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SUMMARY

Genomic rearrangements are a common cause of hu-
man congenital abnormalities. However, their origin
and consequences are poorly understood. We per-
formed molecular analysis of two patients with
congenital disease who carried de novo genomic re-
arrangements. We found that the rearrangements in
both patients hit genes that are recurrently rear-
ranged in cancer (ETV1, FOXP1, and microRNA clus-
ter C19MC) and drive formation of fusion genes
similar to those described in cancer. Subsequent
analysis of a large set of 552 de novo germline ge-
nomic rearrangements underlying congenital disor-
ders revealed enrichment for genes rearranged in
cancer and overlap with somatic cancer breakpoints.
Breakpoints of common (inherited) germline struc-
tural variations also overlap with cancer breakpoints
but are depleted for cancer genes. We propose that
the same genomic positions are prone to genomic re-
arrangements in germline and soma but that timing
and context of breakage determines whether devel-
opmental defects or cancer are promoted.

INTRODUCTION

De novo germline genomic rearrangements are a common cause

of congenital disease, includingmental retardation and neurode-

velopmental delay (Cooper et al., 2011; Stankiewicz and Lupski,

2010). Germline rearrangements can be classified in two major

categories. One category arises through nonallelic homologous

recombination via genomic repeats (Cooper et al., 2011; Hast-

ings et al., 2009a; Vissers and Stankiewicz, 2012) primarily re-

sulting in copy-number changes (CNVs). Most of these CNVs

are recurrent and give rise to recognizable phenotypes known

as microdeletion and microduplication syndromes, which can

result from dosage effects of one or more genes within the

CNV interval (Golzio et al., 2012; Luo et al., 2012). The second

category contains sporadic (nonrecurrent) genomic rearrange-

ments and comprises more diverse rearrangement types

including CNVs, translocations, inversions and complex events.

These rearrangements are primarily caused by nonhomologous

modes of DNA repair, such as direct end joining of free DNA ends

(Lieber, 2010) or template-switching following replication fork

stalling (Hastings et al., 2009b). Also, ultracomplex rearrange-

ments resulting from the shattering of chromosomes in a single

event, termed chromothripsis, arise through nonhomologous

DNA repair (Chiang et al., 2012; Kloosterman et al., 2012; Ste-

phens et al., 2011).

Despite the knowledge of repair mechanisms that may facili-

tate genomic rearrangements, the molecular basis and genomic

context of sporadic de novo rearrangements is not fully under-

stood. Moreover, for the majority of patients with de novo germ-

line rearrangements—particularly complex ones—the actual

cause of disease remains unclear because of the uniqueness

of the breakpoints and the multiple possible effects on gene

expression and function (Luo et al., 2012; Weischenfeldt et al.,

2013).

Here, we gained deep insight into the effects of sporadic de

novo genomic rearrangements in patients with congenital dis-

ease by performing integrated genomic, transcriptomic, small

RNA, and chromatin immunoprecipitation (ChIP) profiling of

blood from parent-offspring families. We identify gene fusions

that resemble those found in cancer. In addition, we find an over-

lap in breakpoint positions for common and de novo germline re-

arrangements and somatic cancer rearrangements. These data

suggest a common mechanistic origin for germline and somatic

breakpoints.
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Figure 1. A De Novo Chromothripsis Rearrangement Results in ETV1 and FOXP1 Fusion Transcripts

(A) Circos plot of the 13 breakpoint junctions forming the chromothripsis rearrangement. The outer circle displays the chromosome ideogram. The inner circle

represents the copy-number profile as based on read-depth measurements relative to the parents. The colored lines indicate breakpoint junctions. Blue, tail-to-

head; green, head-to-tail; red, head-to-head inverted; yellow, tail-to-tail inverted. The locations of relevant genes are indicated. Chromosome coordinates are in

megabases.

(B) Visualization of the DPYD-ETV1 fusion gene and the transcriptional consequences thereof. RNA-seq reads within the genomic intervals from the start of the

genes to the breakpoint (dashed vertical line) and from the breakpoint to the end of the gene were normalized for the total amount of reads per sample. The plot

visualizes the ratios of normalized reads in the patient versus the average of the parents.

(C) Diagram showing the full-length ETV1 gene, examples of ETV1 fusion genes as observed in cancer (Hermans et al., 2008; Tomlins et al., 2007) and the DPYD-

ETV1 fusion in our patient.

