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a b s t r a c t

Determining corresponding regions between an MRI and an X-ray mammogram is a clinically useful task
that is challenging for radiologists due to the large deformation that the breast undergoes between the
two image acquisitions. In this work we propose an intensity-based image registration framework, where
the biomechanical transformation model parameters and the rigid-body transformation parameters are
optimised simultaneously. Patient-specific biomechanical modelling of the breast derived from diagnos-
tic, prone MRI has been previously used for this task. However, the high computational time associated
with breast compression simulation using commercial packages, did not allow the optimisation of both
pose and FEM parameters in the same framework. We use a fast explicit Finite Element (FE) solver that
runs on a graphics card, enabling the FEM-based transformation model to be fully integrated into the
optimisation scheme. The transformation model has seven degrees of freedom, which include parameters
for both the initial rigid-body pose of the breast prior to mammographic compression, and those of the
biomechanical model. The framework was tested on ten clinical cases and the results were compared
against an affine transformation model, previously proposed for the same task. The mean registration
error was 11:6� 3:8 mm for the CC and 11� 5:4 mm for the MLO view registrations, indicating that this
could be a useful clinical tool.
� 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/3.0/).

1. Introduction

X-ray mammography (MG) is routinely used both as a screening
and a diagnostic tool. DCE-MRI is often used as a complementary
modality to MG, for instance in the following cases (Mann et al.,
2008):

� Problem solving when findings from conventional imaging (MG
or ultrasound) are inconclusive – for example lesions that are
only visible on a single mammographic view, or multiple MR
enhancing lesions – as DCE-MRI has been shown to have high
sensitivity but poor specificity (Morrow et al., 2011). In the case

of multiple enhancing lesions, MRI to MG registration could
help disambiguate between them, by identifying their corre-
sponding MG position.
� Screening in patients with dense breasts who are at increased

risk and more frequent screening in patients at high genetic risk
of cancer, in particular those known to be more radiosensitive
(Leach et al., 2005).
� Monitoring and assessing the tumour response of patients trea-

ted with neoadjuvant chemotherapy.
� Staging of women with breast cancer; in particular for women

with dense breasts and patients with histologic evidence of
invasive lobular carcinoma.
� Determining the primary lesion, when this is not visible in

mammography, for example axillary metastases with an occult
primary tumour (de Bresser et al., 2010). In this instance the
sensitivity of MRI is high (90%) but specificity is relatively low
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(30%) and could potentially be improved with correlation to
MG.
� Imaging after breast conservative therapy, for example to eval-

uate possible residual disease or further evaluate suspected
recurrence.

Many studies have compared the performance of MG and MRI
to determine which modality is most appropriate at each step of
the patient’s care pathway. In short the relative merits of these
and other breast cancer imaging modalities are wide ranging and
complex (Hooley et al., 2011). Despite this, there have been no
comprehensive studies, to our knowledge, that have assessed the
clinical benefits of combining MG and MR imaging, to affect a clin-
ical decision with respect to breast cancer care. This can be attrib-
uted to the lack of tools currently available to enable simultaneous,
multi-modal image assessment. In their prospective view of breast
cancer imaging for detection and diagnosis, however, Karellas and
Vedantham (2008) suggest that: ‘‘From the technological perspec-
tive, in addition to improvements with each modality, we are likely
to observe an increasing trend towards multi-modality systems
that combine the relative strengths of each modality’’. This paper
addresses this issue by describing a method to spatially correlate
breast MG and MRI. Finally, another potential application of MRI
to MG registration is its use to facilitate X-ray stereotactic biopsy
for patients that have a second-look mammography following an
MRI, for lesions that were initially considered mammographical-
ly-occult. In this case, identifying correspondences between MRI
and MG could be a valuable tool to enable mammographically
guided, rather than MRI-guided biopsies to be performed; the lat-
ter generally being more expensive, time consuming and not
widely available (Heywang-Köbrunner et al., 2009).

Identifying corresponding regions between X-ray mammo-
grams and MR images can be problematic, due to the differences
in dimensionality and image appearance, and the large breast
deformation between the two modalities. Women are lying prone
in the MR scanner with their breasts pendulous, while during X-ray
mammography acquisitions women are standing with their breast
compressed between two plates. In addition, for MG, typically two
images are acquired, one Cranio-Caudal (CC) and one Medio-
Lateral Oblique (MLO) view. An automated MRI to X-ray
registration algorithm would be a valuable tool that could help
radiologists in the diagnosis and management of breast cancer.

Previously, authors have used feature-based techniques for this
task (Behrenbruch et al., 2003;Marti et al., 2004). However the
selection of corresponding, distinctive features from MR and
X-ray images is particularly problematic for breast images, due to
the lack of anatomically distinctive, internal landmarks.

