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Abstract
By aggregating data for complex traits in a biologically meaningful way, gene and gene-set

analysis constitute a valuable addition to single-marker analysis. However, although various

methods for gene and gene-set analysis currently exist, they generally suffer from a number

of issues. Statistical power for most methods is strongly affected by linkage disequilibrium

between markers, multi-marker associations are often hard to detect, and the reliance on

permutation to compute p-values tends to make the analysis computationally very expen-

sive. To address these issues we have developed MAGMA, a novel tool for gene and gene-

set analysis. The gene analysis is based on a multiple regression model, to provide better

statistical performance. The gene-set analysis is built as a separate layer around the gene

analysis for additional flexibility. This gene-set analysis also uses a regression structure to

allow generalization to analysis of continuous properties of genes and simultaneous analy-

sis of multiple gene sets and other gene properties. Simulations and an analysis of Crohn’s

Disease data are used to evaluate the performance of MAGMA and to compare it to a num-

ber of other gene and gene-set analysis tools. The results show that MAGMA has signifi-

cantly more power than other tools for both the gene and the gene-set analysis, identifying

more genes and gene sets associated with Crohn’s Disease while maintaining a correct

type 1 error rate. Moreover, the MAGMA analysis of the Crohn’s Disease data was found to

be considerably faster as well.

Author Summary

Gene and gene-set analysis are statistical methods for analysing multiple genetic markers
simultaneously to determine their joint effect. These methods can be used when the effects
of individual markers is too weak to detect, which is a common problem when studying
polygenic traits. Moreover, gene-set analysis can provide additional insight into functional
and biological mechanisms underlying the genetic component of a trait. Although a num-
ber of methods for gene and gene-set analysis are available however, they generally suffer
from various statistical issues and can be very time-consuming to run. We have therefore
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developed a new method called MAGMA to address these issues, and have compared it to
a number of existing tools. Our results show that MAGMA detects more associated genes
and gene-sets than other methods, and is also considerably faster. The way the method is
set up also makes it highly flexible. This makes it suitable as a basis for more general statis-
tical analyses aimed at investigating more complex research questions.

Introduction
In the past decade, genome-wide association studies (GWAS) have successfully identified new
genetic variants for a wide variety of phenotypes [1]. However, despite growing sample sizes,
the genetic variants discovered by GWAS generally account for only a fraction of the total heri-
tability of a phenotype [2,3]. More than anything, GWAS has shown that many phenotypes,
such as height [4], schizophrenia [5] and BMI [6] are highly polygenic and influenced by thou-
sands of genetic variants with small individual effects, requiring very large sample sizes to
detect them.

Gene and gene-set analysis have been suggested as potentially more powerful alternatives to
the typical single-SNP analyses performed in GWAS [7]. In gene analysis, genetic marker data
is aggregated to the level of whole genes, testing the joint association of all markers in the gene
with the phenotype. Similarly, in gene-set analysis individual genes are aggregated to groups of
genes sharing certain biological, functional or other characteristics. Such aggregation has the
advantage of considerably reducing the number of tests that need to be performed, and makes
it possible to detect effects consisting of multiple weaker associations that would otherwise be
missed. Moreover, gene-set analysis can provide insight into the involvement of specific biolog-
ical pathways or cellular functions in the genetic etiology of a phenotype. Gene-set analysis
methods can be subdivided into self-contained and competitive analysis, with the self-con-
tained type testing whether the gene set contains any association at all, and the competitive
type testing whether the association in the gene set is greater than in other genes [7].

Various methods for gene and gene-set analysis are currently available [7–13]. However,
one concern with most existing methods is that they first summarize associations per marker
before aggregating them to genes or gene sets. As demonstrated by Moskvina et al. this makes
the statistical power strongly dependent on local linkage disequilibrium (LD) [14], and also re-
duces power to detect associations dependent on multiple markers.

An additional concern is that current gene-set analysis methods generally use a permuta-
tion-based approach. These are often very computationally demanding, and since no paramet-
ric model is used it is often not made explicit which null hypothesis is being evaluated and
what assumptions are made. This makes it more difficult to determine the properties of the
analysis such as how the significance of a gene set relates to the significance of its constituent
genes or whether the analysis corrects for a polygenic architecture. This complicates the inter-
pretation of results and hampers comparison between results of different gene-set analysis
methods.

To address such issues we have developed MAGMA (Multi-marker Analysis of GenoMic
Annotation), a fast and flexible tool for gene and gene-set analysis of GWAS genotype data.
MAGMA’s gene analysis uses a multiple regression approach to properly incorporate LD be-
tween markers and to detect multi-marker effects. The gene-set analysis is built as a distinct
layer around this gene analysis, providing the flexibility to independently change and expand
both the gene and the gene-set analysis. Both self-contained and competitive gene-set analyses
are implemented using a gene-level regression model. This regression approach offers a
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generalized framework which can also analyse continuous gene properties such as gene expres-
sion levels as well as conditional analyses of gene sets and other gene properties, and which can
be extended to allow joint and interaction analysis of multiple gene sets and other gene proper-
ties as well. More traditional gene analysis models are also implemented, for comparison and
to provide analysis of SNP summary statistics.

To evaluate the performance of MAGMA we have applied it to the Wellcome Trust Case-
Control Consortium (WTCCC) Crohn’s Disease (CD) GWAS data-set [15], using the MSigDB
Canonical Pathways [16] for the gene-set analysis. Simulation studies were performed to verify
type 1 error rates for MAGMA. The CD data set was then analysed using MAGMA and with
five commonly used other tools for gene and gene-set analyses, specifically VEGAS [17],
PLINK [8], ALIGATOR [9], INRICH [10] and MAGENTA [12]. The results show that
MAGMA has greater statistical power than the other methods, while also being considerably
faster.

