97% accuracy. 
Studying the intact and defect specimens separately allowed for further evaluating potential 
differences in prediction accuracy between the two methods. Especially in the specimens 
with an artificial defect, contrasting results were seen. CTRA seemed to have a higher accu-
racy (as the bias was lowest), whereas FE showed a higher precision (due to smaller limits of 
agreement). This could indicate that FE calculations need a correction for the systemic bias 
but could more closely approach the failure load in defect femurs on a subject-specific level. 
In contrast, CTRA will provide more accurate estimates of axial rigidity (as a surrogate for 
failure load) on the group level. However, further studies using larger numbers of specimens 
should confirm our findings.
Unlike previously proposed radiographic guidelines, both methods are able to deliver ob-
jective predictions while considering important biomechanical aspects of the bone, being a 
three-dimensional structure governed by its material and geometric properties; even if these 
are affected by the presence of a lytic lesion. Both techniques are based on QCT imaging, 
but computational times differ considerably between the two methods. Generating and run-
ning the FE simulations in this study takes about 8 hours per sample, and the sophisticated 

Table 3. Fracture locations for all specimens as predicted by FEA and CTRA methods

Lesion Characteristics CTRA
Specimen Size (mm) Location Mech. Testing FEA EA EI

1 - - Neck Neck Neck Neck
1 40 Med, prox Intertroch. Intertroch. Intertroch. Intertroch.
2 - - Neck Neck Neck Neck
2 40 Med, shaft Midshaft Midshaft Midshaft Midshaft
3 - - Intertroch. Neck Intertroch. Intertroch.
3 22 Med, prox Intertroch. Intertroch. Intertroch. Intertroch.
4 - - Neck Neck Neck Neck
4 40 Post, prox Intertroch. Neck/Intertroch. Intertroch. Intertroch.
5 - - Neck Neck Neck Neck
5 45 Med, prox Subtroch. Subtroch. Subtroch. Subtroch.
6 - - Neck Neck Neck Neck
6 40 Lat, prox Subtroch. Neck Subtroch. Subtroch.
7 - - Neck Neck Neck Neck
7 2x22 Med, prox&shaft Neck Neck Neck Neck/Intertroch
8 - - Neck Neck Neck Neck
8 40 Ant, prox Intertroch. Neck/Intertroch. Intertroch. Intertroch.
9 - - Neck Neck Neck Neck
9 22 Ant, prox Neck Neck Neck Neck
10 - - Neck Neck Neck Neck
10 2x30 Ant, prox&shaft Proximal Shaft Neck Proximal Shaft Proximal Shaft
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and relatively complex FE software required asks for a certain level of expertise as well as 
background in biomechanics. CTRA takes only approximately 30 minutes, as this software 
is intentionally designed to be simple and be readily usable on a regular computer with an 
operator without expertise in structural mechanics. For those reasons, one would choose 
CTRA analysis. In contrast, FE simulations would be more suitable for the implementation 
of complex loading conditions. It is likely that the decrease in bone strength resulting from 
metastatic lesions is very focal and can differ a lot between patients. As a result, small muscle 
forces that insert on the femur close to the lesion site can be more dangerous than larger forces 
such as for example the hip contact force. The comprehension of such potentially important 
anatomical characteristics might be more straightforward using FEA.
Furthermore, prospective patient studies should resolve whether the two modelling techni-
ques have equal prediction accuracy in clinical practice. That is, clinical experts have difficul-
ties relating predicted biomechanical parameters, such as global strength or rigidity, to the 
clinical fracture risk for a certain patient. 
Limitations of our study are shared with many previous works done in the field using ex vivo 
models for the assessment of failure load prediction using non-invasive imaging methods. On 
a group level, both methods accurately predict the femoral load capacity, but on the individual 
level there can be rather large over- and under-estimations of the femoral strength. These sub-
ject-specific over- and under-estimations should be improved before either of the methods 
can be implemented in clinical practice. 
Moreover, isotropic material behaviour was implemented in the FE models. We found that 
fracture locations in intact femora were often predicted in the subcapital region, whereas the 
experimental fractures were located more in between the greater and lesser trochanter. The 
implementation of isotropic material behaviour rather than anisotropic behaviour is a plau-
sible cause for this. However, it is not yet possible to practically implement realistic anisot-
ropic material behaviour in FE models based on clinical CT images. Trabecular architecture 
is only visible on the micro-level, and as such anisotropic measures can only be determined 
from micro-CT scans or high-resolution CT-scans. In contrast, CTRA is an axial analysis by 
default, where it uses compressive and tensile constitutive properties in their axial direction 
to convert pixel density to modulus of elasticity. Therefore, it does not take into consideration 
mechanical properties of the bone in the transverse direction.
Furthermore, it is a universal rule that ex vivo experimental results introduce a certain amount 
of limitation when extrapolating to in vivo conditions. Evident differences exist between the 
metastatic lytic lesions that were artificially simulated in this study and those seen in patients 
in the clinical practice. In our case, regularly shaped defects were limited to cortical lesions, 
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while metastatic bone lesions generally show an irregular pattern and additionally involve tra-
becular tissue. However, QCT would be readily able to detect these irregularities and incorpo-
rate them into both algorithmic analytical processes, although accurately modelling the ma-
terial properties of blastic metastatic tissue might be challenging. Moreover, we are currently 
working on the evaluation of the FE simulations for the prediction of femoral failure load 
using in vivo patient data, and the preliminary results are promising (Derikx et al., 2012b). 
In summary, the results of our study showed that non-invasive subject-specific fracture risk 
assessment techniques correlate evenly well with actual failure loads measured in mechanical 
experiments. This suggests that both methods could be further developed into a tool that can 
be used in clinical practice. When analyzing the defect femurs only, the results suggested that 
predictions by FEA are slightly more accurate on a subject-specific level, yet CTRA analysis 
can be conducted expediently by non-expert operators. However, validation in prospective 
patient studies should confirm these preliminary findings. Such future clinical studies should 
additionally resolve how these methods can be implemented in clinical settings in order to 
improve the prediction of the fracture risk in metastatic bone disease.
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Introduction
Specific cancer types, e.g. breast, prostate, lung, kidney and thyroid cancer, have a preference 
to metastasise to bone (Coleman, 1997; Johnson et al., 2008; Gralow et al., 2009). This may 
cause the patient pain and, when left untreated, these metastases carry a risk of developing 
serious complications such as hypercalcaemia, pathological fractures or, in case of vertebral 
metastases, spinal cord compression (Coleman, 1997; Coleman, 2006; Gralow et al., 2009). 
Pathological fractures in extremities have a negative influence on the quality of life. Especially 
when these fractures occur in weight bearing long bones, such as the femur, they instantly 
hamper the patient’s mobility and self-care. 
Femoral metastases with a low risk of fracture are conservatively treated for pain, e.g. with lo-
cal radiotherapy. Metastases with a high risk of fracture require prophylactic surgery to retain 
mechanical strength and stability of the bone (van der Linden et al., 2004). This is an invasive 
procedure requiring anaesthesia, which is generally complex in cancer patients with limited 
life expectancy and a deteriorating condition. Thus, the decision for either a non-invasive 
treatment with e.g. radiotherapy or a prophylactic surgical treatment should be carefully 
made. 
However, current clinical practice lacks an accurate tool to guide clinicians to the correct 
treatment decision. Numerous studies have evaluated lesion or patient factors, however, none 
has shown sufficient predictive power (van der Linden et al., 2004). A potential tool to impro-
ve clinical fracture risk assessments is finite element (FE) modelling, which predicts human 
femoral bone strength fairly accurately (Keyak et al., 2005b; Bessho et al., 2007; Lenaerts et al., 
2009; Schileo et al., 2014). Our group showed, for example, that the FE model accurately cal-
culates failure load and fairly predicts fracture locations in cadaver femurs with and without 
artificial lesions compared to mechanical experiments (Tanck et al., 2009; Derikx et al., 2011; 
Derikx et al., 2012). Moreover, we demonstrated that the ranking on FE failure load better 
resembled the experimentally measured failure loads than rankings by experienced clinicians 
(Derikx et al., 2012).
In this prospective cohort study, we investigated whether patient-specific FE models are able 
to identify patients at risk of pathological femoral fracturing resulting from metastatic bone 
disease. For this purpose, we included patients referred for radiotherapy to treat painful fe-
moral metastases. Against expectations, some of these patients sustained pathological frac-
tures in the femur during follow-up. We calculated the femoral failure loads and compared 
those between patients who did or did not sustain a fracture. In addition, we compared the 
FE predictions to assessments by experienced clinicians. We hypothesised that the FE models 
more accurately identify patients with a high fracture risk than experienced clinicians. 
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Methods and Materials
Study design
Between August 2006 and September 2009, all patients referred for palliative radiotherapy of 
the femur to three participating radiotherapy institutes in the Netherlands (Radiotherapeutic 
Institution Friesland, Leiden University Medical Center and Radboud university medical cen-
ter) were asked to participate in this prospective cohort study (ethical approval was obtain-
ed from all participating centres). These patients received palliative radiotherapy following 
Dutch clinical guidelines: lesions with an axial cortical involvement < 30 mm have an expec-
ted low risk of fracture (< 5%) and were treated with a single dose of 8 Gy (van der Linden et 
al., 2003). If the axial cortical involvement was >30 mm the risk of fracture was substantial 
(23%) (van der Linden et al., 2004). In such case, patients with an acceptable condition were 
referred for prophylactic stabilizing surgery and excluded from this study (van der Linden et 
al., 2003). If the patient’s condition was hampered and surgery undesirable or impossible, the 
patient was referred for multiple fraction radiotherapy (e.g. 6 x 4 Gy) to induce reminerali-
sation of the bone (Koswig et al., 1999). These patients were included in this study. Further 
inclusion criteria are depicted in Table 1. Power analysis revealed that 52 patients are needed 
to detect improvement of the specificity from 58% (van der Linden et al., 2004) to 79% with 
90% power; the total number of patients was increased to 60 patients because of the limited 
life expectancy of these patients. During the study period, 66 patients gave their informed 
consent and were included in the study.
The time schedule of this study is depicted in Table 2. Baseline characteristics of the patients 
were recorded prior to and 28 and 70 days after radiotherapy. Furthermore, quantitative 
computed tomography (QCT) scans of the femoral region were retrieved. Patients filled out 
questionnaires on pain (BPI (Fairbank et al., 1980)), the level of activity and quality of life 
(i.e. parts of LAPAQ (Stel et al., 2004), SF-36 (Ware et al., 1992) and WOMAC (Bellamy et

Table 1. Inclusion criteria for this study

Inclusion criteria
•  Proven malignancy
•  Karnofsky score ≥ 60
•  No clinical or radiological evidence of pathological fracturing of the femur
•  No prior palliative surgery for the current treatment site of the femur
•  No planned surgical intervention of the femoral bone
•  No systemic radiotherapy 30 days prior to entry into the study
•  No previous radiotherapy to the current treatment site of the femur
•  Patient is able and willing to fill out baseline and follow-up forms on pain and quality of life
•  Patient is willing to undergo additional CT scans for the femoral region
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al., 1988)), but these were not included in the current study. Patients referred for multiple 
fraction radiotherapy underwent an additional QCT scan on the final day of their radiation 
schedule, to capture a potential short term effect of multiple fraction radiotherapy. Through 
their hospital records, the patients were followed for six months after inclusion or until a frac-
ture occurred, or until death, as competing risk, whichever occurred first. Based on having 
sustained a fracture yes or no, the patients were divided into either the fracture group (F) or 
the non-fracture group (NF).

Table 2. Follow-up protocol for the two treatment schedules. Patients with multiple fraction radiotherapy 
underwent an additional QCT scan on the final day of their radiation schedule, which aimed to capture 

any potential short term effect of multiple fraction radiotherapy.

Baseline (t=0) Day 8 (t=1) Day 28 (t=2) Day 70 (t=3)
Single Fraction QCT-1 - QCT-3 QCT-4
Multiple Fraction QCT-1 QCT-2 QCT-3 QCT-4

Subselection of patients for current study
Recent work by Carpenter et al. (2014), has shown that the use of different CT scanners can 
have a significant effect on bone mineral density measurements and subsequent failure loads, 
and is difficult to correct for. In the current study, two different scanners from one manufac-
turer were used in the three institutes. Although QCT scan settings were protocoled as far 
as possible, such inter-scanner effect may have been present in the input to our FE models, 
which could potentially lead to incorrect or at least incomparable FE failure loads. Therefore, 
in this study, we only analysed the data of 23 patients who were accrued at the Radboud uni-
versity medical center. It should be noted that our previous in vitro validation study was also 
conducted in this institute using the same scanning equipment. 

FE modelling
Patient-specific femoral FE models were generated, for the greater part using the workflow 
reported previously (Derikx et al., 2012). Summarizing, QCT images were generated using 
a standard protocol (as far as allowed by clinical practice), with the following settings: 120 
kVp, 220 mA, slice thickness 3 mm, pitch 1.5, spiral and standard reconstruction, in-plane 
resolution 0.9375 mm. The patient-specific femoral geometry was segmented from the most 
recent CT images available and converted to a 3D surface mesh (Mimics 11.0 and 14.0, Ma-
terialise, Leuven, Belgium) and a solid mesh (Patran 2005 r2, MSC Software Corporation, 
Santa Ana, CA, USA), subsequently. A solid calibration phantom containing known calcium 
equivalent densities (Image Analysis, Columbia, KY, USA) was scanned along with the pa-
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tient at the level of the proximal femur. Using this phantom, we performed a mean diaphysial 
slice calibration to convert the grey values to calcium equivalent densities, ash densities and 
non-linear isotropic material behaviour (Keyak et al., 2005b), respectively. The FE simulations 
of the proximal femur were performed using MSC Marc (MSC.MARC2007r1, MSC Software 
Corporation, Santa Ana, CA, USA). 
The FE models were loaded in axial direction, while distally fixed by two bundles of high-
stiffness springs (Figure 1), which roughly resembles the single legged stance. The maximum 
total reaction force determined the failure load of the femur, which was normalised for body 
weight. The failure location was defined by elements that had plastically deformed at the mo-
ment of structural failure, and was compared to the post-fracture radiograph.

Clinical assessment 
To compare the FE predictions to clinical fracture risk assessments, we generated digital-
ly reconstructed radiographs (DRRs) from the CT scans in this study (Jacobs et al., 1998). 
We asked two radiation oncologists and two orthopaedic surgeons to individually assess the 
DRRs of the cases in this study, without providing any further information. First, they indica-

Load application

Fixation of the model 
by means of springs

Figure 1. Boundary conditions for the FE model. The model was distally fixed by springs with a very high stiff-
ness and the load was applied by means of a cup on the head of the femur, which incrementally displaced in 
distal direction.
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ted whether or not they thought the patient to carry a high risk of fracture requiring elective 
stabilizing surgery. Subsequently, we asked them to judge whether the cortical disruption 
caused by the metastasis was larger than 3 cm (van der Linden et al., 2003). To compare these 
clinical assessments to the predictions by the FE model, a critical FE failure load was defined, 
classifying a patient with a high or a low fracture risk. More specifically, sensitivity and speci-
ficity were calculated for different thresholds using increments of 0.5 x BW. Assuming equal 
weights for unexpected fractures and unnecessary surgeries, the threshold with the highest 
combined specificity and sensitivity was chosen as a threshold for comparison with clinical 
assessments. 

Table 3. Characteristics of the three patients who sustained fractures during follow-up.

Patient 1 Patient 2 Patient 3
Gender M F M

Age at inclusion 70 53 64

Right femur 
(F1)

Left femur 
(F2)

Right femur 
(F3)

Left femur 
(F4)

Left femur 
(F5)

Treatment
  (dose/no of fractions)

24 Gy/6 24 Gy/6 8 Gy/1 - 24 Gy/6

Time to fracture 
  (days)

123 123 92 92 7

Type of fracture Collum 
fracture

Collum 
fracture

Pertrochante-
ric fracture

Collum 
fracture

Subtrochanteric 
fracture

Activity while fracture occurred Walking Walking Spontaneously Spontaneously Spontaneously

Statistical Analyses
We compared the failure load corrected for body weight (BW) between the fractured and the 
non-fractured femurs using Mann-Whitney U tests. Baseline data were compared between 
groups on the femur level using Chi-square (primary tumour), Fisher’s Exact tests (gender, 
radiation schedule) or Mann-Whitney U tests (age, bodyweight, KPS). Interobserver agree-
ment among clinicians was calculated using the Gwet’s AC1. Like Cohen’s kappa, this coeffi-
cient calculates the chance-corrected agreement between different observers but has shown 
to be less sensitive to the prevalence of observations (Wongpakaran et al., 2013). For all tests, 
the level of significance was defined at p < 0.05.