A patient-specific FE modelling approach that simulates mam-
mographic compression was initially proposed by Ruiter et al.
(2006). This implementation used the breast outline for alignment
rather than the intensities in the two images. The registration was
performed in two stages: In the first step a plate compression was
applied and in the second a breast outline alignment was achieved
by applying additional displacements on the surface nodes of the
breast model. Hopp et al. (2013) recently extended this approach
by introducing one additional final step, where the rotation of
the breast about the anterior-posterior axis was estimated using
an intensity-based optimisation. Similarly, another FEM-based
approach with a contact model was proposed (Lee et al., 2013),
which also employed an iterative intensity-based registration
framework. However, this was limited to a 2D rigid-body registra-
tion of the simulated projection to the X-ray mammogram.

Biomechanical models have also been used previously to simu-
late large mammographic compressions but were not applied to
the calculation of MRI to X-ray correspondences (Samani et al.,
2001; Pathmanathan et al., 2004; Chung et al., 2008). In all these

approaches the material parameters of the breast tissue were taken
from the literature, from studies on ex-vivo tissue samples.
Han et al. (2012) proposed a method for in vivo parameter estima-
tion, using a framework that incorporates an implementation of
the FEM modelling on the Graphics Processing Unit (GPU).
This approach can be further extended to FEM-based registration
tasks, which are computationally expensive and hence prohibi-
tively time consuming to perform with current commercial FE
solver packages.

We have previously investigated the performance of an
intensity-based framework using simpler transformation models,
such as an affine transformation (Mertzanidou et al., 2012a) and
a statistical deformation model learnt from biomechanical simula-
tions (Mertzanidou et al., 2011). In this work, we are using the
same iterative optimisation framework with a new patient-specific
FEM-based transformation model and we further validate its
performance on a larger dataset than our preliminary study
(Mertzanidou et al., 2012b).

The original contribution of our technique, compared to other
approaches that used biomechanical modelling for the same appli-
cation, is the use of an intensity-based registration framework with
an iterative update of both the model (non-rigid, biomechanical)
parameters and the rigid transformation parameters; in total seven
degrees of freedom. This is achieved using a transformation mod-
ule that runs on the GPU (Taylor et al., 2009), providing shorter
execution times than commercial packages and enabling several
hundred simulations to be performed during each registration. In
summary, previously proposed methods (Hopp et al., 2013; Lee
et al., 2013) perform a registration via discrete, sequential steps,
whereas our approach optimises all parameters simultaneously.
Therefore it can be extended or modified to include more or differ-
ent parameters without altering the registration framework. Also,
the parameter space is better explored, as more parameters are
used and a considerably larger number of their combinations is
tested during optimisation. We apply and validate our method
using both CC and MLO mammograms, and we perform a direct
comparison to registration using an affine transformation
(Mertzanidou et al., 2012a).

2. Methodology

In a conventional intensity-based MRI to X-ray image
registration algorithm – such as the one we previously proposed
(Mertzanidou et al., 2012b) – the inputs to the framework are
the X-ray mammogram and X-ray attenuation volume, computed
from the patient’s MRI. During the iterative optimisation loop,
the transformation parameters p ¼ fp1; p2; . . . ; pNg are updated, so
that the similarity S between the real X-ray mammogram MGreal

and the simulated perspective projection W (i.e. ray casting) of
the X-ray attenuation volume V is maximised:

p ¼ argmax
p
ðSðpÞÞ

¼ argmax
p
ðSðMGrealðxÞ;WðTpðVÞ; xÞÞ : x 2 XÞ

ð1Þ

where x is the coordinate of each pixel within the region of interest
X of MGreal and Tp is the 3D transformation.

An overview of our proposed framework is shown in Fig. 1. A
key difference of this approach compared to the conventional
registration pipeline described briefly above is the simultaneous
optimisation of both pose parameters h and FEM parameters /
during registration. In this case, Eq. (1) now becomes:

p ¼ fh;/g ¼ argmax
p
ðSðh;/ÞÞ

¼ argmax
fh;/g

ðSðMGrealðxÞ;WðTfh;/gðVÞ; xÞÞ : x 2 XÞ:
ð2Þ
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This requires an additional input to the iterative scheme, which in-
cludes the geometry of the model, the material properties and the
boundary conditions (including the dimensions and trajectory of
the contact plates). In our implementation this information is stored
in an XML file, as illustrated in the Fig. 1.

