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Boscia senegalensis is a drought resistant shrub whose seeds are used in West Africa
as food. However, the seeds, or hanza, taste bitter which can be cured by soaking
them in water for 4–7 days. The waste water resulting from the processing takes up
the bitter taste, which makes it unsuitable for consumption. When used for irrigation,
allelopathic effects were observed. Glucosinolates and their breakdown products are
the potential causes for both the bitter taste and the allelopathic effects. The objectives
of this study are to identify and quantify the glucosinolates present in processed and
unprocessed hanza as well as different organs of B. senegalensis, to analyze the
chemical composition of the processing water, and to pinpoint the causal agent for
the allelopathic properties of the waste water. Hanza (seeds without testa), leaves,
branches, unripe, and ripe fruits were collected in three populations and subjected to
glucosinolate analyses. Methylglucosinolates (MeGSL) were identified in all plant parts
and populations, with the highest concentrations being found in the hanza. The levels of
MeGSLs in the hanza reduced significantly during the soaking process. Waste water was
collected for 6 days and contained large amounts of macro- and micronutrients, MeGSL
as well as methylisothiocyanate (MeITC), resulting from the conversion of glucosinolates.
Waste water from days 1–3 (High) and 4–6 (Low) was pooled and used to water
seeds from 11 different crops to weeds. The High treatment significantly delayed or
reduced germination of all the plant species tested. Using similar levels of MeITC as
detected in the waste water, we found that germination of a subset of the plant species
was inhibited equally to the waste water treatments. This confirmed that the levels of
methylisiothiocyanate in the waste water were sufficient to cause the allelopathic effect.
This leads to the possibility of using hanza waste water in weed control programs.

Keywords: Africa, allelopathy, ecosystem services, famine food, glucocapparin, methylisothiocyanate, weed
control
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Introduction

During times of famine in Africa the seeds of the drought
resistant native evergreen shrub, Boscia senegalensis, locally
known as hanza or mukheit, among others, are often used as
food in sub-Saharan countries (Orwa et al., 2009). In Niger,
the trees flower in October–November and the fruits take
until summer of the next year (June–August) to fully ripen.
The ripe fruits contain a sweet jelly that can be consumed
directly or used to produce syrup, and 1–4 seeds [Agroforestry
Database 4.0 (Orwa et al., 2009)]. After removal of the
carpels and testa (seed coats) of the seeds, the remaining
cotyledons plus the embryo, hereafter referred to as “hanza”,
are used for consumption as well (Figure 1A). Hanza is a
rich source of starch (40–66% of dry mass), protein (15–
30% of dry mass), and minerals (K, P, Si, and Mg; Booth
and Wickens, 1988; Salih et al., 1991). The seeds can be
consumed after soaking or cooking in hot water, or used to
produce flour that can be used for baking and porridge (Booth
and Wickens, 1988). However, B. senegalensis belongs to the
Capparaceae family and is known to contain glucosinolates
(Kjær et al., 1973). Glucosinolates are nitrogen and sulfur
containing secondary metabolites present in species belonging to
the order Brassicales. The breakdown products of glucosinolates,

such as isothiocyanates, are formed upon contact with the
plant-produced enzyme myrosinase that is stored in separate
cells in the plant (Halkier and Gershenzon, 2006; Hopkins et al.,
2009). It was found that leaves and fruits of B. senegalensis
indeed produce isothiocyanates upon crushing and consequently
they can be effectively used to protect grains from storage pests
(Seck et al., 1993; Gueye et al., 2011, 2013a). Even though it
has been shown that B. senegalensis leaves and whole fruits
contain MeGSL, also known as glucocapparin (Gueye et al.,
2011, 2013a,b), the glucosinolate levels in hanza itself were never
explicitly assessed.

Consumers have developed a process to eliminate the toxic
and bitter compounds from hanza. The procedure consists of
soaking the seeds in water for 4–7 days while changing the
water daily (Salih et al., 1991; Garvi, personal communication).
Although this process allows for the use of hanza for nutrition,
it also requires large amounts of clean water, a limiting
resource in these countries. The region suffers from what is
considered economic water scarcity, where the infrastructure and
investments in water are not enough tomeet population demands
(IFPRI, 2013; UN, 2014). The water takes up the bitter taste
of the hanza seeds which limits uses for human consumption
or husbandry. Therefore, identifying alternative uses for this
waste water is of high relevance. One of the initial alternatives

FIGURE 1 | (A): Hanza, (B) Effect of watering standing vegetation with
hanza waste water in Zinder, Niger. (C–E): effects of hanza waste
water on germination of Zea mays (C), Vigna unguiculata (D), and
Pennisetum glaucum (E). Treatments (from left to right in each picture):
Tap water, Low (waste water days 4–6), and High (days 1–3); (F–H):

effect of methylisothiocyanate (MeITC) on seed germinations of Z. mays
(F), Arachis hypogaea (G), and P. glaucum (H). Treatments (from left
to right in each picture): Tap water, 0.2 mM MeITC, 1.0 mM MeITC.
Picture credits: Renate Garvi (A,B), Loren J. Rivera-Vega (C–E), Nicole
M. van Dam (F–H).