Materials and Methods

Model structure
The gene-set analysis is divided into two distinct and largely independent parts. In the first part
a gene analysis is performed to quantify the degree of association each gene has with the phe-
notype. In addition the correlations between genes are estimated. These correlations reflect the
LD between genes, and are needed in order to compensate for the dependencies between genes
during the gene-set analysis. The gene p-values and gene correlation matrix are then used in
the second part to perform the actual gene-set analysis.

The advantage of decoupling these two parts of the analysis in this manner is that each can
be changed independently from the other, simplifying the development of changes and exten-
sions to either part of the model. Moreover, since the second part only uses the output from the
first part and not the raw genotype data they do not need to be performed at the same time or
place, making it much more straightforward to perform multiple gene-set analyses on the same
data or to analyse multiple data sets across a large-scale collaboration.

Gene analysis
The gene analysis in MAGMA is based on a multiple linear principal components regression
[18] model, using an F-test to compute the gene p-value. This model first projects the SNP ma-
trix for a gene onto its principal components (PC), pruning away PCs with very small eigenval-
ues, and then uses those PCs as predictors for the phenotype in the linear regression model.
This improves power by removing redundant parameters, and guarantees that the model is
identifiable in the presence of highly collinear SNPs. By default only 0.1% of the variance in the
SNP data matrix is pruned away.

With X�
g the matrix of PCs, Y the phenotype andW an optional matrix of covariates the

model can thus be written as Y ¼ �0g
~1þ X�

g�g þW�g þ "g , where the parameter vector αg
represents the genetic effect, βg the effect of the optional covariates, α0g the intercept and �g the

vector of residuals. The F-test uses the null-hypothesis H0: �g ¼~0 of no effect of gene g on the

phenotype Y, conditional on all covariates.
This choice of gene analysis model is motivated by a balance of statistical and practical con-

cerns. This multiple regression model ensures that LD between SNPs is fully accounted for. It
also offers the flexibility to accommodate additional covariates and interaction terms as needed
without changing the model. At the same time, since the F-test has a known asymptotic
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sampling distribution the gene p-values take very little time to compute, making the gene anal-
ysis much faster than permutation-based alternatives.

The linear regression model is also applied when Y is a binary phenotype. Although this vio-
lates some assumptions of the F-test, comparison of the F-test p-values with p-values based on
permutation of the F-statistic shows that the F-test remains accurate (see ‘Supplemental Meth-
ods—Implementation Details’). MAGMA therefore uses the asymptotic F-test p-values by de-
fault, though it also offers an option to compute permutation-based p-values using an adaptive
permutation procedure. In addition, comparison with logistic regression models shows that
the results of the linear model are effectively equivalent to that of the more conventional logis-
tic regression model, but without the computational cost.

Gene-set analysis
To perform the gene-set analysis, for each gene g the gene p-value pg computed with the gene
analysis is converted to a Z-value zg = F−1(1 – pg), where F

−1 is the probit function. This yields
a roughly normally distributed variable Z with elements zg that reflects the strength of the asso-
ciation each gene has with the phenotype, with higher values corresponding to
stronger associations.

Self-contained gene-set analysis tests whether the genes in a gene-set are jointly associated
with the phenotype of interest. As such, using this variable Z a very simple intercept-only linear

regression model can now be formulated for each gene set s of the form Zs ¼ �0
~1þ "s, where

Zs is the subvector of Z corresponding to the genes in s. Evaluating β0 = 0 against the alternative
β0 > 0 yields a self-contained test, since under the self-contained null hypothesis that none of
the genes is associated with the phenotype zg has a standard normal distribution for every gene g.

Competitive gene-set analysis tests whether the genes in a gene-set are more strongly associ-
ated with the phenotype of interest than other genes. To test this within the regression frame-
work the model is first expanded to include all genes in the data. A binary indicator variable Ss
with elements sg is then defined, with sg = 1 for each gene g in gene set s and 0 otherwise. Add-

ing Ss as a predictor of Z yields the model Z ¼ �0s
~1þ Ss�s þ ". The parameter βs in this model

reflects the difference in association between genes in the gene set and genes outside the gene
set, and consequently testing the null hypothesis βs = 0 against the one-sided alternative βs > 0
provides a competitive test. Note that this is equivalent to a one-sided two-sample t-test com-
paring the mean association of gene-set genes with the mean association of genes not in the
gene-set. Similarly, the self-contained analysis is equivalent to a one-sided single-sample t-test
comparing the mean association of gene-set genes to 0.

It should be clear that in this framework, the gene-set analysis models are a specific instance

of a more general gene-level regression model of the form Z ¼ �0
~1þ C1�1 þ C2�2 þ . . .þ ".

The variables C1, C2, . . ., in this generalized gene-set analysis model can reflect any gene property,
from the binary indicators used for the competitive gene-set analysis to continuous variables
such as gene size and expression levels. Any transformations of, and interactions between, such
gene properties can also be added. This generalized gene-set analysis model thus allows for test-
ing of conditional, joint and interaction effects of any combination of gene sets and other gene
properties. In practice, the competitive gene-set analysis implemented in MAGMA in fact uses
such a generalized model by default, performing a conditional test of βs corrected for the poten-
tially confounding effects of gene size, gene density and (if applicable, e.g. in meta-analysis) dif-
ference in underlying sample size, if such effects are present. This is achieved by adding these
variables, as well as the log of these variables, as covariates to the gene-level regression model.
The gene density is defined as the ratio of effective gene size to the total number of SNPs in the
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gene, with the effective gene size in turn defined as the number of principal components that re-
main after pruning.