Results
Patients
Twenty-three patients with painful bone metastases were included in this study. Three pa-
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tients sustained five fractures (F group) during follow-up (average time to fracture 87.4 days, 
range 7 - 123 days). One of these fractures occurred in a contralateral femur that was not 
irradiated (Table 3, Figure 4). Fractures F1 and F2 occurred during walking, the other three 
femurs (F3 - F5) fractured spontaneously. Two other patients sustained a fracture well after 
follow-up, i.e. 441 and 500 days after inclusion, and were therefore included as patients with 
non-fractured femurs. One patient without a fracture was excluded from the study, as a hip 
prosthesis in the contralateral femur severely distorted the CT images. Thus, in the NF group

Table 4. Baseline characteristics on the group level. 

Fracture group (F)
5 femurs a 

Non-fracture group (NF)
24 femurs a

p-value

Gender
  Male 3 (60%) 13 (54%) 1.00
  Female 2 (40%) 11 (46%)
Age in years
  Median (IQR) 64.0 (17.0) 62.0 (19.8) 1.00
Body weight in kg
  Median (IQR) 73.0 (8.5) 65.5 (25.3) 0.08

Radiation schedule b

  SF 1 (25%) 14 (58%) 0.31
  MF 3 (75%) 10 (42%)
KPS
  Median (IQR) 80.0 (10.0) 70.0 (10) 0.72
Time since primary tumour in years
  Median (IQR) 3.6 (1.7) 4.3 (5.2) 0.45
Time since first metastasis in years
  Median (IQR) 3.2 (1.6) 2.5 (2.8) 0.32

Primary cancer site

  Breast 2 (40%) 7 (29%) 0.41 e

  Prostate 1 (20%) 8 (33%)
  Kidney 0 (0%) 3 (13%)
  Rectum 0 (0%) 2 (8%)
  M. Kahler 2 (40%) 1 (4%)
  Urethra 0 (0%) 1 (4%)
  Cervix 0 (0%) 1 (4%)

  aCUP c 0 (0%) 1 (4%)
Time to death since inclusion in months

  Median (IQR) 11.0 (9) 8.0 (17) d 0.91
Time to most recent CT in days 
  Median (IQR) 28.0 (15) 31.5 (71.8) 0.30

IQR: interquartile range. a Fracture group: 5 femurs in 3 patients. Non-fracture group: 24 femurs in 19 patients. b One femur in the fracture 
group was not treated with radiotherapy. c Cancer of Unknown Primary origin. d Date of death missing for one non-fracture patient. e P-value 
for Pearson Chi-Square; since Fisher’s Exact tests can only be performed in 2x2 contingency tables.
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19 patients with 24 treated non-fractured femurs were included. Baseline characteristics are 
shown in Table 4; there were no significant differences between groups.

FE models
Figure 2A shows the BW-corrected failure loads for all femurs in this study. It should be men-
tioned that the body weight of three patients (four femurs) in the non-fracture group was not 
filed in their medical record. Hence, those femurs had to be excluded from the FE analyses. 
The median failure load of fractured femurs was 4.89 x BW (IQR = 2.13) and 10.02 x BW 
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Figure 2. Femoral failure load for patients who did (F) or did not (NF) sustain a femoral fracture during 
follow-up, corrected for bodyweight for all femurs (A) and after exclusion of blastic lesions (B). Femurs with 
blastic lesions are indicated in grey, femurs with lytic or mixed type lesions are indicated with open circles. The 
threshold at 6.5 x BW is used to compare the predictive power of the FE model vs. experienced clinicians. 
Symbols indicate paired femurs. 
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(IQR = 4.43) for the non-fractured femurs. A Mann-Whitney U test showed that this 
difference was significant (p < 0.001). Some of the non-fractured femurs’ failure loads were 
extremely high. Clinical re-assessment of the CT images by a radiation oncologist (blinded to 
the failure loads) revealed that these patients suffered from blastic lesions, which, as generally 
thought, decrease the structural strength of the bone despite their high degree of mineralisa-
tion. 
We excluded these femurs and re-ran the statistical analysis (Figure 2B). The difference 
between groups remained significant after exclusion of femurs with pure blastic lesions (4.89 
x BW (IQR = 2.13) vs. 9.46 x BW (IQR = 2.97); p = 0.002). Furthermore, four out of five FE 
fracture locations well resembled the actual fractures as gleaned from postfracture radio-
graphs (Figure 3). In the remaining case, the FE model predicted a femoral neck fracture 
whereas this patient clinically presented with a peritrochanteric fracture.

Clinical assessment
A critical failure load of 6.5 x BW was used for comparing the predictions of the FE models 

+F1 +F2 #F3 #F4 F5

Figure 3. Schematic overview of clinical fracture locations (upper panel), indicated by an experienced clinician 
who was blinded to the predicted fracture locations, and the fracture locations at failure (mid-coronal plane) 
predicted by the FE models (lower panel). Femurs indicated with + and # are paired femurs. 



Towards introducing computational modelling into daily clinical practice

95

5

to clinical assessments. More patients were correctly identified with a high fracture risk by 
the FE model than by clinicians who relied on their clinical experience (Figure 4). For the 
non-fractured femurs, the performance of the model and the experienced clinicians was com-
parable, particularly when omitting femurs for which the body weight was not reported. Both 
the clinicians and the FE model more often correctly identified non-fracture patients than 
fracture patients, as the specificity (SP) was higher than the sensitivity (SE) (Table 5). The FE 
model identified 20 femurs with a low fracture risk. However, one femur did fracture during 
follow-up, and as such was wrongly assessed (negative predictive value (NPV) = 0.95). NPV 
values for clinicians ranged between 0.81 and 0.90. 

Table 5. Summary statistics for the prediction accuracy of the FE model and the experienced clinicians 
when relying on their experience. 95% Confidence intervals are given between brackets. 

F NF SE SP PPV NPV

FE a F predicted 4 1 0.80 (0.29-0.97) 0.95 (0.75-0.99) 0.80 (0.29-0.97) 0.95 (0.75-0.99)
NF predicted 1 19

RO1 F predicted 1 7 0.20 (0.03-0.71) 0.71 (0.49-0.87) 0.13 (0.02-0.53) 0.81 (0.58-0.94)
NF predicted 4 17

RO2 F predicted 1 7 0.20 (0.03-0.71) 0.71 (0.49-0.87) 0.13 (0.02-0.53) 0.81 (0.58-0.94)
NF predicted 4 17

OS1 F predicted 3 5 0.60 (0.15-0.94) 0.79 (0.58-0.93) 0.38 (0.09-0.75) 0.90 (0.70-0.99)
NF predicted 2 19

OS2 F predicted 3 5 0.60 (0.15-0.94) 0.79 (0.58-0.93) 0.38 (0.09-0.75) 0.90 (0.70-0.99)
NF predicted 2 19

a The bodyweight of three patients (four femurs) in the non-fracture group were not available, and could therefore not be included in the 
scoring by the FE model and in the subsequent calculation of these statistics. SE: Sensititivity, SP: specificity, PPV: positive predictive value, NPV: 
negative predictive value.

Furthermore, the FE model identified five femurs with a high fracture risk, four of which 
actually fractured during follow-up (positive predictive value (PPV) = 0.80). The PPV va-
lues for clinicians were lower and ranged between 0.13 and 0.38, however, 95% confidence 
intervals overlapped. The highest interobserver agreement was found between the two or-
thopaedic surgeons and between one of the radiation oncologists and one of the orthopaedic 
surgeons, while agreement between radiation oncologists was lower (Table 6). However, 95% 
confidence intervals were again large and overlapping (Table 6). When the experienced cli-
nicians were asked to base their decision on a 30 mm cortical disruption (Figure 5), mainly 
the radiation oncologists identified fewer non-fractured femurs with a high fracture risk, at 
the cost of a slight increase in the number of fractured femurs that were incorrectly identified 
with a low fracture risk. 
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Discussion
Previously, we showed that FE-models calculated femoral failure loads that were comparable 
to those measured in mechanical experiments (Derikx et al., 2012). In the current study, we 
applied these FE-models in vivo by comparing the model predictions with clinical follow-up 
data. We verified whether the model could have predicted the pathological fractures that pa-
tients with painful bone metastases sustained during follow-up in a prospective study. 
We showed a difference in median failure load between patients who sustained a pathological 
fracture and those who did not. This shows that finite element models are able to comprehend 
many factors that contribute to the in vivo load capacity of metastatic femurs, such as the

Table 6. Interobserver agreement between experienced radiation oncologists (RO1, RO2) and orthopaedic 
surgeons (OS1, OS2), expressed in Gwet’s AC1 Coefficient. 95% Confidence intervals are given between 

brackets.

RO1 RO2 OS1
RO2 0.66 (0.37 – 0.94) - -
OS1 0.54 (0.21 – 0.87) 0.43 (0.06 – 0.79) -
OS2 0.77 (0.53 – 1.00) 0.54 (0.21 – 0.87) 0.77 (0.53 – 1.00)

Figure 4. Correct and incorrect fracture predictions by the FE model and the experienced clinicians (RO1, RO2, 
OS1, OS2). Clinicians judged the reconstructed radiographs of the patients based on their experience, without 
any further guidelines prescribed. For the FE predictions a threshold of 6.5 x BW was used to indicate fracture 
or non-fracture. Results are shown per group (F and NF). The body weight of three patients (four femurs) were 
not available, and could therefore not be included in the scoring by the FE model (‘not scored’).
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bone quality and the bone geometry, or compromise it, such as the location and the size of the 
lesion. Such findings have been shown in other in vivo studies as well, for example in the field 
of osteoporosis (e.g. (Keyak et al., 2013; Kopperdahl et al., 2014)). These studies showed that 
FE strength was highly correlated with fracture (Keyak et al., 2013) and that FE bone strength 
remained predictive for fracture after correction for total hip areal bone mineral density in 
men and women (Kopperdahl et al., 2014). 
Furthermore, although confidence intervals were large, the FE predictions in the present stu-
dy demonstrated higher sensitivity and PPV values compared to clinical assessments, sugge-
sting a better identification of patients who will sustain a fracture by the FE model. The spe-
cificity and NPVs were comparable, which indicates that both the model and the experienced 
clinicians were equally able to identify patients who are not at risk of fracture. These results 
support the hypothesis that FE models can serve as a useful clinical tool, since current clinical 
guidelines have shown high negative predictive power but low positive predictive power (van 
der Linden et al., 2004). 
In four out of five cases, the predicted fracture locations resembled the actual clinical fracture 

Figure 5. Correct and incorrect fracture predictions by the FE model and the experienced clinicians (RO1, 
RO2, OS1, OS2). Based on reconstructed radiographs of the patients, clinicians indicated whether the cortical 
disruption in the lesion was larger than 3 cm. If so, a fracture was predicted. For the FE predictions a threshold 
of 6.5 x BW was used to indicate fracture or non-fracture. Results are shown per group (F and NF). The body 
weight of three patients (four femurs) were not available, and could therefore not be included in the scoring by 
the FE model (‘not scored’). 
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locations. However, it should be noted that compressive fractures were predicted, whereas 
tensile fractures would be expected under axial loading conditions. The implementation of 
more realistic material behaviour can improve the prediction of the fracture location (Derikx 
et al., 2011), but an extensive sensitivity analysis should first reveal the appropriate parameters 
to do so. In case F3, the FE fracture location did not resemble the clinical fracture line. Since 
the patient did not notice during which activity the bilateral fractures occurred, the axial 
load applied in this study might be inappropriate to simulate the correct fracture line. Hence, 
modelling more and realistic loading conditions may therefore further improve the predicted 
fracture location and could additionally help the attending physician to instruct the patient 
which activities could be performed safely in daily life.
Although the results in this study are promising, some limitations should be mentioned here. 
First of all, we realise that the sample size in this study is limited, and the statistics, especially 
in the fracture group, should therefore be replicated in the full dataset including patients from 
all three participating radiotherapy institutions (n = 66) after we have quantified and correc-
ted for the inter-scanner effects. 
A second limitation in this study relates to the modelling of metastatic tissue. The FE model 
predicted very high failure loads in the femurs of one patient in the non-fracture group. In 
this patient blastic femoral lesions were confirmed, which generally show very high CT in-
tensities. In the current FE model, these CT intensities were converted to material behaviour 
using relationships that are defined based on experiments with human tissue affected by me-
tastases as well as healthy bone (Keyak et al., 2005b). Although not all femurs with extensive 
blastic lesions showed such aberrant failure loads (Figure 2), these empirical relationships 
may need to be adapted for blastic metastatic tissue. So far, differences in microarchitectu-
re have been described for metastases (e.g. (Sone et al., 2004)), but the mechanical beha-
viour has yet not been established unequivocally (Kaneko et al., 2003; Kaneko et al., 2004). 
Moreover, adapted material models did not yet improve the predictive power of FE models 
with metastatic lesions (Keyak et al., 2005a). Hence, further research is required to determine 
the mechanical behaviour of different types of metastatic tissue.
Thirdly, we used the most recent CT scan available to capture the mechanical status of the 
femur closest to the moment of fracture. However, it has been demonstrated that the bone 
mineral content may decrease after radiotherapy and can be (over-)compensated in a sub-
sequent recalcification process (Koswig et al., 1999). Thus, the mechanical status of the fe-
mur over time may be confounded by the effect of radiotherapy treatment, as well as by 
progression of the metastatic disease. Future work is to quantify this effect using the temporal 
CT data in this study. Nevertheless, the assessments by the experienced clinicians were based 
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on DRRs generated from the same QCT scans, so the better performance of the FE model 
over the experienced clinicians remains. Additionally, it should be mentioned that the cli-
nicians pointed out that the quality of the DRRs was suboptimal compared to conventional 
radiographs they normally use, which obviously may have affected their assessments. 
Finally, it should be noted that the failure loads of four femurs from three patients in the 
non-fracture group could not be normalised as their body weight and length were not filed. 
Since the failure loads of two of these femurs (NF1 and NF2) were rather low, and estimated 
body masses were relatively high, we should note that the FE model would probably have 
incorrectly predicted a high fracture risk for these non-fractured femurs, similar to the clini-
cians. 
In conclusion, we showed that FE models are potential tools to improve clinical fracture risk 
predictions in metastatic bone disease in patients with disseminated cancer. The FE models 
provided an accurate identification of patients with high fracture risk. Future work in a larger 
patient population should confirm the higher predictive power of the FE models over current 
clinical guidelines. 
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Introduction
The hip contact force (HCF) is a relevant measure of joint loading. Changes in HCF have 
been related to osteoarthritis (OA) of the hip and knee (Felson, 2004; Lenaerts et al., 2009). 
However, experimental measurement of HCFs is not trivial and relies on the use of instru-
mented prostheses in hip arthroplasty patients (Bergmann et al., 1993; Bergmann et al., 2001). 
Therefore, data collection is limited to a selected group of patients who underwent total hip 
surgery, resulting in a relatively small and specific dataset. Alternatively, musculoskeletal mo-
dels in combination with dynamic simulations of motion have been used to calculate muscle 
forces and joint contact forces, so that larger populations comprising both healthy and di-
seased subjects can be studied. 
The calculation of joint contact forces relies on the use of musculoskeletal models in combi-
nation with an optimisation procedure to determine the muscle force distribution (Heller et 
al., 2001; Stansfield et al., 2003; Lenaerts et al., 2008; Modenese et al., 2012). The resulting cal-
culated joint forces have previously been validated using instrumented prostheses (Bergmann 
et al., 2001; Heller et al., 2001; Stansfield et al., 2003; Modenese et al., 2012). Most analyses 
use a static optimisation (SO) technique to calculate muscle forces. SO uses an inverse dyna-
mics approach: joint moments are used as a constraint to calculate individual muscle forces 
that satisfy the moment equilibrium at each time frame by minimising muscle activation or 
muscle stress. As such, this method is a simplification of muscle physiology and does not 
account for muscle dynamics. Therefore, alternative methods were developed. Computed 
muscle control (CMC) (Thelen et al., 2003) combines a forward integration of the dynamic 
equations with a static optimisation to compute muscle excitations and muscle forces respec-
tively, and therefore complies with time dependency of force production. Alternatively, the 
physiological inverse approach (PIA) includes muscle activation and contraction dynamics to 
calculate muscle forces and optimises performance globally over time (De Groote et al., 2009). 
Several authors have compared the effect of different optimisation techniques on calculated 
muscle activations (Anderson et al., 2001; De Groote et al., 2009; De Groote et al., 2012) and 
compared them to experimentally measured electromyography (EMG) signals. Some have 
shown there is not much difference between static and dynamic simulations (Anderson et al., 
2001). Others show that PIA produces excitations and activations in closer agreement with 
the EMG signals (De Groote et al., 2009; De Groote et al., 2012). 
However, the effect of specific muscle optimisation techniques on calculated HCFs is not do-
cumented, while the optimisation method and related boundary conditions used to calculate 
muscle forces can be assumed to strongly influence the calculated joint contact forces (Correa 
et al., 2010). This effect of specific muscle optimisation techniques on calculated HCFs is 
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important to acknowledge when utilizing these forces as loading conditions in orthopaedic 
research applications, to study for example implant loading and bone adaptation (Speirs et 
al., 2007; van der Ploeg et al., 2012; Pankaj, 2013). Hence, the effect of the optimisation tech-
nique on the output parameters is analysed, as this may influence such research applications. 
Therefore, the goal of this study was to quantify differences in 1) muscle forces and 2) the 
magnitude and orientation of the resultant HCFs when using four optimisation techniques. 
Calculated HCFs were additionally compared against contact forces measured using instru-
mented prostheses (the HIP98 dataset (Bergmann et al., 2001)). 