Frontiers in Plant Science | www.frontiersin.org 2 July 2015 | Volume 6 | Article 532

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Rivera-Vega et al. Allelopathy in hanza processing water

considered using B. senegalensis waste water for irrigation of
standing crops. However, it was observed that plants watered
with the waste water wilted and in some cases died, thus showing
allelopathic properties (Figure 1B). Given the scarcity of water in
the region, this reduces the potential to re-use the waste water
for crop irrigation. Moreover, for purposes of water recycling
(purification and re-use) it has to be known which contaminants
are in the water that should be removed after the production
of sweet hanza to make the water suitable for re-use. Given the
fact that crushed leaves of hanza produce methylisothiocyanate
(MeITC; Gueye et al., 2013a) and that MeITC has strong
allelopathic properties (Brown and Morra, 1997), it is likely that
the glucosinolates in the hanza are converted into MeITC during
the processing and that this causes the observed allelopathic
effect.

To test our assumptions, we analyzed the levels of
glucosinolates and its breakdown products in hanza and
the waste water resulting from hanza processing. Specifically, we
quantified the concentrations of glucosinolates in B. senegalensis
leaves, fruits and hanza (i.e., the seeds without testa) collected
in different years and populations in Niger. Moreover, we
analyzed the concentration of glucosinolates in hanza during
the debittering process and chemically analyzed the waste water
for glucosinolates and their breakdown products as well as for
macro- and micro elements. Based on these results, we separately
tested the effect of waste water collected after the first 3 days of
processing and after 4–6 days of processing on the germination
of 11 different crop and weed species. A sub-set of these species
was used to confirm that indeed the concentrations of MeITC we
found in the waste water were sufficient to cause the observed
effects. Based on our results, we conclude that hanza contains
very high levels of MeGSL, which significantly decrease during
the soaking process. The resulting waste water contains MeITC
in concentrations that are sufficient to inhibit or delay seed
germination. We discuss if and how it is possible to apply hanza
waste water as a way to apply weed control.

Materials and Methods

Origin of Reference Compounds
Sinigrin, MeITC (97% pure) and ethylisothiocyanate (97% pure)
were all purchased at Sigma–Aldrich (St Louis, MA, USA).
A reference sample of MeGSL (glucocapparin) was kindly
provided by Dr. Jacqueline Bede, McGill University, Canada.

Sampling of Hanza Batches and Organs of
Boscia senegalensis for Glucosinolate
Concentrations
Hanza (B. senegalensis seeds without the testa) and various organs
of B. senegalensis shrubs were sampled in different years and in
different populations. In 2012, we analyzed five batches of dry,
unprocessed hanza harvested in 2011 at different locations and
dates in the Zinder Region of Niger (Atalouwawa, collection date
October 07, 2011, Tirmini; September 16, 2011, El Gada: October
17, 2011; Aroungouza: July 10, 2011, Tanout: June 26, 2011).

In 2013, old leaves, young leaves, branches, unripe fruits, and
seeds (hanza) were collected from three different populations
(Baboul, Tanout, and Zinder), air dried and shipped to Nijmegen,
NL. Branches could not be reliably analyzed because they were
too tough to be ground to a fine powder either by the ball mill or
a shredder. Additionally, fresh fruits from five individual trees in
the Zinder population collected in September 2013 were bagged
and taken to Nijmegen for analysis within 40 days. Directly after
arrival, the fruits were separated in three parts: the outer carpel,
the inner carpel (including testa) and embryo plus cotyledons
(hanza), and analyzed following standard procedures. One of
the batches showed significant mold development and was not
included in the chemical analyses. In 2014, another batch of
dry unprocessed hanza from the Zinder population (population
Kanya Wamé, Zinder, Niger) was sent to Leipzig, Germany. This
batch was used to produce waste water for the germination tests.

Differences in glucosinolate concentrations between batches
within 1 year were determined using ANOVA or MANOVA
analyses (STATISTICA vs. 10.0, Statsoft, Tusla, OK, USA).
Levene’s test was used to check for the assumption of HOV, and
analyses of the residuals were used to check for assumptions of
normality.

Effect of Soaking Hanza on Seed
Glucosinolate Content and ITC in Water
Six 50 ml tubes were filled with 5 g of dried seeds (random mix
of hanza populations collected in 2011, Table 1) each and 40 ml
tap water (8x seed volume). The tubes were placed in a climate
chamber at 35◦C, 50% R.H., 12hL/12hD. Each day the water was
decanted, collected and replaced with fresh tap water. The pH of
the decanted waste water was measured each day to establish a
potential correlation between the level of glucosinolates in the
seeds and the pH of the waste water. Both seeds and water
samples were frozen at −20◦C until analysis. After 2 days, the
amount of water was reduced to 20 ml (4x seed volume). The
seeds were soaked for 7 days in total.