(legend continued on next page)
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RESULTS

Family-Based Molecular Analysis Reveals Fusion
Transcripts Involving ETV1 and FOXP1 as a Result of
Germline Chromothripsis
We employed an in vivo family-based molecular profiling

approach to characterize the effects of de novo structural

genomic rearrangements in two independent patients with mul-

tiple congenital abnormalities and intellectual disability (MCA/ID;

Table S1).

In one patient with speech delay, psychomotor retardation,

dysmorphic facial appearance, and doubling of one of the

thumbs, we identified a de novo chromothripsis rearrangement.

This germline chromothripsis rearrangement involves 17 break-

points divided over four chromosomes (1, 3, 7, and 12; Figures

1A and S1A; Table S2) (Kloosterman et al., 2012). To study the

effects of chromothripsis on gene expression, we performed

RNA sequencing (RNA-seq) on peripheral blood mononuclear

cells (PBMCs) of this patient and both parents. First, we exam-

ined the expression levels of 11 genes that reside within three

large de novo genomic deletions caused by the chromothripsis.

Four of these genes were expressed in PBMCs and showed a

clear decrease in expression levels relative to the parents (Fig-

ure S1B). In addition to these deleted genes, six genomic break-

points were located within a gene, thus splitting up the coding

sequence (Table S2). Of the six genes disrupted by breakpoints,

three are transcriptionally active in PBMCs. Two of them (DPYD

and FOXP1) showed a decrease in expression following the

breakpoint (Figures 1B and S1C). In contrast, for the third gene

(ETV1) the C-terminal part showed elevated expression in the

patient relative to the parents, whereas the N-terminal part was

not expressed. Examination of the breakpoint junctions involving

ETV1 revealed a genomic fusion between the first three exons of

the DPYD gene and exons 10–14 of the ETV1 gene (Figure 1B).

DPYD encodes for dihydropyrimidine dehydrogenase, an essen-

tial factor for uracil and thymidine catabolism that is ubiquitously

expressed. As a result, the genomic fusion between DPYD and

ETV1 leads to high expression of the 30 part of ETV1 in patient

blood, whereas the parents do not express ETV1.

ETV1 is amember of the ETS (E-twenty-six) family of transcrip-

tion factors that modulate target genes involved in cell differen-

tiation, proliferation, migration, and apoptosis (Oh et al., 2012).

ETV1 gene fusions are frequently found in Ewing sarcoma and

prostate cancer but have not been described as drivers of

congenital disease (Hermans et al., 2008; Jeon et al., 1995; Ku-

mar-Sinha et al., 2008; Tomlins et al., 2005, 2007). Remarkably,

the topology of the DPYD-ETV1 fusion in this patient resembles

that of the ETV1 fusion genes found in cancer (Figure 1C), albeit

the patient has not been diagnosed with cancer at this point.

Both in this patient and in cancer the 30 part of ETV1, which con-

tains the ETS transcription activation domain, becomes ectopi-

cally expressed by fusion to the 50 part of an actively transcribed

gene (Kumar-Sinha et al., 2008). We constructed a cDNA gene

mimicking the DPYD-ETV1 fusion and overexpressed it in

HEK293 cells to determine functionality of the protein. Although

we can detect sporadic protein product in these cells (�1/50,

Figure S1D), we could not detect a stable fusion protein on west-

ern blot analysis, suggesting that this product is only stable and/

or translated under specific conditions.

We also studied the transcriptional consequences of the

breakpoint in FOXP1 in more detail. RNA-seq analysis showed

readthrough transcription from exon 11 of the FOXP1 gene to a

genomic segment on chromosome 7 (Figure 1D). No annotated

coding gene was present as 30 fusion partner of FOXP1, but

cDNA analysis of the readthrough transcripts showed two differ-

entially spliced transcripts fused to the 11th exon of FOXP1 (Fig-

ure 1D; Figure S1E). Mutations in FOXP1 have been frequently

associated with developmental disease (O’Roak et al., 2011;

Talkowski et al., 2012), but newly generated fusion transcripts

as a result of translocation to a noncoding region have not

been observed previously. The fusion transcripts identified here

resemble FOXP1 gene fusions that are observed in cancer (Fig-

ure 1E) (Ernst et al., 2011; Hermans et al., 2008). In particular,

the intron targeted for translocation is identical to the introns tar-

geted in many FOXP1 gene fusions in cancer. Furthermore, we

identified a second patient with a de novo germline breakpoint

in the same intron in FOXP1, indicating that this is a recurrently

rearranged region in both cancer and germline (Talkowski et al.,

2012). The two transcript isoforms identified in the patient with

chromothripsis add 24 and 46 amino acids, respectively, to the

FOXP1 open reading frame. Upon expression in HEK293 cells,

both transcripts result in stable protein products (Figure S1F).