2.1. Patient-specific modelling

In our proposed technique, patient-specific biomechanical mod-
els are built from the pre-contrast MRI of the subject. Initially, we
segment the breast volume from the background, using a simple
region-growing algorithm, apply Gaussian smoothing and downs-
ample the extracted binary mask to an isotropic volume of
½10� 10� 10�mm3 resolution. This down-sampling simplifies the
image for meshing purposes, reduces the computational cost of
the FE solution and also produces smooth meshes, free from arte-
facts that can be caused, for example, from skin folding. Skin fold-
ing can occur, particularly for large breasts, due to contact with the
MRI breast coil or in cases where the subject is clothed during
scanning. If present the topology of the elements in this area can
break down, as these undergo a large deformation. The surface
mesh of the whole breast is extracted using a VTK1 implementation
of the marching cubes algorithm and the tetrahedral elements are
extracted using the open-source software package TetGen.2 A typical
breast model of the ten used in this study consists of approximately
2;500 elements and 800 nodes. This choice lies approximately in the
middle of the previously proposed range, that was used for the same
registration task: the number of elements varied in the literature
from one or two hundred (Ruiter et al., 2006; Lee et al., 2013) to tens
of thousands (Hopp et al., 2013).

We use a nearly incompressible and hyperelastic neo-Hookean
model (Han et al., 2012). This is transversely isotropic, to account
for the reinforcement of biomechanical properties from fibre-like
connective tissues in a preferred direction, as previously observed
by Tanner et al. (2011). The strain-energy function, as in (Taylor
et al., 2009), is given by the equation:

W ¼ WISO þWTRANS

¼ ½l
2
ðI1 � 3Þ þ j

2
ðJ � 1Þ2� þ g

2
ðI4 � 1Þ2;

ð3Þ

where WISO and WTRANS are the isotropic and anisotropic components
respectively and I1 is the first principal invariant. J ¼ detðFÞ, where F
is the deformation gradient. l and j are the shear and bulk moduli,
I4 is the pseudo-invariant of the modified right Cauchy-Green defor-
mation tensor, which defines the fibre orientation and g is an addi-
tional material parameter that controls its stiffness enhancement. g
is incorporated into the transformation model described in the next
section. In this study, we assume that the fibre enhancement is along
the anterior-posterior direction, thus allowing the breast to expand
more in the medial–lateral direction for a CC view compression, for
example. The use of a non-linear instead of a linear model and the
incorporation of an anisotropic behaviour are important for our
application, as the compression is simulated using a contact model
and therefore it is less constrained than when the displacements
of the surface nodes are known a priori, as in (Tanner et al., 2011).

Regarding the different tissue types that can be considered, our
approach assumes one homogeneous tissue type, rather than
assigning different material properties, for example, to the fibro-
glandular tissue, fat, skin and pectoral muscle. The advantage of
our simplified model is that it avoids convergence problems asso-
ciated with performing dynamic FE simulations using multi-mate-
rial models with the highly variable tissue material properties
defined in the literature. In relevant previous work other authors
have also proposed homogeneous tissue types (Chung et al.,
2008; Hopp et al., 2012) and in experimental work published by
Ruiter (2003), no significant effect on the results was observed
when different tissue models were used.

Regarding the modelling of the pectoral muscle, we use a planar
approximation for the interface between the breast and the pector-
al muscle (the pectoral fascia) and allow the nodes to slide along
this plane. This implementation is not expected to introduce signif-
icant errors into our modelling, as the pectoral muscle is not visible
in the CC view mammograms. For the MLO views, the pectoral
muscle is excluded from the area where the similarity measure is
calculated, but this simplification is expected to be less accurate
for the MLO view. An advantage of this approximation is the fact
that it can avoid meshing problems due to topological irregularities
in the segmentation of the chest wall when this intensity boundary
is poorly defined in the MRI.

Finally, the plate compression is simulated using a frictionless
contact model (Han et al., 2012). The main advantage of using a
contact model instead of applying displacements on the surface

Fig. 1. Overview of the proposed registration framework.

1 http://www.vtk.org/.
2 http://tetgen.berlios.de/.
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nodes is that the interaction with the plates is modelled explicitly.
Moreover, this method avoids artefacts on the breast surface that
can occur if the displacements applied on neighbouring nodes
are different. Regarding the modelling of friction between the com-
pression plate and the breast skin, there is no experimental study
that illustrates either the effect that this has on the breast defor-
mation when mammographic compression is applied, or the fric-
tion coefficient that best describes the breast-plate interaction.
Whilst friction is clearly present, in the absence of any relevant
data, we assume that a frictionless model provides a reasonable
first approximation to the interaction between the breast and the
compression plates. We investigate the effect of this assumption
in Section 3.2.

The geometry of the model is stored in an XML file, which is
used as an additional input into the registration pipeline, described
in detail in Section 2.3.