Glucosinolate Analysis
The seed samples taken from the tubes as well as from the original
seed batch were freeze-dried and ground in a Retsch ball mill.
Aliquots (n = 3 per day) of 50 mg were weighed into a 2 ml
Eppendorf tube and extracted following standard procedures
(EC, 1990). The resulting desulfo-glucosinolates were analyzed
on an HPLC (Ultimate 3000, Dionex, Idstein, Germany) with
PDA-detector equipped with a C18 column (150 mm × 4.6 mm
i.d., 5 µm particle size) plus pre-column (Alltima, Grace Davison
Discovery Sciences, Lokeren, Belgium). The flow was maintained
constant at 0.750 ml/min, with a gradient starting from 2%
acetonitrile in water to 20% acetonitrile after 15 min. The column
was kept at 40◦C and the sample injection volume was 10 µl.
Detection of the peaks with the PDA detector was at 229 nm
with a reference wavelength of 600 nm. The identity of desulfo-
MeGSL (Rt = 3.5 on the above HPLC system) was confirmed
using a reference sample kindly provided by Dr J. Bede, and on
LC-MS (Supplementary Figure S1). An external sinigrin curve
(50–650µM) was used for quantification; the response factor was
set to 1.0 (Brown et al., 2003).
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TABLE 1 | Average concentration (µmoles.g−1 dry mass; SEM between brackets) of methylglucosinolate (MeGSL) in different organs of Boscia
sengalensis in different years and populations in Niger, Africa.

Year 2011

Hanza batches

Population n Hanza

Atalouwawa 3 96.6 (4.1)ab

Tirmini 3 89.1 (2.3)b

El Gada 3 91.5 (1.6)ab

Aroungouza 3 89.3 (3.2)b

Tanout 3 103.3 (1.9)a

Year 2013

Individual seeds (Hanza), old and young leaves

Population n Hanza Unripe fruits Old leaves Young leaves

Baboul 5 197.9 (13.9) 72.8 (5.6) 59.2 (6.8) 65.9 (6.6)

Tanout 5 261.9 (24.2) 71.4 (6.6) 73.5 (12.1) 59.3 (11.1)

Zinder 5 230.4 (29.2) 67.4 (9.9) 60.3 (16.7) 102.7 (17.7)

Ripe fruits (individual)

Population n Hanza Inner carpel Outer carpel

Zinder 4 113.1 (26.4)a 1.3 (0.8)b 6.2 (3.0)b

Year 2014

Hanza seed batch

Population n Hanza

Kanya Wamé, Zinder 3 230.7 (20.5)

Different letters indicate significant differences in concentrations between hanza within 1 year (2011, Tukey Post hoc HSD, P < 0.05) or between parts of unripe fruits
(Friedman ANOVA, followed by multiple comparisons Z-tests, P < 0.05).

ITC Analysis of Waste Water
Isothiocyanates were extracted by using 800 µl of the above
waste water samples. To verify the quality of the extraction to
each sample 400 µl of a 1.74 mM ethylisothiocyanate solution
in milliQ water was added as internal standard. To extract
the isothiocyanates from the water, 200 µl of dichloromethane
(DCM) was added, the mixed sample was vortexed, briefly
centrifuged at 10000 rpm and 100 µl of the DCM phase
was taken for GC-TOF-MS analyses on a JEOL AccuTOF-
GCv JMS-100GCv equipped with an Agilent 7890A GC with
a HP-5MS column (30 m × 0.25 mm × 0.25 µm) and
a G4513A autosampler. Conditions used for the GC-TOF-
MS isothiocyanate analyses: 50◦C for 1 min, followed by a
temperature gradient of 30◦C/min to 200◦C. Split ratio: 1:10.
Detector voltage 2000 V. Injection volume 1 µl. An external
MeITC reference curve (5–20 nmol/microliter) was used for
quantification.

Seed Sources
Seeds of the following plant species (common names in brackets)
were obtained from the following sources: Brassica nigra (Black
mustard) – personal collection NM van Dam, population
“Proefveld Wageningen,” The Netherlands, 2009; Brassica juncea

cv. varuna (Brown mustard) – Division of Genetics, IARI,
New Delhi, India (see Mathur et al., 2013); Zea mays (corn)
“Zuckermays F1, Tasty Gold” and Solanum lycopersicon cv.
“Hellfrucht Hilmar” (tomato) – Weigelt GmbH & Co, Walluf,
Germany; S. dulcamara (bittersweet nightshade) – collection
Solanaceae Genebank Radboud University Nijmegen, the
Netherlands; Lolium perenne (perennial ryegrass)– Veevoeder-
en Kunstmesthandel J.J. Lamers V.O.F., Heteren, The
Netherlands. Seeds of West-African crops species such as
Vigna unguiculata (local name ‘Niébé’ or cowpea), Hibiscus
sabdariffa (local name ‘Oseille’), Sorghum bicolor (sorghum,
abbreviated as Sor. bicolor to avoid confusion with Solanum),
Pennisetum glaucum (millet), and Arachis hypogea (peanut) were
all obtained at a local market in Zinder, Niger, by Renate Garvi
and sent to Germany for germination assays.