Methods
Movement analysis
Five healthy subjects (age 56 ± 3 yrs., range 52-61 yrs.; BMI 22.3 ± 1.59, range 20.6-24.0), 
2 male and 3 female, were included in the study and signed informed consent. All subjects 
performed gait at self-selected speed (walking speed 1.28 ± 0.13 m/s, range 1.1 - 1.4 m/s) as 
well as a sit to stand movement (sit to stand time 0.60 ± 0.09 s, range 0.51 - 0.69 s) from an 
adjusted stool position imposing a 90° knee flexion angle. The sit to stand movement was de-
fined from the moment of lift-off from the stool until the moment of minimal vertical ground 
reaction force after lift-off, i.e. just before standing upright (McGibbon et al., 2004). A Plug-
in-Gait marker set containing lower limb and trunk was used (Davis et al., 1991) including a 
three-marker cluster on both upper and lower legs and one additional marker on both medial 
knees and ankles during the static trials. Thus, a total of 40 markers were included. 3D marker 
trajectories were captured using Vicon (100 Hz, VICON, Oxford Metrics, Oxford, UK) and 
force data was measured using two AMTI force platforms (1500 Hz, Advanced Mechanical 
Technology Inc., Watertown, MA). 

Musculoskeletal Modelling
The Gait2392 musculoskeletal model installed with OpenSim (Delp et al., 2007) was used, 
which consists of 12 segments, 19 degrees of freedom and 92 musculotendon actuators. Simu-
lations and analyses were performed in OpenSim 2.4.0 (Delp et al., 2007). To calculate HCFs, 
the model was first scaled based on the marker locations in a static pose. The scaled model 
was then used for an inverse kinematics procedure based on measured 3D marker trajecto-
ries to determine the kinematics of the movement. Subsequently, a residual reduction algo-
rithm (RRA) (Thelen et al., 2006) was applied, which minimises the dynamic inconsistency 
between ground reaction forces and whole body kinematics introduced by errors in model-
ling and marker kinematics. This inconsistency is compensated by changing the kinematics 
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and by adjusting the mass of the segments and the centre of mass of the torso. Since RRA is 
only applicable if ground reaction forces, exerted on both feet, are available, the gait cycle was 
restricted from toe off of the left leg until heel strike of the right leg.
To calculate muscle forces, four different methods were used. First, we used the static opti-
misation procedure as provided in OpenSim (SO1) (Anderson et al., 2001). Muscle forces at 
each time instance of the movement are calculated while minimising the instantaneous total 
squared muscle activation. A quadratic optimisation criterion was adopted, since this has 
shown to produce the best agreement between EMG and muscle forces and reliably predict 
measured hip contact forces (Modenese et al., 2011). This method further includes muscle 
force-length-velocity relationships and reserve actuators that are activated whenever the total 
muscle moment is insufficient to balance the net joint moment. A second static optimisation 
procedure (SO2) was developed in-house, based on Lenaerts et al. (2008). This optimisation 
uses a cost function similar to SO1, but adds constraints to the cost function to impose a 
physiological increase and decrease of muscle activation in time. In addition to the work of 
Lenaerts et al. (2008), passive muscle forces were accounted for following the work of Rodrigo 
et al. (2008). Thirdly, we used CMC (Thelen et al., 2003) which combines a static optimisation 
with feedforward and feedback controls to calculate muscle excitations, and subsequent mus-
cle forces. As this method is based on a forward simulation, the time dependency of the acti-
vation and contraction dynamics is explicitly accounted for. Fourthly, we applied the PIA (De 
Groote et al., 2009), which globally optimises squared muscle activations over the complete 
movement cycle while imposing muscle activation and contraction dynamics. The objective 
functions for all methods are provided in appendix A. The muscle forces were normalised 
to body weight and compared between the four methods. At the first and second peak, the 
magnitudes of the muscle forces were summed to indicate the total muscle load calculated by 
the optimisation techniques.
Finally, for the four methods, HCFs of the right leg were calculated using the JointReaction 
analysis in OpenSim (Steele et al., 2012). The time history of model-based HCFs as well as 
muscle activations and forces are provided in the supplementary material.

Validation of the muscle activations
During all trials, the EMG activity of the mm. tensor fasciae latae, rectus femoris, biceps 
femoris, medial hamstrings, gluteus maximus and the posterior, medial and anterior bun-
dles of the m. gluteus medius were recorded using a wireless EMG system (Zero-wire EMG, 
Aurio, Milan, Italy). After appropriate skin cleaning, disposable surface electrodes (Pre-gel-
led Nutrode mini P10M0, 30 mm diameter, GE Medical Accessories Europe) were placed 
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following the SENIAM guidelines (Hermens et al., 2000) and based on manual palpation. 
EMG signals were band pass filtered (4th order, zero-lag Butterworth filter, cut-off-frequency 
between 20 and 400 Hz), rectified and then low pass filtered (4th order, zero-lag Butterworth 
filter, cut-off frequency of 10 Hz) (Steele et al., 2012). All signals were normalised to their 
maximum in the gait cycle or sit to stand movement. The muscle activations were calculated 
using the four optimisation methods and compared to the measured EMG signals. 

Validation of the hip joint contact forces
The calculated HCFs were evaluated against contact forces measured in four subjects (age 62 
± 11 yrs., range 51 - 78 yrs.; BMI 29.0 ± 2.65, range 26.2 - 32.6) with instrumented hip im-
plants (HIP98) (Bergmann et al., 2001) during walking (walking speed 1.18 ± 0.12 m/s, range 
1.08 - 1.35 m/s) and rising from a chair (sit to stand time 0.81 ± 0.03s, range 0.76 - 0.82s). 

Data Analysis
For each of the four optimisation methods the magnitude of the resultant HCFs were cal-
culated per subject, both for gait and sit to stand. HCFs were normalised to body weight 
(BW) for comparison between optimisation techniques. For comparing with HIP98, HCFs 
were normalised to the peak in ground reaction force (pGRF) (Martelli et al., 2011) to bet-
ter accommodate for differences in gait dynamics between subjects. The contact forces were 
subsequently averaged over the subjects by calculating ‘typical signals’ (Bender et al., 2012). 
This was done for the minimum, maximum, 25th and 75th percentile, median and average of 
the normalised resultant forces of the five subjects, respectively. Similarly, typical signals were 
calculated for the HCFs measured in the four HIP98 subjects.
During normal gait, the HCF measured in instrumented prostheses shows two peaks, i.e. at 
15 - 20% of gait cycle (first peak) and at 45 - 55% of gait cycle (second peak). Muscle forces 
were compared between optimisation techniques at these two peaks in gait and at the peak 
in sit to stand. Subsequently, the difference between HIP98 and the calculated HCFs at these 
peaks was determined. Furthermore, the 3D orientation of the HCF was averaged over sub-
jects and compared with the orientation of the typical signal in the HIP98 dataset. 

Results
Hip contact forces
For gait trials, the CMC contact forces were highest throughout the entire gait cycle (Figure 
1A). The other optimisation techniques resulted in rather similar HCF patterns, especially 
during stance phase. During swing phase, a more distinct difference was seen with the lowest 
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average HCF for SO1 (Figure 1A). At the first peak, the contact forces calculated using CMC 
was highest (median of 3.9 pGRF), while both static optimisations were closest to HIP98 
forces (median of 3.0 and 3.1 pGRF for SO1 and SO2, respectively; Figure 2A). The PIA calcu-
lated contact forces close to SO1 and SO2 (median of 3.2 pGRF). At the second peak (Figure 
2B), again HCFs were highest when using CMC (median of 5.6 pGRF). All optimisation tech-
niques tended to overestimate the HCF compared to the measured forces (Figure 1B, Table 1).
The 3D orientation angles of the calculated HCFs were very similar, but they differed from the 
HCF described in HIP98. At both peaks in the gait cycle, calculated HCFs generally resulted 
in a more anterior and medial loading compared to the HIP98 data (Figure 3 A and B).
For sit to stand trials, the use of CMC induced the largest HCF (Figure 4A, Table 1). When 
using both SO techniques, peak contact forces, just after lift-off, were closest to the measured 
HIP98 data (median of 4.7 and 5.3 pGRF for SO1 and SO2, respectively; Figure 5). HCFs 
resulting from PIA were only slightly lower than for CMC at the peak (median of 5.6 and 5.9

 Table 1. The range of differences between calculated HCF and HIP98 [%] among subjects at the first and 
second peak in gait and at the peak during sit to stand. HCFs were calculated using different optimisation 
techniques and normalised to the peak in ground reaction force (pGRF) to account for the differences in 

gait dynamics between subjects.

SO1 SO2 CMC PIA
Gait Difference with HIP98 at the first peak [%] 4.5-56 3.6-47 46-88 12-69

Difference with HIP98 at the second peak [%] 56-162 62-139 120-238 72-187
Sit to stand Difference with HIP98 at the peak [%] 20-67 32-76 34-127 38-118
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Figure 1. A) Average hip contact forces (normalised to body weight (BW)) over the five subjects for gait calcula-
ted using different optimisation techniques, shown from toe off of the left leg until heel strike of the right leg. Two 
peaks were defined, i.e. the first (at 15-20% of gait cycle) and second peak (at 45-55% of gait cycle). B) Cal-
culated hip contact forces compared with experimental hip contact forces from HIP98. HCFs were normalised 
to the peak in ground reaction force (pGRF) to account for the differences in gait dynamics between subjects. 
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pGRF respectively), but were closer to measured data in the second part of the movement 
(Figure 4B). The calculated orientation angles showed that HCFs presented a more anterior 
and lateral loading than in HIP98 (Figure 3C). The use of PIA resulted in an orientation angle 
that was most comparable to HIP98. 

Muscle forces
The sum of the magnitudes of the muscle forces calculated by CMC was higher than for other 
optimisation techniques at both HCF peaks during walking and at the HCF peak during sit to 
stand (Figure 6). Muscle forces calculated by PIA are slightly lower during gait and more com-
parable to SO1 and SO2 in sit to stand. At the second peak in gait the total muscle force found 
for CMC was up to 22% larger compared to SO2. Specifically, the force calculated for the 
bundles of the gluteus maximus (first peak) and medius (second peak) were higher for CMC. 
Appendix B shows the results of a qualitative comparison between the average normalised 
EMG activation patterns and the average muscle activation patterns calculated using the dif-
ferent optimisation techniques.

Discussion
This study compared muscle forces and the subsequent HCFs calculated using four different 
optimisation techniques. CMC calculated the largest sum of muscle forces for both gait and 
sit to stand while particularly SO2 calculated lower forces (Figure 6). The same trend was 
seen in the calculation of the HCFs; both static optimisation techniques showed the lowest 
HCFs. The additional constraints to include a physiological increase and decrease of muscle 
activation in time and the inclusion of passive muscle forces (SO2) did not majorly affect the 
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Figure 2. Distribution of hip contact force (normalised to the peak in ground reaction force (pGRF)) among 
subjects at the first (A) and second peak (B) during a gait cycle using different optimisation techniques. The 
minimum, 25th percentile, median, 75th percentile and maximum values are shown. 
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HCFs compared to a standard SO formulation (SO1, Figure 1A). In contrast, HCFs increased 
drastically when using CMC (Figure 1A). The agreement in HCF between SO techniques and 
PIA shows that the activation and contraction dynamics can be integrated without inducing 
an excessive overestimation of the HCFs as observed by CMC. 
There may be two causes for the increased muscle force production found for CMC 
relative to other optimisation techniques. First, the higher muscle forces may reflect co-
contraction of agonists and antagonists to satisfy the 3D joint moments around the hip, which 
may explain the increased HCFs found for this method. More specifically, a post hoc analysis 
of the muscle moments of the primary muscles acting around the hip joint confirmed these 
co-contractions, particularly at the second peak in gait (Figure 7B). At this time instant, an 
internal hip abduction and flexion moment is present. The recruitment of the bundles of the 
gluteus medius muscle induces this hip abduction moment, but also produces a hip extension 

MedialLateral

Distal

Proximal

Frontal plane

 

 

A) First Peak Gait

MedialLateral
Posterior

Anterior

Transverse plane

MedialLateral

Distal

Proximal

Frontal plane

 

 

B) Second Peak Gait

MedialLateral
Posterior

Anterior

Transverse plane

MedialLateral

Distal

Proximal

Frontal plane

 

 