These results provide insight into the molecular effects of

germline chromothripsis rearrangements and show that chromo-

some shattering can lead to transcriptional activation in addition

to gene disruption. The mechanisms of gene activation are very

similar to those of somatic rearrangements in cancer genomes.

Our data demonstrate that spliced transcripts resulting in stable

proteins can be formed through a germline chromothripsis

rearrangement.

A De Novo Germline Duplication Activates a Cluster
of Oncogenic MicroRNAs
The second patient with congenital defects analyzed using mo-

lecular phenotyping carries a de novo 424.5 kb tandem duplica-

tion on chromosome 19, resulting in macrocephaly and severe

psychomotor retardation (Figures 2A and S2A; Table S1). The

most predictable effect of a genomic duplication is elevated

gene expression due to an increase in gene copy number.

Indeed, RNA-seq analysis performed on peripheral blood mono-

nuclear cells (PBMCs) demonstrates that three duplicated genes

are expressed significantly higher in the patient compared to

both the parents and an unaffected sibling (Figure S2B). Closer

examination of the breakpoints of the duplication revealed

(D) Raw RNA-seq reads depicting FOXP1 transcription across the chromosome 3 to chromosome 7 breakpoint (dashed vertical line), resulting in two fusion

transcripts (green).

(E) Diagram showing the full-length FOXP1 gene, examples of FOXP1 fusion genes as observed in cancer, and the FOXP1 breakpoints in two patients in our data

set (Chiang et al., 2012; Ernst et al., 2011; Hermans et al., 2008).

See also Figure S1 and Table S1.
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unexpected additional molecular effects. The 50 breakpoint of
the duplicated region is located within the chromosome 19 mi-

croRNA cluster (C19MC) and the 30 breakpoint disrupts the

NDUFA3 gene. The tandem duplication repositioned a major

part of the C19MC miRNA cluster immediately downstream of

the promoter of NDUFA3. This prompted us to investigate the

presence of active promoter elements in the rearranged locus

by H3K4me3 chromatin immunoprecipitation sequencing

(ChIP-seq). The NDUFA3 promoter was found to have high

H3K4me3 levels in all samples, and this H3K4me3 signal was

found to extend into the C19MC cluster downstream of the 50

duplication breakpoint in the patient (Figure 2A). In addition,

small RNA-seq revealed that the C19MC miRNAs positioned

downstream of the NDUFA3 promoter were highly expressed

(Figure 2B), whereas they are nonexpressed in both parental

samples and the unaffected sibling. The part of the C19MC clus-

ter that is not repositioned by the duplication was not expressed

in the patient (Figure 2B) and miRNAs elsewhere on the genome

were also unaffected (Figure S2C). The miRNA encoded by the

MIR371 gene, which is also located in the duplication but is

driven by its own promoter, also shows no upregulation (Fig-

ure S2B). Endogenous expression of C19MC is exclusive to

embryonic stem cells and tumors, which suggests that normal

differentiation and development could be disturbed upon

ectopic expression of this cluster (Bar et al., 2008; Flor and Bul-

lerdiek, 2012). The NDUFA3 gene, which encodes a subunit of a

mitochondrial protein complex, is broadly expressed and there-

fore expected to drive C19MC miRNA expression in many tis-

sues in the patient.

Ectopic Expression of Oncogenic C19MC MicroRNAs
Drives Defects in Embryonic Development
Genomic rearrangements in the 150 kb common breakpoint

cluster on the long arm of chromosome 19 are known to affect

C19MC expression in thyroid adenomas, epithelial tumors, and

embryonal brain tumors (Belge et al., 2001; Kleinman et al.,

2014; Rippe et al., 2010). Previous reports have shown aberrant

expression of part of the C19MC cluster in cancer resulting from

the repositioning of an active promoter (Kleinman et al., 2014;

Rajaram et al., 2007; Rippe et al., 2010) (Figure 2C). Other

studies have shown that expression of the C19MCcluster in can-

cer cells is an important driver of tumorigenesis, tumor invasion,

and metastasis (Hu et al., 2011; Huang et al., 2008), with eight

C19MC members directly targeting p21 (CDKN1A) and C19MC

being a transcriptional target of TP53 (Flor and Bullerdiek,

2012; Fornari et al., 2012; Wu et al., 2010).