Hanza Water for Germination Experiments
Two batches of hanza waste water were produced for germination
assays by soaking 400 g of hanza (population Kanya Wamé,
Zinder, Niger) each time in tap water. Batches were kept at 30◦C
day and night inside a growth chamber. Water was collected
daily and replaced with clean water. For days 1 and 2, seeds were
soaked in 3.2 L of water, from day 3 onward the volume of water
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was cut in half (1.6 L). Waste water from days 1–3 and 4–6 were
pooled and named “High” and “Low,” respectively. Seeds imbibed
approximately 2 L of water during the first 3 days and 0.5 L during
the last 3 days. Two sets of High and Low waste water pools were
made in August and September 2014, respectively.

Hanza Water Chemical Analyses
Two independent samples of the High and Low waste water
pools produced in August 2014, and one High and Low sample
of the September 2014 pools, plus three samples of the tap
water used to soak the Hanza were taken for elemental analyses.
Per sample, 10 ml supplemented with 0.1 ml 65% HNO3
to prevent metal precipitation, was analyzed using ICP-OES
(Inductively coupled plasma – optical emission spectrometry;
iCAP 6000 Thermo Fisher Scientific, Waltham, MA, USA) to
assess the elemental composition of the water (Butcher, 2010).
In addition, an 18 ml aliquot was used to assess total organic
carbon and total organic nitrogen concentrations on a Total
Organic Carbon/Nitrogen analyzer (TOC-L CPH/CPN analyzer,
Shimadzu, Duisburg, Germany).

The same pools were used to assess the glucosinolate levels
in the water, but only one sample was analyzed per time point
and batch (n = 2). Per pool, 0.5 ml of waste water was brought
directly on a DEAE A25 Sephadex column as if they were regular
glucosinolate extracts and processed as such from there. Three
samples of the seed batch used to produce the waste water were
extracted as well to calculate the amount of MeGSL that was
present in the seeds at the start of the soaking process. Differences
in the chemical composition of the waste water batches and tap
water were identified using MANOVA, followed by ANOVA,
and Tukey Post hoc HSD analyses per element or compound
using STATISTICA 10.0 software [StatSoft, Inc. (2011), Tusla,
OK, USA].

Germination Assay with Hanza Waste Water
For each plant species, 10 plastic pots (Teku, 7 cm ø, 200 ml
volume) were filled with multiplication substrate (Floraton 3,
Floragard, Oldenburg, Germany). Each pot was sowed with 10
or 5 (for A. hypogaea) seeds and lightly covered with a layer of
∼5 mm of multiplication mixture. Next, 50 mL of water from
each treatment were used to water the pots. This completely
saturated the soil in the pots. Treatments included: Control
(tap water), High treatment (water pooled from days 1–3) and
Low treatment (water pooled from days 4–6). The pots were
covered with clear plastic household wrap, fixed with a rubber
band around the pot, and placed in a climate cabinet set to
25◦C daytime temperature and 22◦C nighttime temperature,
70% R.H. and a 12 h photoperiod to mimic the conditions
in Niger. To avoid cross contamination via the water, pots
subjected to the same treatment were placed together on one plate
(20 cm× 20 cm). Number of seeds germinated was counted 7 and
10 days after sowing to determine germinability. Above ground
biomass was collected and air dried in an oven at 60◦C for 24 h
to measure dry weight. The dry biomass per pot was assessed by
weighing to the nearest 0.1 mg. One-way ANOVA followed by a
Tukey means of separation were used to assess significance.

Germination Assay with MeITC Solutions
A subset of the above plant species, Z. mays, B. nigra,
S. lycopersicon, P. glaucum, and A. hypogaea, was used to test
the hypothesis that MeITC in the waste water was the causal
agent for the effect of waste water on seed germination. MeITC
(Sigma–Aldrich, 97% pure) was dissolved in warm tap water
(Teasdale and Taylorson, 1986) to obtain a 1 mM (73 mg/L)
and a 0.2 mM (14.7 mg/L) solution. Right after sowing, the pots
were watered either with 50 ml tap water, 50 ml of the 1 mM
(High) MeITC solution or 50 ml of the 0.2 mM (Low) MeITC
solution. Per treatment level (Control, High, and Low) there were
six plates, each containing one replicate pot per species (n = 6
pots per species per treatment). The 18 plates with the different
treatments were evenly spread over the different positions in the
cabinet using the same conditions as above, and the pots were
randomly assigned to a position on the plate. The pots were
checked daily for visible signs of germination. After 2 days the
emerging P. glaucum seedlings in the control and Low treatments
were touching the plastic, and the covers of all pots were removed.
After removal of the covers each pot received another 5 ml
of the respective treatment solution. From then on, the pots
were bottom watered with tap water (80–100 ml per day). From
2 days after sowing, the number of seeds that had germinated,
as evidenced by an emerging (hypo)cotyledon, epicotyledon, or
coleoptyle in each pot was counted. Germination trajectories in
the different treatments groups were analyzed using Kaplan–
Meier time-to-event Survival Analyses (McNair et al., 2012) using
STATISTICA 10.0 software.

