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COMMENTARY

Nanoclustering as a dominant feature of plasma membrane
organization

Maria F. Garcia-Parajo1,2,", Alessandra Cambi3,4,*, Juan A. Torreno-Pina1, Nancy Thompson5 and
Ken Jacobson6,7,"

ABSTRACT

Early studies have revealed that some mammalian plasma

membrane proteins exist in small nanoclusters. The advent of

super-resolution microscopy has corroborated and extended this

picture, and led to the suggestion that many, if not most, membrane

proteins are clustered at the plasma membrane at nanoscale

lengths. In this Commentary, we present selected examples of

glycosylphosphatidyl-anchored proteins, Ras family members and

several immune receptors that provide evidence for nanoclustering.

We advocate the view that nanoclustering is an important part of the

hierarchical organization of proteins in the plasma membrane.

According to this emerging picture, nanoclusters can be organized

on the mesoscale to form microdomains that are capable of

supporting cell adhesion, pathogen binding and immune cell-cell

recognition amongst other functions. Yet, a number of outstanding

issues concerning nanoclusters remain open, including the details

of their molecular composition, biogenesis, size, stability, function

and regulation. Notions about these details are put forth and

suggestions are made about nanocluster function and why this

general feature of protein nanoclustering appears to be so

prevalent.

KEY WORDS: Plasma membrane, Protein nanoclustering,

Super-resolution microscopy

Introduction
Organization by compartmentalization is a general property of

natural systems that efficiently facilitates and orchestrates

biological events in space and time. Cells are primary examples

of well-defined biological compartments within tissues. However,

cells also exhibit a number of compartmentalization strategies,

including membrane-delimited intracellular organelles (e.g.

endosomes and lysosomes) and multi-enzyme complexes. This

compartmentalization of specific cellular functions, through

spatial localization, increases regulation efficiency. In addition,

the plasma membrane with its extracellular matrix and the

subjacent membrane-associated cytoskeleton is also highly

organized – with areas in which specific components are

enriched or to which they are recruited – thereby providing

specialized cellular regions, such as the basal and the apical

membrane in polarized cells, the immunological synapse in

interacting leukocytes or multimolecular membrane-cytoskeleton

assemblies that include focal adhesions and podosomes. Once

considered a relatively unstructured ‘sea’ of lipids and proteins

that are potentially able to form aggregates (Singer and Nicolson,

1972), the plasma membrane is now widely accepted as being

highly compartmentalized, thus allowing lipids and proteins to be

organized in specific regions of varying size and composition

(Kusumi et al., 2011; Maxfield, 2002; Nicolson, 2013).

One of the most prominent concepts for membrane

compartmentalization refers to the ‘lipid raft hypothesis’. The

raft model originated from a study more than 25 years ago (van

Meer et al., 1987) and has been extensively reviewed since then

(Lingwood and Simons, 2010; Simons and Toomre, 2000). The

lipid raft notion proposes the existence of small plasma

membrane compartments that are enriched in cholesterol and

sphingolipids, and populated by ‘raftophilic’ proteins such as, for

example, glycosylphosphatidyl-anchored proteins (GPI-APs).

Persistent controversies have led to a provisional contemporary

definition that emphasizes the small and transient nature of

putative lipid rafts (Pike, 2006). Yet, when considering the

current, general view about the nature of lipid rafts, it must be

borne in mind that membranes are rich in proteins (Jacobson

et al., 2007) and that any preferential residence of membrane

proteins in regions populated by raft lipids most likely occurs

only on a very small spatial and temporal scale (Eggeling

et al., 2009). At present, the existence of relatively large, and

predominantly ‘lipid raft’ domains is expected to be the exception

rather than the rule.

Another prominent concept for plasma membrane

compartmentalization is based on the meshwork of filamentous

proteins including F-actin and spectrin that immediately underlie

the plasma membrane. This model originated over three decades

ago on the basis of lateral diffusion studies of proteins in the

membranes of red blood cells (Sheetz, 1983) and was later

expanded by work from Akihiro Kusumi’s group, who termed it

the membrane cytoskeleton ‘fence’ (Kusumi et al., 2005). They

also coined the term ‘anchored transmembrane picket’, which

refers to the more or less regular array of transmembrane proteins

(posts) that are anchored to the underlying membrane-associated

cytoskeletal fence serving to compartmentalize the membrane.

Thus, long-range diffusion of both transmembrane and lipid-

anchored proteins is restricted because it is rate-limited by

fluctuations in the cytoskeletal ‘fence–picket’ structure that

1ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860
Castelldefels (Barcelona), Spain. 2ICREA-Institució Catalana de Recerca i Estudis
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permits the inter-compartmental barriers to be traversed by the
diffusing molecule. By contrast, short-range diffusion within each

compartment is much more rapid.
Other notions have also been put forth with regard to factors

that govern plasma membrane compartmentalization on different
length and time scales, such as lipid shells (Anderson and

Jacobson, 2002), tetraspanin-enriched microdomains (Yáñez-Mó
et al., 2009) and galectin lattices (Lajoie et al., 2009). Moreover,
recent evidence suggests that these possible local organizers are

not independent from each other but, rather, act in a synergistic
manner that remains to be precisely defined (Delaguillaumie
et al., 2004; Lajoie et al., 2009).

The term ‘microdomain’ is generally employed to describe
membrane compartmentalization that occurs either naturally or is
ligand induced. However, the size of such domains can vary from

a few nanometers to several micrometers, most probably owing to
their different molecular composition and different capacities
to coalesce with or segregate from each other. A plausible
hypothesis is that plasma membrane compartmentalization

is based on a hierarchical organization of molecules that
ranges from classic protein oligomerization to nanometer-sized
or micrometer-sized clusters, which may provide multi-scale

regulation of membrane protein function. However, in this
Commentary, we will focus on organization at the smallest
scale, namely, the association of membrane proteins into clusters

of nanometer dimensions into which other proteins or lipids may
be incorporated.

The rapid development of super-resolution optical microscopy

(Table 1) and single-particle tracking approaches in the past few
years has provided – and is continuing to provide – indisputable
evidence for nanoclustering of many, if not most, proteins on
mammalian cell plasma membranes – even in the absence of

any activation or ligand binding. Whereas examples of
nanoclustering in neurobiology can be found in a recent review
(Willig and Barrantes, 2014), we will focus here on some other

salient examples of receptor nanoclustering, including those
involved in pathogen binding, cell adhesion and the immune
response.