2.2. Transformation model

The transformation model consists of seven parameters which
are iteratively updated during registration. Four of these account
for the positioning of the breast before compression. More specifi-
cally these are:

� Two translations, tx and ty, within the plane perpendicular
to the direction of the projection (XY plane).

� Two rotations, one for the rotation of the breast about
the anterior–posterior axis Y, hy, (roll) and one about the
superior–inferior axis Z, hz, (in-plane rotation).

Fig. 2 illustrates the coordinate system used for an example CC
compression.

The remaining three transformation parameters control the
material properties and the compression simulation of the FEM
deformation. These are:

� Amount of compression, D, – constrained between: no com-
pression (0%) and 90% of the maximum distance between
the nodes in the direction of the projection.

� Stiffness anisotropy ratio, q, – constrained between
½0� 512� (range taken from the literature (Tanner et al.,
2011)).

� Poisson’s ratio, m, – constrained between ½0:45� 0:499�.

The compression is simulated using an equal and opposite dis-
placement of both compression plates. The optimised parameter D
is the distance between the two plates. The stiffness anisotropy ra-
tio, q, is related to the parameter g in Eq. (3): q ¼ g=E, where E is
Young’s modulus. In other words, q is the ratio of g, to underlying
stiffness, E, and therefore the tissue is either isotropic (for q ¼ 0) or
transversely isotropic (for q > 0). In the latter case the tissue is
stiffer in one specified direction than in others. Higher values of
q correspond to a stiffer preferred direction. We assume that the
breast tissue is homogeneous with Young’s modulus E ¼ 4kPa. As

we apply displacements on the compression plates, rather than
forces, and we are interested in the displacement distribution,
rather than the stress distribution, the value of E is not critical
for our application. The value has been chosen to lie within the
range previously used for breast compression simulations (Han
et al., 2012). Finally, the Poisson’s ratio, m, controls the volume
change under compression.

The optimised parameters p ¼ ftx; ty; hy; hz;D;q; mg are part of a
transformation module that is implemented using the Insight Tool-
kit,3 without requiring the geometry model to be reloaded at each
iteration of the algorithm. This implementation also provides the
flexibility to use different similarity measures and optimisation
techniques inside the iterative registration process described below.

2.3. Registration framework

Before registration, the MRI intensities are transformed to X-ray
attenuation using the methodology previously described in
(Mertzanidou et al., 2012a). In this approach, the MRI intensities
are initially segmented into fat and fibroglandular tissue and are
then mapped to a new X-ray attenuation volume. This new volume
and the real X-ray mammogram are the inputs to the registration
pipeline.

The breast volume is positioned above the detector and the
distance between the X-ray source and the detector is fixed and ex-
tracted from the DICOM file of the mammogram (f ¼ 660 mm). The
initial translation parameters, tx and ty, are set such that the centre
of mass of the volume is projected onto the centre of mass of the
real mammogram. This provides a good initial position for registra-
tion, which is important for ensuring the optimisation scheme con-
verges to a global minimum, and it does not require manual
interaction. The amount of compression is initialised to a 50% plate
displacement, the Poisson’s ratio to m ¼ 0:498 and the stiffness
anisotropy ratio to q ¼ 250, which is the midpoint of the range
specified in the previous section.

The rotation parameters are initialised to hy ¼ 0� and hz ¼ 0� for
the CC view mammogram registrations, while for the MLO view
the roll is set to hy ¼ 45�, to account for the different direction of
the projection. This initial roll angle is extracted from the mammo-
gram’s DICOM header. The in-plane rotation is set experimentally
to hz ¼ 30�, as the breast in MLO view mammograms appears to
have an in-plane rotation. This value was determined empirically,
by visual inspection.

To avoid resampling the 3D volume into the transformed posi-
tion and then ray-casting using this new volume grid, the transfor-
mation is performed as the ray traverses the 3D grid of the
undeformed, moving volume. More specifically, during the regis-
tration process we use ray-casting from the 2D target space
through the 3D grid of the moving image and integrate the inten-
sities of each transformed intersection of the ray with the 3D grid.
For point xi, the intersection of the ray with the volume grid of the
moving image, the transformation is given by the equation:

TðxiÞ ¼ T2rigidðTnon�rigidðT1rigidðxiÞÞÞ ð4Þ

where T1rigidðxiÞ ¼ Tftx ;tygðRhz ðxiÞÞ and T2rigidðxiÞ ¼ Rhy ðxiÞ. The non-
rigid transformation Tnon�rigid is the interpolated displacement at
the current position xi and is computed by the FE solver at the
current parameter position. Note the order of the transformations
in the above equation, as the transformation is defined from the
‘‘compressed’’ to the ‘‘uncompressed’’ breast space.