Figure 2. A De Novo 424.5 kb Tandem Duplication Activates C19MC

Expression

(A) H3K4me3 ChIP-seq results for the promoter of the NDUFA3 gene in the

father, mother, patient, and healthy sibling. The upper panel shows a sche-

matic representation of the duplication. The gray arrows show which part of

the chromosome is duplicated. Genes within the duplication are depicted in

red. The lower-left panel shows H3K4me3 signals for a region surrounding the

50 breakpoint of the tandem duplication. The lower-right panel shows

H3K4me3 signals for the NDUFA3 promoter region. The vertical red lines

indicate the position of the duplication breakpoints.

(B) Normalized log2 expression ratios of microRNAs in C19MC for the patient

versus healthy sibling (control). The duplicated fraction of C19MC is colored

red. An arrow depicts the breakpoint junction that fuses exon 2 of NDUFA3 to

C19MC.

(C) Examples of chromosomal rearrangements activating C19MC in cancer.

The germline rearrangement activating C19MC is depicted followed by three

previously described rearrangements in embryonal brain tumors (Kleinman

et al., 2014), thyroid adenoma (Rippe et al., 2010), and mesenchymal ha-

martoma (Rajaram et al., 2007).

See also Figure S2 and Table S1.
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We selected two of these cancer-related miRNAs, miR-520b

and miR-520c, to study the effects of overexpression of the

mature miRNA duplex on zebrafish embryonic development

(Figures S2D–S2F). These two miRNAs were selected based

on homology with zebrafish miRNAs (Figure S2F), presence of

the same miRNA seed sequence among several other C19MC

miRNAs (Figure S2E), oncogenic potential as shown by previous

studies (Hu et al., 2011; Huang et al., 2008), and de novo expres-

sion in the patient. Injection of single-stranded miRNA controls

and miR-520b duplexes in the 1-cell stage embryo did not result

in a noticeable phenotype at 24 hr postfertilization (the miRNA is

stable up to �30 hr after injection). However, for miR-520c, we

detected specific developmental malformations (Figure 3A).

Particularly, the head of miR-520c-injected embryos is smaller

and displays a reduced fore- and hindbrain ventricle and an

altered morphology of the midbrain-hindbrain boundary (Fig-

ure 3B). These results demonstrate that overexpression of spe-

cific oncogenic C19MC miRNAs can disturb normal embryonic

development and are therefore likely to have contributed to the

neurodevelopmental defects in the patient.

Intersection of De Novo Germline Breakpoints with
Cancer-Related Genes and Breakpoints
The two clinical cases described above both carried breakpoints

at positions close to genomic rearrangement positions and

genes broken in cancer (Figure 4A). Triggered by these findings,

we set out to systematically analyze a large set of 552 de novo

germline chromosomal rearrangements (DN), in comparison to

a set of 28,844 common germline (CG) structural variants

commonly present in the population and a comprehensive set

of 68,018 breakpoints from somatic cancer rearrangements

(SC; Supplemental Experimental Procedures; Table S2). All

Figure 3. Ectopic Expression of C19MC MicroRNAs in Zebrafish Embryos

(A) Whole-mount bright-field images of 24 hr postfertilization (hpf) zebrafish embryos derived from control injections (single-strandedmiRNAs) and injections with

miR-520b and miR-520c duplexes. Zoomed views of the zebrafish are displayed in the lower panel, with annotation of the hindbrain (h), hindbrain ventricle (hv),

otic vesicle (ov), telencephalon (te), midbrain-hindbrain boundary (mhb), and tectum (tc).

(B) Sagittal sections of embryos derived from the same experiments as in (A). Hindbrain (h), hindbrain ventricle (hv), otic vesicle (ov), and spinal cord (sc) are

annotated. Scale bars, 200 mm.

See also Figure S2.

Cell Reports 9, 2001–2010, December 24, 2014 ª2014 The Authors 2005



Figure 4. Overlap of De Novo and Common Germline Breakpoints with Cancer Gene Census Genes and Somatic Cancer Breakpoints

(A) Positions of cancer breakpoints (white triangles) and germline breakpoints (red triangles) in the ETV1 and FOXP1 genes and C19MC microRNA cluster.

