AROMATIC SULFINES WITH NITRILIMINES.1,2

A regiospecific, non-stereospecific cyclo-addition reaction.

B.F. Bonini³, G. Maccagnani³, L. Thijs⁴ and B. Zwanenburg⁵

³ Laboratorio CNR dei composti del carbonio contenenti eteroatomi -
Istituto di Chimica Organica della Università, Bologna, Italy.
⁴ Department of Organic Chemistry of the University at Nijmegen, Toernooiveld,
Nijmegen, The Netherlands.

(Received in UK 16 July 1973; accepted for publication 31 July 1973)

Sulfines represent a class of sulfur containing heterocumulenes which may
serve as potential dipolarophiles in 1,3-dipolar cyclo-addition reactions. In a
previous paper we reported the cyclo-addition reaction of aromatic sulfines
with diazoalkanes which leads to a five-membered heterocyclic system, i.e.
\(\Delta^2 \)-1,3,4-thiadiazoline-S-oxides. In this communication we wish to
describe the cyclo-addition of aromatic sulfines with nitrilimines and to discuss the direc-
tion of the addition as well as the stereochemistry of the reaction.

When the sulfines I were allowed to react with diphenylnitrilimine, gen-
erated in situ by the action of triethylamine on \(N-(\alpha\)-chlorobenzylidene)-\(N' \)-
phenyl-hydrazine (II), in boiling benzene for one hour, 1:1-adducts were ob-
tained in good yields (Scheme 1). The adducts which were single compounds ac-
cording to TLC, gave correct combustion analyses for C, H, N and S. The IR
spectra of all of these compounds showed a strong S=O band at 1070 cm⁻¹ and a C=N
absorption at 1535 cm⁻¹. The NMR spectrum of the adduct derived from the sulfine

\[
\text{Scheme 1}
\]

<table>
<thead>
<tr>
<th>Sulfine I</th>
<th>Sulfine II</th>
<th>Adduct III</th>
<th>Adduct IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>a: (\text{Ar} = \text{C}_6\text{H}_5)</td>
<td>(\text{C}_6\text{H}_5-\text{N}-\text{NH}-\text{C}_6\text{H}_5)</td>
<td>(\text{Ar})</td>
<td>(\text{Ar})</td>
</tr>
<tr>
<td>b: (\text{Ar} = \text{C}_6\text{H}_4\text{OCH}_3)</td>
<td>(\text{C}_6\text{H}_5-\text{N}-\text{NH}-\text{C}_6\text{H}_5)</td>
<td>(\text{Ar})</td>
<td>(\text{Ar})</td>
</tr>
<tr>
<td>c: (\text{Ar} = \text{C}_6\text{H}_4\text{CH}_3)</td>
<td>(\text{C}_6\text{H}_5-\text{N}-\text{NH}-\text{C}_6\text{H}_5)</td>
<td>(\text{Ar})</td>
<td>(\text{Ar})</td>
</tr>
<tr>
<td>d: (\text{Ar}\text{-Ar} = \text{O}-\text{O})</td>
<td>(\text{C}_6\text{H}_5-\text{N}-\text{NH}-\text{C}_6\text{H}_5)</td>
<td>(\text{Ar})</td>
<td>(\text{Ar})</td>
</tr>
</tbody>
</table>

a: m.p. 167-8 °; yield: 68.5 %
b: m.p. 137-8 °; yield: 58 %
c: m.p. 152-3 °; yield: 85.5 %
d: m.p. 173-4 °; yield: 92 %
Ib as well as from Ic exhibits two non-equivalent methyl signals (δ 3.81 and 3.86 ppm for the former, δ 2.30 and 2.36 ppm for the latter) indicative of the presence of the asymmetric pyramidal sulfoxide function.

On the basis of the information presented so far, two possible structures for the 1:1-adducts can be envisaged, viz. III and IV (Scheme 1). In order to elucidate the orientation of the cyclo-addition, the product isolated from the sulfine Ia was compared with that obtained by oxidation of the adduct V prepared from thiobenzophene and diphenyl nitrilimine (Scheme 2). The structure of V was proven beyond any doubt by Huisgen et al., hence the structure III should be assigned to the sulfine-nitrilimine adducts.