At each iteration the model is transformed using a rigid trans-
formation and an FE compression simulation, and it is projected
into 2D using a perspective ray-casting projection. The similarity

Fig. 2. Illustration of an example CC view compression of a mesh generated from a
subject’s MRI and the axes used for the FEM transformation geometry. 3 The Insight Segmentation and Registration Toolkit (ITK), http://www.itk.org.
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measure used is normalised cross-correlation (NCC) and it is
calculated over a region around the mammogram, that excludes
the pectoral muscle in the MLO view. In our implementation, the
user specifies a line to define the pectoral muscle boundary using
manual interaction. In previous work (Mertzanidou et al., 2012a)
we evaluated different similarity measures, and found that NCC
generated the most accurate registrations. The use of NCC
assumes a linear intensity relationship between our simulation
(Mertzanidou et al., 2012a) and the real mammogram, therefore
for digital mammograms we pre-process the raw DICOM data by
computing the logarithm of the pixel intensities. The optimisation
scheme is hill climbing. The value of each parameter p at iteration i
is given by:

pi ¼ pi�1 � step
wðpÞ ð5Þ

where wðpÞ is a scalar weight factor that controls the relative mag-
nitude of the step size step for each parameter. At each iteration one
parameter is updated, that which results in the largest increase of
the similarity measure, at the current relative step size. The param-
eter pi is only updated if the similarity increases and the step is de-
creased if the similarity does not improve using the current
parameters. The optimisation terminates when the parameter step
becomes smaller than a pre-defined value.

In our current implementation the algorithm requires approxi-
mately 2 h for each registration, on a single core, 64-bit machine,
with a 2.8 GHz processor. A typical registration task usually
converges within 30 iterations (approximately 420 simulations).
The performance could be further optimised to include a GPU
implementation of the ray-casting algorithm. Currently, for a given
3D deformation field provided by the FE solver, the combination of
the ray casting and the transformation of the 3D volume requires
approximately 18 s, and the FE simulation of a plate compression
an additional 9 s.

3. Experiments

3.1. Validation of the proposed registration framework

For validation, we used clinical MRI and X-ray mammography
data (both CC and MLO views) from ten patients. The images were
acquired approximately at the same timepoint to avoid significant
volume change of the fat and the fibroglandular tissue. We have
used the pre-contrast T1-weighted images for processing. The
MR images of six cases had a voxel size of ½0:7� 0:7� 1:3�mm3,
two had ½0:7� 0:7� 2�mm3 and the remaining two had
½0:9� 0:9� 1�mm3 voxel size. The X-ray mammograms of eight
patients had pixel sizes of ½0:1� 0:1�mm2, one was
½0:07� 0:07�mm2 and the last ½0:08� 0:08�mm2. All mammo-
grams were resampled by a factor of 10 for registration, to more
closely match the MRI resolution and reduce the computational
cost of the ray-casting algorithm, used for projection of the 3D
volume to 2D.

Eight of the above patients had lesions visible in both the MRIs
and in the CC and MLO view mammograms. The annotations of
these lesions were used as gold standard correspondences between
the modalities. MRI annotations, based on the full dynamic con-
trast sequence, were performed using a sphere centred around
the lesion, while X-ray annotations included either a disc or a
free-form shape. Two patients had an MRI and X-ray compatible
clip that was used as a known corresponding point between the
modalities.

For each registration, the error was calculated as the 2D Euclid-
ean distance between the centre of mass of the annotation/clip po-
sition in the X-ray mammogram and the centre of mass of the MRI

annotation/clip position projected into 2D at the final registration
position. We consider this metric more appropriate than an
overlap measure for our application, as the size of the annotations
(Table 1) can vary significantly both between different patient
pathologies and between the two modalities, since they measure
different physical properties of the tissue.

The detailed registration results for all cases are shown in
Table 1, where our approach is compared against an affine trans-
formation (Mertzanidou et al., 2012a). For the CC view the FEM
transformation has a mean error of 11:6� 3:8 mm, which is com-
parable with the performance of the affine approach
(10:6� 6:33 mm), while the standard deviation is lower, which
indicates that the results of the FEM approach are more consistent.
For the MLO view the FEM algorithm performs better with a mean
error of 11� 5:4 mm, compared to 13:3� 5:9 mm for the affine
transformation. Fig. 3 illustrates the error figures in two graphs,
one for the CC and one for the MLO view. Table 1 and Fig. 3 show
that our proposed FEM-based transformation model performs
similarly for the CC and MLO view registrations, which was also
observed in our previously proposed affine transformation.