One complication that arises in this gene-level regression framework is that the standard
linear regression model assumes that the error terms have independent normal distributions,

i.e. "
e

MVNð 0!; �2IÞ. However, due to LD, neighbouring genes will generally be correlated, vio-

lating this assumption. This issue can be addressed by using Generalized Least Squares ap-

proach instead, and assuming that "
e

MVNð 0!; �2RÞ. In MAGMA, the required gene-gene

correlation matrix R is approximated by using the correlations between the model sum of
squares (SSM) of each pair of genes from the gene analysis multiple regression model, under
their joint null hypothesis of no association. These correlations are a function of the correla-
tions between the SNPs in each pair of genes and thus provide a good reflection of the LD, and
since they have a convenient closed-form solution they are easy to compute (see also ‘Supple-
mental Methods—Implementation Details’). Note that for the self-contained analysis, the sub-
matrix Rs corresponding to only the genes in the gene set is used instead of R. In addition, since
the self-contained null hypothesis guarantees that all zg have a standard normal distribution,
the error variance σ2 can be set to 1.

Analysis of summary SNP statistics
Since raw genotype data may not always be available for analysis, MAGMA also provides more
traditional SNP-wise gene analysis models of the type implemented in PLINK and VEGAS.
These SNP-wise models first analyse the individual SNPs in a gene and combine the resulting
SNP p-values into a gene test-statistic, and can thus be used even when only the SNP p-values
are available. Although evaluation of the gene test-statistic does require an estimate of the LD
between SNPs in the gene, estimates based on reference data with similar ancestry as the data
the SNP p-values were computed from has been shown to yield accurate results [17,19].

Two types of gene test statistics have been implemented in MAGMA: the mean of the χ2 sta-
tistic for the SNPs in a gene, and the top χ2 statistic among the SNPs in a gene. For the mean χ2

statistic, a gene p-value is then obtained by using a known approximation of the sampling dis-
tribution [20,21]. For the top χ2 statistic such an approximation is not available, and therefore
an adaptive permutation procedure is used to obtain an empirical gene p-value. A random phe-
notype is first generated for the reference data, drawing from the standard normal distribution.
This is then permuted, and for each permutation the top χ2 statistic is computed for every
gene. The empirical p-value for a gene is then computed as the proportion of permuted top χ2

statistics for that gene that are higher than its observed top χ2 statistic. The required number of
permutations is determined adaptively for each gene during the analysis, to increase computa-
tional efficiency. Further details can be found in ‘Supplemental Methods—SNP-wise gene
analysis’.

The MAGMA SNP-wise models can also be used to analyse raw genotype data, in which
case the raw genotype data takes the place of the reference data and the SNP p-values are com-
puted internally. Gene-set analysis based on these SNP-wise models proceeds in the same way
as the gene-set analysis based on the multiple regression gene analysis model. The gene p-val-
ues resulting from the analysis are converted to Z-values in the same way to serve as input for
the gene-set analysis. Similarly, the gene-gene correlation matrix R is obtained using the same
formula as with the multiple regression model, but using the reference data to compute it.

MAGMA: Generalized Gene-Set Analysis of GWASData
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Other features and implementation
A number of additional features has been implemented in MAGMA, more fully described in
‘Supplemental Methods—Extensions’. Gene analysis can be expanded with a gene-environ-
ment interaction component, which can subsequently be carried over to the gene-set analysis.
Options for aggregation of rare variants and for fixed-effects meta-analysis for both gene and
gene-set analysis are also available. Efficient SNP to gene annotation and a batch mode for par-
allel processing are provided to simplify the overall analysis process. MAGMA is distributed as
a standalone application using a command-line interface. The C++ source code is also made
available, under an open source license. MAGMA can be downloaded from http://ctglab.nl/
software/magma.

Data
To evaluate the performance of MAGMA, the WTCCC Crohn’s Disease (CD) GWAS data
[15] in conjunction with both WTCCC control samples was used. The data was cleaned ac-
cording to the protocol described by Anderson [22], resulting in a sample of 1,694 cases and
2,917 controls with data for 403,227 SNPs. The European samples from the 1,000 Genomes
data [23] and the HapMap 3 data [24] were used as reference data sets for the summary statis-
tics gene analysis.

SNPs were annotated to genes based on dbSNP version 135 SNP locations and NCBI 37.3
gene definitions. For the main analyses only SNPs located between a gene’s transcription start
and stop sites were annotated to that gene, yielding 13,172 protein-coding genes containing at
least one SNP in the CD data. An additional annotation using a 10 kilobase window around
each gene was made, yielding 16,970 genes, to determine the effect of using a window on rela-
tive performance. These two gene annotations were used for all analyses, to ensure that differ-
ences in default annotation settings did not cloud the comparison between tools. The 1,320
Canonical Pathways from the MSigDB database [16] were used for the gene-set analysis. The
relatively large number of gene sets and the fact that the MSigDB Canonical Pathways are
drawn from a number of different gene-set databases ensures a wide variety of gene sets, which
should prevent the results from being too dependent on the choice of gene-set database.

Analysis of CD data
The MAGMA gene analysis was performed on the raw CD data using the PC regression model
(MAGMA-main). Gene analyses with VEGAS and PLINK were performed using the mean
SNP statistic for VEGAS and both the mean SNP statistic (PLINK-avg) and the top SNP statis-
tic (PLINK-top) for PLINK. Pruning in PLINK was turned off for these analyses. An additional
PLINK analysis using the mean SNP statistic with pruning set to its default (PLINK-prune)
was performed as well.

To facilitate the comparison, several additional SNP-wise gene-set analyses were performed
in MAGMA with test-statistics matching those of PLINK-avg, PLINK-top and VEGAS: mean χ2

(MAGMA-mean) and top χ2 (MAGMA-top) on the raw CD data to match the two PLINK anal-
yses, and mean χ2 using CD SNP p-values and with either HapMap reference data (MAGMA-
pval) to match VEGAS or with 1,000 Genomes reference data (MAGMA-pval-1K). The SNP
summary statistics used for VEGAS andMAGMA-pval were computed using PLINK ‘–assoc’.