(B–D) Overlap of de novo germline (DN) breakpoints (B), common germline (CG) breakpoints from the 1000 Genomes project (C), and somatic cancer (SC)

breakpoints (D) with recurrently translocated genes derived from the Cancer Gene Census (CGC) database.

(E) Histogram showing the mean distance of DN breakpoints relative the nearest SC breakpoint (red line), as compared to randomly permutated control sets.

(F) Density plot showing the distance between DN breakpoints and SC breakpoints within a 10 kb window (black line). The area between de dotted red lines

represents the mean distance between breakpoints ±1 SD computed over 1000 simulation sets. This plot highlights that the distribution of DN breakpoints is

skewed toward shorter interbreakpoint distances (<2 kb) as compared to the random breakpoint sets.

(G) Histogram showing the mean distance of CG breakpoints (1000 Genomes) relative to the nearest SC breakpoint (red line), as compared to randomly

permutated control sets.

See also Figures S3 and S4 and Tables S2, S3, and S4.
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following analyses exclude breakpoints from the original two pa-

tients and are thus based on an independent DN breakpoint data

set (n = 533).

First, we intersected DN breakpoints with genes listed in the

Cancer Gene Census (CGC) database of genes recurrently rear-

ranged in cancer (Table S3) (Futreal et al., 2004). This revealed

nine independent breakpoints targeting CGC genes (Table S3).

These nine CGC hits represent on average 2.03-fold enrichment

relative to matched randomly simulated breakpoint sets (Fig-

ure 4B, p = 0.0383; Experimental Procedures). This enrichment

of DN breakpoints for CGC genes does not result from general

enrichment for protein-coding genes, because the overlap of

DN breakpoint with protein-coding genes is not significantly

deviating from randomly simulated control sets (Figure S3A). To

substantiate this, we tested for association of the DN breakpoint

positions with CGC genes and all protein coding genes and

observed a positive association of DN breakpoints with CGC

genes independent of the overlap of DN breakpoints with all pro-

tein-coding genes (logistic regression coefficient = 0.59; p value =

0.0469). In contrast to DN breakpoints, we found that the 28,844

CG breakpoints show 1.35-fold depletion for CGC genes (p <

0.001; Figure 4C), but this is largely explained by a general deple-

tion for protein coding genes (Figure S3B) (Mills et al., 2011).

This was confirmed by regression analysis, which did not reveal

significant association between CGC genes and CG breakpoints

when both CGC genes and all protein coding genes were added

as predictive variables (logistic regression p value = 0.07). As ex-

pected, the set of 68,018 SC breakpoints shows a strong enrich-

ment (1.36-fold) for CGC genes (Figure 4D; p value < 0.001).

In the DN set, we found a breakpoint in the CGC gene FGFR1,

contributing to an in-frame gene fusion. Recently, the trans-

forming activity of recurrent FGFR1 fusionswas reported for glio-

blastoma (Singh et al., 2012). We did not observe an overall

enrichment for in-frame gene fusions among de novo breakpoint

junctions in our data as compared to matching randomly gener-

ated sets. However, a much larger fraction of in-frame gene

fusions was found for the DN set (2.5%) than for the CG set

(0.2%, p = 1.8 3 10�8).

Triggered by the observed enrichment of both DN and SC

breakpoints for CGC genes, we investigated the overlap be-

tween DN breakpoints and the 68,018 SC breakpoints. We

captured all DN breakpoints within a distance of 10 kb from an

SC breakpoint and calculated the mean distance to the SC

breakpoint for this set. We found that the mean distance of a

DN breakpoint to an SC breakpoint is on average 1.15-fold

smaller than for random control sets (p = 0.0047) (Figures 4E

and 4F). Similar results were obtained for the overlap of CG

with SC breakpoints (p = 0.001) (Figures 4G, S3C, and S3D).

Despite the overlap of breakpoint positions between germline

and soma, suggestive of local predisposition to genome fragility,

we found no common genome characteristics that could explain

this observation (Figure S4). Future larger DN data sets may

contribute to more insight in the genomic basis of the fragility.