The diversity of membrane protein nanoclustering
Lipid-anchored proteins
Some of the smallest documented nanoclusters are those that

contain GPI-APs. These extracellular, lipid-linked proteins
constitute a diverse set of proteins tethered to the outer leaflet
of the plasma membrane that exhibits specific sorting and

signaling properties. GPI-APs are regulated by alterations in
cholesterol and sphingolipid levels in cell membranes and, as
such, have been considered to be classic lipid-raft markers

(Mayor and Riezman, 2004). The first studies discussing the
unusual nature of GPI-AP nanoclustering were reported by
two different groups using complementary approaches; i.e.

chemical crosslinking (Friedrichson and Kurzchalia, 1998) and
fluorescence resonance energy transfer (FRET) (Varma and
Mayor, 1998). Later, using a combination of homo- and hetero-
FRET techniques, it was shown that GPI-APs co-exist on the cell

membrane as mixtures of monomers together with a fraction (20–
40%) that includes cholesterol-sensitive oligomers (,5 nm)
composed of at most four molecules; this was shown for a

diverse set of GPI-AP species (Sharma et al., 2004). Surprisingly,
the relationship between monomers and nanoclusters did not obey
the mass-action law that would be expected for a classic chemical

equilibrium, because the percentages of GPI-APs nanoclusters

and their molecular density were concentration-independent
(Mayor and Rao, 2004). Importantly, GPI-AP nanoclustering

has been more recently confirmed by super-resolution
microscopy techniques (Table 1), including near-field scanning
optical microscopy (NSOM) (van Zanten et al., 2009) (Fig. 1)
and photoactivated localization microscopy (PALM) (Sengupta

et al., 2011). Single-particle tracking (SPT) and fluorescence
correlation spectroscopy (FCS) studies on nanoscale volumes
(Eggeling et al., 2009) have provided further evidence for the

existence of small GPI-AP nanoclusters in living cell membranes
– although, as recently pointed out, an entirely consistent picture
has not yet emerged owing to the high number of different

techniques employed (Klotzsch and Schütz, 2013).
Other lipid-tethered proteins at the inner leaflet of the

membrane, e.g. the Ras family of GTPases, also form

nanoclusters that are composed of small numbers of proteins, as
observed by immunogold electron microscopy (EM) (Parton and
Hancock, 2004). Ras isoforms are distinguished by differences in
the structure of their lipid anchors; e.g. K-Ras is tethered to the

membrane by a farnesyl group and a polybasic region, whereas
H-Ras is anchored by two palmitoyl chains and a farnesyl group.
EM imaging of the membrane-targeting regions of these two Ras

isoforms has shown that fewer than ten copies of both K-Ras and
H-Ras are localized in largely separated nanoclusters of less than
30 nm within the inner leaflet of the plasma membrane (Plowman

et al., 2005; Prior et al., 2003). Ras nanoclusters had lifetimes of
less than 1 second, were immobile and constituted about 40% of
the total Ras population, with the remaining population being

monomeric and laterally mobile (Murakoshi et al., 2004). The
properties of Ras nanoclusters are complicated by their dependence
on the structure of the membrane anchor and the hyper-variable
region of the protein moiety, the presence of cholesterol, extrinsic

clustering factors and whether the isoform is loaded with GTP or
GDP (Harding and Hancock, 2008). For example, when loaded
with GDP but not GTP, H-Ras nanoclusters were localized in lipid

rafts based on the affinity of their lipid chains for raft domains and
by the fact that the localization required cholesterol (Harding and
Hancock, 2008). By contrast, the K-Ras targeting domain also

localized in nanodomains but this localization did not depend on
cholesterol. In general, the field appears to be moving towards a
consensus that GPI-AP and Ras nanoclusters constitute nucleation
sites for signaling at the cell membrane that can grow and be

stabilized by the recruitment of additional components to create
active functional platforms for specific cellular functions
(Cebecauer et al., 2010; Mayor and Rao, 2004; van Zanten et al.,

2009).
Of considerable interest is the nature of the factors that regulate

and stabilize nanoclusters of lipid-anchored proteins. In general,

lipid-linked protein nanoclusters might be stabilized by cis

associations of their protein ectodomains, cytosolic domains,
lipid anchors or a combination of these. For example, Akihiro

Kusumi’s group recently showed that ectodomain interactions are
the primary factor in transiently stabilizing homodimers of the
GPI-AP CD59, with cholesterol and other lipids having secondary
stabilizing roles (Suzuki et al., 2012). Furthermore, in supported

lipid bilayers, Ras GTPases dimerize using a specific motif in
their cytosolic domains (Lin et al., 2014). These studies suggest
that protein–protein interactions among identical lipid-linked

proteins play a significant role with respect to the stability of
lipid-linked protein nanoclusters.

Accessory molecules that are located outside of the

membrane might also be key to the formation, size and stability
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of lipid-linked protein nanoclusters. These accessory molecules
include proteins associated with the actin cortex, the extracellular
matrix and other molecules – including galectins – that have the

capacity to bind galactose or galactose-derivative containing
polysaccharides (Vasta, 2009). For example, intracellular
galectins were shown to be important in stabilizing and

enlarging GTP-loaded Ras nanoclusters (Belanis et al., 2008).
In response to growth factor receptor activation, galectin-1 –
which has the capacity to bind intracellular prenyl groups –
translocates from the cytosol to the membrane and becomes

important in recruiting GTP-loaded H-Ras to nanoclusters that do
not require cholesterol and function as signal transduction

platforms (Belanis et al., 2008; Prior et al., 2003). In this case,
galectin-1 appears to replace cholesterol as the factor that
stabilizes H-Ras-GTP nanoclusters. Moreover, when H-Ras is

depalmitoylated, galectin-1 acts as a chaperone to transfer H-Ras
to the Golgi.

In the case of GPI-APs, the cortical actin cytoskeleton must be

considered because it can regulate the extent of nanoclustering
(Goswami et al., 2008). This regulation can be either passive or
active. In the first case, and as discussed in the Introduction, the
membrane skeleton can be coupled to unspecified transmembrane

proteins that act as ‘picket fences’ to create corrals in the plane of
the membrane with dimensions that vary between 30 and 250 nm

Table 1. Super-resolution microscopy approaches to image nanoclusters in membranes  

Method Description Benefits Limitations 

Single-molecule 
localization 
microscopy (SMLM) 

Localization of individual molecules that results in high-precision maps 
of molecular positions. This group of methods is based on stochastic 
activation of dispersed fluorophores and subsequent analysis to obtain 
the centers of the fluorescent spots within the images. 
 