C) Sit to stand peak

HIP98
SO1
SO2
CMC
PIA

MedialLateral
Posterior

Anterior

Transverse plane
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the peak HCF during sit to stand (C). The force vectors of the different optimisation techniques have a similar 
direction and are therefore difficult to distinguish.
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moment. Therefore additional contraction of the mm. iliacus and psoas is induced to deliver 
the required hip flexion moment. Although this co-contraction is seen in all optimisation 
techniques, for both peaks in gait (Figure 7A and B) and sit to stand (Figure 7C), the effect is 
largest for CMC. This may be explained by the fact that passive muscle forces and muscle dy-
namics are accounted for. More specifically, muscle forces cannot change instantaneously due 
to activation and contraction dynamics and hence force build-up in the agonists will coincide 
with force build-off in the antagonists. 
The second possible cause for the increased muscle and contact force found by CMC could 
be the fact that this implementation allows for calculating a muscle generated moment that 
deviates slightly more from the moment necessary to counteract the net joint moments. This 
results in a larger difference between the muscle generated moments and net joint moments, 
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mainly in the frontal and sagittal planes (Figure 8). Although defined in different manners, all 
optimisation techniques allow for a deviation from the net joint moment. Largest deviations 
were found for CMC, mainly for abduction. This might be explained by the feedforward and 
feedback controls imposed by CMC for tracking the kinematics combined with the physio-
logical constraints on muscle force rise and decay which cause increased muscle generated 
moments around the hip. 
HCFs calculated using CMC deviated most from other optimisation techniques, especially 
during gait trials (Figure 1B). Since the input (musculoskeletal model, kinematics and ground 
reaction forces) was identical for all of the optimisation procedures, the differences in the re-
sulting HCFs must be attributed to the different optimisation techniques. However, all techni-
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ques systematically overestimated the magnitude of the HCFs as compared to those measured 
using instrumented prostheses (Bergmann et al., 2001). In addition to overestimated mag-
nitudes, the calculated contact forces showed a more out of plane loading of the hip joint in 
the frontal plane, i.e. a more anterior loading (Figure 3). These differences with the HIP98 
data may have arisen from modelling choices that were made before the optimisation step, 
since there are many parameters in musculoskeletal models, e.g. attachment points, number 
of muscles in the model and muscle parameters that affect the estimated muscle forces and 
the consequential effect on the HCF. Hence, further research is warranted to unravel the com-
plexity of these issues to obtain more robust and reliable musculoskeletal predictions. 
Additional contraction was seen in all optimisation techniques, for both peaks in gait and 
sit to stand, which may partly explain the overestimation on HIP98. The optimisation 
procedures solve the redundancy problem by minimising the total of the squared muscle ac-
tivations after the joint moment equilibrium at the hip and other joints of the lower limb have 
been satisfied. The resulting co-activations will contribute to the overestimation of the contact 
forces (Pedersen et al., 1987). Specifically at the second peak in gait, large opposing moments 
are found in the sagittal and transversal planes (Figure 7B). At the first peak in gait, only mm. 
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rectus femoris and tensor fasciae latae opposed the required extension moment (Figure 7A) 
which may explain why HCF overestimations were lower at this time instance. Also for sit to 
stand overestimations of HCFs were lower compared to the first peak in gait, as none of the 
recruited muscles opposed the external flexion moment (Figure 7C). 
The overestimation of joint contact forces has been described before. Klein Horsman (2007) 
compared one young and healthy subject with the HIP98 data, using inverse forward dyna-
mic optimisation (van der Kooij et al., 2003) and an energy related criterion (Praagman et al., 
2006) and found that the second peak was 200% larger than the measured HCF. Although a 
different muscle optimisation technique was used, the magnitude of the second peak was also 
much larger than the first peak, and comparable to the present study. Moreover, Mellon et al. 
(2013) found contact forces up to 229% larger than those found by Bergmann et al. (2001), 
although this difference was not statistically significant. For sit to stand more comparable 
results were found.
In contrast, several other studies showed HCFs that are closer to HIP98 data than those re-
ported in the current study (Heller et al., 2001; Stansfield et al., 2003; Martelli et al., 2011; 
Modenese et al., 2012), which may be attributed to different modelling choices. First of all, 
these simulations were based on the subjects from the HIP98 dataset (Heller et al., 2001; 
Stansfield et al., 2003; Modenese et al., 2012) and therefore differences between healthy sub-
jects and the HIP98 patients were not applicable. Furthermore, Stansfield et al. (2003) used 
a static optimisation which included a minimization of the contact forces. This additional 
criterion redistributes muscle forces to synergists without increasing the HCF. Heller et al. 
(2001) used a linear optimisation that minimised the sum of muscle forces and limited the 
maximal muscle force. Furthermore, others showed that the number of muscles and lines of 
action in the musculoskeletal model affect the HCF (Modenese et al., 2012). Besides that, 
several studies included subject-specific information in their models. Martelli et al. (2011) 
included a subject that was body-matched to the cadaver from which a subject-specific model 
was created. Alternatively, CT images have been used to further personalise the model (Stans-
field et al., 2003; Mellon et al., 2013). Comparing these studies to the results in the current 
work show that musculoskeletal modelling involves many steps starting from kinematic and 
kinetic measurements, the choice of a musculoskeletal model, adapting that model to the sub-
ject-specific anatomy and the choice of an optimisation criterion. All these steps have a major 
effect on the end results, however, in this study we only focussed on the potential effects of the 
choice of optimisation technique.
When interpreting the results of this study, a number of limitations should be taken into 
account. The calculated muscle activations compared only moderately to experimental EMG 
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for both gait and sit to stand (appendix B), which has been reported in previous research as 
well (Anderson et al., 2001; De Groote et al., 2009; De Groote et al., 2012). However, since 
only very few muscles around the hip can be appropriately measured using surface EMG, the 
comparison of activation to EMG signals can only partially reflect the effect of the optimisa-
tion techniques. 
As a second limitation, we used experimental data from healthy subjects to calculate HCFs 
and compared these to an average HCF measured in four patients with instrumented prosthe-
ses. Consequently, observed differences between measured and calculated HCFs may parti-
ally result from subject characteristics. First, gait speeds in our population of control subjects 
were higher than in the normal walking trials in HIP98 (1.28 m/s vs. 1.18 m/s), which can 
lead to increased contact forces (Bergmann et al., 2001). Second, hip moments were generally 
lower in the HIP98 patients than in our healthy control subjects, mainly around 50% of the 
gait cycle (in hip flexion 3.5 vs. 6.7 % BW*m and in hip adduction 6.5 vs. 7.2 % BW*m). 
These higher external moments determine the muscle forces that need to be produced to 
satisfy the moment equilibrium and therefore influence the HCF. A fairer comparison would 
have been to calculate the HCFs using the experimental data made available via Orthoload 
(Bergmann, 2008) and compare them with their measured HCFs. However, the restricted 
number of experimental markers made the calculation of the joint angles highly sensitive to 
the marker definition in the model, which could only be partially reproduced based on the 
available documentation. 
In conclusion, this study showed that the calculation of hip contact forces was sensitive to 
the optimisation method used to calculate muscle forces. Both SO techniques produced re-
sults closest to measured HCFs, while CMC calculated the highest HCFs. PIA showed that 
activation and contraction dynamics can be included in the optimisation without excessively 
increasing contact forces. However, other modelling choices had a distinct effect on the cal-
culated loads as well, although identification of these factors was not within the scope of this 
study. Further research is therefore required to assess the effects of other modelling steps to 
come to a valid and robust prediction of muscle and joint contact forces in the lower limb.
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Appendix A. Objective functions
Four different optimisation techniques were used to calculate muscle forces. To solve the re-
dundancy problem, each method minimises an objective function.

SO1 (Anderson et al., 2001)
This static optimisation uses an inverse dynamics approach. It uses the joint moments to 
calculate individual muscle forces that satisfy the moment equilibrium at each time frame by 
minimising the total squared muscle activation. It minimises the objective function: 

where n is the number of muscles and Am(ti) is the activation level of muscle m (limited be-
tween 1 and 0) at time instant ti. The force generated by the muscle to satisfy the moment 
equilibrium is constrained by the force-length-velocity relationship: 

where Fmax,m(ti) is the maximal force-generating capacity of muscle m, taking into account the 
force-length-velocity relationship of the muscle; rm,k is its moment arm about the kth joint axis 
and Mjoint,k(ti) represents the joint moment. Reserve actuators are included which are activated 
whenever the total muscular moment is insufficient to balance the net joint moment.

SO2 (Lenaerts et al., 2008)
The second static optimisation also calculates muscle forces that satisfy the moment equili-
brium at each time frame by minimising the total squared muscle activation. However, ad-
ditional constraints are imposed on the muscle activation values to impose a physiological 
increase and decrease in muscle activation. Furthermore, in this optimisation the joint mo-
ments are included with a weight factor W (in squared muscle activation per Newton-meter) 
in the cost function. In contrast to SO1, the joint moment term also includes passive muscle 
forces (Rodrigo et al., 2008). The cost function that is minimised is:

where K are the degrees of freedom, W and wk are weight factors; and Fmin,m(ti) and Fmax,m(ti) 
are the minimal and maximal force-generating capacity of muscle respectively, taking into 
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account the force-length relationship of the muscle. The minimal muscle force Fmin,m(ti) is the 
passive force generated by a muscle that is not activated. The optimisation is constrained by:

where ∆t is the time between two time instants (1/sample frequency); and τa (11 ms) and τd 
(68 ms) are the activation and deactivation time constants respectively (Raasch et al., 1997). 
This way a physiological increase and decrease in muscle activation is imposed. 

CMC (Thelen et al., 2006)
Computed muscle control combines a forward integration of the dynamic equations with a 
static optimisation to compute muscle excitations, and muscle forces respectively. The time 
dependency of the excitation and contraction dynamics is therefore explicitly accounted for. 
In a first step, a set of desired joint angular accelerations that will drive the model coordinates 
toward the experimental coordinates is computed: 

where  are the desired joint angular accelerations;  are the generalised 
positions, velocities and accelerations respectively derived from gait analysis;  are the 
model joint position and velocity respectively; and kv and kp are feedback gains for the velocity 
and position errors respectively.
Next, a static optimisation is used to compute a set of desired muscle forces that produce the 
desired accelerations and minimise the cost function:

where  is the model joint acceleration. Muscle excitations are then input into the forward 
dynamic simulation and held constant during integration of the entire set of system state 
equations from ti till ti+1.



Chapter 6

120

PIA (De Groote et al., 2012)
The physiological inverse approach also includes activation and contraction dynamics, but 
optimises performance globally over time. The global performance criterion (fper) sums the 
sum of squared activation across all muscles, over all time instants:

Skeleton dynamics is imposed by appending the following penalty term to the performance 
criterion:

where I is the total number of frames, Fi,m is the muscle force and wi is a weight factor defined 
as:

The objective function then results in:



Muscle optimisation techniques impact the magnitude of calculated hip joint contact forces

121

6

Appendix B. Validation of muscle activations
Average muscle activation patterns during gait are depicted in Figure S1, showing that the 
high activation levels of the glutei muscles were fairly well predicted in the first part of 
the gait cycle. However, calculated activations remained high for a longer time period and 
dropped more suddenly than experimentally measured EMG. The rectus femoris showed 
aberrant activations compared to EMG, which has been reported before (Lenaerts et al., 
2009). Besides that, variation was large within the group of subjects, which may indicate some 
corrupted signals, possibly due to cross talk. In addition, gait speed can be of influence on 
the shape of the signals and therefore might also partially explain the variation between the 
different subjects (Barr et al., 2010). Comparing the different optimisation techniques, Figure 
S1 shows that SO1 and SO2 as well as PIA resulted in comparable activation patterns. In addi-
tion, CMC muscle activations for the m. biceps femoris were much higher than for the other 
optimisation techniques and compared poorly to EMG.
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Figure S1. Muscle activations during gait, recorded using EMG and calculated using different optimisation 
techniques, shown from toe off of the left leg until heel strike of the right leg..
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For sit to stand, activation of all parts of the m. gluteus medius and tensor fasciae latae was 
very low (Figure S2). Results therefore poorly compared to EMG signals, as for muscles that 
do not show a high activation, EMG will be normalised to a relatively low value. This re-
sults in apparently high activations, which will emphasise any irregularities in the signals. The 
decreasing activation for the mm. rectus femoris, and gluteus maximus after lift-off agreed 
between EMG signals and calculated activations. When comparing activations calculated 
using the different optimisation techniques, SO2 and CMC showed a much higher activation 
for the medial hamstrings, while SO1 and PIA showed a higher activation in the m. biceps 
femoris. 

0 20 40 60 80 100
0

0.25
0.50
0.75

1
Gluteus Medius Anterior Part

% Sit to stand movement

EM
G

0 20 40 60 80 100
0
0.01
0.02
0.03
0.04

M
us

cl
e 

A
ct

iv
at

io
n

0 20 40 60 80 100
0

0.25
0.50
0.75

1
Gluteus Medius Middle Part

% Sit to stand movement

EM
G

0 20 40 60 80 100
0
0.05
0.1
0.15
0.2

M
us

cl
e 

A
ct

iv
at

io
n

0 20 40 60 80 100
0

0.25
0.50
0.75

1
Gluteus Medius Posterior Part

% Sit to stand movement

EM
G

0 20 40 60 80 100
0
0.1
0.2
0.3
0.4

M
us

cl
e 

A
ct

iv
at

io
n

0 20 40 60 80 100
0

0.25
0.50
0.75

1
Tensor Fasciae Latae

% Sit to stand movement

EM
G

0 20 40 60 80 100
0
0.01
0.02
0.03
0.04

M
us

cl
e 

A
ct

iv
at

io
n

0 20 40 60 80 100
0

0.25
0.50
0.75

1
Rectus Femoris

% Sit to stand movement

EM
G

0 20 40 60 80 100
0
0.1
0.2
0.3
0.4

M
us

cl
e 

A
ct

iv
at

io
n

0 20 40 60 80 100
0

0.25
0.50
0.75

1
Biceps Femoris

% Sit to stand movement

EM
G

0 20 40 60 80 100
0
0.25
0.5
0.75
1

M
us

cl
e 

A
ct

iv
at

io
n

0 20 40 60 80 100
0

0.25
0.50
0.75

1

% Sit to stand movement

EM
G

Medial Hamstrings

 

 

0 20 40 60 80 100
0
0.25
0.5
0.75
1

M
us

cl
e 

A
ct

iv
at

io
n

EMG (+/− 1 SD) SO1 SO2 CMC PIA

0 20 40 60 80 100
0

0.25
0.50
0.75

1
Gluteus Maximus

% Sit to stand movement

EM
G

0 20 40 60 80 100
0
0.1
0.2
0.3
0.4

M
us

cl
e 

A
ct

iv
at

io
n

Figure S2. Muscle activations for sit to stand, recorded using EMG and calculated using different optimisation 
techniques.
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Introduction
Assessing femoral fracture risks in patients with cancer and metastatic bone disease is 
troublesome. Despite previous efforts investigating potential determinants for such patholo-
gical fractures (e.g. Mirels (1989) and Van der Linden et al. (2003)), no predictors that identify 
impending fractures with sufficient sensitivity and specificity have been defined yet (van der 
Linden et al., 2004). These previous studies mainly included clinical features, such as the ra-
diological appearance of the lesion or the lesion size, whereas biomechanical characteristics, 
such as the initial bone strength, were largely ignored. However, it is extremely difficult to cap-
ture and comprehend these biomechanical parameters in clinical fracture risk assessments. 
Finite element (FE) models show great promise to improve these clinical fracture risk pre-
dictions. Previous work, for the larger part in vitro studies, has shown that FE models predict 
femoral bone strength fairly accurately (Keyak et al., 2005; Bessho et al., 2007; Schileo et al., 
2014). Yet, these studies used one or few simple load cases, resembling for example single 
legged stance (Derikx et al., 2012) or a fall (van der Zijden et al., 2015), mainly to simulate 
experimental loading conditions in order to validate the models. Such simplified load cases, 
however, do not resemble the loads imposed on the femur during daily life activities and may 
therefore be suboptimal for in vivo fracture risk predictions. Hence, the question is how to 
simulate femoral fracturing in vivo, in patients with cancer suffering from metastatic bone 
disease. This question comprises two different aspects.
The first aspect concerns the applied loading conditions which should obviously be as physio-
logical as possible. Ideally, motion analysis on relevant daily activities should be performed 
for every individual patient. By using personalised musculoskeletal models, a tailored load 
case for each patient should be generated, so that hip joint forces and muscle forces at multiple 
instances of motion can be applied to the femur. However, metastatic bone disease severely 
affects the mobility of patients, due to pain and mechanical instability caused by the lesion(s) 
in the femoral bone. Hence, it is neither ethical nor feasible to perform gait analysis on these 
patients in order to develop a fully personalised FE load case. Alternatively, load cases based 
on the calculated hip contact forces (HCFs) and muscle forces of multiple healthy subjects 
could be used (rather than modelling a load case from one representative subject). In this way, 
some of the biomechanical variation that exists among humans could be covered.
Recent work has shown the importance of modelling multiple loading conditions. Falcinelli 
et al. (2014) defined a range of physiological hip contact forces, resembling different phases 
of gait or a fall on the greater trochanter to load the femoral FE models of osteoporotic/oste-
openic patients. They showed an increased association between calculated FE bone strength 
and femoral fracture when modelling multiple loading conditions in these patients. Falcinelli 
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et al., however, only included variations in the hip contact forces. Adding muscle forces to the 
loading profile may constitute another step towards physiological loading conditions. This 
may especially hold for femurs with in metastatic lesions, in which case the bone tissue is 
most often very locally affected by metastases that may be located in the vicinity of muscle 
insertion sites. 
The second important aspect is the selection of a material model that is sensitive to these 
variations in hip joint forces and muscle forces. In literature, FE predictions using both linear 
elastic material models (Schileo et al., 2014) and non-linear elastic-plastic models (Keyak et 
al., 2005; Tanck et al., 2009; Derikx et al., 2012) have shown to correlate well with fracture 
under simple loading conditions. However, it is unknown whether the modelling of multiple 
physiological load cases requires complex elastic-plastic material models, or whether a linear 
elastic simulation provides the same results in terms of fracture prediction. Namely, during 
cyclic loading, plastic deformation may accumulate over time, which is ignored by linear 
elastic calculations. More specifically, if elements in a model reach plasticity, this does not 
necessarily mean that the bone is failing at the structural level. However, the plasticity in a 
specific region will reduce the load bearing capacity of the bone. Inclusion of multiple load 
cases in combination with the accumulation of plasticity may therefore lead to failure loads 
that are lower than those calculated without considering plasticity, as is the case in linear elas-
tic calculations. On the other hand, including plasticity increases the simulation complexity 
and therefore computational expenditure. If inclusion of plasticity does not alter the fracture 
predictions, then failure simulations can remain relatively simple by leaving out the actual 
simulation of plasticity. 
Hence, in this study we investigated 1) whether modelling physiological load cases obtained 
from different healthy subjects and including hip contact as well as muscle forces majorly 
affect failure predictions and 2) whether non-linear elastic-plastic material properties need 
to be modelled to fully capture these variable effects on failure predictions. To this end, we 
applied the muscle forces and hip contact forces of five healthy subjects to the femurs of two 
patients with cancer and metastatic bone disease who sustained a pathological fracture. We 
compared the effects of these different load cases on the failure behaviour simulated using 
linear elastic as well as non-linear elastic-plastic material models, in terms of failure volume 
and fracture location. 

Material and Methods
Patients
Two femurs of two patients diagnosed with cancer and metastatic bone disease were selected 
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for FE modelling. These patients were previously included in a large prospective study, of 
which full details are described elsewhere in this thesis (Chapter 5). In short, one patient 
(P1) suffered from lytic lesions in both femurs. The patient was treated for pain with multiple 
fraction radiotherapy and sustained bilateral femoral neck fractures during normal walking, 
123 days after onset of therapy. Only the right femur of this patient was modelled in this study. 
The other patient (P2) suffered from both blastic and lytic lesions and sustained a spontane-
ous fracture through a lytic lesion under the lesser trochanter of the left femur, 7 days after 
treatment for pain with multiple fraction radiotherapy. Further patient characteristics are gi-
ven in Table 1. 

Table 1. Characteristics of the two patients included in this study.