DISCUSSION

Through a combination of functional studies and large-scale

genomic analyses of breakpoints from patients with congenital

disease, wemade two important observations. First, breakpoints

of germline rearrangements and somatic cancer rearrangements

overlap each other. Second, de novo germline breakpoints in

patients with congenital disease may hit cancer genes and lead

to formation of fusion genes similar to those in cancer. In

contrast, common germline breakpoints were depleted for can-

cer genes, which is likely a result of purifying selection of breaks

involving protein coding genes (Mills et al., 2011).

The link between genes mutated in cancer and development

has been noted before, among others for mutations in FOXP1

(O’Roak et al., 2011; Talkowski et al., 2012), RAS/MAPK

signaling (deregulated in Noonan syndrome) (Cirstea et al.,

2010), and the PI3K pathway (deregulated in megalencephaly

syndromes) (Fam, 2012). Here, we identify transcriptional dereg-

ulation involving three gene fusions involving C19MC micro-

RNAs, ETV1, and FOXP1. In the latter two cases, the relevance

of the fusions to the patient’s phenotype could not be entirely

resolved with functional studies. Because FOXP1 has previously

been associated with neurodevelopmental disorders driven by

de novo translocation breakpoints, CNVs, and point mutations

(O’Roak et al., 2011; Talkowski et al., 2012), it is well possible

that the loss of one functional allele of FOXP1 and not a gain-

of-function effect of the observed fusion transcripts in the

above-described patient drive the patient’s phenotype.

The observation of a genomic parallel between cancer and

germline rearrangements raises the question of cancer predis-

position among individuals carrying de novo chromosome rear-

rangements. For example, rearrangements of the MYCN locus

have been found to underlie childhood neuroblastoma (Lipska

et al., 2013), germline rearrangement of RUNX1 caused acute

myeloid leukemia (Buijs et al., 2012), and 7q22 rearrangements

are associated with myeloproliferative disorder (Forrest and

Lee, 2002). Also, two patients within our data set contain germ-

line rearrangements of the RUNX1 gene. Both suffered from leu-

kemia most likely as a result of the RUNX1 rearrangement. The

high incidence of morphological abnormalities among patients

with childhood cancer further underscores a potential genetic

and mechanistic link between cancer and congenital disease

(Bleeker et al., 2014a, 2014b; Merks et al., 2008), possibly driven

by involvement of genomic rearrangements in both types of dis-

ease, similar to what we describe here. Although the two patients

that we phenotyped at the molecular level in this work (aged 25

and 8) do not suffer from cancer at this point, we cannot rule out

a predisposition for developing cancer later in life. The pheno-

typic outcome may be determined by timing (germline or

soma) and context (additional mutations) of the rearrangements.

For example, somatic rearrangements causing C19MC overex-

pression were recently shown to drive embryonal tumors with

multilayered rosettes (ETMR) (Kleinman et al., 2014). In these ex-

amples, the fusion partner is different from the one in patient 2

(TTHY1 versus NDUFA3). Also, five microRNAs in the beginning

of the C19MC cluster are not activated in the patient described

here but are activated in ETMRs.

Altogether, our results set the stage for further efforts to

characterize genome rearrangement mechanisms in human

development and disease and show that applyingmultiple geno-

mics approaches to analyze the in vivo molecular phenotypes

provides insights in congenital disease etiology.
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EXPERIMENTAL PROCEDURES

Please see Supplemental Information for Supplemental Experimental

Procedures

Patient Material and Informed Consent

We obtained informed consent for the analysis of DNA and RNA from each pa-

tient and their parents. The genetic analysis was performed according to the

guidelines of the Medical Ethics Committee of the University Medical Center

Utrecht.

Small RNA Sequencing and Analysis

Total RNA was isolated from ±5 M peripheral blood mononuclear cells

(PBMCs). RNA libraries for SOLiD sequencing were prepared using either

the RiboMinus Eukaryote Kit for RNA-seq (Life Technologies) (chromothripsis

patient and family members) or Ambion Poly(A)Purist (Life Technologies)

and mRNA only Eukaryote mRNA Isolation Kit (Epicenter) (C19MC duplication

patient and family members). Small RNA Library preparation was done using

the SOLiD Total RNA-seq Kit, following the guidelines for small RNA

sequencing library preparation (Life Technologies). Sequencing reads were

mapped using Burrows-Wheeler Alignment tool (BWA) (Li and Durbin,

2009), and differential expression analyses were performed with DEGseq

(Wang et al., 2010).