In addition to the registration errors, we have included in
Table 1 the lesion radius, r, for each patient measured from the ori-
ginal (uncompressed) prone MRI. The clip cases are excluded from
this calculation. Comparing the lesion radii, r, with the registration
errors, d, we can see that for six out of eight cases (75%) the MLO
registration error satisfied d < 2 � r. Similarly, we observe the same
behaviour for five out of the eight (62.8%) CC view registration
tasks. This indicates that there is an overlap of each lesion in the
two modalities after registration in 69% of cases. Note that for this
calculation we ignore any expansion of the lesion after the volume
compression, which would increase the observed overlap.

Example registration results are shown for three patients with
annotations in Figs. 4 and 5 and the two patients with clips in
Fig. 6.

Table 1 indicates that four registration tasks out of twenty gave
errors larger than 15 mm and one gave an error larger than 20 mm.
The results for this patient are illustrated in Fig. 7.

Finally, we have investigated the correlation of the registration
errors to different factors: the size of the MR volume, the breast
density measured from the MRI, the lesion size measured from
both the MRI and the X-ray mammograms and finally the distance
of the lesion from both the pectoral muscle and the centre of mass
of the mammogram, both measured using the CC views. Our
results showed that there was no significant correlation with any
of these factors, as all p values were p > 0:05. The lowest p value
was p ¼ 0:06 that corresponds to 94% confidence intervals for the
correlation between the errors of the CC view registrations and

Table 1
Registration error, d, (in mm) of our FEM transformation method and comparison
with an affine transformation (Mertzanidou et al., 2012a). The clip cases are patients
p4 and p5. The last column, r, corresponds to the radius of the annotation (in mm)
measured from the original (uncompressed) prone MRI.

CC view MLO view r

FEM Affine FEM Affine

p1 8.1 14.6 10.3 11.9 6.9
p2 7.3 13.5 12.6 7.2 12.4
p3 11.9 3.7 11.4 9.4 9.3
p4 6.9 9.9 14.5 7.7 –
p5 15.4 23.4 2.3 18.9 –
p6 12.9 4.6 15.0 20.3 3.7
p7 16.0 8.5 4.8 6.7 2.8
p8 12.1 9.5 5.9 12.4 3.7
p9 8.3 2.9 20.5 23.5 6.5
p10 17.2 15.4 13.2 15.3 10.3
Mean 11.6 10.6 11.0 13.3 6.9
Std 3.8 6.33 5.4 5.9 3.4
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the distance of the lesion from the pectoral muscle. This graph is
shown in Fig. 8. This behaviour can be explained by the fact that
lesions which are closer to the pectoral muscle have more
constrained movement rather than those that are further away,
and therefore the registration is more likely to give lower errors.

3.2. Breast modelling sensitivity study

As described above, the breast biomechanical modelling used in
this study includes several simplifications that facilitate its use
within the registration framework. The aim of the following exper-
iments is to quantify the effect that these approximations have on
the final compressed breast shapes. More specifically we conducted
a sensitivity study to assess the influence of skin and friction on the
simulations, as our model assumes a homogeneous tissue type and
frictionless contact model with the mammographic plates.

In the next two sections we have used the breast models intro-
duced in the previous section to perform a series of compression
simulations. For these we have used the optimised registration
parameters determined above. We then compared the differences
in the nodal displacements between our model and that (i) with
the addition of skin (Section 3.2.1) and (ii) with the addition of fric-
tion (Section 3.2.2).

3.2.1. Modelling skin
To model the skin, we added a layer of membrane elements to

the model’s external surface with a thickness of 2 mm and an

elastic modulus that is two orders of magnitude stiffer than the
breast tissue (Gefen and Dilmoney, 2007). The skin model is neo-
hookean and incompressible and based on the work of (Bonet
et al., 2000).

For each of the 10 patients, we have performed two compres-
sion simulations, one with our original model and one with the
new model that includes the skin. The compression parameters
used are those obtained for the corresponding CC view registra-
tions without skin (or friction). Fig. 9 shows the differences in
the nodal displacements when considering the two models. In
addition to the 3D nodal displacement differences illustrated in
blue, we have also calculated the differences on the axial plane,
as these contribute most to the 2D errors, for a CC view compres-
sion. The results are summarised in Table 2.

3.2.2. Modelling friction
To quantify the effect of friction on the simulations, we have

performed two sets of compression simulations, similar to the skin
experiments, one with our original frictionless contact model and
one with the new model that includes a friction coefficient

Fig. 3. The registration errors (in mm) by patient for the CC (a) and the MLO view
(b).

Fig. 4. Registration results for two patients, p1 and p3. The X-ray annotation is
shown in red and the projection of the MR annotation in green; their overlap is
yellow. Inevitably each modality can give different estimates of lesion size, but all
cases show overlap. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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l ¼ 0:3 between the breast and the two mammographic plates
(Hsu et al., 2011).