 
 
Main variants: 
 PALM and  fPALM, based on photoactivatable fluorescent probes  
 STORM, dSTORM and the BLINK technique, based on photo-
switchable fluorescent probes 

High lateral precision (10–
50 nm) spatial mapping of 
molecular positions. 
 
SPT-PALM of slowly 
diffusing components is 
achievable in live cells. 
 
Multi-color imaging is 
possible. 

Slow (data acquisition 
minutes  to hours). 
 
Requires additional 
equipment to achieve 
axial super resolution 
(e.g. interferometry 
PALM). 
 
Highest resolution 
requires fixed samples. 
 
Blinking and/or 
switching of organic 
dyes requires 
deoxygenated buffers. 

Stimulated emission 
depletion (STED) 
microscopy 

Enhanced resolution results from narrowing of the point-spread 
function. It is based on a doughnut-shaped excitation beam 
superimposed on the primary Gaussian profile excitation beam 
resulting in depletion of emission from the outside ring of the excitation 
spot. A super-resolution image is generated by scanning the 
overlapping excitation beams over the sample.  
 

 

High lateral resolution (30–
100 nm). 

FCS-STED is possible in 
living cells.

3D-imaging of sub-cellular 
structures. 

Applicable to living 
specimens. 

Involves expensive, 
specialized lasers and 
optics. 
 
High intensity of the 
depletion beam. 
 
Limited combination of 
fluorophores can be 
employed. 
 
Dual-color imaging 
with equal spatial 
resolution is 
challenging. 

Near-field scanning 
optical microscopy 
(NSOM) 

Excitation light is guided through a sub-wavelength aperture probe that 
is scanned over the sample. It relies on near-field excitation and 
requires close proximity of the NSOM probe (tapered optical fiber) and 
the sample. 
 

 

Scanning tip delivers a 
simultaneous topography 
map. 
 
Multi-color imaging with 
equal resolution. 
 
Limited evanescent field 
eliminates cytosolic 
background. 
 
Perfectly suited to image 
apical cell membrane. 
 
FCS-NSOM possible in 
living cells. 

Spatial resolution is 
dictated by probe 
diameter (70–90 nm). 
 
Mostly used for fixed 
samples. 
 
Technically 
challenging. 
 
Probe fragility. 

dSTORM, direct STORM; FCS, fluorescence correlation spectroscopy; fPALM, fluorescence PALM; PALM, photoactivated localization 
microscopy; SPT, single-particle tracking; STED, stimulated emission depletion; STORM, stochastic optical reconstruction microscopy. 
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depending on the cell type (Kusumi et al., 2011) (Fig. 1A). These
fences could determine the upper limit on the size of nanoclusters

by interposing a collection of transmembrane proteins acting as
fences between adjacent nanoclusters.

It has been also proposed that dynamic, short actin filaments

form aster-like aggregates under the plasma membrane that
actively drive lipid-anchored proteins into nanoclusters
(Gowrishankar et al., 2012) (Fig. 1A). The observation that

GPI-AP nanoclusters are found to be spatially separated by a
characteristic distance of less than 250 nm (van Zanten et al.,
2009), further indicates that the assembly of actin asters close to

the inner leaflet of the plasma membrane occurs at this spatial
scale (Fig. 1B). However, a main unresolved issue is what gives
rise to the coupling of GPI-AP nanoclusters in the outer leaflet
with the sub-membranous actin cortex. One possible mechanism

is that GPI-APs are coupled to complementary nanodomains
(consisting of lipids, proteins or both) that reside in the inner
membrane leaflet. These putative inner-leaflet nanodomains

could associate with small, dynamic actin filaments in the
cortex in a yet unknown fashion and actively draw GPI-APs into
nanoclusters through myosin motors. Alternatively, GPI-AP

nanoclusters could associate with transmembrane proteins that
are coupled to the dynamic actin filaments.

Indeed, transmembrane proteins that are anchored to the
cytoskeleton, either permanently or in a transient and

regulated manner, might also serve as ‘posts’ that stabilize GPI-
AP nanoclusters through cis interactions they undergo with
nanocluster components. This mechanism was, in fact, originally

proposed to explain how membrane proteins are linked to
the underlying membrane-associated cytoskeleton, as observed
during patching and capping (Singer, 1977). This is a

phenomenon in which membrane proteins that have been
crosslinked by antibodies passively form patches that are
subsequently actively cleared to a distal part of the cell surface

through coupling to a retrograde cortical actin flow. However, a

key issue is the identity of the transmembrane proteins involved
and how the linkage to the cytoskeleton might be regulated. In

this regard, GPI-AP nanoclusters that have been induced by
antibody-coated, multivalent gold particles undergo transient
anchorage (Chen et al., 2006), whereby their lateral diffusion is

arrested for several seconds before they become mobile again.
Moreover, this transient anchorage is dependent on cholesterol
and one of the seven transmembrane adaptor proteins (TRAPs),

namely CBP (officially known as PAG1) (Hořejšı́ et al., 2004).
CBP is involved in anchoring GPI-AP nanoclusters in a
manner that depends on phosphorylation and the cytoskeletal

adaptor ERM-binding protein 50 (EBP50; officially known as
SLC9A3R1), which binds to members of the ezrin–radixin–
moesin (ERM) family (Chen et al., 2009). Presumably, the CBP–
EBP50–ERM complex could link a GPI-AP nanocluster to the

underlying actin cytoskeleton. A similar transient anchorage,
probably also mediated by components of the membrane-
associated cytoskeleton, termed stimulated temporary arrest of

lateral diffusion (STALL), has been observed for ligand-induced
nanoclusters of the GPI-AP CD59. Moreover, these STALL
locations were associated with downstream intracellular signaling

processes (Suzuki et al., 2007).
Recent two-color super-resolution studies also suggest that the

cortex has an important role because enhanced cortical actin was
found to be associated with nanodomains of the influenza

envelope transmembrane protein hemagglutinin (HA) (Gudheti
et al., 2013). This association could limit the lateral mobility of
HA in actin-enriched regions. Moreover, the authors were able to

alter domain size and HA density within the domain by using
reagents that perturb F-actin. In addition, the actin-binding and
actin-disassembling factor cofilin is predominantly excluded from