Gene-set analysis for MAGMA was performed based on the PC regression gene analysis
model (MAGMA-main) as well as on the SNP-wise model with 1,000 Genomes reference data
(MAGMA-pval-1K). Several other analyses were performed for comparison: PLINK self-con-
tained gene-set analysis without pruning (PLINK-avg) and with pruning (PLINK-prune), as
well as ALIGATOR, INRICH and MAGENTA competitive gene-set analysis. PLINK operates
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on raw genotype data, whereas all three competitive methods require only SNP p-values as
input. No correction for stratification was used in any of the analyses except when explicitly
specified. An overview of all analyses is given in Table 1.

Results

Type 1 error rates
Simulation was used to assess the type 1 error rates, using permutations of the CD phenotype
to obtain a global null distribution of no associated SNPs (see ‘Supplemental Methods—Simu-
lation Studies’ for details). For the gene analysis, type 1 error rates were found to be controlled
at the nominal level of 0.050 for the PC regression model, the summary statistics analysis
model, as well as the SNP-wise models (Table S1 in S2 File).

The type 1 error rates for the gene-set analysis were also found to be well controlled for both
the self-contained and competitive test (Table S2 in S2 File). For the competitive test an addi-
tional simulation using a polygenic null model was performed, with effects explaining a com-
bined 50% of the phenotypic variance assigned to randomly selected SNPs. This polygenic type
1 error rate was also well controlled. The type 1 error rates for the self-contained analysis
under the polygenic null model are also shown. These are considerably inflated because self-
contained gene-set analysis by its definition is not designed to correct for polygenicity, illustrat-
ing the risk of performing self-contained analysis on polygenic phenotypes.

Analysis of CD data—gene analysis
The results of the gene analyses of the CD data are summarized in Table 2, which shows the
number of significant genes at a number of different p-value thresholds. Since the Type 1 error
rates have been shown to be properly controlled these results can serve as a good indicator of
the relative power of the different methods, and compared to simulation-based power estimates
this has the advantage that no assumptions about the genetic causal model. From Table 2 it is
clear that whereas the power of all the other methods is very similar, the MAGMA-main model
shows a clear advantage over the rest. After Bonferroni correction, MAGMA-main found a
total of 10 genome-wide significant genes, including the well-known CD genes NOD2,
ATG16L1 and IL23R [25,26]. This also indicates that although MAGMA can perform analysis
of summary statistics, raw data analysis should always be preferred if possible.

Table 1. Overview of Crohn’s Disease analyses.

Name Analysis Input Settings

MAGMA-main gene, self-cont., comp. Raw data Multiple regression model (per gene)

MAGMA-mean gene Raw data Mean SNP χ2 (per gene)

MAGMA-top gene Raw data Top SNP χ2 (per gene)

MAGMA-pval gene SNP p-values, HapMap data Mean SNP χ2 (per gene)

MAGMA-pval-1K gene, self-cont., comp. SNP p-values, 1,000 Genomes data Mean SNP χ2 (per gene)

VEGAS gene SNP p-values, HapMap data Mean SNP χ2 (per gene)

PLINK-avg gene, self-contained Raw data Mean SNP χ2

PLINK-prune gene, self-contained Raw data Mean SNP χ2, SNP pruning

PLINK-top gene Raw data Top SNP χ2

ALIGATOR competitive SNP p-values 4 SNP p-value cut-offs

INRICH competitive SNP p-values 4 SNP p-value cut-offs

MAGENTA competitive SNP p-values 2 gene score quantile cut-offs

doi:10.1371/journal.pcbi.1004219.t001
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Specific implementation issues can be ruled out as the cause of the power difference since
the PLINK and VEGAS analyses yield results highly similar to their matched MAGMAmodels
(S9 Fig), and using the pruning option in PLINK also has little effect on the overall results. This
means that the difference must be due to the difference in the methods and test-statistics

Table 2. Number of significant genes at different p-value thresholds.

P-value threshold

Method 0.05 0.01 0.001 0.0001 Bonf. Total genes

Main analysis

MAGMA-main 1203 379 95 32 10 13172

MAGMA-mean 917 250 70 16 5 13172

MAGMA-top 934 244 61 16 5 13172

MAGMA-pval 927 241 64 16 5 12797

MAGMA-pval-1K 901 245 61 13 5 13075

PLINK-avg 944 239 56 16 4 13172

PLINK-top 903 242 64 13 5 13172

PLINK-prune 973 257 58 16 4 13172

VEGAS 915 225 61 17 6 12455

Strat. correction

MAGMA-main 1141 352 89 28 8 13172

MAGMA-mean 897 240 62 14 4 13172

MAGMA-top 934 230 63 12 4 13172

With 10kb Window

MAGMA-main 1611 505 126 45 13 16970

MAGMA-mean 1215 377 97 25 7 16970

MAGMA-top 1247 337 89 16 8 16970

‘Total genes’ gives the number of genes analysed. This was lower for the summary statistics analyses because some genes contained no SNPs present

in both CD data and reference data and because VEGAS does not analyse the X chromosome. As such, those genes effectively have a p-value of 1 by

default. For permutation-based methods, p-values were based on up to 1,000,000 permutations. No stratification correction was used in the analyses

except the three under the ‘Strat. Correction’ header.

doi:10.1371/journal.pcbi.1004219.t002

Fig 1. Comparison of gene analysis results for different test-statistics.Gene −log10 p-values from the CD data gene analysis in MAGMA for three
different gene test-statistics, comparing analyses using (A) the mean χ2 statistic with the top χ2 statistic, (B) the mean χ2 statistic and the PC regression
model and (C) the top χ2 statistic and the PC regression model. P-values below 10–8 are truncated to 10–8 (grey points) to preserve the visibility of the
other points.

doi:10.1371/journal.pcbi.1004219.g001
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themselves. Comparing the MAGMA implementations of these models in Fig 1, the mean χ2

and top χ2 approaches are shown to produce very similar p-values. Moreover, the plots reveal
that the superior power of the MAGMA-main model does not arise from consistently lower
gene p-values, but rather from a small set of genes with low p-values for MAGMA-main that
are simply not picked up by the other approaches. This is likely to be related to the way LD be-
tween SNPs is handled, as that is one of the key differences between the multiple regression
model of MAGMA-main and all the others. A post-hoc power simulation indeed indicates that
multi-marker effects with weak marginals are the most probable explanation (see ‘Supplemen-
tal Methods—Simulation Studies’).