Fig. 10 shows the differences in the nodal displacements when
using the models with and without friction. As previously, the
compression parameters used were those obtained for the corre-
sponding CC view registrations without friction (or skin), and we
also show the nodal displacements on the axial plane. The results
are summarised in Table 2.

4. Discussion

In Fig. 4 it is clear that the two modalities can give different esti-
mates of the lesion size. In general, the projections of the MRI
annotations appear larger than those of the X-ray images. This dif-
ference could be partially explained by the fact that the two
modalities measure different physical properties of the tissue and
by virtue of the fact that manual annotations are generally harder
to perform accurately for 3D structures. Moreover, the size of
malignant lesions on X-ray mammography is generally underesti-
mated, while MRI measurements have been repeatedly shown to
be larger, but more accurate. In our dataset, if we exclude the clip
cases, the mean radius of the eight MRI annotations was
6:9� 3:4 mm and very similar to that of the X-ray mammograms,
6:9� 2:7 mm. When the lesions are deformed during registration,
their radius can be reduced in the direction of the projection, due
to compression, and consequently increased in the perpendicular
plane. This is expected since we are using one homogeneous mate-
rial for the FEM simulations and therefore the lesions are not mod-
elled separately as stiff or rigid structures. In our experiments, we
found that the mean radius of the MRI lesions when projected onto
the mammograms following registration was increased to
11:3� 6:1 mm. Future work includes the use of different material
parameters for the fat, the fibroglandular tissue, tumorous tissue,
the skin (potentially) and the pectoral muscle.

In addition to the use of one homogeneous material, the breast
modelling process used in our work includes certain approxima-
tions, such as the use of coarser resolution images to extract the
meshes and the modelling of the pectoral muscle as a plane. Nev-
ertheless, these methods contribute to a more automated approach
of the breast modelling, which when combined with our registra-
tion framework, only requires one interactive step, which is the

pectoral muscle segmentation. This can be automated in future
work, as automated methods exist (Wu et al. (2012),Gubern-Meri-
da et al. (2011)) and our algorithm could be potentially integrated
into clinics, providing a fully-automated patient-specific frame-
work for MRI to X-ray mammography alignment. In our experi-
ments we found that modelling the pectoral muscle using a
semi-automated segmentation of the boundary between the pec-
toral muscle and the breast tissue, instead of a plane, does not im-
prove registration accuracy. To investigate the effect of using this
different breast geometry, we repeated all registration tasks using
the new models and found that the registration accuracy was sim-
ilar for the CC view (the error was 12:8� 8 mm, compared to that
obtained with the original plane approximation of 11:6� 3:8 mm).
However, for the MLO view using the segmented pectoral muscle
shape produced an error of 16:1� 6:2 mm, which is considerably
higher than when using the plane approximation (11:0� 5:4 mm).

The use of the breast modelling simplifications has an addi-
tional advantage. Although the dynamic FE solver that we use
(Taylor et al., 2009) has the benefit of providing rapid computation
times, large mammographic compressions, as those occurring in
mammography, can cause convergence problems for dynamic
solvers. The use of one homogeneous material and coarser

Fig. 5. Registration results for the MLO view of patient p6. As previously, the X-ray
annotation is shown in red and the projection of the MR annotation in green. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 6. Registration results for the two patients with MR and X-ray compatible clips,
p4 and p5. The clip location on the X-ray mammogram is visible as the high
intensity region (and a red arrow for p4). The MR annotation is shown in green. For
the patient p4 we also show the simulated CC X-ray mammogram (d). (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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resolution meshes enables us to minimise the number of diverging
simulations.

To quantify the effect of some biomechanical modelling aspects
of our proposed method, we have conducted a sensitivity study in
Section 3.2. Table 2 summarised the results of our experiments
when using (i) the original model, (ii) the model including only
skin, (iii) only friction and (iv) both skin and friction. We can see
that incorporating friction into our model between the breast
and the contact plates produces mean differences in the nodal dis-
placements that are in the order of 2 mm, while the corresponding
mean value for the skin is 4:25 mm for the axial plane. The results
of the sensitivity analysis demonstrate that using a frictionless
contact model is not expected to introduce significant differences
in the breast compression simulations. Therefore ignoring friction
provides a reasonable assumption for our application. Modelling
the skin, instead of using one homogeneous tissue model, has a lar-
ger effect on the final nodal displacements of the breast models
with a mean difference of approximately 4 mm. We found that
the differences in the final breast compressed shapes are most
noticeable in the periphery of the breast, as illustrated for patient
1 in Fig. 11. Future work could investigate further the effect of
the skin on the final registration accuracy.