actin-enriched regions that underlie the HA nanodomains,
suggesting that HA and/or proteins within the HA cluster
mediate this exclusion (Gudheti et al., 2013). All of the studies

described above not only demonstrate that the actin cortex is an
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Fig. 1. Nanoscale organization of GPI-APs on the cell membrane. (A) The organization of GPI-APs on plasma membranes as co-existence between
monomers and small nanoclusters containing a few molecules. Nanocluster formation appears to be driven by cortical actin (hypothetical actin asters) and
maintained by weak interactions with cholesterol (Gowrishankar et al., 2012). These small nanoclusters can be further stabilized by cortical actin through asters
and/or proximal transmembrane proteins that act as ‘posts’ attached to the cortical actin. The physical separation between GPI-AP nanoclusters has been
observed to be within 200–250 nm (van Zanten et al., 2009). (B) (Top) 3D intensity projection of a super-resolution NSOM image showing the co-existence of
nanoclusters (black arrowheads) and monomers (white arrowheads) of GPI-APs. (Bottom) Areas encircled by a dashed line on the 2D image illustrate that
nanoclusters prefer to concentrate at specific sites as hotspots that are typically separated by less than 250 nm. This characteristic separation might reflect the
physical dimensions of the actin meshwork and/or spatial distribution of actin asters (van Zanten et al., 2009; Gowrishankar et al., 2012). a.u., arbitrary units.
Image reproduced with permission (van Zanten et al., 2009).
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important determinant of nanocluster organization but also that
nanoclusters have the potential to regulate the distribution of

actin-binding proteins in the underlying cortex.

Transmembrane proteins involved in the immune system
In addition to lipid-linked proteins, many transmembrane

proteins also form nanoclusters. Below, we will discuss
examples of transmembrane protein nanoclusters with relevance
for immunological processes.

LFA-1
The main integrin receptor involved in leukocyte adhesion is the

lymphocyte function-associated antigen-1 (LFA-1, officially
known as ITGAL), which forms nanoclusters of ,70 nm on
monocytes prior to ligand binding (Cambi et al., 2006). The

integrity of these nanoclusters is independent of cholesterol or the
actin cytoskeleton and the clusters contain on average six LFA-1
molecules (Cambi et al., 2006). By using NSOM, a first level of
hierarchy for LFA-1 organization was defined because ligand-

independent LFA-1 nanoclusters resided within 50–100 nm of
GPI-AP nanodomains (van Zanten et al., 2009) (Fig. 2). Upon
ligand-induced LFA-1 activation, a higher level of hierarchy that

is associated with function was observed (van Zanten et al.,
2009). Indeed, coalescence of the two nanodomain types and
further recruitment of GPI-APs to these sites resulted in the

formation of stable cell adhesion nanoplatforms (van Zanten
et al., 2009) (Fig. 2). Although there is no clear explanation yet
with regard to what keeps LFA-1 in nanoclusters, it is tempting to

speculate that LFA-1 and GPI-AP nanoclusters are somehow
interconnected by the actin cytoskeleton to the sub-membranous

actin asters described above (Gowrishankar et al., 2012). More
recently, using a combination of NSOM and SPT, the importance
of the actin cytoskeleton was demonstrated for inside–out
activation of LFA-1, its stable ligand binding and firm cell

adhesion (Bakker et al., 2012). Although LFA-1 nanoclustering in
resting monocytes was observed prior to ligand activation, it is
worth mentioning that other integrins, such as b1 and b3, form

nanoclusters upon ligand activation (Rossier et al., 2012; Yu
et al., 2012). These nascent nanoclusters are thought to play a key
role in the initiation of cell adhesion (Yu et al., 2012) and in the

formation of focal adhesion complexes (Rossier et al., 2012; van
Zanten et al., 2009; Yu et al., 2012).

DC-SIGN
The pathogen recognition receptor dendritic cell-specific
ICAM-3-grabbing non-integrin 1 (DC-SIGN; officially known
as CD209) binds an astonishingly large variety of human

infectious agents ranging from HIV to dengue viruses to yeasts.
It is found on the surface of immature dendritic cells for the
purpose of subsequent antigen presentation. Biochemical studies

have shown that DC-SIGN predominantly forms tetramers
(Feinberg et al., 2005; Serrano-Gómez et al., 2008; Yu et al.,
2009). Recently, work from our laboratories using EM and

different super-resolution approaches demonstrated that DC-
SIGN forms nanoclusters on immature dendritic cells (or
following ectopic expression in rodent cells) prior to pathogen
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A Fig. 2. Hierarchical organization of GPI-APs
and the cell adhesion integrin receptor LFA-
1. The inverted triangle at the left indicates the
increase in hierarchical order in space and time
from bottom to top of each panel. (A) Bottom
panel: GPI-AP nanoclusters (containing two to
four molecules in total) and pre-formed LFA-1
nanoclusters (six to ten molecules in total) have
been observed in close proximity from each
other (50–150 nm) before LFA-1 is activated
through ligand binding. Top panel: Activation of
LFA-1 through ligand binding, correlates with an
increase in the number of GPI-AP molecules in
each nanocluster that is likely to be mediated by
local rearrangements of the cytoskeleton
through adaptor proteins (green). Furthermore,
incorporation (arrows) of mobile monomeric
GPI-APs and diffusible LFA-1 nanoclusters
(Bakker et al., 2012) can further strengthen the
nanoclusters and lead to the assembly of LFA-1-
and GPI-AP-containing nanoplatforms that are
adhesion competent. (B) Bottom panel:
Representative super-resolution NSOM images
of GPI-AP (green) and LFA-1 nanoclusters (red)
in resting monocytes show that LFA-1 and GPI-
AP are not associated but in close proximity to
each other. Scale bar: 1 mm. Top panel: Ligand
activation of LFA-1 leads to aggregation of GPI-
APs and LFA-1 (visualized by the substantial
increase in yellow areas, which indicates spatial
colocalization at the nanoscale) into adhesion-
competent nanoplatforms. Scale bar: 5 mm.
Images have been taken with permission from
van Zanten et al., 2009.
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binding (Fig. 3). The nanoclusters vary in size from 70–160 nm
and contain around ten molecules per nanocluster (Cambi et al.,

2004; de Bakker et al., 2007; Itano et al., 2012; Liu et al., 2014;
Manzo et al., 2012).