To increase the generalizability of these findings, two variations on the CD analyses were
performed for MAGMA-main, MAGMA-mean and MAGMA-top. First, the analyses were re-
peated with 10 principal components computed from the whole data set as covariates to correct
for possible stratification. The results are shown in Table 2 and S10 Fig. There is shown to be
only very limited stratification, and although the power does decrease somewhat MAGMA-
main’s power advantage is maintained. The analyses were also repeated with the gene annota-
tion extended to include a 10 kilobase window around each gene, with the comparison in S11
Fig showing a considerable impact on the results. However, although this suggests that the
choice of window can strongly affect the results of a gene analysis Table 2 shows that the rela-
tive power stays the same, with MAGMA-main again maintaining its superior power.

Table 3. Number of significant gene sets at different p-value thresholds.

P-value threshold

Method 0.05 0.01 0.001 FWER Tested gene sets

Self-contained

MAGMA-main 448 253 120 39 1320

MAGMA-pval-1K 257 108 28 4 1320

PLINK-avg 329 160 67 19 1320

PLINK-prune 361 181 86 27 1320

Competitive

MAGMA-main 85 25 9 1 1320

MAGMA-main (no size correction) a 105 33 9 3 1320

MAGMA-pval-1K 80 11 3 1 1320

ALIGATOR (cut-off = 0.01) 94 38 12 0 653

ALIGATOR (cut-off = 0.005) 85 23 7 0 508

ALIGATOR (cut-off = 0.001) 59 34 10 0 149

ALIGATOR (cut-off = 0.0001) 28 24 6 0 35

INRICH (cut-off = 0.01) 79 22 3 0 777

INRICH (cut-off = 0.005) 74 23 7 0 602

INRICH (cut-off = 0.001) 66 39 15 0 213

INRICH (cut-off = 0.0001) 41 22 8 3 57

MAGENTA (cut-off = 5th quant.) 83 20 4 0 952

MAGENTA (cut-off = 1st quant.) 50 25 6 0 389

The FWER column corresponds to p-values below 0.05 after family-wise error correction, using Bonferroni correction for MAGMA, PLINK and MAGENTA

and built-in FWER methods for INRICH and ALIGATOR. The ‘Tested gene sets’ column shows the number of gene sets for which p-values were

computed, which were lower for INRICH, ALIGATOR and MAGENTA because some gene sets contained insufficiently many SNPs/intervals/genes with p-

value below the chosen cut-off. Note that such gene sets do remain part of the analysis and count towards the total number of tests conducted, their p-

values are effectively set to 1.
a in this analysis the default correction for gene size and gene density was turned off

doi:10.1371/journal.pcbi.1004219.t003
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Analysis of CD data—gene-set analysis
As with the gene analysis, the results of the CD analysis (Table 3 and Fig 2) can again serve as a
gauge of the relative power of the different gene-set analysis methods. For the self-contained
gene-set analysis this comparison is straightforward with MAGMA showing considerably
more power than the two PLINK analyses. For the most part MAGMA’s power advantage can
be explained by the difference in the underlying gene model, given the superior power of the
PC regression model over the SNP-wise model used by PLINK shown before. Differences in
how the genes are combined may also play a role however since, in contrast to PLINK,
MAGMA weighs genes equally rather than by the number of SNPs in them and explicitly takes
correlations between genes into account. Of note is also that PLINK-prune does considerably
better than PLINK-avg, and that its p-values are somewhat more strongly correlated with those
of the MAGMA analysis (Fig 2). An additional summary statistics analysis (MAGMA-pval-
1K) on SNP p-values and using 1,000 Genomes reference data was also performed. This
showed less power than PLINK even though it uses the same model at the gene level, suggesting
that the difference is due to how the genes are aggregated to gene-sets. One of the key differ-
ences in this regard is that PLINK gives larger genes greater weight whereas MAGMA weighs
them equally. As such a likely explanation is that the PLINK results are partially driven by a
smaller number of large genes, though constructing the intermediate models to verify this is be-
yond the scope of this paper.

The comparison of competitive methods is somewhat more complicated, due to the fact
that ALIGATOR, INRICH and MAGENTA all use discretization using a p-value cut-off. This
cut-off needs to be specified by the user and has no obvious default value, although for MA-
GENTA the 5th percentile cut-off is suggested as the most optimal [12]. For ALIGATOR and
INRICH the analysis was therefore performed at four different cut-offs (0.0001, 0.001, 0.005,
0.01), and for MAGENTA at two (5th and 1st percentile).

Of the four tools, only MAGMA and INRICH yield significant results after multiple testing
correction (Tables 3 and 4). As with the self-contained gene-set analysis, power for the
MAGMA analysis is better when using raw data rather than SNP p-values as input, though
both yield one significant gene set. For INRICH the results are strongly dependent on the SNP
p-value cut-off used, with three significant gene sets at the 0.0001 cut-off but none at the higher
ones, further emphasizing the problem of choosing the correct cut-off. It should also be noted

Fig 2. Comparison of self-contained gene-set analysis results.Gene set—log10 p-values from the CD data self-contained gene-set analysis for MAGMA
and PLINK. Panel (A) shows the PLINK-avg (no pruning) results compared with the MAGMA-main analysis, panel (B) the PLINK-prune results compared
with the MAGMA-main analysis and (C) the two PLINK analyses compared to each other. P-values below 10–8 are truncated to 10–8 (grey points) to preserve
the visibility of the other points.

doi:10.1371/journal.pcbi.1004219.g002
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that the p-values have not been corrected for the fact that the gene-sets have been analysed under
four different thresholds, and thus might not fall below the significance threshold if they were.