Patient 1
Right femur

Patient 2
Left femur

Gender M M
Age at inclusion 70 64
Body weight (kg) 73 90
Primary tumour M. Kahler Prostate
Type of fracture Collum fracture Subtrochanteric fracture
Activity while fracture occurred Walking Spontaneously

Obtaining loading conditions using musculoskeletal modelling
In a previous musculoskeletal modelling study published by our group (Wesseling et al., 
2015b), five healthy subjects (HS1 to HS5, mean age 56 years, range 52-61) were included. 
Using different optimisation techniques, subject-specific muscle forces and HCFs were cal-
culated during a normal gait cycle. The use of static optimisation (Anderson et al., 2001)
implemented in OpenSim (Delp et al., 2007) resulted in calculated HCFs that best resembled 
HCFs measured in vivo (Bergmann et al., 2001). After additional model adaptations (Wesse-
ling et al., 2015a) the analyses were rerun in OpenSim 3.2 (Delp et al., 2007) and used in the 
current study. 
First, using a spline function, the data were resampled to 21 frames representing every 5% of 
the gait cycle. As the HCF peaks (at 15-20% and 45-55% of the gait cycle) not necessarily coin-
cided with a resampled frame, these particular frames were specifically added to make sure 
the peak loads were included. In this way, the muscle forces and hip contact force during the 
full gait cycle were discretised to 23 frames. Subsequently, the subject-specific muscle and hip 
contact forces were normalised to the body weights of the two patients (P1 and P2), and trans-
formed to the FE coordinate system, which was defined using anatomical landmarks. The hip 
joint centre (HJC) was determined using a sphere fit through the femoral head. Subsequent-
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ly, the knee joint centre (KJC) was determined halfway a transcondylar axis connecting the 
centres of two circles fitted through the posterior condyles. The KJC defined the origin of the 
coordinate system. By orienting the HJC over the KJC, and using the plane defined by the 
transcondylar axis and the HJC, the coordinate system was defined. In this way, the femur was 
positioned in an orientation coming closest to the orientation in OpenSim.
Figure 1 depicts the magnitudes of the hip contact forces for each of the five healthy subjects, 
applied to the two patient femurs. In general, HCFs were relatively high, except for HS4. The 
HCFs at the second peak in the gait cycle ranged between 3.2 x BW (HS4) and 5.9 x BW 
(HS2). Over the full gait cycle, the applied HCF was smallest for HS4 and largest for HS3. 
HS1, HS2 and HS5 showed roughly the same pattern with a lower HCF at the first peak and a 
relatively high HCF at the second peak. The HCF at the first peak was more comparable to the 
HCF at the second peak for HS3 and HS4. The load directions varied between subjects at the 
first peak in HCF (Figure 2A) and, to a larger extent, at the second peak in HCF (Figure 2B). 

FE model generation
Quantitative computed tomography (QCT) images were retrieved from the patients before 
they sustained a femoral fracture (Chapter 5). The following scan settings were used: 120 kVp, 
220 mA, slice thickness 3 mm, pitch 1.5, spiral and standard reconstruction, in-plane resolu-
tion 0.9375 mm. The femoral bone tissue was segmented from the CT images and converted 
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Figure 1. Magnitudes of HCF over a full gait cycle as applied to the FE models of P1 (left) and P2 (right) based 
on musculoskeletal modelling results of 5 healthy subjects (HS1 to HS5). 
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Figure 2. Direction of HCF at the instance of the first (A) and at the second peak in HCF (B) as applied to the 
FE models, based on musculoskeletal modelling results of 5 healthy subjects (HS1 to HS5). Schematic femur 
outlines and resultant HCF (red arrows) are given for interpretation of the results. 
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to a 3D surface (Mimics 11.0, Materialise, Leuven, Belgium) and solid mesh (Patran 2005 r2, 
MSC Software Corporation, Santa Ana, CA, USA). This solid mesh was translated and rotated 
to the neutral anatomical position, using the anatomical landmarks described above.
Patients were scanned on top of a calibration phantom, which was positioned at the level of 
the proximal femur (Image Analysis, Columbia, KY, USA). Using this phantom, the CT in-
tensities of voxels representing bone tissue could be converted to calcium equivalent values. 
Based on the work by Keyak et al. (2005), these calcium equivalent values were converted to 
ash densities and linear elastic and non-linear elastic-plastic material properties, respectively. 
Muscle attachment sites at the proximal femur (50% of total length) were morphed from the 
musculoskeletal models of the healthy subjects to the patient femurs (Redert et al., 1999). 
Muscle forces were then applied to the node closest to the morphed attachment site (Figure 
3). 
For application of the HCF to the FE model a hemispherical cup was used. This cup was 
positioned such that it resembled the neutral anatomical position of the acetabulum; its size 
was adapted to the size of the femoral head of the patient. A node defined in the hip joint 
centre served as a control node for the cup. The HCF was applied to this control node, thereby 
loading the femoral head via the cup. In this way, we aimed to apply the HCF in a distributed 

Figure 3. Schematic overview of the FE model. The HCF was applied on a control node, located in the hip 
joint centre, thereby moving a cup onto the femoral head. The FE model was fixated in all three directions at 
the distal end. Black circles indicate muscle attachment point on the anterior surface of the femur; grey circles 
indicate attachment points on the medial, lateral or posterior surface. Shaded areas represent elements in 
the model that were excluded from plastic analysis. Elements near attachment sites of the muscles were also 
excluded from plastic analysis (not indicated in figure).
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and realistic manner (Figure 3). At the start of each simulation, a small load was applied to 
the control node in order to initialise contact between the cup and the femoral head. On the 
distal side, nodal points were fixated in three directions, thereby completely restraining rotati-
ons and translations. After running some simulations, it appeared that all P2 simulations had 
problems reaching stable contact, which was solved by gluing the contact between the cup 
and femoral head. In this way, all P2 simulations successfully converged up to ten gait cycles.

FE simulations
For every patient (P1, P2) and every load case obtained from the healthy subjects (HS1 to 
HS5) we ran two simulations, resulting in 20 simulations in total. In the first simulation we 
applied one gait cycle (i.e. 23 frames with different HCFs and muscle forces acting on the 
femur) while modelling linear elastic material behaviour (Keyak et al., 2005). In these simu-
lations, failure was quantified by assessing the volume of elements with a safety factor (SF) 
< 1, relative to the total bone volume. SFs were depending on calcium equivalent values and 
calculated by dividing the ultimate strength (Keyak et al., 2005) over the current Von Mises 
stress. In the second simulation, a series of 10 consecutive gait cycles was applied (i.e. 230 
frames) while modelling non-linear elastic-plastic material behaviour as defined by Keyak 
et al. (2005). More specifically, when the yield stress was reached, plasticity was induced and 
further defined by an initial ideal plastic phase, subsequent softening, and a final ideal plastic 
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Figure 4. Failure of bone, defined as the relative volume of elements with SF < 1 during linear elastic analysis 
of a single gait cycle. Different lines represent load cases from different healthy subjects (HS1 to HS5).
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phase. In these simulations, failure was defined as the summed volume of all elements with 
plasticity (i.e. elements that had reached the yield stress), divided over the total volume of 
the femur. It should be mentioned that elements underneath the cup and close to the bottom 
fixation (shaded areas in Figure 3), as well as elements close to the muscle attachment sites 
were assigned linear elastic material behaviour in all simulations to prevent failure as a result 
of stress artefacts caused by the definition of the boundary conditions. These elements were 
excluded from the calculation of SF volumes as well as plasticity volumes. In order to define 
a realistic end-point of the simulations, the displacement in z-direction of a reference node at 
the proximal surface of the femoral head was used. Force-displacement curves from previous 
work (Chapter 5) were used to determine the displacement of this same node at the moment 
of structural failure under axial loading. As such, the increment in which the z-displacement 
well exceeded the critical displacement in the axial loading simulations was the last increment 
of interest; the remaining increments were omitted.
Femoral failure from the linear elastic simulations and the non-linear elastic-plastic simu-
lations was compared within and between patients, in terms of volume and ranking order. 
Failure locations were qualitatively compared to the actual fracture lines as determined by an 
experienced clinician on post-fracture X-rays of the patients.
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Figure 5. Failure of bone, defined as the relative volume of elements with plasticity during non-linear elas-
tic-plastic analysis modelling cyclic walking. Different lines represent load cases from different healthy subjects 
(HS1 to HS5). Asterisks indicate instances of the second peak in HCF in the ten gait cycles. 
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Results
Effects of modelling multiple physiological load cases on failure volumes 
Relatively small differences between load cases showed to have considerable effects on failure. 
In P1, the HS2 load case resulted in the largest volume of failed elements (Figures 4 and 5). 
Failure as a result of the HS1 load case was much smaller, although the HCFs at the second 
peak as well as total HCF load over the gait cycle were quite comparable for HS1 and HS2. 
However, in HS1, the HCF is imposed in more anterolateral direction (i.e. more along the 
femoral neck) than in load case HS2 (and HS3 and HS5) (Figure 2B). Hence, the femur of 
P1 seemed to be sensitive to the angle under which the HCF is imposed. Apparently, subtle 
differences in the direction of the HCF, in combination with the femur’s anteversion angle, 
can have a large impact on the failure in the femoral neck region. The failure as a result of load 
case HS4 resulted in the lowest failure at the second peak in HCF. 
In P2, the volume of failed elements was low and always < 1% of total volume in the linear 
elastic analyses (Figure 4) and < 2% in the non-linear elastic-plastic analyses (Figure 5). The 
direction of the HCF seemed to be less critical in this femur, since load case HS1 (which in 
P1 was less detrimental than HS2 and HS3) in P2 ranks high in the calculated failure volume. 
Load case HS3 in P2 showed a sharp increase in plasticity volume after the first peak in HCF. 
Apparently, this first peak causes plasticity that further catalyses failure in subsequent frames. 
At the second peak in the first gait cycle, the failure in load case HS3 is much larger than the 
failure in HS5, while the magnitude and direction of HCF are comparable at this time instan-
ce for these two load cases. This effect was also seen in P1: in the linear analyses, the failure 
volume at the second peak HCF was comparable for HS3 and HS5, but in the non-linear 

P1 P2

Figure 6. Distribution of elements with SF < 1 (in black) in linear elastic analysis at the second peak in HCF. 
For both patients, results for load case HS2 are shown, as the failure volume was largest in these simulations. 
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analyses failure was larger for HS3. Hence, in both patients, the failure was sensitive to the 
loading history. 

Effect of modelling multiple physiological load cases on failure locations 
The different load cases did not have a major effect on the failure locations (both the elements 

First peak HCF
posterior view

End of simulation
anterior view

P1

First peak HCF
posterior view

End of simulation
posterior view

P2

Figure 7. Distribution of elements with plasticity (in black) in non-linear elastic-plastic analysis at the second 
peak in HCF in the first gait cycle and at the end of the simulation. For both patients, results for load case HS2 
are shown, as failure volume was largest in these simulations.
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with SF < 1 and the elements with plasticity) in the two bones. P1 suffered from multiple lytic 
lesions in the proximal femur, and eventually sustained a collum fracture. Accordingly, for all 
load cases, the largest failure areas were seen in the dorsal neck. In addition, failure areas were 
located at the proximal side of the lesser trochanter (around the attachment of the m. psoas) 
and around the attachment of the m. gluteus medius at the greater trochanter (Figure 6). P2 
suffered from blastic and lytic lesions, with a lytic lesion at the level of the lesser trochanter 
through which a subtrochanteric fracture was sustained. In this patient the same failure lo-
cations were seen, albeit that the failure areas were smaller than those of P1. Furthermore, 
an additional failure location was found around the attachment site of the m. iliacus and m. 
pectineus, below the lesser trochanter. For P2, the different load cases resulted in subtle diffe-
rences in failure locations. In load case HS2 the failure at the level of the lesser trochanter was 
more pronounced. In HS3 the failure area near the attachment of the m. gluteus medius was 
larger relative to the other load cases, while in HS5 this area was quite small. 

Effect of modelling non-linear elastic-plastic material properties as compared to linear elastic ma-
terial properties
Using a non-linear elastic-plastic material model induced accumulation of plasticity in the 
models, sometimes leading to numerical convergence problems. For P1, 9 out of 10 load cases 
were successfully simulated. The remaining simulation (load case HS5) did not converge du-
ring simulation of the second peak in HCF in the 9th gait cycle, probably due to gross failure. 
Moreover, after applying a few gait cycles, the simulations with load cases HS2, HS3 and HS5 
showed extremely large and unrealistic deformations in the femoral neck. Hence, although 
the FE simulations still converged, structural failure of the femur was reached at these instan-
ces. 
When qualitatively comparing the failure volumes in the non-linear elastic-plastic analyses 
(Figure 5) to those in the linear analyses (Figure 4) a number of similarities were found. For 
all load cases and for both material models, failure in P2 was far lower (always below 2% of 
total volume) than in P1. In addition, in P1, the ranking order of the failure volumes was 
comparable for the two material models: the plasticity in P1 was largest for load case HS2 
and far smaller for load case HS1 at the second peak in HCF (and after 10 gait cycles, in the 
non-linear analyses).
Except for these similarities, the following differences were found between the different ma-
terial models. The volume of plasticity at the second peak in HCF was always higher than the 
volume of elements with SF <1 in linear elastic analyses. In addition, in both patients and for 
all load cases, plasticity accumulated over gait cycles; an effect that could obviously not be 
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detected in the linear elastic analyses. Accumulation was much larger for P1 than for P2, with 
the exception of load case HS4. Again, this finding would never be detectable with a linear 
elastic model. As mentioned above, especially in load case HS3 in P2, this effect seemed to 
be relevant as the accumulated plasticity volume for this load case was much higher than the 
volume of elements with a SF < 1 in the linear analyses. Apparently, the non-linear analyses 
rendered the femur sensitive to the loading history. Hence, the accumulation of plasticity 
revealed additional information on the failure process in both patients. 
At the maximum HCF in the first gait cycle, the distribution of plasticity (Figure 7) largely 
resembled the distribution of failure in the linear analyses (Figure 6), with major failure loca-
tions at the insertion of the m. gluteus medius, m. psoas and in the distal neck. In P1, the failu-
re areas enlarged over additional gait cycles. Especially the failure area in the neck expanded 
from dorsal to ventral, thereby covering a large part of the cross-sectional area of the neck. 
In contrast, in P2 no major changes in failure locations could be noticed over subsequent gait 
cycles, since the accumulation of plasticity over the additional loading cycles was small. 