Interestingly, the ‘neck’ region of DC-SIGN is presumably not
only responsible for tetramer formation (Serrano-Gómez et al.,

2008) but also, in part, for its nanoclustering, indicating that
its organization on the cell membrane is also hierarchical
(Manzo et al., 2012). Furthermore, mutation studies suggested

that ectodomain interactions that involve the carbohydrate
recognition domain (CRD) of DC-SIGN serve to stabilize
nanoclusters (Liu et al., 2012). DC-SIGN organization in

nanoclusters has been shown to be crucial for enhancing its
binding capability to small pathogens such as viruses (Cambi
et al., 2004; Manzo et al., 2012), indicating that hierarchy in

organization correlates with function. There are several
possibilities for how DC-SIGN nanoclusters can become

stabilized (Liu et al., 2012). The DC-SIGN CRD could bind to
glycosaminoglycans or glycosyl moieties of ECM proteins, or to
transmembrane proteoglycans that link to the ECM or to TRAPs,
which might be directly or indirectly linked to the membrane-

apposed cytoskeleton. More recently, we found that DC-SIGN
nanoclusters further organize into larger compartments of ,1 mm
in size that are maintained by interactions between the receptor

glycosylation motif and surface galectins (Torreno-Pina et al.,
2014) (Fig. 3). These regions appeared enriched in the endocytic
vesicle coat-component clathrin, and its interactions with DC-

SIGN are highly affected by the glycan network. As such, cell
surface glycan-mediated interactions might represent another,
previously unidentified, layer of cell membrane organization at

STED dSTORM 

2 µm 1 µm

DC-SIGN nanoclustering B
Pathogen recognition

<40 nm 

DC-SIGN
tetramer

~70–160 nm 

DC-SIGN-enriched region ~1μm 

Actin
Glycosylated

TRAPs 

Glycosyl moities
of ECMGalectins

Extracellular
 space

Cytoplasm

1 µm

Adaptor 
protein

Cartography DC-SIGN and clathrin

300 nm

Key

H
ie

ra
rc

hi
ca

l o
rd

er
 in

 s
pa

ce
 a

nd
 ti

m
e

A

DC-SIGN
nanocluster

Fig. 3. Hierarchical organization of the pathogen recognition receptor DC-SIGN. The inverted triangle to the left indicates the increase in hierarchical order
in space and time from bottom to top of each panel. (A) DC-SIGN is thought to be expressed predominantly in the form of tetramers (bottom panel) on the cell
surface. These then aggregate further and form DC-SIGN nanoclusters (middle panel). Nanoclusters, in turn, are recruited to specialized regions of the cell
membrane (top panel) and maintained through a number of additional interactions with, e.g. TRAPs (see text). (B) Representative images from different super-
resolution and SPT methods illustrate the highly hierarchical organization of DC-SIGN. The stimulated emission–depletion (STED) microscopy image (top left),
with a resolution of ,90 nm, clearly shows DC-SIGN nanoclusters. As shown in the enlarged regions of the direct stochastic optical reconstruction microscopy
(dSTORM) image (top right), nanoclusters appear to be in close proximity to each other. The cartography map (bottom left) represents the reconstructed
molecular positions (blue dots) obtained from single-particle tracking (SPT) movies of several DC-SIGN nanoclusters as they explore the cell membrane
(Torreno-Pina et al., 2014). This map demonstrates that DC-SIGN nanoclusters explore restricted areas of ,1 mm, which is consistent with static dSTORM
images. Superimposition of a DC-SIGN map with images of clathrin illustrate that DC-SIGN compartments are enriched with clathrin (bottom right). Black areas
indicate the position of DC-SIGN, the colored background represents the intensity of the clathrin signal from low (blue) to high (red) intensity. Adapted with
permission from Torreno-Pina et al., 2014.
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the microscale that could have functional relevance in regulating
clathrin-mediated endocytosis of the receptor and its bound

ligands. Given that many membrane receptors are glycosylated,
it is conceivable that glycan interactions have a role in the
spatiotemporal organization of other receptors, in a manner that is
similar to what has been observed for DC-SIGN.

T-cell receptors, linkers for activation of T cells and B-cell receptors
Several other receptors involved in the immune system have also

been shown to form nanoclusters (Schamel and Alarcón, 2013).
For instance, there is accumulating evidence that T-cell receptors
(TCRs) form nanoclusters on the surface of unstimulated T cells.

Initial biochemical and EM experiments carried out in Alarcon’s
group showed that monomers and TCR nanoclusters co-exist on
resting T cells (Schamel et al., 2005). Another study confirmed

this by using the two-color coincidence-detection technique
but found a smaller population of nanoclusters compared
to monomers (James et al., 2007). More recently, TCR

nanoclustering has been demonstrated by EM and PALM on
fixed cells (Lillemeier et al., 2010). Although the molecular

mechanisms for the formation of TCR nanoclusters are still
highly debated, nanocluster stability appears to depend on
cholesterol and sphingomyelin (Molnár et al., 2012; Schamel
et al., 2005). Because T cells can regulate the extent of TCR

nanoclustering depending on their activity, i.e. naı̈ve versus
memory T cells, it has been suggested that nanoclustering
facilitates a quick memory response upon T-cell activation

(Kumar et al., 2011).
The adaptor proteins linker for activation of T-cells 1 and 2

(LAT1 and LAT2, hereafter referred to as LAT) are members of

the TRAP family (Hořejšı́ et al., 2004) and also form nanoclusters
on resting T cells, although the size of these nanoclusters and
their participation in T-cell signaling are still debated. Lillemeier

et al. showed that TCR and LAT exist as separate and discrete
nanoclusters (also termed ’protein islands’ by the authors) 70–
140 nm in diameter that concatenate (without mixing) during
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Fig. 4. Two possible pathways for the hierarchical organization of TCR and LAT molecules at T cells. The inverted triangle to the left indicates the
increase in hierarchical order in space and time from bottom to top of each panel. (A) One possible pathway considered in the field, termed the ‘protein island’
model. TCR–CD3 [comprising TCR and the T-cell co-receptor cluster of differentiation 3 (CD3), also known as Cde3] complexes and LAT molecules are already
present as small preassembled nanoclusters on the surface of resting T cells (bottom panel). After antigen recognition and TCR activation, TCR-CD3 and LAT
nanoclusters concatenate, but do not mix (top panel). The actin cytoskeleton is thought to play a main role in this process (Lillemeier et al., 2010). Evidence for
the protein island model comes from EM and PALM images before and after TCR activation. (B) An alternative assembly pathway of TCR and LAT nanoclusters,
involving sub-synaptic LAT vesicles. TCR-CD3 complexes, as well as some LAT molecules, exist as small nanoclusters on the surface of resting Tcells (bottom
panel). LATcan also be found in sub-synaptic vesicles (top panel). After TCR activation, only LAT molecules within the sub-synaptic vesicles in close proximity to
the cell membrane participate in signal transduction (Williamson et al., 2011). Evidence for the involvement of LAT sub-synaptic vesicles comes from PALM
images in living cells, which show LAT recruitment in close proximity to the cell membrane. These LAT nanoclusters appear and disappear quickly over time,
suggesting that vesicles dock and undock at the membrane without undergoing any appreciable lateral movement (Williamson et al., 2011).
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activation (Lillemeier et al., 2010) (Fig. 4A). By contrast – using
similar super-resolution approaches – another study showed that