Looking at the results in more detail (Fig 3) also suggests that the differences in results are
not merely due to a difference in power. The concordance between methods is poor, with only
MAGENTA and ALIGATOR showing a reasonable correlation in results. Moreover, there is
considerable discordance between different p-values cut-offs for the same methods as well (Fig
4). This suggests that the different methods, or methods at different p-value cut-offs, are sensi-
tive to distinctly different kinds of gene set associations. In particular, MAGMA and the other
three methods at higher p-value cut-offs would be expected to respond best to gene-sets con-
taining a larger number of somewhat associated genes. Conversely, at lower p-value cut-offs
the latter three should become more sensitive to gene-sets containing a small number of more
strongly associated genes. This is exemplified by the INRICH analysis. At the 0.0001 cut-off
only quite strongly associated genes are counted as relevant, but as there are only 42 such genes
overall the three gene sets (containing either 26 or 29 genes) become significant despite each
containing only three relevant genes.

Aside from differences between methods, Table 3 also shows a clear difference between self-
contained and competitive gene-set analysis. This is not a difference in power, but rather a dif-
ference of null hypothesis. Competitive tests attempt to correct for the baseline level of associa-
tion present in the data and accordingly have a much more general null hypothesis. The
impact of this difference in hypothesis can be illustrated by comparing the MAGMA self-con-
tained and competitive analyses, since they are performed in the same framework. Whereas the
self-contained analysis detects 39 gene sets that show association with the phenotype, the com-
petitive analysis detects only one of those 39. For the remaining 38 gene sets, there is no evi-
dence in the data that the associations in those gene sets are any stronger than would be
expected by chance given the polygenic nature of CD. The gene-set that remains is the Regula-
tion of AMPK via LKB1 (REACTOME) set. For two additional gene sets, Cell Adhesion Mole-
cules (KEGG) and ECM-receptor Interaction (KEGG), the competitive p-value also drops
below the significance threshold (Table 4 and S12 Fig) if the correction for gene size and gene
density is turned off. This suggests that these gene sets do in fact contain significantly elevated
levels of association, but that this is partially caused by confounding effects of the size and den-
sity of the genes they contain. Given the strength of the confounding effect it is evident that
gene-set analyses should always be corrected for these and other potential confounders, to
avoid false positive results. Full results for the analyses can be found in Table S5 in S2 File.

Table 4. Competitive gene-set p-values for MAGMA and INRICH significant gene-sets.

MAGMA-main MAGMA-pval INRICH

Gene-set Size correction No correction Cut-off = 0.0001 Cut-off = 0.01

Regulation of AMPK activity via LKB1 0.000026 0.000022 0.059 1a 0.37

ECM receptor interaction 0.000094 0.000015 0.00052 1a 0.08

Cell adhesion molecules 0.0001 0.000011 0.012 1a 0.11

Cytokine receptor interaction 0.004 0.01 0.000028 0.0007 0.091

TCR calcium pathway 0.034 0.024 0.11 0.0001 0.074

NKT pathway 0.052 0.073 0.034 0.0001 0.0022

IL27 pathway 0.3 0.36 0.22 0.0001 0.123

Significant p-values are highlighted in bold. MAGMA p-values compared against a Bonferroni-corrected threshold of 0.05/1320 = 0.000038. For INRICH,

corrected p-values (not shown) are compared against a threshold of 0.05; corrected p-value for all three significant gene-sets is 0.049.
a p-values were not computed because fewer than two genes in the set overlapped with an associated interval; p-values are therefore effectively equal to 1

doi:10.1371/journal.pcbi.1004219.t004
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Computational performance
All analyses were performed on the Genetic Cluster Computer, which is part of the Dutch Lisa
Cluster. In terms of computational performance MAGMA is shown to have a considerable ad-
vantage over the other methods (Table 5) for both gene and gene-set analysis. The most
marked difference is between MAGMA and PLINK, the only one of the alternative methods
using raw data input. However, the raw data analysis in MAGMA outperforms the summary
statistics methods as well. Although INRICH and ALIGATOR show comparable computation
times at their lowest SNP p-value cut-off, the need to repeat the analysis at multiple cut-offs
means the total analysis for both takes considerably longer.

The low MAGMA computation times are largely due to the choice of statistical model.
Since the statistical tests used have known asymptotic sampling distributions the need for com-
putationally demanding permutation or simulation schemes is avoided. Note however that the
permutation-based SNP-wise analyses in MAGMA also show very reasonable computation
times. These results demonstrate that, given efficient implementation, there is no computation-
al reason to prefer analysis of summary statistics over raw data analysis, even when using
permutation.

Fig 3. Comparison of competitive gene-set analysis results.Gene set −log10 p-values from the CD data competitive gene-set analysis for MAGMA,
ALIGATOR, INRICH and MAGENTA. Results for ALIGATOR and INRICH are shown for each for the SNP p-value cutoff that yielded the highest observed
power (0.01 and 0.0001 respectively), MAGENTA at the advised 5th percentile cutoff. P-values for gene sets not evaluated by one of the methods are shown
in grey. The shown correlations are for the −log10 p-values for gene-sets evaluated by both methods.

doi:10.1371/journal.pcbi.1004219.g003
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Discussion
We have developed MAGMA, a fast and flexible method for performing gene and gene-set
analysis in a two-tiered parametric framework. Comparison with a number of other, frequently
used methods shows that MAGMA has better power for gene analysis as well as for both self-
contained and competitive gene-set analysis. An important factor in this is the multiple

Fig 4. Comparison of competitive gene-set analysis results at different SNP cut-offs.Comparison of gene set −log10 p-values from the CD data
competitive gene-set analysis at different SNP p-value cut-offs for ALIGATOR (top row), INRICH (middle row) and MAGENTA (bottom row). The highest cut-
off on the horizontal axis is compared to each of the lower cut-offs. P-values for gene sets not evaluated at the lower cut-off are shown in grey. The shown
correlations are for the −log10 p-values for gene-sets evaluated at both cut-offs. Horizontal and vertical grey dotted lines demarcate the p = 0.05 nominal
significance threshold.

doi:10.1371/journal.pcbi.1004219.g004
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regression model used in the gene analysis, which is better able to incorporate the LD between
SNPs than other methods. Because of its two-layer structure, this improvement in power at the
gene-level subsequently carries over to the gene-set analysis.

