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A new line list for rovibrational and rotational transitions, including fine structure, within the NH
X3�− ground state has been created. It contains line intensities in the form of Einstein A and f-
values, for all possible bands up to v′ = 6, and for J up to between 25 and 44. The intensities are
based on a new dipole moment function (DMF), which has been calculated using the internally
contracted multi-reference configuration interaction method with an aug-cc-pV6Z basis set. The pro-
grams RKR1, LEVEL, and PGOPHER were used to calculate line positions and intensities using the
most recent spectroscopic line position observations and the new DMF, including the rotational de-
pendence on the matrix elements. The Hund’s case (b) matrix elements from the LEVEL output
(available as Supplement 1 of the supplementary material) have been transformed to the case (a)
form required by PGOPHER. New relative intensities for the (1,0) band have been measured, and the
calculated and observed Herman-Wallis effects are compared, showing good agreement. The line list
(see Supplement 5 of the supplementary material) will be useful for the study of NH in astronomy,
cold and ultracold molecular systems, and in the nitrogen chemistry of combustion. © 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4891468]

I. INTRODUCTION

In astronomy and in general for remote sensing, lists of
line positions and absolute line intensities are essential for the
determination of molecular abundances.1, 2 A combination of
laboratory measurements of molecules and theoretical meth-
ods can be used effectively in the creation of such line lists.2

Imidogen (NH) is an important molecule in the study of
astronomical environments, as it is present in cool stars,3–6

comets,7 diffuse interstellar clouds,8–11 and the Sun.12–16

It has also been magnetically trapped at temperatures
less than 1 K,17–20 and there is potential for trapping21–24

and chemical reactions25 at ultracold temperatures (<1
mK),26–28 applications for which include high precision
spectroscopy26, 29 and quantum computing.30 NH is also im-
portant in the nitrogen chemistry that occurs in combus-
tion processes,31, 32 and is a key species in the transforma-
tion of N2 to NH3 (and vice versa) in stellar and exoplanet
atmospheres.33, 34

The vibration-rotation (V-R) transitions within the X3�−

ground state are the focus of this paper, and their importance
is illustrated by the fact that as well being used to calculate
NH abundance, they have been used to calculate the total ni-
trogen abundance in cool stars4–6, 35 and the Sun.14, 36 The CN

a)jsabrooke@gmail.com

molecule has also been used for this purpose36 but it is less
useful as the spectroscopic knowledge has been less complete,
although this situation has recently been improved.37

The first observations of these transitions were of the 1-0
band by Bernath and Amano in 1982.38 In 1986, Boudjaadar
et al. observed the �v = 1 sequence up to the 5-4 band,39 and
transitions in these bands were detected for a greater number
of N values by Ram et al. in 1999,40 at the National Solar
Observatory at Kitt Peak, Arizona. Ram and Bernath reported
additional lines in these bands in 2010,41 and also transitions
in the previously unobserved 6-5 band. In 1989, Chackerian
et al.42 studied the relative intensities of the lines recorded by
Boudjaadar et al.39

Pure rotational transitions were first seen in 1975 by Rad-
ford and Litvak,43 who observed only the N = 1-0 transition in
the v = 0 level. Wayne and Radford then detected more rota-
tional transitions within both v = 0 and 1 in 1976.44 In 1982,
van den Heuvel et al.45 reported more observations of the v
= 0, N= 1-0 transition, but higher N transitions remained
undetected. Solar spectra recorded in space by the ATMOS
Fourier Transform Spectrometer15 (FTS; part of Spacelab 3
onboard some Space Shuttle flights) provided infrared rota-
tional lines between 600 and 900 cm−1, covering N′′ = 20-35
in v = 0, and N′′ = 21-29 in v = 1. Similar solar spectra taken
by ACE (Atmospheric Chemistry Experiment),46, 47 also from
low Earth orbit, provided higher N rotational lines; up to N′′
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TABLE I. Summary of equilibrium dipole moments, μe, and v = 0 aver-
aged dipole moments, μ0, for the X3�− ground state of NH, since 1974. All
but Paldus and Li (1996)62 and the experimental study calculated full dipole
moment functions. Our calculated values are also included.