TCR and LAT nanoclusters are highly mixed, and that LAT
nanoclusters are composed of only a few molecules (Sherman
et al., 2011). These nanoclusters might not participate in early T-
cell signaling events because sub-synaptic vesicles of LAT were

seen to dock to the plasma membrane to TCR-activation sites
(Williamson et al., 2011) (Fig. 4B), a process that is dependent on
the vesicle (v)-SNARE protein VAMP7 (Larghi et al., 2013). The

reasons for these contrasting results are not yet clear but they
might be related to differences in the TCR activation times used
by the different groups.

The multi-chain high-affinity IgE e receptor subunit b (FceRI;
also known as MS4A2) and BCR are other examples of receptors
that pre-cluster prior to antigen binding (Veatch et al., 2012;

Wilson et al., 2001; Yang and Reth, 2010). For instance, by
using a combination of direct stochastic optical reconstruction
microscopy (dSTORM) and SPT, BCR and its co-receptor CD19
were found to exist in spatially distinct preformed nanoclusters

in resting B cells (Mattila et al., 2013). Although the actin
cytoskeleton regulates BCR, CD19 mobility appears restricted by
the tetraspanin CD81, indicating that both CD19 and CD81 can

form scaffolds to support BCR signaling (Mattila et al., 2013).

Outstanding investigations – biogenesis, formation and
stability of nanoclusters
The above examples illustrate that nanoclustering is a common
organizing principle for many membrane receptors, although the

clusters might be subject to different regulatory mechanisms,
depending on the particular receptor involved. Nevertheless, the
prevalence of nanoclustering has raised a number of important
questions that have not yet been fully answered, such as any that

relate to biogenisis, formation and stability of nanoclusters as
well as the potential role of the non-clustered molecules.

Nanocluster biogenesis, formation and stability
The full intracellular molecular complement of membrane
nanoclusters (e.g. individual protein monomers, preformed

protein homo-oligomers, preformed protein hetero-oligomers
and/or particular lipid components) is typically unknown. Of
interest here is whether a given nanocluster arrives at the plasma
membrane as an almost fully assembled entity – as appears to be

the case for LAT (Williamson et al., 2011) – with only a few
factors to be subsequently recruited and/or eliminated or, by
contrast, almost completely unassembled. It is unlikely that most

membrane nanoclusters are composed solely of close-packed,
identical proteins, although the idea is conceptually attractive.
Instead, the current evidence strongly suggests that a specific

complement of lipids and (most probably) other proteins will be
present in nanoclusters. Indeed, at least in the case of DC-SIGN
(Itano et al., 2011; Itano et al., 2012), LFA-1 (van Zanten et al.,

2009) and BCR (Mattila et al., 2013), nanoclusters are not fully
packed with their respective receptors.

The mechanism by which nanocluster precursors undergo
initial reorganization after their delivery to the plasma membrane

is a key issue. One might expect at least passive reorganization to
occur in response to the differences in chemical composition
between the intracellular and plasma membrane environments.

These arise from at least three specific characteristics of plasma
membranes: (1) molecular components have specific orientations
and cannot be treated as soluble proteins with the freedom to

reorient in three dimensions; (2) the environment contains

additional structural features, i.e. the outer and inner membrane
environments are considerably different; and (3) the membrane is

very crowded. Involvement of an active rather than passive
process in the formation of nanoclusters and their stabilization is
also possible (Gowrishankar et al., 2012).

If the mechanisms of nanocluster formation involve at least the

partial self-association at the plasma membrane, then how are
these associations limited to the nanoscale? The limiting factors
could be of biochemical nature (i.e. they might constitute specific

molecular interactions), reflect cell biological aspects (e.g.
transmembrane pickets attached to the cytoskeleton) (Kusumi
et al., 2011) or result from physical effects (e.g. kinetics trapping

or the entropic costs associated with nanocluster existence).
Importantly, at least in several cases, there is no particular
size limit; instead nanoclusters of varying sizes simultaneously

coexist (de Bakker et al., 2007; Gudheti et al., 2013; Itano et al.,
2012; Williamson et al., 2011).

Elucidating the factors that contribute to nanocluster stability is
crucially important in understanding nanocluster function and

regulation. Generally speaking, nanoclusters could merge,
partially disassemble, change their biochemical composition or
completely dissolve. A dynamic equilibrium may also exist

between nanoclusters and their components in the nearby
membrane environment; for instance, although DC-SIGN
molecules in nanoclusters do not appreciably exchange with

those in the surrounding membrane, HA molecules in
nanoclusters do (Itano et al., 2011). Another characteristic that
is intrinsically related to nanoclusters is their lateral mobility

within the membrane plane. Examples, of functions that require
nanocluster mobility, are the transport of complexes between
viruses and DC-SIGN nanoclusters to sites of cellular
internalization (van der Schaar et al., 2007), rearrangement of

the relative spatial distributions of TCR and LAT nanoclusters
after T cell activation (Lillemeier et al., 2010), and rearrangement
and further recruitment of GPI-APs to activated LFA-1

nanoclusters (van Zanten et al., 2009). Finally, the role of the
membrane-associated actomyosin cell cortex has only just began
to be investigated in detail, both structurally and functionally

(Gowrishankar et al., 2012; Gudheti et al., 2013; Kusumi et al.,
2011; Luo et al., 2013; Xu et al., 2013). Determination of its
actual organization and structural association with membrane
components should be an area of intense investigation in the

future.