Results

Methylglucosinolate is Present in all Tissues of
Boscia senegalensis
Methylglucosinolate was found in all organs of B.senegalensis
(Table 1). In contrast to a previous study (Kjær et al., 1973),
we found no additional glucosinolates to be present. The
levels of glucosinolates in hanza varied among populations
and years. The five populations sampled in 2011, all showed
concentrations around 100 µmol per gram dry mass (Table 1),
whereby the hanza of the Tanout population had the highest
concentration (ANOVA, F4,10 = 4.673, P = 0.0231). Overall,
young and old leaves, whole unripe fruits and hanza showed
significant differences between populations in 2013 (ANOVA,
population effect, F2,48 = 4.42, p = 0.0173). As before, the
average MeGSL concentrations were the highest in the Tanout
population. MeGSL concentrations significantly differed between
plant organs: the concentrations in the hanza itself were about 2
to 4 times higher (organ effect, F3,48 = 79.09, p < 0.001) than
those in leaves or unripe fruits. This effect was consistent over all
populations (population x organ effect, F6,48 = 1,10, p = 0.37).
Interestingly, in ripe fruits, the MeGSL concentrations in inner
and outer layers of the fruit wall (carpels) were extremely low,
about 20 to 80 times lower than in the hanza (embryo plus
cotyledons, Kruskal–Wallis-Test: H = 7.538, p = 0.0231), which
may also explain the relatively low overall concentration in whole
unripe fruits.
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Soaking Hanza Reduces Glucosinolates Levels
and Produces Waste Water with
Methylisothiocyanate
Methylglucosinolate levels in hanza decreased with time to
less than 10% of the original concentration within 5 days of
soaking (Figure 2A). The strongest decrease occurred during
the first 3 days of processing. The average pH value of the
waste water collected on each day ranged from 6 to 6.7 and
was not significantly correlated with glucosinolate levels in the
hanza (data not shown). Waste water from the soaking process
was analyzed to determine its content of MeITC – a conversion

FIGURE 2 | (A) Concentration of methylglucosinolate (MeGSL; +SEM) in
hanza (mix of five populations collected in 2011) at different days after starting
the soaking process. (B) MeITC (+SEM) concentration in waste water during
the soaking process. The concentration of MeITC in the waste water collected
after 6 days was below the detection limit. Half full circles connected by the
dotted line indicate the theoretical MeITC concentrations when taking into
account that from day 3 onward, the volume of fresh water to process hanza
was reduced to 50% of that used on days 1 and 2.

product of MeGSL (Supplementary Figure S1). When corrected
for dilution effects after day 3, when the volume of water to soak
the hanza was halved, the MeITC in waste water decreased at
similar rates as MeGSL in seeds (Figures 1C–E and 2B). This
indicates that MeGSL is being converted to MeITC during the
soaking process.

Hanza Processing Waste Water has
Allelopathic Properties
After 7 days, watering seeds with waste water of the first
3 days (High treatment) had a significant negative effect on
germination rates for all plant species tested (Figure 3). Hanza
waste water of day 3–6 (Low treatment) had a significant effect
(ANOVA, p< 0.05) on the germination of L. perenne, Sor. bicolor,
S. lycopersicon, and A. hypogaea, only. After three more days of
watering with clean water, the germination percentages in the
waste water treatments had caught up. At that time, the Low
treatment had a significant effect on S. bicolor, P. glaucum, and
S. lycopersicon germination only. The High treatment still had a
significant effect on most plant species tested except for B. nigra
(Figure 3). After 10 days the dry weight of the seedlings was
measured. The Low treatment had a significant effect on the
biomass of L. perenne, S. lycopersicon, and Sor. bicolor. High
treatment had a negative effect on the drymass of all plant species,
except for S. dulcamara (Figure 4). No seedlings from the High
treatment were available to assess dry weight for S. lycopersicon
and A. hypogaea.

Chemical Composition of Waste Water Differs
Significantly
Samples of water used for germination experiments were
analyzed for elemental composition. In general, the waste water
resulting from the debittering process has a high concentration
of several macro and micro elements, with significant differences
in quantity of basic elements among treatments (Table 2). The
most abundant macro elements in both High and Low water
were C, N, and S, showing that the soaking not only reduces
the level of glucosinolates, but also the nutritive value of hanza.
Water from the High treatment had the highest quantity of macro
elements, except for Na, Ca, and Si, which were the highest in tap
water. The most abundant micronutrients were B and Zn in all
water samples: the amount of B in High water was almost five
times as much as that in Low and tap water. Interestingly, a high
concentration of Mn was found in High and Low water but not
in tap water. Iron (Fe) levels were the highest in the low water
indicating that this essential nutrient leaches out of the hanza
with time.