Discussion
The aim of this study was to assess whether the modelling of physiological load cases major-
ly affects failure predictions and to investigate whether the inclusion of non-linear elastic-
plastic material properties is required to capture these differences. For this purpose, we applied 
muscle forces and hip contact forces of five healthy subjects to the femurs of two patients 
with metastatic bone disease who sustained a pathological femoral fracture. We compa-
red the effect of these different load cases (HS1 to HS5) on the femoral failure in terms of 
failure volume and failure location, calculated by applying either linear elastic or non-linear 
elastic-plastic material behaviour.
The results in this study showed that subtle differences between load cases can have consi-
derable effects on failure predictions in femurs with metastatic lesions. For example, in P1 but 
not P2, the predicted failure was lower for the HCF acting in more anterolateral direction, i.e. 
along the neck axis. This effect was seen in both linear elastic and non-linear elastic-plastic 
analyses. In both patients it was shown that a load case with a relatively high HCF at the first 
peak in the gait cycle already induced plasticity that rendered the model more vulnerable 
to the HCFs in the subsequent frames. This effect was not seen in the linear simulation for 
this particular load case. These results are in line with findings by Falcinelli et al. (2014) who 
found an increased association between calculated FE bone strength and fracture in oste-
oporotic/osteopenic patients when modelling multiple load cases. According to the authors, 
this effect can be explained by the fact that modelling multiple load cases increases chances 
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of imposing peak stresses and strains to affected regions in the femur, which may serve as the 
weakest link. This hypothesis may be even more plausible in the case of metastatic bone di-
sease, as the bone tissue is most often very locally affected by metastatic lesions. Hence, it may 
be interesting to include additional physiological loading conditions (such as stair climbing or 
sit-to-stand) in the future FE simulations, thereby further increasing the variability in HCFs 
and muscle forces. 
In addition to variable HCFs, the different load cases contained variable muscle forces. 
However, the direct effect of modelling muscle forces was difficult to interpret, at least in the 
two femurs modelled in this study. Some failure locations were femur-specific and located 
at a lesion site. Other failure areas, located around the attachment points of the m. gluteus 
medius and the m. psoas, however, were not involved in the actual clinical fracture and were 
approximately the same in both patients. Since muscles inserting at these particular locations 
exert relatively high forces during a gait cycle, it can be questioned whether these failure 
areas resulted from local bone weakness or rather from an artificial local stress peak caused 
by the applied point load. Furthermore, in the simulations applying simple axial loads and 
no muscle forces (Chapter 5), failure was also predicted at the clinical fracture lines. Thus, 
for these two femurs, the simulations with physiological loading conditions did not impro-
ve the predictions of fracture location over simulations applying only a load on the femoral 
head. Therefore, it should be noted that failure around the muscle attachment points may not 
have been simulated adequately and more research is required to obtain a realistic simulation 
of avulsion fractures around attachments of muscles and tendons. Nevertheless, the muscle 
forces have an additional indirect effect on the FE simulations, since the variations in HCF 
magnitudes and directions emerge from subject-specific variation in muscles forces. The re-
sults in this study show that the failure predictions are sensitive to these variations. Hence, 
indirectly, muscle forces did affect failure predictions in the femurs in this study. 
Specific aspects in the results of the linear elastic simulations and non-linear elastic-plastic 
simulations were similar. First of all, the ranking order on bone failure for different load cases 
was comparable in P1. In addition, both linear elastic and non-linear elastic plastic models 
resulted in the highest failure for P1, and a far lower failure for P2. Moreover, the predicted 
fracture locations were also roughly the same, as discussed above. Nevertheless, there were 
also some discrepancies in the results of the two different material models. First, for all load 
cases, the plasticity volume was higher than the volume of elements with a SF < 1. In both 
femurs, but most pronounced in P2, one load case resulted in a much higher volume of plas-
ticity than the volume of elements with SF < 1 in the linear analysis at the second peak in the 
gait cycle. These results show that the non-linear elastic-plastic material model may render 
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the FE model sensitive to the loading history. More specifically, due to the variable and local 
weakening of the bone strength by metastatic lesions, relatively small changes in magnitude 
or direction of loading may initiate local failure and may subsequently catalyse progressive 
failure in consecutive loading cycles.
This study investigated the effect of modelling physiological loading conditions obtained from 
five healthy subjects on the FE predicted femoral failure. The effect of applying physiological 
loading conditions on other FE predicted parameters models has been investigated before. 
For example, Jonkers et al. (2008) demonstrated that the implementation of physiological 
loads drastically influenced Von Mises stresses in the bone tissue along the stem of a hip pros-
thesis. Moreover, it was shown that these stresses were more sensitive to differences in muscle 
forces and HCFs, than to changes in femoral geometry. In addition, the effect of physiolo-
gical loading conditions on the bone density distribution using a bone remodelling algo-
rithm was investigated by Vahdati et al. (2014). They showed that FE predicted bone density 
distributions better resembled the CT bone density distribution when the bone remodelling 
algorithm applied patient-specific loading conditions rather than loading conditions from 
another subject under study. As a final example, the effect of applying physiological loading 
conditions on FE-predicted micromotions has been investigated (van der Ploeg et al., 2012). 
In that study, it was shown that peak micromotions were equally predicted under simple 
loading conditions and when modelling a full gait cycle, but that motions depended on the 
variable loading directions. Hence, the results in these and our study consistently show the 
relevance of applying physiological loading conditions to femoral FE predictions.
Some limitations should be mentioned when interpreting the results in this study. First of all, 
the coupling of HCFs and muscle forces from healthy subjects to FE models of patients with 
metastatic bone disease resulted in mechanically inconsistent models, since the anatomy and 
the gait pattern of the healthy subjects were obviously different from those of the patients. 
The overall goal of our work is to improve clinical fracture risk assessments in patients with 
cancer and femoral metastases at risk of fracturing. In the current study, we investigated the 
potential need for modelling complex loading conditions in FE models (as opposed to mo-
delling single, simple loading conditions). By modelling gait cycles of five healthy subjects, we 
aimed to capture some of the biomechanical variation that exists in the human population. 
As explained before, gait analyses are unethical to perform in this patient population, there-
fore the use of motion data from healthy subjects will remain necessary in order to calculate 
muscle and hip contact forces to apply to the FE models of these patients. In future work, 
however, this workflow may be further personalised by adding more patient-specific details 
to the musculoskeletal model. 
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Secondly, the HCFs calculated using static optimisation techniques were relatively high, and 
exceeded HCFs measured in patients with instrumented hip prostheses (Bergmann et al., 
2001). This overestimation is more generally seen in musculoskeletal modelling, and potenti-
al causes for these results are elaborately discussed in previous work (Wesseling et al., 2015b). 
However, the aim of the current study was to evaluate the potential need of complex loading 
conditions, which, despite these limitations, could be investigated in a qualitative manner. 
Further development of musculoskeletal modelling techniques should result in more physio-
logical and personalised loading conditions, which then could be used to quantitatively ana-
lyse these FE results.
Thirdly, the patient femurs were positioned in the FE coordinate system using anatomical 
landmarks, which might lead to an orientation that differs from the orientation of the femur 
in the coordinate system of the musculoskeletal models. This could potentially lead to errors 
in transforming force vectors from the healthy subjects to the patient femora. As a result, 
specific anatomic features, such as the femoral anteversion angle, may incorrectly increase 
or decrease the moment arm, thereby inducing artificial sensitivity to the direction of the 
applied HCFs. This aspect is worthwhile to improve in future work, as it is suggested that 
higher reproducibility of generating FE models, of which the correct orientation is an impor-
tant part, leads to a higher statistical (but not mechanical) association between FE and clinical 
output parameters (Keyak et al., 2013).
Finally, it should be stressed that the absolute volumes of failure should be interpreted with 
caution, for two reasons. First, failure calculated close to the cup or the muscle attachment 
points can result from a local decrease in bone strength caused by a metastatic lesion, but 
can also result from transmitted stress artefacts caused by these boundary conditions. As it is 
difficult to distinguish these two effects, the definition of the boundary conditions should be 
further investigated. That is, different definitions of boundary conditions should be modelled, 
and the resulting local stresses and strains should be compared to values as determined in 
cadaver experiments, or, ideally, in vivo, following for example the workflow of Philips et al. 
(2009). Secondly, it should be noted that the contact definitions of P1 and P2 were different, 
which, however, is unlikely to result in different answers to the research questions. As the 
gluing refrains the elements to lose contact, it may increase tensile stresses in the elements in 
and around the contact surface. Yet, the current failure volumes in P2 were small as compared 
to P1 and would probably have been even smaller if the glued contact definition would not 
have been necessary to apply. 
In conclusion, the outcome of our study suggests that the FE predicted failure is rather sensi-
tive to differences in load cases from multiple subjects. This indicates that a loading condition 
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for reliable fracture prediction should be as physiological and patient-specific as possible. 
Currently, this process is challenging, as personalised load cases cannot be established for 
patients with cancer suffering from metastatic bone disease. Furthermore, the direct effect 
of modelling muscle forces is currently difficult to interpret. The resulting failure locations 
did not better resemble clinical fracture lines than failure locations predicted in simulations 
applying a simple uniaxial loading condition, indicating that it is very difficult to correctly 
model such boundary conditions without causing artefacts. No major differences were found 
in the prediction of fracture location or the ranking order of bone failure (in P1) between li-
near elastic and non-linear elastic-plastic material models. Yet, the accumulation of plasticity 
rendered the model sensitive to the loading history of the femur. Hence, to capture this sen-
sitivity, non-linear elastic-plastic material models may be preferred over linear elastic models 
for femoral fracture predictions.
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This chapter reflects on the work described in this thesis, including a discussion about the 
challenges and future perspectives of the application of finite element (FE) modelling in the 
treatment of patients with metastatic bone disease. 

The goal of this thesis was to develop and validate a patient-specific finite element model to 
assess the femoral fracture risk in patients with metastatic bone disease. The validation of the 
FE model started with an experimental study, in which ten paired cadaver femurs were axially 
loaded until failure (Chapter 2). The experiments were simulated in FE models and the results 
showed that the FE models accurately predicted the experimental failure load. Under these 
simple loading conditions, a ranking on FE failure load better resembled the experimental re-
sults than a ranking by clinical experts who commonly treat these patients, such as orthopae-
dic surgeons and radiation oncologists. By implementing more realistic material behaviour 
(using the asymmetrical Drucker-Prager yield criterion), we were able to further improve the 
FE predictions (Chapter 3), although a more extensive sensitivity analysis is needed before the 
Drucker-Prager yield criterion can be reliably implemented. 
Although these initial simulation results were promising, the predictive capacity of these mo-
dels could probably be further improved, e.g. by implementing modelling anisotropic ma-
terial properties. However, since bone anisotropy cannot be quantified using a clinical CT 
resolution, considerable work on multi-level modelling should be done in order to enable the 
implementation of these mechanical properties in a patient-specific manner. The first steps 
in that direction have been taken by Hazrati Marangalou et al. (2013). They determined the 
fabric tensors and bone mineral density from micro-CT images for 33 femurs, and used them 
as input for an FE model implementing elastic-plastic damage behaviour. Subsequently they 
randomly selected ten femurs from their database. Each of these ten femurs was matched 
to another femur in the database with the most similar bone mineral density distribution. 
The fabric tensor of that matching femur was then applied to the test femur. The results were 
compared to the simulations with the original fabric tensor and to simulations with isotropic 
material properties. The implementation of anisotropy based on the database-matched fabric 
closely resembled the simulation using the original femur-specific fabric tensor, in terms of 
stiffness, damage, Von Mises stress and strain energy distribution. Although their findings 
have not yet been confirmed using clinical CT images, the results were promising and suggest 
that extrapolating anisotropic material properties from micro-level CT data to macro-level 
FE models is possible. In addition, imaging techniques are vastly improving, and it is only a 
matter of time before this micro-level information can be gleaned from clinical CT images 
with a radiation dose acceptable for in vivo scanning. Alternatively, recent pre-clinical re-
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search on bone specimens showed that ultrasound can be used to determine the structural 
properties of bone (Lin et al., 2012). However, whether this new technique is applicable in 
vivo as well, remains to be seen. 
The implementation of anisotropy would better approach the actual mechanical behaviour of 
bone, potentially leading to better FE strength predictions. This would particularly be the case 
in fracture risk assessments for patients suffering from osteoporosis. More specifically, pre-
vious studies have shown an increase in the degree of anisotropy in human osteopenic bone 
(Newitt et al., 2002) or osteoporotic animal models (Kreipke et al., 2014). Hence, accounting 
for it may improve the association between FE predicted bone strength and fracture in oste-
oporosis. In metastatic bone disease, however, the bone tissue is more locally destructed so 
that the effect of implementing anisotropy in FE simulations may be limited. Alternatively, 
developing realistic material models for metastatic tissue could further improve the FE simu-
lations. This issue is further addressed in the discussion on Chapter 5. 

The results from the FE simulations in Chapter 2 were additionally compared against re-
sults from computed tomography based rigidity analysis (CTRA) applied to the same 
femurs (Chapter 4). It was shown that both methods are equally able to predict experimen-
tally measured failure loads. However, compared to patient-specific FE modelling, CTRA is 
a faster and cheaper method to quantify bone strength (i.e. about 30 minutes for CTRA as 
compared to approximately one day for FE modelling). Hence, CTRA may be easier to im-
plement in clinical practice, especially in cases where treatment decision is urgent. However, 
the implementation of more physiological loading conditions is easier in FE modelling, since 
CTRA is not suited to assess effects of different external loading modes and is therefore dif-
ficult to use in a clinical setting where clinicians would like to advise the patient as to which 
daily activities can be safely performed and which may lead to bone fracture. Moreover, the 
outcome measures (axial, bending or torsional rigidities) are difficult to interpret in clinical 
practice. In future research, the comparison of the two methods on their accuracy to predict 
bone strength in vivo should reveal the better performance of the one method over the other. 

In Chapter 5, we described a prospective patient study which was conducted in three different 
institutes to test if FE models can improve upon standard clinical guidelines in predicting 
femoral bone fractures in patients with disseminated cancer and bone metastases. The pa-
tients in this study received single or multiple fraction radiotherapy to treat pain. Before and 
after radiotherapy the patients underwent quantitative CT scans and filled out questionnai-
res on physical activity, pain and quality of life. Through their hospital records, they were 
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followed for six months. The three institutes in this study used two different scanners from 
the same manufacturer. The CT images were reconstructed using different algorithms, and 
analysis of the CT data revealed that the images from two of the institutes seemed to be affec-
ted by air artefacts. This hampered the patient-specific calibration and subsequent material 
property assignment. Hence, further research is needed to develop a more robust calibra-
tion procedure to correct for such artefacts. Therefore, results from patients accrued at the 
Radboud university medical center (n = 23) were presented first in Chapter 5, as they were 
scanned using the same equipment as during the validation against experiments. The results 
for this subgroup of patients, with five femoral fractures in three patients, showed that the 
median failure load in the fracture group was significantly lower than in the non-fracture 
group. In line with the findings in Chapter 2, the results in this study showed a tendency to-
wards more accurate fracture risk predictions by FE models than by experienced clinicians. 
However, due to the small number of patients in this study, the results have to be confirmed in 
the full data set of 66 patients (after correcting for the air artefact and potential interscanner 
artefacts) and its robustness should be further established by cross-validation in large patient 
cohorts from other institutes. 
Chapter 5 additionally revealed a number of challenges related to the transition from 
modelling cadaver experiments to in vivo fracture risk assessments using FE models. In gene-
ral, the validation of engineering models simulating biological processes is difficult (Hennin-
ger et al., 2010; Lund et al., 2012). Ex vivo, these processes can be simplified to a certain extent, 
but in vivo numerous additional factors and interactions should be accounted for. In the cada-
ver experiment, for example, artificial lesions were created by drilling defects in the femoral 
cortex. In vivo, however, these metastatic lesions contain lytic or blastic metastatic tissue (or 
both). In Chapter 5, the FE model predicted very high failure loads for some of the femurs 
with extensive blastic lesions, which may have resulted from the high CT intensities that these 
lesions present with. However, the composition and mechanical behaviour of metastatic bone 
tissue may be rather aberrant and, consequently, may need adapted material models. Sone et 
al. (2004) compared the microarchitecture of blastic metastases and normal tissue and found 
distinct differences between the two tissue types. The metastatic bony tissue showed more 
(but not thicker) trabeculae, leading to an increased bone volume fraction. Furthermore, the 
tissue was more isotropic and irregularly formed, and the degree of mineralization was lower 
than in healthy tissue. Unfortunately, the subsequent effect on bone mechanics was not inclu-
ded in the work of Sone et al.. Kaneko et al. studied the mechanical behaviour of blastic, lytic 
and mixed metastatic tissue, and found different material properties for cortical (Kaneko et 
al., 2003) but not trabecular (Kaneko et al., 2004) metastatic bone tissue. However, the sub-
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sequent application of these adapted material properties in FE models of femoral shafts did 
not result in additional predictive power of the FE models (Keyak et al., 2005). However, in 
the work of Kaneko et al., blastic, lytic and mixed metastatic tissue samples were combined, 
which could have averaged out peculiar material behaviour in either of the tissue types. Thus, 
further research is required to reliably determine the mechanical behaviour of different types 
of metastatic tissue before the failure load in femurs with blastic lesions can be accurately 
predicted.
Another major difference between ex vivo and in vivo FE modelling lies in their input, i.e. 
the QCT scans. The cadaver femurs were separately scanned in a water basin, whereas in 
patients surrounding bony structures and soft tissues affect the CT attenuation in the femur. 
These effects are obviously dependent on anatomy and are therefore patient-specific. In order 
to minimise these beam hardening effects, a calibration phantom was used to establish pa-
tient-specific or even image-specific calibration lines for converting CT intensities to calcium 
equivalent values. However, the size of beam hardening effects and other factors influencing 
CT intensities may additionally be dependent on the type of scanner and scanner software 
used, which complicates the design and analysis of multicentre studies. This is especially im-
portant for the prospective patient study (Chapter 5) that included 66 patients from three 
institutes, which used two different scanners from the same manufacturer. Recent work by 
Carpenter et al. (2014) showed large differences in calculated femoral bone strength based on 
QCT images retrieved from two different scanners, especially under single leg stance loading 
(mean difference -1100 N, 95% CI between 390 and -2526 N, approximately; independent of 
femoral strength). The use of hydroxyapatite calibration phantoms could not sufficiently cor-
rect for these differences between scanners. Obviously, such measurement errors are unaccep-
table when using FE predictions for clinical decision making on a patient-specific basis, and 
rigorous alternative calibration protocols should be developed for future multicentre studies. 