Role of non-clustered components
Although the forces that drive and limit nanocluster assembly are
still under discussion, it is important to note that clustering is
rarely complete and that, in many cases, nanoclusters co-exist

with randomly distributed non-clustered components, as shown
for TCR, LAT, GPI-APs, CD71 (van Zanten et al., 2009) and
CD36 (Jaqaman et al. 2011), suggesting that such co-existence

has a functional or regulatory role (Fig. 5). For example,
nanoclusters could act as pre-assembled units that have the
potential to become activated upon ligand binding because they
spatially concentrate receptors and commonly exhibit restricted

diffusion or are even spatially trapped. Yet, they might exist
below a functional threshold because of their small size and, as
such, are not able to stably bind their ligands. Alternatively,

binding of ligands to such small nanoclusters might not be
sufficient to elicit a downstream response. Non-clustered
components, typically characterized by faster and unconstrained

diffusion, might modulate nanocluster function by being
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incorporated into pre-existing nanoclusters, thereby acting as
switches that provide the necessary threshold of nanocluster
assembly in order to initiate their function. According to

this hypothesis, dynamic pre-formed nanoclusters may not be
functional when their size is below a specific threshold. Non-
clustered receptors could provide a positive feedback to create

larger domains as a way to trigger nanocluster assembly and
hierarchical organization in a functional context. Such a positive
feedback would, in principle, come into play upon nanocluster
activation, and be mediated by lateral diffusion and encounter

with nanoclusters, as recently suggested for TCRs (Schamel and
Alarcón, 2013).

Why nanoclusters?
The ubiquitous presence of protein nanoclusters in mammalian
plasma membranes prompts the crucial question of why nature

has chosen this feature. Possible answers might come from
elucidating why many soluble proteins are found in oligomeric
states. This fundamental question has been addressed in several
reviews that discuss plausible hypotheses, many of which may

also be applicable to membrane protein nanoclusters (Ali and
Imperiali, 2005; Hashimoto et al., 2011; Lynch, 2013). One
important feature of soluble, oligomeric proteins is that they

present the possibility of allosteric regulation; thus membrane
protein nanoclusters might also be subject to this type of
regulation. Another potential function of oligomerization of

soluble proteins is to provide multiple, identical, ligand-binding
sites in close proximity. For multivalent ligands, nanoclustering
might increase the effective ligand-binding affinity (Cebecauer

et al., 2010). For example, DC-SIGN nanoclusters recognize and
bind to a large variety of glycosylated pathogens, and this ability
might not only depend on the monosaccharide-binding ability
of its CRD but also on the multivalency of the receptor within

nanoclusters. Furthermore – compared with non-clustered
receptors – in the case of monovalent ligands, oligomerization

of their receptors can result in a higher dwell time of the
ligand because ligand rebinding is facilitated (Lagerholm and
Thompson, 1998). Moreover, the time of ligand engagement to

the nanocluster might be regulated by altering the density of
clustered ligand-binding sites because ligand-rebinding
probability increases with the square of the binding-site density.

With respect to signal transduction, Hancock and co-workers
(Harding and Hancock, 2008; Tian et al., 2007) have proposed
that nanoclustering in the plasma membrane offers a general way
to ‘digitalize’ analog input signals according to their strength by

increasing the number of nanoclusters, because each of these
provides a discrete switch-like output because of the short
lifetime of nanoclusters (Murakoshi et al., 2004). For example, in

response to EGF stimulation, ligation of the EGF receptor
activates K-Ras, thereby generating nanoclusters that provide
digital inputs to the Ras–Raf–MEK–ERK kinase signaling

cascade. This allows the pathway to be sensitive to small
amounts of the activating ligand. The ‘quantal’ outputs from each
signaling nanocluster are ‘counted’, i.e. integrated, in the
cytoplasm by the kinase cascade to generate the bulk, analog

cellular response.

Conclusions and perspectives
A number of recent studies have demonstrated that membrane
protein nanoclusters and their functional remodeling is an
emerging theme in eukaryotic plasma membrane organization.

It is reasonable to expect that, as the field progresses –
particularly in light of the increasing availability of super-
resolution microscopy – even more examples will be discovered.

The development of technologies that permit simultaneous,
multiplexed observation of different nanocluster types in living
cells might, in the near future, give rise to a new field of systems
nanobiology to specifically address the structural and functional

properties of membrane protein nanoclusters. Although each
imaging technique has potential drawbacks, the convergence of
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observations obtained with different approaches strongly
suggests that nanoclustering will be increasingly recognized as

a predominant feature. One of the challenges that lies ahead is to
determine with certainty why nanoclustering is so prevalent.
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Yáñez-Mó, M., Barreiro, O., Gordon-Alonso, M., Sala-Valdés, M. and Sánchez-
Madrid, F. (2009). Tetraspanin-enriched microdomains: a functional unit in cell
plasma membranes. Trends Cell Biol. 19, 434-446.

Yang, J. and Reth, M. (2010). Oligomeric organization of the B-cell antigen
receptor on resting cells. Nature 467, 465-469.

Yu, Q. D., Oldring, A. P., Powlesland, A. S., Tso, C. K. W., Yang, C., Drickamer,
K. and Taylor, M. E. (2009). Autonomous tetramerization domains in the glycan-
binding receptors DC-SIGN and DC-SIGNR. J. Mol. Biol. 387, 1075-1080.

Yu, C. H., Luo, W. and Sheetz, M. P. (2012). Spatial-temporal reorganization of
activated integrins. Cell Adh. Migr. 6, 280-284.