Furthermore we found high levels of MeGSL in the high waste
water (Table 2). Based on how much water was used (8 L for
high, 4.8 L for low), estimates of how much was lost during
soaking due to absorption by the dry hanza and evaporation (2 L
and 0.5 L in high and low, respectively) and the initial levels of
MeGSL in hanza (Table 1, 2014 batch), we calculated that of the
92.3mmol ofMeGSLpresent in 400 g seeds, 42.2mmol, or∼45%,
is retrieved in waste water of the first 3 days, and 1.9 mmol (∼2%)
in the waste water of the last 3 days. Seen the very low levels
of glucosinolates that remain in the seeds, this means that more
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FIGURE 3 | Germination percentages (+SEM) at 7 and 10 days after sowing per treatment group: Control (white open bars), Low (gray bars), and
High (black bars). Different letters represent statistically significant differences in germination (One-way ANOVA, Tukey mean separation, p < 0.05).
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FIGURE 4 | Dry mass of seedlings (+SEM) after 14 days in each treatment group: Control (white open bars), Low (gray bars), and High (black bars).
Different letters represent statistically significant differences in dry weight (Tukey mean separation, p < 0.05).

than 50% of the MeGSL is lost during soaking, probably because
of conversion into MeITC followed by evaporation or possibly
because other breakdown products are formed.

Methylisothiocyanate in the Waste Water is
Responsible for Germination Inhibition
Germination experiments were repeated for Z. mays, P. glaucum,
B. nigra, S. lycopersicon, and A. hypogaea using MeITC
concentrations equivalent to those found in the waste water.
Water containing 1.0 mM of MeITC reduced or delayed

germination in all species tested (Figures 1F–H and 5; Kaplan
Meier survival analysis; Z. mays, Chi-square: 52.09; P. glaucum,
Chi-square: 85.87; B. nigra, Chi-square: 15.78; S. lycopersicon
Chi-square: 87.63, and A. hypogaea Chi-square: 23,74; d.f. = 2
and p < 0.001 for each test). Pairwise comparisons between the
different treatments groups within each plant species (McNair
et al., 2012) showed that overall the 0.2 mM concentration did
not strongly inhibit germination. In three species, Z. mays, P.
glaucum, and A. hypogaea the low concentration of MeITC
showed a mild, yet not significant, stimulatory effect. Similar to

Frontiers in Plant Science | www.frontiersin.org 8 July 2015 | Volume 6 | Article 532

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Rivera-Vega et al. Allelopathy in hanza processing water

the high waste water treatment, the 1.0 mM MeITC solution
strongly delayed or even inhibited germination for at least 7 days,
thus supporting our hypothesis that MeITC in the high waste
water treatment was sufficient to cause the observed effects.

Discussion

Hanza contains very high levels of MeGSL. Despite earlier
calls to determine whether the ‘lengthy preparations of the
food successfully detoxify it’ (Booth and Wickens, 1988), to
our knowledge this is the first record showing that soaking
indeed reduces the high levels of MeGSL in hanza to less
than 5% of the original concentration within a week. This
indicates that the high levels of glucosinolates are the likely
cause of the bitter taste in unprocessed seeds. About 50%
of the MeGSL present in the seeds are not retrieved in
the waste water or in the sweet hanza at the end of the
processing, likely because they are being converted into other
compounds. This was corroborated by the observation that the

TABLE 2 | Elemental composition (macro elements, concentration in mM,
micro elements: concentration in µM, MeGSL in mM) of tap water, waste
water of days 1–3 (High) or of days 4–6 (Low) collected during the soaking
of Hanza (Boscia senegalensis seeds).

Tap water High (days 1–3) Low (days 4–6) F2,6

Macroelements (mM)

C 1.392 (0.288)c 332.861 (19.75)a 38.822 (5.466)b 706.5∗∗∗

N 0.503 (0.041)c 41.907 (1.931)a 6.071 (0.525)b 1134.0∗∗∗

P n.d. 0.970 (0.048)a 0.276 (0.035)b 629.4∗∗∗

S 1.663 (0.058)b 23.652 (2.762)a 3.772 (0.921)b 156.2∗∗∗

K 0.096 (0.007)b 8.402 (0.338)a 0.592 (0.183)b 1323.8∗∗∗

Mg 0.390 (0.026)b 1.330 (0.048)a 0.405 (0.165)b 86.1∗∗∗

Na 2.196 (0.160)a 0.028 (0.011)b 0.395 (0.323)b 93.4∗∗∗

Ca 1.200 (0.016)a 0.948 (0.005)ab 0.754 (0.215)b 9.7∗

Si 0.201 (0.002)a 0.0128 (0.006)b 0.016 (0.012)b 667.3∗∗∗

Microelements (µM)

As 0.033 (0.032) 0.018 (0.031) 0.014 (0.018) 0.35n.s.