Chapters 6 and 7 aimed at the development of more physiological loading conditions to apply 
to the FE models. For that purpose, four different optimisation techniques were selected and 
their effect on the calculated muscle forces and subsequent hip contact forces was investigated 
in five healthy subjects. It was shown that static optimisation techniques best approached hip 
contact forces as measured in vivo, although they still overestimated these forces. Based on 
these static optimisation results, we generated physiological load cases that resembled cyclic 
walking and subsequently applied them to the FE models of two patients with metastatic 
bone disease using linear elastic or non-linear elastic-plastic material models (Chapter 7). 
The results in this chapter revealed that subtle differences in physiological load cases can have 
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major effects on failure predictions, and hence, are required to perform reliable fracture risk 
assessments. In addition, when comparing the results of the two material models, we found 
no differences in the predicted fracture location. In addition, the ranking order on bone 
failure was comparable in one patient. However, plasticity accumulated over multiple gait 
cycles, which showed that modelling physiological loading conditions needs non-linear 
elastic-plastic material models.
The work in Chapters 6 and 7 revealed that different modelling techniques, i.e. FE-modelling 
and musculoskeletal modelling, come with strengths and weaknesses that should be borne 
in mind when combining them into multiscale models. As discussed by Lund et al. (2012), 
the validation of such models is difficult, as unknown interactions between different levels 
may lead to unexpected modelling errors. For example, the subject-specific contact forces 
calculated in Chapter 6 were used as loading conditions for patient-specific FE-models. Ho-
wever, gait patterns are subject-specific and thus differ within and between healthy subjects 
and patients. Using muscle forces and hip contact forces from healthy subjects to load FE 
models of patients will thus result in mechanical inconsistency, which may lead to erroneous 
fracture predictions. The extent of these errors is unknown, and hence, the results from these 
multiscale models should be interpreted carefully.

Future applications of FE models in the clinical practice of patients with me-
tastatic bone disease
Future applications of femoral FE models in clinical practice
The work described in this thesis applied FE models to determine bone strength in femurs 
with metastatic lesions, thereby ignoring any potential temporal changes to bone mine-
ral density. However, different treatment options such as hormone therapy, chemotherapy 
(Gralow et al., 2013; Rizzoli et al., 2013) and radiotherapy (short term) (Koswig et al., 1999; 
Gralow et al., 2013) can decrease the patients’ bone quality over time, as does general disease 
progression. In contrast, radiotherapy (Koswig et al., 1999; Foerster et al., 2015) as well as 
the (additional) administration of bisphosphonates (Rizzoli et al., 2013; Foerster et al., 2015) 
can result in bone remineralisation on the long term. Currently, such treatment effects can 
be evaluated in terms of bone mineral density, generally determined using specific imaging 
techniques (dual-energy X-ray absorptiometry, DXA). In addition, FE models could be used 
to further translate these findings to patient-specific bone strength. Previous work on bone 
strength in patients with osteoporosis (Keaveny et al., 2008; Keaveny et al., 2010) has shown 
that FE models can provide additional information on the pathological process. More speci-
fically, changes in areal bone mineral density (aBMD, the standard measure for fracture risk 
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assessment in osteoporosis) and femoral FE bone strength as a result of aging (Keaveny et al., 
2010) or after drug administration (Keaveny et al., 2008) were investigated. In both studies, 
FE bone strength was affected to a larger degree than bone mineral density. According to 
the authors, one of the underlying mechanisms may be that FE models are sensitive to local 
changes in bone compartments (i.e. trabecular and cortical bone), whereas these changes 
may be cancelled out in the 2D projections of bone mineral densities in a DXA measurement. 
Hence, studying FE bone strength may enable further differentiation of treatment effects and 
disease progression on bone mineral density. 
Moreover, the work in this thesis showed that clinical experts who regularly treat these 
patients experience difficulties in estimating structural strength when the bone density is lo-
cally affected. In contrast, FE models are better able to comprehend this information. Hence, 
future FE models may also be able to better account for (adverse) treatment effects in these 
complex clinical assessments. The following virtual case may illustrate future clinical practice. 
A patient with widespread disseminated cancer is treated with radiotherapy to treat a painful 
femoral metastasis. The lesion shows moderate cortical involvement but the pre-treatment 
FE-based fracture risk assessment reveals that the patient does not need prophylactic surgery 
to the femur and is referred for radiotherapy. However, the latter may decrease the bone qua-
lity on the short term. By implementing such potential changes in bone quality and rerunning 
the FE analyses, the patient-specific bone strength after irradiation can be estimated, and a 
safety factor for performing specific daily life activities can be calculated. In this way, the 
patient can be advised for example to use a walking aid in the first weeks after treatment to 
prevent pathological fracturing of the (temporarily) weakened bone. In this way, the predicti-
ons of the FE models can be used to further personalise the patient’s treatment.

Alternative sites for application of FE fracture risk predictions in metastatic bone disease
Pathological fracturing of the femur severely jeopardises the quality of life of patients, as mo-
bility can be fully lost. However, impending pathologic fractures at other localisations such 
as the spinal column or the pelvis are also very common in clinical practice, and assessment 
of these fracture risks is at least as difficult. Hence, developing FE models to improve fracture 
risk assessments at these sites may form an important future perspective. In general, bone 
metastases mostly develop in ribs, the skull, the spine and the axial skeleton (Johnson et al., 
2008; Laitinen et al., 2012; Mavrogenis et al., 2012). The second most common site of patho-
logical fractures in the peripheral skeleton are the humeri (Laitinen et al., 2012). Pathological 
humerus fractures obviously decrease the quality of life by disabling arm function, but, addi-
tionally, can greatly affect mobility if patients are already dependent on supportive walking 
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aids. The axial skeleton, however, is more often affected by metastatic lesions than periphe-
ral bones (spine (37%), pelvis (29%) and ribs (5%) versus femur (16%) and humerus (4%)) 
(van der Linden et al., 2002). Hence, spinal metastases seem to be the most important future 
perspective for applying FE models. These lesions are most common in metastatic bone 
disease (van der Linden et al., 2002) and entail an additional clinical problem. More specifi-
cally, impending vertebral fractures do not require surgical treatment per se; stable fractures 
can be treated conservatively, e.g. with radiation therapy. In the case of unstable fractures, 
however, the different bone parts may move, thereby narrowing the spinal canal and poten-
tially compressing the spinal cord or nerve roots. This compression should be prevented or 
urgently released by means of spinal surgery. Thus, FE models for spinal fracture risk assess-
ment should be able to predict both vertebral bone strength and post-fracture mechanical 
stability in order to serve as a useful clinical tool when deciding on treatment, e.g. surgery 
and/or radiotherapy.

Requirements from clinical practice
From a more practical point of view, the workflow for fracture risk assessment using QCT 
based FE models for daily use in clinical practice should be accelerated towards a clinically 
acceptable limit. Implementation in the hospital is currently hampered by the fact that the 
procedure to calculate the fracture risk takes about a day and requires specific modelling 
software and engineering knowledge. In order to make these mechanical tools available for 
clinicians, the workflow should be further automated. A promising method to do so is pro-
babilistic modelling (Taylor et al., 2013), which would use principal component analysis to 
select characteristics from the FE models that are statistically predictive for the fracture risk. If 
these significant components are determined for every patient, a statistical model can be used 
to calculate the individual fracture risk. In this way, the extensive patient-specific modelling 
becomes redundant and the fracture risk assessment will be accelerated. By further imple-
menting this statistical model in the PACS software or in a more general software application, 
the clinical expert can perform the fracture risk assessment instantly. We have recently started 
a research project that aims at the development of such a biomechanically-based statistical 
model (funded by the Dutch Cancer Society (KUN 2012-5591)).
It should be noted that the value of probabilistic models based on FE analysis will most likely 
increase after its introduction into clinical practice. More specifically, a growing database of 
clinical follow-up data comprises valuable feedback to validate previous and improve future 
model predictions. Moreover, it allows for investigating additional disease-related factors that 
may be associated with pathological fracturing, such as the primary tumour type, earlier sys-
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temic or local treatments or the general condition of the patient. In this way, different sources 
of information on the patient are combined and integrated, thereby allowing for more perso-
nalised healthcare (Panahiazar et al., 2014). 
To further define requirements from clinical practice, we have interviewed a large group of 
national and international clinical experts from different disciplines involved in the treatment 
of patients with metastatic bone disease. Based on their answers an inventory of additional 
clinical requirements was established to guide future research, which is shortly addressed 
here. 
First of all, clinicians obviously require extensive validation before they accept a new techno-
logy in their clinical practice. Secondly, the tool should be simple and very easy to use, as the 
limited time available for consulting is better spent to the patient than to handling such a tool. 
The waiting time for the result of a fracture risk assessment, however, can be much longer as 
clinicians find it acceptable to wait for the results up to a few days (comparable to e.g. waiting 
for lab results of blood samples). Finally, a potential clinical tool for fracture risk assessment 
should preferably include temporal aspects, as clinicians like to know the term of validity 
of the predictions. In this way, they can plan multiple fracture risk assessments over time, 
which would enable to better monitor their patients and align lesion-specific treatment plans 
with other local or systemic cancer-related treatment plans. Moreover, it could lead to more 
shared-decision making between the treating clinicians and the patient.
These clinical requirements should be used to prioritise the next steps in developing bio-
mechanical tools for effectively improving fracture risk assessment. Such a vision should be 
developed in an interdisciplinary manner, i.e. in a concerted effort with patients, clinicians, 
engineers and policymakers. This can be fostered by a continuous discussion on the current 
performance and concomitant costs on the one hand, and remaining clinical needs and tech-
nical challenges on the other hand. In this way, improvement of clinical fracture risk assess-
ments can be reached as time- and cost-efficiently as possible.

Concluding remarks
This thesis described the development and validation of an FE model to improve clinical 
fracture risk assessments in patients with metastatic bone disease. Current clinical guidelines 
omit mechanical parameters, such as initial bone strength, that are crucial for accurate frac-
ture risk assessments. As a result, relatively high numbers of patients are over- or undertrea-
ted: patients undergo surgery for low risk lesions or sustain pathological fractures that were 
not anticipated. Experimental as well as in vivo studies demonstrate that patient-specific FE 
models are a promising tool to further improve the sensitivity and specificity of fracture risk 
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assessments, and to outperform clinicians that rely on their own experience.
Obviously, the superior performance of this approach needs to be confirmed in clinical trials 
before this technology can be made available for clinicians treating patients with metastatic 
bone disease. The transition to in vivo fracture risk assessment is challenging, but there are 
a number of modelling and imaging developments that may further improve the predictive 
capacity of these models. With such improvements ahead, these models may become of great 
added value for the fracture risk assessment in patients with metastatic bone disease. Namely, 
FE models may serve as a basis for statistical prediction models, which can be developed into 
simple and accessible clinical tools. In this way, FE models will indirectly find their way into 
clinical practice and help both patients and their treating clinicians to choose appropriate 
treatment modalities that result in more optimal and individualised care, and, subsequently, 
in fewer unexpected fractures and unnecessary surgeries. This can lead to an improvement 
in the quality of life and potentially better survival of patients with metastatic bone disease.
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The aim of this thesis was to develop and validate a patient-specific finite element model to 
improve clinical fracture risk assessments in patients suffering from metastatic bone disease. 
This chapter summarises the key findings of this thesis. 

In Chapter 1, the clinical problem of metastatic bone disease was introduced. The number of 
patients suffering from metastatic bone disease will grow over the next decades due to a com-
bined effect of increasingly effective treatment options and a higher cancer incidence. Cur-
rent clinical practice lacks accurate predictors for fracture risk assessment needed to choose 
appropriate treatment modalities and prevent pathological fractures. Over the last decades, 
finite element (FE) models have shown to serve as a potential tool to calculate in vivo bone 
strength, both in healthy and diseased subjects, as this method is able to incorporate multiple 
biomechanical parameters. The work described in this thesis aimed at the development and 
validation of an FE model to improve clinical fracture risk predictions in patients suffering 
from metastatic bone disease. 

Validation of a subject-specific finite element model against mechanical experi-
ments
In Chapter 2, we validated the FE model against mechanical cadaver experiments. For that 
purpose, artificial lytic lesions were drilled in paired cadaver femurs. The femurs were immer-
sed in a water basin, CT scanned and subsequently loaded under compression until failure. 
This experimental setup was mimicked in the FE models, and the calculated failure loads 
were compared to the failure loads registered in the mechanical experiments. In addition, six 
clinicians (three orthopaedic surgeons, two radiation oncologists and one radiologist) were 
asked to rank the femora on failure load and to report on their ranking strategies. The failure 
load for intact and metastatic femora calculated by the FE models well resembled the results 
of the mechanical experiments. For the clinicians, however, ranking metastatic femora on 
failure load appeared to be difficult. Both the FE models and the clinicians incorporated the 
lesion characteristics, but the initial bone strength, which is essential for accurately predicting 
the risk of fracture, was only accounted for in the FE models. We concluded that FE models 
are promising for predicting bone strength in femurs with metastatic lesions; they should be 
further developed in order to yield a method for accurate fracture prediction to help clinici-
ans in their every day practice.

In the FE models described in Chapter 2, non-linear material behaviour using the Von 
Mises yield criterion (VMYC) was implemented, assuming equal bone strength in tension 
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and compression. However, it is widely shown in experimental studies that bone is stron-
ger under compressive loading than under tensile loading. Therefore, in Chapter 3, it was 
investigated if this so called asymmetric yielding in FE models can be captured using the 
Drucker-Prager yield criterion (DPYC), and can provide better results than simulations using 
the VMYC. A sensitivity analysis on parameters defining the DPYC, i.e. the degree of yield 
asymmetry and the yield stress settings, was performed, focusing on the effect on bone failu-
re. The implementation of a larger degree of yield asymmetry improved the prediction of the 
fracture location, whereas variations in the yield stress mainly affected the predicted failure 
load. We concluded that the implementation of asymmetric yielding in subject-specific finite 
element models improves the prediction of femoral bone strength. However, a more extensive 
sensitivity analysis is needed before the DPYC can be reliably implemented.

Comparing the performance of FE models and an alternative state of the art 
biomechanical tool
Subsequently, the prediction accuracy of FE models was compared to an alternative, state-of-
the-art biomechanical tool (Chapter 4). By means of computed tomography rigidity analysis 
(CTRA), axial and bending rigidity measurements were obtained. The FE models and CTRA 
were compared based on their capacity to assess femoral failure load. The two techniques 
showed good correlation with values obtained from the experimental mechanical testing. 
Kendall rank correlation coefficients between the FE rankings and the CTRA rankings sho-
wed moderate to good correlations, and no significant differences in prediction accuracy were 
found between the two methods. The slight differences that were found between the methods 
should be further investigated in prospective patient studies in order to prove surplus value of 
the one method over the other. We concluded that both non-invasive fracture risk assessment 
techniques could be developed into a practical tool that can be used in clinical practice. 

In vivo validation of FE models
To investigate the clinical value of FE models in femoral fracture risk assessments, we perfor-
med a prospective cohort study. Between August 2006 and September 2009, we included 66 
patients with painful femoral bone metastases from three different institutes. These patients 
received single or multiple fraction radiotherapy to treat pain. They underwent quantitative 
CT-scans before and after radiotherapy and filled out questionnaires on physical activity, pain 
and quality of life. Through their hospital records, patients were followed for six months. A 
setback in this prospective study was the fact that we found indications for an air artefact and 
interscanner differences in CT images (i.e. as a result of scanning patients on CT-equipment 
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from different vendors). This finding required further calibration analyses before pooling the 
data from different institutes was deemed valid. Therefore, only the results from patients ac-
crued at the Radboud university medical center (n = 23) were presented first in Chapter 5, as 
they were scanned using the same equipment as during the validation against experiments. 
During follow-up, five pathological fractures occurred in three patients. Using FE models, 
femoral failure load was calculated and compared between fractured and non-fractured 
femurs. In addition, the FE predictions were compared against fracture risk assessments by 
experienced clinicians. We found lower median failure loads in the patients that sustained a 
fracture than in the patients with no fractures. In addition, fracture locations were well pre-
dicted, when compared to post-fracture radiographs. Finally, the FE model tended to more 
accurately identify patients with a high fracture risk than experienced clinicians. These fin-
dings indicate that FE models are a high-potential tool to improve fracture risk predictions in 
clinical practice. Future work in the full patient population (n = 66) should confirm the higher 
predictive power of the FE models over current clinical guidelines.

Implementation of physiological loading conditions
In the next study, we aimed to apply more physiological loading conditions to the FE mo-
dels, as it was hypothesised that such extended FE models may better capture the local 
balance between applied load and load bearing capacity. For that purpose, muscle forces and 
hip contact forces (HCF) were calculated using musculoskeletal modelling techniques. Ho-
wever, several optimisation techniques can be used to calculate muscle forces, which subse-
quently affect the calculated HCFs. Therefore, in Chapter 6 four different optimisation techni-
ques were used for calculating muscle forces, i.e. two different static optimisation techniques, 
computed muscle control (CMC) and the physiological inverse approach (PIA). We investi-
gated their subsequent effects on calculated HCFs during gait and sit to stand and found that 
the use of different optimisation techniques considerably affected calculated HCFs. Muscle 
forces and HCFs calculated using static optimisation approached experimental values best. 
Hence, the latter were used to design more physiological loading conditions for the FE mo-
dels. More specifically, in Chapter 7, the HCFs and muscle forces calculated for five healthy 
subjects were applied to the FE models of the femur of two patients suffering from metastatic 
bone disease. Two simulations were run for each patient and each loading case: a simulation 
modelling a single gait cycle and implementing linear elastic material behaviour, and a simu-
lation modelling cyclic walking and applying non-linear elastic-plastic material behaviour. 
Results showed that the simulations predicting fracture risk of metastatic bones are rather 
sensitive to the differences between load cases from multiple healthy subjects. This indicates 
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that a true representation of the actual loading conditions within the patient is required in 
order to perform a reliable patient-specific fracture prediction. However, this is difficult for 
patients with metastatic bone disease. In addition, the accumulation of plasticity rendered the 
model sensitive to the loading history of the femur. Therefore, non-linear elastic-plastic mate-
rial models may be preferred over linear elastic models for predictions of femoral fracture in 
patients with disseminated cancer.