COMMENTARY Journal of Cell Science (2014) 127, 4995–5005 doi:10.1242/jcs.146340

5005

http://dx.doi.org/10.1038/nrm1309
http://dx.doi.org/10.1038/nrm1309
http://dx.doi.org/10.1074/jbc.M112.386045
http://dx.doi.org/10.1074/jbc.M112.386045
http://dx.doi.org/10.1074/jbc.M112.386045
http://dx.doi.org/10.1074/jbc.M112.386045
http://dx.doi.org/10.1073/pnas.0401354101
http://dx.doi.org/10.1073/pnas.0401354101
http://dx.doi.org/10.1073/pnas.0401354101
http://dx.doi.org/10.1016/j.tcb.2004.02.001
http://dx.doi.org/10.1016/j.tcb.2004.02.001
http://dx.doi.org/10.1194/jlr.E600002-JLR200
http://dx.doi.org/10.1194/jlr.E600002-JLR200
http://dx.doi.org/10.1073/pnas.0504114102
http://dx.doi.org/10.1073/pnas.0504114102
http://dx.doi.org/10.1073/pnas.0504114102
http://dx.doi.org/10.1073/pnas.0504114102
http://dx.doi.org/10.1083/jcb.200209091
http://dx.doi.org/10.1083/jcb.200209091
http://dx.doi.org/10.1083/jcb.200209091
http://dx.doi.org/10.1038/ncb2588
http://dx.doi.org/10.1038/ncb2588
http://dx.doi.org/10.1038/ncb2588
http://dx.doi.org/10.1038/ncb2588
http://dx.doi.org/10.1111/imr.12019
http://dx.doi.org/10.1111/imr.12019
http://dx.doi.org/10.1084/jem.20042155
http://dx.doi.org/10.1084/jem.20042155
http://dx.doi.org/10.1084/jem.20042155
http://dx.doi.org/10.1084/jem.20042155
http://dx.doi.org/10.1038/nmeth.1704
http://dx.doi.org/10.1038/nmeth.1704
http://dx.doi.org/10.1038/nmeth.1704
http://dx.doi.org/10.1074/jbc.M706004200
http://dx.doi.org/10.1074/jbc.M706004200
http://dx.doi.org/10.1074/jbc.M706004200
http://dx.doi.org/10.1074/jbc.M706004200
http://dx.doi.org/10.1074/jbc.M706004200
http://dx.doi.org/10.1016/S0092-8674(04)00167-9
http://dx.doi.org/10.1016/S0092-8674(04)00167-9
http://dx.doi.org/10.1016/S0092-8674(04)00167-9
http://dx.doi.org/10.1016/j.immuni.2011.10.004
http://dx.doi.org/10.1016/j.immuni.2011.10.004
http://dx.doi.org/10.1016/j.immuni.2011.10.004
http://dx.doi.org/10.1016/j.immuni.2011.10.004
http://dx.doi.org/10.1038/35036052
http://dx.doi.org/10.1038/35036052
http://dx.doi.org/10.1002/jss.400060304
http://dx.doi.org/10.1002/jss.400060304
http://dx.doi.org/10.1126/science.175.4023.720
http://dx.doi.org/10.1126/science.175.4023.720
http://dx.doi.org/10.1083/jcb.200609174
http://dx.doi.org/10.1083/jcb.200609174
http://dx.doi.org/10.1083/jcb.200609174
http://dx.doi.org/10.1083/jcb.200609174
http://dx.doi.org/10.1038/nchembio.1028
http://dx.doi.org/10.1038/nchembio.1028
http://dx.doi.org/10.1038/nchembio.1028
http://dx.doi.org/10.1038/nchembio.1028
http://dx.doi.org/10.1038/ncb1615
http://dx.doi.org/10.1038/ncb1615
http://dx.doi.org/10.1038/ncb1615
http://dx.doi.org/10.1128/JVI.00300-07
http://dx.doi.org/10.1128/JVI.00300-07
http://dx.doi.org/10.1128/JVI.00300-07
http://dx.doi.org/10.1128/JVI.00300-07
http://dx.doi.org/10.1083/jcb.105.4.1623
http://dx.doi.org/10.1083/jcb.105.4.1623
http://dx.doi.org/10.1083/jcb.105.4.1623
http://dx.doi.org/10.1073/pnas.0905217106
http://dx.doi.org/10.1073/pnas.0905217106
http://dx.doi.org/10.1073/pnas.0905217106
http://dx.doi.org/10.1073/pnas.0905217106
http://dx.doi.org/10.1038/29563
http://dx.doi.org/10.1038/29563
http://dx.doi.org/10.1038/nrmicro2146
http://dx.doi.org/10.1021/jp300197p
http://dx.doi.org/10.1021/jp300197p
http://dx.doi.org/10.1021/jp300197p
http://dx.doi.org/10.1038/ni.2049
http://dx.doi.org/10.1038/ni.2049
http://dx.doi.org/10.1038/ni.2049
http://dx.doi.org/10.1038/ni.2049
http://dx.doi.org/10.1016/j.cbpa.2014.03.021
http://dx.doi.org/10.1016/j.cbpa.2014.03.021
http://dx.doi.org/10.1083/jcb.200104049
http://dx.doi.org/10.1083/jcb.200104049
http://dx.doi.org/10.1083/jcb.200104049
http://dx.doi.org/10.1126/science.1232251
http://dx.doi.org/10.1126/science.1232251
http://dx.doi.org/10.1016/j.tcb.2009.06.004
http://dx.doi.org/10.1016/j.tcb.2009.06.004
http://dx.doi.org/10.1016/j.tcb.2009.06.004
http://dx.doi.org/10.1038/nature09357
http://dx.doi.org/10.1038/nature09357
http://dx.doi.org/10.1016/j.jmb.2009.02.046
http://dx.doi.org/10.1016/j.jmb.2009.02.046
http://dx.doi.org/10.1016/j.jmb.2009.02.046
http://dx.doi.org/10.4161/cam.20753
http://dx.doi.org/10.4161/cam.20753

	Fig 6
	Fig 1
	Fig 2
	Fig 3
	Fig 4
	Fig 5
	Ref 1
	Ref 2
	Ref 3
	Ref 4
	Ref 5
	Ref 6
	Ref 7
	Ref 8
	Ref 9
	Ref 10
	Ref 11
	Ref 12
	Ref 13
	Ref 14
	Ref 15
	Ref 16
	Ref 17
	Ref 18
	Ref 19
	Ref 20
	Ref 21
	Ref 22
	Ref 23
	Ref 24
	Ref 24a
	Ref 25
	Ref 26
	Ref 27
	Ref 28
	Ref 29
	Ref 30
	Ref 31
	Ref 32
	Ref 33
	Ref 34
	Ref 35
	Ref 36
	Ref 37
	Ref 38
	Ref 39
	Ref 40
	Ref 41
	Ref 42
	Ref 43
	Ref 44
	Ref 45
	Ref 46
	Ref 47
	Ref 48
	Ref 49
	Ref 50
	Ref 51
	Ref 52
	Ref 53
	Ref 54
	Ref 55
	Ref 56
	Ref 57
	Ref 58
	Ref 59
	Ref 60
	Ref 61
	Ref 62
	Ref 63
	Ref 64
	Ref 65
	Ref 66
	Ref 67
	Ref 68
	Ref 69
	Ref 70
	Ref 71
	Ref 72
	Ref 73
	Ref 74
	Ref 75
	Ref 76
	Ref 77
	Ref 78
	Ref 79