MAGMA was also found to be generally much faster than other methods, even methods
that used only summary statistics rather than raw data. This is primarily due to the choice of
statistical model, which did not require the kind of computationally expensive permutation or
sampling procedures used in the other methods. However, even the permutation-based SNP-
wise models implemented in MAGMA outperformed their equivalents in other software and
yielded very reasonable computation times.

Although MAGMA showed better power than other tools for both the self-contained and
competitive gene-set analysis, these comparisons also revealed considerable differences

Table 5. Computation times for gene and gene-set analyses.

Method Computation time Factor Type

Gene analysis

MAGMA-main 00:00:44 1 Raw data

MAGMA-mean 00:01:00 1.4 Raw data

MAGMA-topa 00:25:18 34.5 Raw data

MAGMA-pval 00:00:10 0.3 Summary

MAGMA-pval-1K 00:00:54 1.2 Summary

PLINK-avgb 11:35:05 947.8 Raw data

PLINK-pruneb 08:55:13 729.8 Raw data

PLINK-topb 10:59:26 899.2 Raw data

VEGASa 03:14:05 264.7 Summary

MAGMA-main (10 covariates) c 00:00:58 1.3 Raw data

PLINK-avg (1 covariate)c,d 160:39:03 13144.2 Raw data

PLINK-avg (10 covariates)c,d,e > 857:54:57 > 70193.1 Raw data

Gene-set analysis

MAGMA-main 00:01:56 1 Raw data

MAGMA-pval-1K 00:01:09 0.6 Summary

PLINK-avgb 44:20:40 1376.2 Raw data

PLINK-pruneb 62:35:24 1942.4 Raw data

ALIGATOR total (4 cut-offs)f 02:37:11 81.3 Summary

Cut-off = 0.01 01:23:15 43.1 Summary

Cut-off = 0.0001 00:07:54 4.1 Summary

INRICH total (4 cut-offs)g 01:09:22 35.9 Summary

Cut-off = 0.01 00:33:41 17.4 Summary

Cut-off = 0.0001 00:05:16 2.7 Summary

MAGENTA 00:24:35 12.7 Summary

‘Factor’ indicates the increase in computation time relative to MAGMA-main. MAGMA computation times for gene-set analysis include both self-contained

and competitive tests. All analyses were run on the same system.
a up to 100,000 permutations
b up to 10,000 permutations
c covariates are PCs used for stratification correction
d 1,000 permutations
e did not complete
f 5,000 permutations, 1,000 replications
g 10,000 replicates, 10,000 bootstraps

doi:10.1371/journal.pcbi.1004219.t005
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between the methods. This was most pronounced for the competitive gene-set analysis, with
even results for individual methods showing significant variability based on the choice of cut-
off. At present no comprehensive evaluation of the differences between existing gene-set analy-
sis methods exists, leaving the causes and implications of these difference unclear. It is beyond
the scope of this paper to perform such an evaluation, but the degree of discordance between
most methods strongly suggests a need for future research in this direction. An additional cave-
at is that it is unknown to what extent the observed differences in power between methods may
depend on the specific genetic architecture of Crohn’s diseases, and as such generalizing the re-
sults to other genetic architectures must be done with caution.

The framework for MAGMA is built with future extensions in mind. Because of the two-
tiered structure of the gene-set analysis, alternative gene analysis models are straightforward to
implement and are automatically available for use in the gene-set analysis. Similarly, the linear
regression structure used to implement the gene-set analysis offers a high degree of extensibili-
ty. At present it enables analysis of continuous gene-level covariates as well as conditional anal-
ysis of gene-sets correcting for possible confounders, and the analysis of the CD data
demonstrates that correction for confounders such as gene size and gene density is indeed
strongly advised. The model is easily generalized to much more general gene-level linear re-
gression models to allow for simultaneous analysis of multiple covariates and gene-sets, open-
ing up a wide range of new testable hypotheses.
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S1 File. Supplemental methods.
(PDF)

S2 File. Supplemental tables.
(PDF)

S3 File. Results for all Crohn’s Disease gene and gene-set analyses.
(XLSX)

S1 Fig. Validation of F-test for binary phenotypes. Empirical p-values were obtained for the
CD data PC regression gene analysis by permutation of the F-statistic (A), in order to verify the
accuracy of the asymptotic F-test p-values. An initial 100,000 permutations were computed for
each gene. For genes with a very low initial empirical p-value (shown in blue and red) the num-
ber of permutations was increased to about 500 million to refine the empirical p-value. The
dashed horizontal line indicates the lowest possible non-zero permutation p-value, genes with
an empirical p-value of 0 are shown at half that minimum p-value in the plot (in red). The pro-
cess was repeated using a subsample of the CD data skewed 4:1 towards cases (B) or controls
(C); and with evenly divided subsamples of N = 1000 (D), N = 500 and N = 250. Only the initial
100,000 permutations were performed for these analyses, genes with an empirical p-value of 0
are again shown at half the minimum non-zero p-value (in blue).
(TIFF)

S2 Fig. Comparison of linear and logistic model. Gene p-values were computed using a logis-
tic regression model to compare against the linear regression model used in MAGMA. P-values
were computed using either a Score test (A) or a Likelihood Ratio test (B). Because the Likeli-
hood Ratio test appeared to have significantly more power than both the Score test and the
MAGMA F-test, empirical p-values for the Likelihood Ratio test were computed by generating
up to 10,000 permutations of the Likelihood Ratio statistic. This was compared to the asymp-
totic Likelihood Ratio test p-values (C), revealing a downward bias in the asymptotic p-values.
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The empirical p-values were then compared to the MAGMA F-test p-values (D), which shows
that the apparent power advantage of the Likelihood Ratio test in (B) was due to the bias in the
p-values.
(TIFF)