B 5.230 (0.207)b 24.073 (1.369)a 5.695 (2.757)b 109.2∗∗∗

Cd 0.003 (0.003) 0.006 (0.001) 0.002 (0.002) 2.67n.s.

Co <0.001b 0.015 (0.008)a 0.004 (0.006)ab 5.4∗

Cu 0.761 (0.003)b 2.946 (0.084)a 0.163 (0.100)c 1138.4∗∗∗

Fe 0.145 (0.057) 1.063 (0.198) 6.851 (4.736) 5.3∗

Hg 0.011 (0.004)a 0.002 (0.002)b 0.005 (0.002)ab 7.4∗

Mn 0.036 (0.004)b 13.544 (0.690)a 11.869 (3.168)a 46.4∗∗∗

Mo 0.009 (0.006)b 0.062 (0.009)a 0.011 (0.003)b 72.3∗∗∗

Ni 1.299 (0.023)a 1.147 (0.074)b 0.269 (0.023)c 426.1∗∗∗

Pb 0.031 (0.026) <0.001 <0.001 4.1n.s.

Sr 1.544 (0.028)a 0.079 (0.001)c 0.131 (0.092)b 677.7∗∗∗

Zn 14.733 (0.813)ab 8.126 (2.629)b 20.175 (7.525)a 5.1p = 0.051

MeGSL (mM) 7.11 (0.98) 0.41 (0.05)

N = 3, SD between brackets. MANOVA to test for differences between water
samples over all elements: F12,2 = 119.206, P = 0.008. Last column: F-values
of ANOVA per element. Significance: n.s. = not significant, ∗p < 0.05, ∗∗p < 0.01,
∗∗∗p < 0.001. Different letters indicate significant differences between water
samples based on Tukey HSD post hoc analyses.

breakdown product MeITC was found in the waste water and
its levels followed a similar course in time during the soaking
process as MeGSL concentrations in the seeds. Furthermore,
we experimentally assessed that the MeITC in the waste
water is responsible for the observed allelopathic effect on
seed germination in 11 different plant species. Consequently,
the MeITC in the waste water reduces its potential use for
other activities after the “debittering” process, unless the waste
water can be used to control weeds in a sustainable and cost
effective manner. Toward this goal, hanza waste water may be
used as a natural herbicide. The “Croplife foundation” reports
weeding as one of the most taxing and expensive – both
physically and economically – labors in crop production in Africa
(Gianessi, 2009). Most of this weeding is done by hand and
by female farmers. Obtaining economically and environmentally
sustainable methods of weed control could significantly impact
crop yields in smallholder farms and become part of integrated
pest management programs. Of course, negative effects on
the crop itself should be avoided. Our data show that the
germination of crops and weeds were both affected. However,
adult crop plants may be less susceptible; field observations in
Niger showed that larger Sorghum plants are not negatively
affected by watering with hanza waste water (Renate Garvi,
personal observations). Moreover, the structurally closely related
glucosinolate conversion product allyITC, only caused significant
effects on plant growth at concentrations that were at least
10–50 times higher than used in our study (Øverby et al.,
2015).

As shown before in B. senegalensis from Senegal, the levels
of MeGSL were found to differ between sampling times and
populations (Gueye et al., 2013b). These studies reported that
leaves overall had higher or similar MeGSL levels than the fruits.
For unripe fruits, which were extracted as a whole, we found
similar results, but in ripe fruits, we showed that the embryo plus
the cotyledons, i.e., the hanza, have much higher MeGSL levels
than the carpels or the leaves. The MeGSL levels in whole fruits
thus are diluted by the extremely low levels in the carpels.

From an ecological perspective, there may be many functions
for the high levels of MeGSL in the embryo and the cotyledons,
as well as for the low levels of the same compounds in the
carpels. Seen the fact that B. senegalensis leaves and fruits are
used to deter insects that are storage pests (Seck et al., 1993;
Gueye et al., 2011), it is likely that the high levels of MeGSL in
hanza have evolved to protect their highly valuable seeds from
predators. Moreover, it may prevent birds and mammals, the
main dispersers of the seeds, to consume the embryo itself. In
fact, Tréca and Tamba (1997) report that birds (and mammals
to some extent) will consume the fruit. They mostly feed on the
outer layers, and later regurgitate or defecate the seeds. Seeds that
pass the digestive tract were found to have a higher germination
rate than untreated seeds (Tréca and Tamba, 1997). Birds thus are
very important for the dispersal of B. senegalensis, which may also
explain the difference inMeGSL levels between the outer layers of
the fruit and the seed. The dispersers would be attracted to the
pulp in the sweeter outer layer, while leaving the bitter-tasting
seed intact. Moreover, the high level of MeGSL and the MeITC
produced when the seed is imbibed may function as allelopathic
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FIGURE 5 | Numbers of seedlings observed (+SEM) from 2 to 7 days
after sowing in pots watered with tap water (Con, open circles), 0.2 mM
(gray triangles), or 1.0 mM MeITC (black squares) solution. Data were

analyzed using Kaplan Meier survival analyses. Different letters indicate
significant differences in germination after pairwise comparisons between
treatments, followed by Holm’s correction for multiple comparisons.