ChIP Sequencing

H3K4me3 IPs were carried out using theMAGnify system (Invitrogen) following

manufacturers’ instructions. Sequencing libraries were prepared from double-

fragmented DNA, as described by Mokry et al. (2010) and sequenced on

SOLiD. Read mapping was done using BWA (Li and Durbin, 2009).

Expression of miRNAs and Fusion Genes in Zebrafish and Cell Lines

Duplex RNA oligonucleotides matching hsa-miR-520c-5p and hsa-miR-520b

were injected in 1-cell stage zebrafish embryos at a concentration of 5 mM.

Fusion genes were cloned into the mammalian expression vector Phage2-

EF1alpha-IRES-Puro (Westburg) and transfected into HEK293FT cells. For

immunofluorescence, fixed cells were stained with a rabbit polyclonal anti-

HA tag antibody (Abcam) followed by a goat anti rabbit secondary antibody

conjugated with Alexa Fluor 488 (Life Technologies).

Breakpoint Data from Patients with Congenital Disease and Cancer

Samples

We obtained breakpoint data for germline (constitutional), de novo (DN)

genomic rearrangements in 96 patients with congenital disorders from pub-

lished studies and from our own genome sequencing efforts (Tables S2A

and S2B). Somatic cancer (SC) breakpoints were derived from published

studies (Table S2C). We obtained common germline (CG) deletion breakpoints

from 1000 Genomes phase 1 (Mills et al., 2011) and GoNL (Francioli et al.,

2014). If coordinates were in hg18, we used the UCSC liftOver tool to convert

the coordinates to hg19. Per sample, the breakpoints were ordered by

genomic position, and breaks from the same sample occurring within a

genomic interval of 2 kb were merged, because these may represent the

same double-stranded DNA break (Kloosterman et al., 2012).

Analysis of the Overlap between DN and CG Breakpoints with

Protein Coding Genes, Cancer Gene Census Genes, and

Breakpoints

To test whether DN breakpoints showed overlap with SC breakpoints and

cancer gene census (CGC) genes, we generated 10,000 random breakpoint

sets equal in size to the DN breakpoint set (n = 533, excluding breakpoints

from the two patients described in detail in this study). The random break-

points in these sets were only taken from positions in the genome that

were amenable to structural variation breakpoint calling by next-generation

mate-pair sequencing (Kloosterman et al., 2012). Therefore, we compiled a

BAM file from six high-quality data sets and required at least 300 uniquely,

unambiguously mapped reads (SAM flag X0 %1) with no secondary mapping

hits (SAM flag X1 = 0), no alignment gaps (XO = 0), and mapping quality >0 in

the region of 1 kb flanking each side of each simulated breakpoint. This elim-

inated 34% of the random breakpoints that mostly covered repetitive regions

such as the centromeres. We matched the sample size and chromosomal dis-

tribution to the original DN breakpoint set. Thus, the number of rearrange-

ments per patient, plus the sizes of simple deletions, inversions, or tandem

duplications were maintained in the simulated set. Also, the interbreakpoint

distance for (chromothripsis) breakpoint clusters were maintained in the sim-

ulations to control for nonindependent breaks within the patients. To derive an

empirical p value, we computed the overlap of DN and corresponding random

breakpoint sets with CGC genes (Futreal et al., 2004) and all protein-coding

genes using BEDtools (Quinlan and Hall, 2010). We only counted the overlap

of nonindependent breakpoints with CGC genes once. To determine the over-

lap between DN and SC breakpoints, we calculated the distance for DN

breakpoints (and permutated breakpoints) to a nearest SC breakpoint. Sub-

sequently, we captured all DN breakpoints (and permutated breakpoints)

within a distance of 10 kb from a SC breakpoint and calculated the mean dis-

tance to a cancer breakpoint for this set. The same calculations as for DN

breakpoints were also performed for CG breakpoints, based on 1,000 simu-

lated data sets.

We used logistic regression analysis to test for association of CGC genes

and protein coding genes with DN and CG breakpoints. Therefore, we used

a set of 100,000 control breakpoints and performed regression analysis using

standard glm functions in R.

ACCESSION NUMBERS

The mate pair, RNA, and ChIP-sequencing data are available from the Euro-

pean Nucleotide Archive (http://www.ebi.ac.uk/ena/) under accession

numbers PRJEB5063 and PRJEB3030 (SAMEA1325278).
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