Regarding the optimisation of the biomechanical model param-
eters, we have optimised the position of the compression plates,
rather than fixing their value according to the breast thickness va-
lue provided in the DICOM header, as these measurements can of-
ten be inaccurate. Diffey et al. (2008) found a mean difference of
10:8 mm between the maximum and minimum thickness mea-
sured in the anterior-posterior direction. In our experiments we
found that the mean breast thickness after registration was
61 mm, while the mean value provided by the DICOM headers of
the mammograms was 55 mm, which is within the error margins
determined by (Diffey et al., 2008). There is a significant correla-
tion between the optimised and the DICOM thickness values, with
p < 0:01. For the remaining biomechanical model parameters, the

Fig. 7. Registration results for patient p9. The MLO view registration for this patient
gives the largest registration error using our approach.

Fig. 8. Plot of the CC registration errors with respect to the distance of the lesion
from the pectoral muscle, measured from the CC view mammograms. The values in
both axes are expressed in mm.

Fig. 9. Mean absolute differences in the nodal displacements (3D in blue and axial
in red) using each breast model with and without skin. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

Table 2
Mean differences (in mm) in the nodal displacements (3D and axial) between using
our original breast model and one considering: only skin, only friction, and both skin
and friction.

3D disp. Axial disp.

Only skin 4.84 4.25
Only friction 2.3 2.06
Skin & friction 4.89 4.36

Fig. 10. Mean absolute differences in the nodal displacements (3D in blue and axial
in red) using each contact model with and without friction. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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optimisation results of the Poisson’s ratio gave a mean value of
m ¼ 0:4796� 0:009. The minimum value was 0:46 and the maxi-
mum 0:4956. Finally, the mean optimised value of the stiffness
anisotropy ratio was q ¼ 250� 14, the minimum was 225 and
maximum was 280.

Regarding registration accuracy and compared to other patient-
specific FEM-based methods used for this task, quantitative results
on clinical cases showed initially a mean error of 4:3 mm on 6 cases
(Ruiter et al., 2006). A more recent semi-automated implementa-
tion of the same approach had an error of 11:8� 6:5 mm, on CC
view mammograms only, of 11 patients (Hopp et al., 2012). Finally,
in the latest automated implementation (Hopp et al., 2013), where
the results were improved by optimising the roll angle using inten-
sity-based registration, the mean error was 13:2 mm on CC view
mammograms of 78 patients. However this methodology was not
tested on MLO view mammograms, for which the registration is of-
ten more challenging, due to greater uncertainties regarding the
positioning of the breast before compression and also the effect
of the pectoral muscle on the compression simulation. Our previ-
ous affine transformation model (Mertzanidou et al., 2012a) gave
a median error of 13:1 mm when tested on both CC and MLO view
registrations (113 in total). However, it is difficult to compare the
various techniques based on these results, unless all the algorithms
are tested on the same data sets.

5. Conclusion

We have presented a framework for an intensity-based MRI to
X-ray mammography registration using a novel iteratively updated

FEM breast compression simulation. The results on twenty regis-
tration tasks from ten patients indicate that this could be a useful
tool and potential aid to breast cancer detection and diagnosis.

Our transformation model provides a more physically realistic
deformation of the breast than previous models proposed for this
application but it is captured in only seven degrees of freedom.
The pose of the breast, including two rotations, is defined by four
degrees of freedom and the biomechanical model is specified via
a further three degrees of freedom. Our method is the first to
simultaneously optimise such a complete description of mammo-
graphic breast deformation and this, coupled with the low degrees
of freedom, provides a tightly constrained optimisation strategy.
This is illustrated in the validation experiments which provide a di-
rect comparison between this method and use of a volume-pre-
serving affine transformation model which has 11 degrees of
freedom. The fact that both approaches produce similar results
indicates that our new method is better constrained. In addition,
incorporating this transformation model into an intensity-based
registration framework, maximises the amount of information
used by the optimisation, increasing the likelihood of the correct
transformation being obtained. During the iterative optimisation
loop, we observed that the breast outline is aligned initially and
correspondences between structures internal to the breast are sub-
sequently refined as the registration progresses.

Finally, future work includes further validation on a larger data
set and investigation of the effect that a more accurate modelling
of the breast has on the registration accuracy. This will include
assigning different material properties to the fibroglandular, the
adipose tissue, the tumour and the skin, as well as precise model-
ling of the boundary between the pectoral muscle and the breast.
Some initial results are provided in this work, where a sensitivity
study was performed to quantify the effect of some modelling
approximations – regarding skin and friction – on the resulting
breast compressions. This exploits our registration framework by
enabling the influence of individual biomechanical (or other)
parameters to be investigated, which in turn will lead to advances
in our understanding of breast biomechanics.
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