agents to secure resources in an ecosystem where a single bout
of rain may cause a mass germination event, followed by strong
competition between and within species. High levels of MeGSL
in the seeds may help the B. sengalensis propagules to defend
their territory against competitors by delaying their germination
just long enough to gain a competitive edge (Brown and Morra,
1997; van Dam and Baldwin, 2001). Interestingly, low levels of
MeITC appeared to enhance germination in our study. Possibly
other species perceive low MeITC levels in the soil as signal for
a potential competitor, and respond accordingly by germinating
faster.

The allelopathic properties of waste water and MeITC were
quite strong, even though we used unsterilized potting soil for
the germination tests. In many studies allelopathic effects are
analyzed with filter paper as the substrate, which may cause an
overestimation of the effectiveness of the compound (Teasdale
and Taylorson, 1986). Moreover, we have shown here that the
hanza waste water strongly inhibits germination of almost every
plant species analyzed so far, particularly the water from the
first 3 days of processing. Our test set included plants from
several families – Solanaceae, Poaceae, Fabaceae, Malvaceae, and
Brassicaceae – both crops and wild plants. We found no clear
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indications that some families are more susceptible or that crops
are more susceptible than weeds. Not surprisingly, the least
affected plant species were members of the Brassicaceae (B. nigra
and B. juncea), which themselves contain glucosinolates –
albeit different ones – perhaps making them more resistant to
glucosinolate breakdown compounds. It would be interesting to
assess the effect of the water on the germination of hanza itself.
Unfortunately, the viability of dry B. senegalensis seeds is very
limited and germination rates are low (Daffalla et al., 2011) and
thus this was not tested.

Experiments using MeITC at similar concentrations as those
found in waste water had similar results as using the waste water.
MeITC has been previously reported to inhibit germination of
weed seeds and crops (Teasdale and Taylorson, 1986; Brown
and Morra, 1997). In addition, the MeITC in the hanza water
may also be used to reduce soil pathogens such as pathogenic
fungi and nematodes (Brown and Morra, 1997; Matthiessen
and Kirkegaard, 2006). As such, hanza water or biomass
may be used as a natural and biodegradable alternative to
synthetic and persistent soil fumigants such as metam sodium
and methylbromide (Matthiessen and Kirkegaard, 2006). More
detailed experiments in Niger are needed to show how and when
to apply the waste water as weed germination suppressant in
various cropping systems without harming the crop or non-target
organisms. For example, exposure to MeITC has been shown
to be irritating to the eyes and respiratory mucous membrane
in humans (Dourson et al., 2010; EPA, 2013). Moreover,
constant exposure toxicity tests have shown that MeITC is
detrimental to amphibians. Concentrations between 1 and
1000 ppb caused 100% mortality by day 7 in tests with Xenopus
laevis embryos (Birch and Prahlad, 1986). Concentrations of
248 ppb caused malformations in zebrafish embryos (Haendel
et al., 2004). Finally, MeITC may also inhibit the growth
of various beneficial soil microorganisms, such as arbuscular
mycorrhizal fungi or plant growth promoting rhizobacteria.
Thus, as with synthetic pesticides, it is important to first
experimentally assess the severity of these potential non-target
effects before hanza waste water can be widely exploited as weed
suppressant.

In addition to the MeITC, there may be other compounds
in the water that could affect germination. Our GC-MS
analyses showed the presence of 2,5-dimethyl-1,3,4,-thiadiazole
(Supplementary Figure S2) a sulfur containing compound
belonging to a class with a wide range of applications as
a herbicide and pesticide in agriculture (Hu et al., 2014).
Additionally, the relatively high boron levels in the waste water

may have phytotoxic effects. Even though direct effects on
germination have not been reported, some plant species, such
as V. unguiculata, show toxicity symptoms at 0.5 mg B per liter
irrigation water (see Ayers and Westcot, 1994). Waste water
of the first 3 days contains an equivalent of 0.24 mg/L. With
time, B may accumulate in the soil when regularly irrigated
with water containing high B levels (Camacho-Cristóbal et al.,
2008). Additionally, the high amount of starch present in the
waste water may create osmotic stress, and consequently prevent
germination.

Conclusion

The processing clearly results in a decrease of glucosinolates in
the hanza, thus resulting in a sweet and palatable food source.
Nevertheless, the processing also delivers a bitter waste water that
is undrinkable and causes allelopathic effects in crops and weeds
alike. However, this disadvantage could be proven to be an asset,
particularly for small holder farmers, by being used as a natural
and cost effective soil fumigant.
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