It is interesting to note that the regiospecificity of the cyclo-addition with the thioketone and its S-oxide is the same, although the charge distribution in both substrates is considerably different.

Scheme 2

\[
\begin{align*}
\text{C}_6\text{H}_5\text{C} = \text{S} + \text{C}_6\text{H}_5\text{N} = \text{N} & \rightarrow \text{C}_6\text{H}_5\text{N} = \text{N} \quad \text{V} \\
\text{C}_6\text{H}_5\text{C} = \text{S} + \text{C}_6\text{H}_5\text{N} = \text{N} & \rightarrow \text{C}_6\text{H}_5\text{N} = \text{N} \quad \text{V} \\
\text{MPPA} \quad (\text{1 equiv.}) & \\
\end{align*}
\]

All these Δ^2-1,3,4-thiadiazoline-S-oxides III could easily be oxidized to the corresponding sulfones VIa-d by means of excess of mono-perphthalic acid (MPPA) at 20°C. As may be expected the sulfones VIb and VIC show only one methyl signal in their NMR spectra.

An interesting independent proof of the structure of the adducts was provided by the thermolysis of the sulfones VIa and d (Scheme 3). When heated in refluxing benzene for 15-20 min, SO₂ was liberated quantitatively and benzonitrile together with the anils VIIa and VIId, respectively, were isolated in high yields. This thermal two-fold extrusion process, demonstrates which bonds were formed during the cyclo-addition reaction.

The bent nature of the CSO-system offers the possibility to study the stereochemistry of the cyclo-addition reaction. The geometrical isomers of VIIIa (Scheme 4) were treated with diphenyl nitrilimine in benzene at reflux temperature (6 h). In the resulting coloured reaction mixture only starting material and 1:1-adduct could be detected by NMR and TLC, in either case (ratio sulfine: adduct 3:4 for both isomers). By careful thick-layer chromatography unreacted sulfine (which had its original geometry) and cyclo-adduct could be separated. In contrast to our expectation both geometrical isomers of VIIIa gave the same ad-
Scheme 3

\[\text{C}_6\text{H}_5\text{N} = \text{C}_6\text{H}_5 \xrightarrow{\Delta} \text{C}_6\text{H}_5\text{C} = \text{N} + \text{Ar}_2\text{C} = \text{NC}_6\text{H}_5 + \text{SO}_2 \]

VI a,d

The presented data show that the cyclo-addition of sulfines with diphenyl-
nitrilimine results in a non-stereospecific formation of Δ^2-1,3,4-thiadiazoline-S-oxides. In principle, three possible explanations for this non-stereospecificity can be envisaged: i. isomerization of the sulfine prior to the cyclo-addition, ii. product equilibration afterwards, iii. loss of stereochemistry during the adduct formation. In a blank experiment sulfine isomerization was indeed observed for VIIIa δ and VIIIa ε in the presence of triethylamine, however, at a much lower rate than the formation of the cyclo-adduct. The experiments with VIIIc and IXc clearly reveal that product equilibration afterwards takes place. Although loss of stereochemistry during the cyclization cannot completely be excluded, the most likely explanation for this non-stereospecific 1,3-dipolar cyclo-addition is an initial stereospecific product formation followed by a product equilibration, leading to one isomer of IXa and IXb, and an E/ε-ratio of 2:3 for IXc.

Sulfoxides are usually quite stable towards stereomutation, but conjugative participation of the lone pair of electrons at N-4 (see Scheme 4, formula IX (1)) could possibly lower the barrier of pyramidal inversion of the $S=O$ in the present case. Alternatively, a ring opening-ring closure mechanism, for instance as indicated by arrows in formula IX (δ) (Scheme 4), could cause the thermodynamic isomerization.

References and notes

10. The NMR data did not allow an unequivocal assignment of the geometry in this adduct, tentatively the structure IXa δ having the least steric congestion is proposed.