Discussion and future perspectives of FE modelling for fracture risk assessment 
in metastatic bone disease 
In Chapter 8 we reflected on the work described in this thesis and on the future challenges to 
further improve the FE models. Some of these challenges, e.g. correcting for interscanner dif-
ferences, should be conquered before the FE models are deemed safe for widespread clinical 
implementation. Others, such as for example defining a material model for metastatic tissue, 
may take a longer time to establish. 
Current clinical guidelines poorly predict the patient-specific fracture risk, but the results 
in this thesis, for example, suggest that the predictive capacity of current FE simulations is 
better than the assessment applied in clinical practice. The further development and imple-
mentation of a biomechanical tool should be done in a multidisciplinary manner, in which 
future studies on further development of the model are guided by clinical needs. These needs 
have already been formulated by the future users; the clinical tool should be easily applicable, 
includes temporal aspects, does not need additional time of the clinician and has proven 
effectiveness (with excellent sensitivity and specificity). In this way, improvement of clinical 
fracture risk assessments can be reached as time and cost-efficiently as possible. 
With such clear needs and opportunities for further improvement ahead, FE models may be-
come of great added value for the fracture risk assessment in metastatic bone disease. Namely, 
FE models may serve as a basis for statistical prediction models, which can be developed into 
simple and accessible clinical tools. Hence, we recently started a research project (funded by 
the Dutch Cancer Society (KUN 2012-5591)) aiming at the development of such a statistical 
model. In this way, FE models will indirectly find their way to clinical practice and help both 
patients and their treating clinicians choosing appropriate treatment modalities that result in 
more optimal and individualised care, and, subsequently, in fewer unexpected fractures and 
unnecessary surgeries. This would probably lead to an improved quality of life and potentially 
better survival rates in patients with metastatic bone disease.
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Dit proefschrift beschrijft de ontwikkeling en validatie van een patiënt-specifiek eindige ele-
menten (EE) model met als doel klinische fractuurvoorspellingen bij patiënten met botmeta-
stasen te verbeteren. In dit hoofdstuk worden de belangrijkste bevindingen uit dit proefschrift 
samengevat. 

In hoofdstuk 1 wordt de klinische probleemstelling uiteengezet. Door verbeterde behande-
lingen en een toenemende incidentie van kanker zal het aantal patiënten met botmetastasen 
blijven stijgen de komende jaren. Botmetastasen kunnen verschillende klachten veroorzaken, 
bijvoorbeeld pijn, maar kunnen ook leiden tot een pathologische fractuur. Enerzijds wordt 
ingezet op een minimaal belastende behandeling, bijvoorbeeld met radiotherapie, om de 
pijn te bestrijden, anderzijds moeten pathologische fracturen bij deze patiënten voorkomen 
worden, bijvoorbeeld door het electief stabiliseren middels preventieve chirurgie. Om een 
optimale behandeling te kiezen zijn daarom correcte fractuurvoorspellingen nodig. De frac-
tuurvoorspellers die in de huidige klinische praktijk gebruikt worden zijn echter onvoldoen-
de nauwkeurig. Recent onderzoek naar het berekenen van botsterkte met behulp van EE-
modellen toont veelbelovende resultaten. Omdat deze methode meerdere biomechanische 
parameters gebruikt om de sterkte van pathologisch en gezond bot te berekenen, heeft zij 
potentie als instrument voor klinische fractuurvoorspellingen. Het werk in dit proef-
schrift beschrijft de ontwikkeling en validatie van een EE-model om de klinische 
fractuurvoorspellingen bij patiënten met kanker en botmetastasen te verbeteren. 

Validatie van een femur-specifiek eindige elementenmodel aan de hand van me-
chanische experimenten
Hoofdstuk 2 beschrijft de validatie van de EE-modellen aan de hand van mechanische expe-
rimenten met donorbotten. In deze gepaarde femora werden gaten geboord die qua grootte 
en locatie vergelijkbaar waren met osteolytische uitzaaiingen in het bot van patiënten met 
kanker. De botten werden in een waterbak geplaatst om vervolgens CT-scans te maken. Daar-
na werden ze in een trekbank onder compressie belast totdat ze braken. Deze experimentele 
opzet werd nagebootst in de EE-modellen en de berekende faalkracht werd vergeleken met 
de resultaten uit de mechanische experimenten. Bovendien werd aan zes ervaren artsen (drie 
orthopedisch chirurgen, twee radiotherapeuten en een radioloog) gevraagd deze femora te 
rangschikken op botsterkte en daarbij hun overwegingen te rapporteren. Hun rangschikking 
en die op basis van EE-modellen werden vergeleken met de experimentele resultaten. De 
faalkracht berekend door de EE-modellen kwam goed overeen met de faalkrachten gemeten 
tijdens de experimenten, maar de ervaren artsen hadden moeite de femora correct te rang-
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schikken op botsterkte. De artsen bleken met name te letten op eigenschappen van de uit-
zaaiing, zoals bijvoorbeeld de grootte of de locatie, terwijl het EE-model ook de botkwaliteit, 
essentieel voor correcte fractuurvoorspellingen, mee kan nemen in de botsterkte-
berekeningen. Hieruit concludeerden we dat het EE-model dus potentieel toegevoegde waar-
de kan hebben bij de voorspelling van pathologische fracturen bij patiënten met kanker en 
botmetastasen. De verdere ontwikkeling van deze modellen is belangrijk om artsen in de 
toekomst een instrument te kunnen bieden waarmee fractuurrisico’s nauwkeurig voorspeld 
kunnen worden. 
In de modellen beschreven in hoofdstuk 2 werd gebruik gemaakt van een materiaalmodel 
met een symmetrisch vloeicriterium (Von Mises vloeicriterium, VMVC), onder de aanname 
dat botweefsel onder trekbelasting even sterk is als onder drukbelasting. Voorgaande studies 
hebben echter meermaals aangetoond dat bot sterker is onder druk dan onder trek. In hoofd-
stuk 3 werd daarom onderzocht of dit zogenoemde asymmetrisch vloeigedrag gemodelleerd 
kan worden met behulp van het Drücker-Prager vloeicriterium (DPVC) en of het gebruik van 
dit criterium de EE-voorspellingen verbetert ten opzichte van simulaties met het VMVC. Er 
werd een sensitiviteitsanalyse uitgevoerd waarbij het effect van variaties in de parameters die 
het vloeicriterium definiëren, te weten de mate van asymmetrie en de vloeispanning, op bot-
falen onderzocht werden. Het gebruik van een grotere asymmetrie in het vloeigedrag leidde 
tot een betere voorspelling van de fractuurlocatie, terwijl de variaties in vloeispanning met 
name invloed hadden op de voorspelde faalkracht. We concludeerden dat de implementatie 
van een asymmetrisch vloeicriterium de fractuurvoorspellingen kan verbeteren, maar dat een 
uitgebreidere sensitiviteitsstudie nodig is voordat het DPVC betrouwbaar gebruikt kan wor-
den. 

Vergelijking van de prestaties van EE-modellen en een alternatief, state-of-the-
art biomechanisch model
In hoofdstuk 4 vergeleken we de nauwkeurigheid van de voorspellingen van het EE-model 
met die van een alternatief biomechanisch model. Op basis van CT-scans berekent dit model 
de axiale stijfheid en buigstijfheid van de femora (computed tomography rigidity analysis 
(CTRA)). Aan de hand van meerdere statistische technieken werden de voorspellingen van 
de EE-modellen en de CTRA analyses vergeleken. Beide methoden vertoonden een goede 
correlatie met de faalkrachten zoals gemeten in de experimenten. Kendall rank correlatiecoëf-
ficiënten tussen EE-rankings en CTRA rankings waren matig tot goed en er waren geen signi-
ficante verschillen in de nauwkeurigheid waarmee de twee methoden de faalkracht voorspel-
den. De minimale verschillen tussen de methoden moeten verder uitgediept worden in een 
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grotere, prospectieve patiëntenstudie om te kunnen concluderen welke methode het meest 
geschikt is voor de klinische implementatie. Voor nu bieden beide niet-invasieve methoden 
veel perspectief voor doorontwikkeling tot een bruikbaar instrument dat gebruikt kan wor-
den in de klinische praktijk. 

Validatie van de eindige elementenmodellen in vivo.
Om vervolgens de klinische relevantie van de EE-modellen te onderzoeken, werd een pros-
pectieve cohortstudie uitgevoerd (hoofdstuk 5). Tussen augustus 2006 en september 2009 
werden 66 patiënten met kanker en pijnlijke botmetastasen vanuit drie radiotherapeutische 
instituten geïncludeerd. Deze patiënten werden behandeld voor pijn met een eenmalige of 
gefractioneerde dosis radiotherapie. Ze ondergingen een kwantitatieve CT-scan voor en na 
radiotherapie, en vulden vragenlijsten in met betrekking tot fysieke activiteit, pijn en kwa-
liteit van leven. Middels hun medische status werden de patiënten zes maanden gevolgd. 
Tijdens de studie werden indicaties voor een luchtartefact en interscannerverschillen (d.w.z. 
als gevolg van het gebruik van CT-scanners van verschillende leveranciers) gevonden in de 
CT-beelden uit de verschillende instituten. Om die reden konden de data in deze studie niet 
zonder meer gegroepeerd worden en zijn verdere kalibratieanalyses nodig om te corrigeren 
voor deze effecten. Daarom werden in dit hoofdstuk alleen patiënten uit het Radboudumc 
(n=23) opgenomen, omdat zij werden gescand in de scanner die gebruikt is in de validatie-
studie. Tijdens follow-up liepen drie patiënten vijf femorale fracturen op. Aan de hand van 
EE-modellen werd de faalkracht berekend en vergeleken tussen femora met en zonder frac-
tuur. Bovendien werden de EE-voorspellingen vergeleken met de fractuurvoorspellingen van 
ervaren artsen. Het bleek dat de mediane faalkracht van de femora die gebroken waren sig-
nificant lager was dan de mediane faalkracht van de femora die niet gebroken waren. Verder 
kwamen de voorspelde fractuurlocaties vrij goed overeen met de fracturen die te zien waren 
op de röntgenbeelden van de patiënten die een breuk hadden opgelopen. Tenslotte leken de 
resultaten aan te tonen dat de EE-modellen beter in staat waren de femora met een hoog 
fractuurrisico te identificeren dan de ervaren artsen. De bevindingen in deze studie laten 
opnieuw zien dat EE-modellen perspectief bieden om fractuurvoorspellingen in de klinische 
praktijk te verbeteren. Toekomstige resultaten van de totale patiëntenstudie (n=66) moeten 
deze resultaten echter nog bevestigen.

Implementatie van fysiologische belastingscondities
Het doel van de volgende stap in het onderzoek was om meer fysiologische belastingscon-
dities op te leggen aan het EE-model. Op die manier simuleren de EE-modellen mogelijk 



Chapter 10

174

beter de balans tussen de lokale belasting en belastbaarheid. Daarom werden spierkrachten 
en heupcontactkrachten berekend aan de hand van spierskeletmodellen. Er zijn echter meer-
dere optimalisatietechnieken beschikbaar om spierkrachten te berekenen, waaruit vervolgens 
de heupcontactkracht berekend kan worden. Daarom werden in hoofdstuk 6 vier verschil-
lende optimalisatietechnieken (twee statische optimalisatietechnieken, computed muscle 
control (CMC), en de physiological inverse approach (PIA)) gebruikt om spierkrachten te 
berekenen in het bovenbeensegment. We onderzochten vervolgens het effect op de bereken-
de heupcontactkracht tijdens het gaan en opstaan uit een stoel. De resultaten lieten zien dat 
de verschillende optimalisatietechnieken leiden tot aanzienlijke verschillen in de berekende 
contactkracht. Spierkrachten en heupcontactkrachten die berekend waren met behulp van 
statische optimalisatie benaderden in vivo gemeten heupcontactkrachten het beste. Daarom 
werd deze laatste techniek gebruikt voor het berekenen van fysiologische belastingscondities 
voor het EE-model.
In hoofdstuk 7 werden heupcontactkrachten en spierkrachten, berekend voor vijf gezonde 
proefpersonen, opgelegd aan het EE-model van het femur van twee patiënten met kanker en 
botmetastasen. Voor elk femur en elke belastingsconditie werden twee simulaties gedraaid. 
In de eerste simulatie werd een enkele loopcyclus in combinatie met lineair elastisch mate-
riaalgedrag gemodelleerd; in de tweede simulatie werden tien loopcycli in combinatie met 
niet-lineair elastisch-plastisch materiaalgedrag gesimuleerd. De resultaten lieten zien dat de 
simulaties die fractuurrisico’s bij patiënten met kanker en botmetastasen voorspellen behoor-
lijk gevoelig zijn voor verschillen in belastingscondities tussen de vijf gezonde proefpersonen. 
Dit suggereert dat een belastingspatroon een ware afspiegeling dient te zijn van de werkelijke 
belasting van het femur van de patiënt alvorens een betrouwbare fractuurvoorspelling gedaan 
kan worden. Dit is echter moeilijk in het geval van patiënten met kanker en botmetastasen. 
Bovendien bleek dat het model gevoelig is voor de voorafgaande belastingen als de plasticiteit 
kan accumuleren. Daarom is er een voorkeur voor niet-lineair elastisch-plastisch materiaal-
gedrag in modellen die gebruikt worden voor het voorspellen van fracturen bij patiënten met 
botmetastasen.

Discussie en toekomstperspectieven voor het gebruik van EE-modellen bij frac-
tuurvoorspellingen bij patiënten met kanker en botmetastasen
In hoofdstuk 8 reflecteerden we op het werk beschreven in dit proefschrift, en op de toekom-
stige uitdagingen om de EE-modellen verder te verbeteren. Sommige uitdagingen, zoals het 
corrigeren van verschillen tussen CT-scans, moeten opgelost worden voordat de EE-model-
len veilig en breed uitgezet kunnen worden in de klinische praktijk. Voor andere uitdagingen, 
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zoals het definiëren van een materiaalmodel voor metastaseweefsel, is nog een lange weg te 
gaan. 
Aan de hand van de huidige klinische richtlijnen kunnen patiëntspecifieke fractuurrisico’s 
onvoldoende voorspeld worden door artsen. De resultaten in dit proefschrift laten zien dat 
de voorspellingen van de huidige EE-modellen beter zijn dan de klinische voorspellingen. 
De verdere ontwikkeling van deze modellen moet multidisciplinair van aard zijn, waarbij de 
doelen voor vervolgstudies mede vastgesteld worden door wensen en eisen uit de klinische 
praktijk. Zulke eisen zijn reeds geformuleerd door toekomstige gebruikers (zoals de artsen 
die deze patiënten behandelen): het instrument moet eenvoudig toepasbaar zijn, geschikt zijn 
voor herhaalde metingen in de tijd, weinig tijdrovend en bewezen accuraat zijn (d.w.z. een 
excellente sensitiviteit en specificiteit laten zien). Op die manier kan de verbetering van klini-
sche fractuurvoorspellingen zo veel mogelijk tijds- en kostenefficiënt bereikt worden. 
Met zulke duidelijke behoeften en kansen in het vizier, kunnen EE-modellen een grote toege-
voegde waarde hebben voor fractuurvoorspellingen bij patiënten met kanker en botmetasta-
sen. De EE-modellen kunnen als basis gaan dienen voor statistische predictiemodellen, welke 
doorontwikkeld kunnen worden tot eenvoudige en toegankelijke klinische instrumenten. 
Recentelijk zijn we een onderzoeksproject gestart (gesubsidieerd door KWF Kankerbestrij-
ding (KUN 2012-5591)) om een dergelijk predictiemodel te ontwikkelen. Op die manier kun-
nen EE-modellen hun weg naar de klinische praktijk vinden om patiënten met kanker en hun 
artsen gezamenlijk een keuze te laten maken voor de beste behandeling. Dit resulteert in op-
timalere en meer gepersonaliseerde zorg en in minder onverwachte fracturen en overbodige 
operaties. Dit kan dan leiden tot een hogere kwaliteit van leven, betere mobiliteit, en hopelijk 
ook een betere overleving bij patiënten met kanker en botmetastasen. 
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