S3 Fig. The effect of genotype pruning. The pruning implemented in MAGMA was applied
to the genes in the CD data at different levels of the prune factor f (default is 0.999), which re-
flects the proportion of the total variance in the raw genotype data that is retained after prun-
ing. The original number of genotyped SNPs in each gene is plotted against the number of PCs
retained after pruning. The regression slope gives an estimate of the average proportion of PCs
to SNPs.
(TIFF)

S4 Fig. Comparison of pruning to PLINK independent SNPs. The PLINK—indep option
was used to obtain an estimate of the number of independent SNPs at different R2 values. The
number of PCs retained by MAGMA at different values of the pruning factor f is plotted
against the number of independent SNPs at the R2 value that provided the closest match.
(TIFF)

S5 Fig. Evaluation of the genotype imputation procedure.MAGMA needs to impute missing
genotype values in order to run the multiple regression model, which is done by single imputa-
tion using flanking SNPs. To validate this procedure a subset of genes was selected from the
CD data, and genotype values in those genes were set to be missing for a specified fraction of
all the genotype values (up to 10%), and gene p-values were then computed after using the im-
putation to fill in those missing values. Gene p-values were also computed for the original full
data. For each fraction, missing data was simulated 100 times for each gene, and the 5th (black)
and 95th (blue) quantiles of the p-values of each gene were computed and plotted against that
gene’s full data p-value.
(TIFF)

S6 Fig. Distribution of correlations between gene Z-statistics. Gene analysis was performed
on the CD data, and a joint empirical distribution gene SSM values was generated using 4,611
permutations of the phenotype (since the sample size of the CD data is 4,611). The correlation
matrix was then computed from this distribution. In addition, a correlation matrix for 13,172
uncorrelated genes was simulated by generating 4,611 permations for 13,172 genes and com-
puting the correlation matrix. This provides the distribution of correlation coefficients that
would be expected if the genes were uncorrelated. A QQ-plot of these expected correlation co-
efficients are plotted against the observed correlation coefficients in (A), showing a clear sur-
plus of high positive correlations for the CD data genes. A QQ-plot using only correlations
between genes more than 5 megabases apart (B) reveals that this is due to short-range correla-
tions only.
(TIFF)

S7 Fig. Visualisation of the gene Z-statistic correlation matrix for chromosomes 5 and 6.
Gene analysis was performed on the CD data, and a joint empirical distribution of the gene
SSM values was generated using 4,611 permutations of the phenotype (since the sample size of
the CD data is 4,611). The correlation matrix for chromosomes 5 and 6 was plotted, with indi-
vidual pixels corresponding to a pair of genes and the color (from white to black) proportional
to the absolute value of the correlation between those genes. Correlations with absolute value
smaller than 0.05 are set to 0 to reduce noise. The yellow area corresponds to genes within 5
megabases of each other, corresponding to gene pairs for which MAGMA computes the
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correlations (correlations between more distant genes are assumed to be 0); the dashed lines in-
dicate the boundary between the two chromosomes.
(TIFF)

S8 Fig. Quality of reference data-sets for summary statistics gene analysis. Summary statis-
tics gene analysis of CD data SNP p-values was performed using different reference data-sets,
using the SNP-wise mean χ2 model. This was compared to the same SNP-wise analysis per-
formed on the raw CD genotype data. Grey points correspond to genes not covered by the ref-
erence data-set. The reference data-sets used are (A) the CD data itself, (B) the 1,000 Genomes
European panel (97 missing genes), (C) the HapMap 3 European panel (375 missing genes)
and (D) the HapMap 3 African panel (623 missing genes).
(TIFF)

S9 Fig. Comparison of VEGAS and PLINK with matched MAGMA SNP-wise models. Gene
−log10 p-values from the CD data gene analysis for equivalent gene test-statistics implemented
in different tools. The gene test-statistics used are (A) the mean χ2 statistic in MAGMA and
PLINK, (B) the top χ2 statistic in MAGMA and PLINK, (C) the mean χ2 statistic in MAGMA
and VEGAS with analysis based on SNP p-values and HapMap 3 reference data and (D) the
mean χ2 statistic in MAGMA on raw data and with analysis based on SNP p-values and Hap-
Map 3 reference data.
(TIFF)

S10 Fig. Comparison of MAGMA gene analysis models with and without PCs as covariates.
Gene −log10 p-values from the CD data gene analysis for the three MAGMA gene analysis
models with 10 PCs as covariates to correct for stratification, and without. P-values below 10–8

are truncated to 10–8 (grey points) to preserve the visibility of the other points.
(TIFF)

S11 Fig. Comparison of MAGMA gene analysis models with and without 10kb window.
Gene −log10 p-values from the CD data gene analysis for the three MAGMA gene analysis
models with additional 10 kilobase window around the transcription start and stop sites, and
without. Genes only present in the 10 kilobase window analyses are omitted. P-values below
10–8 are truncated to 10–8 (grey points) to preserve the visibility of the other points.
(TIFF)

S12 Fig. Comparison of MAGMA competitive gene analysis with and without correction
for gene size and gene density. Gene −log10 p-values from the CD data analyses. When the
correction is turned on (the default setting), the gene-set effect is conditioned on gene size and
gene density. Grey dashed lines represent the Bonferroni-corrected significance threshold. The
effective size of the gene (number of PCs in the gene after pruning) is used as a measure of gene
size, the ratio of effective size and total number of SNPs as a measure of gene density. The cor-
rection is achieved by entering gene size and gene density, as well as the log of both, as predic-
tors in the generalized gene-set analysis model alongside the gene-set indicator variable.
(TIFF)
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