Year Authors μe (debye) μ0 (debye)

1974 Scarl and Dalby52 (expt.) 1.405 ± 0.077a 1.389 ± 0.075
1974 Das et al.56 1.5353b 1.5155b

1975 Meyer and Rosmus57 1.578 1.5546b

1976 Hay and Dunning58 1.526 . . .
1987 Goldfield and Kirby59 1.511 1.480
1992 Stallcop et al.60 1.530 . . .
1992 Cantarella et al.61 1.5054 1.4827
1996 Paldus and Li62 1.536 . . .
2014 Campbell et al.19/This work 1.5434 1.5246

aCalculated by Chackerian et al.42, 53 using the reported data of Scarl and Dalby.52

bCalculated by Cantarella et al.61 using the reported data of Das et al.56 or Meyer and
Rosmus.57

= 42 in v = 0. More recent laboratory measurements of lower
N rotational transitions have been made for v = 0 by Klaus
et al.48 in 1997 (N = 1-0), Lewen et al.49 in 2004 (N = 2-1),
and Flores-Mijangos et al.50 (up to N = 5-4). In 2007, Robin-
son et al.51 observed transitions up to N = 5-4 in v = 1, and
also for the first time in v = 2 (up to N = 5-4).

The most recent set of molecular constants for the X3�−

state were reported by Ram and Bernath in 2010.41 Their cal-
culations used V-R lines from Ram et al.,40 Geller et al.,15

Bernath and Amano,38 spectra from the ACE mission,47 and
their new 6-5 band observations reported in that paper. They
used pure rotational lines from Robinson et al.,51 Flores-
Mijangos et al.,50 Lewen et al.,49 Klaus et al.,48 Geller et al.,15

and the ATMOS instrument.15 They performed a line position
fit to provide updated molecular constants for vibrational lev-
els up to v = 6.

An experimental average ground state dipole moment,
μ0, of 1.389 ± 0.07 D was obtained in 1974 by Scarl and
Dalby.52 They compared it to theoretical dipole moments
available at the time, which varied widely between 0.36
and 2.17 D. Dipole moments and dipole moment functions
(DMFs) have been calculated several times since then using
various theoretical methods, and a summary of such stud-
ies showing their resulting values of μe and μ0 is shown in
Table I. Using μe as a comparison, there is still some
disagreement between these values, and all of them
are somewhat higher than the experimental value of μe
= 1.405 ± 0.077.42, 52, 53 The difference between the full
DMFs is more complicated than this of course (see
Sec. III D for an example). Values for μe are compared in
Table I as they are readily available in the literature and give
an indication of the quality of the calculations. However, it
is actually the first derivative of the dipole moment that has
the greatest effect on the lifetime and line intensities of rovi-
brational transitions. More recent theoretical studies of NH
include those of Feller and Sordo54 and Temelso et al.,55 in
which high levels of theory were used to calculate potential
energy curves and spectroscopic constants, but no DMFs were
reported.

Currently available line intensities in the JPL63 and
CDMS64, 65 spectroscopic databases are based on the dipole
moment from 1974 of Scarl and Dalby.52 These line intensi-
ties are still being used, for example, by Goicoechea et al.10

Grevesse et al.14, 36 calculated the nitrogen abundance in the
Sun, and they used the 1975 DMF of Meyer and Rosmus57 to
calculate their own line intensities. Aoki and Tsuji6 also used
this DMF in their calculations of N abundance in oxygen-rich
giants. A new DMF would be useful to resolve the above dis-
crepancies and calculate a new set of line intensities.

In 2008, Campbell et al.19 magnetically trapped NH to
obtain an accurate experimental vibrational lifetime for v
= 1 of 37.0 ± 0.5stat

+2.0
−0.8syst ms. They found disagreement with

the previous values of Dodd et al.,66 who used the DMF
of Goldfield and Kirby59 to calculate A10 = 51.7 s−1 (τv=1
= 19.3 ms), and with Rosmus and Werner67 who gave A10
= 34.9 s−1 (τv=1 = 28.7 ms). To compare their experimental
result to theory, they calculated a new DMF using the multi-
reference configuration interaction (MRCI) method with an
aug-cc-pV6Z basis set. The resulting lifetime of 36.99 ms is
an excellent match to their experimental lifetime. They cal-
culated a value of μ0 of 1.5246 D. The DMF itself was not
published, and the purpose of this paper is to use this DMF
and the positions from Ram and Bernath41 to create a new line
list for the NH X3�− state rovibrational transitions, complete
with positions and absolute intensities. The range of the DMF
has been extended for this study to 0.6-20 a0 (0.32-10.6 Å)

II. CALCULATION OF LINE INTENSITIES

A. Overview

The rovibrational levels of the NH X3�− state are labeled
not only by their total angular momentum quantum number J
and vibrational quantum number v, but also by F1, F2, and
F3 for the three fine structure levels arising from interaction
of the spin angular momentum (S = 1) with the nuclear ro-
tational angular momentum (quantum number N). For F1, N
= J − S, for F2, N = J, and for F3, N = J + S. In the fol-
lowing equations we use η to represent all quantum numbers
apart from J.

The rotational line intensities reported in this paper are
in the form of Einstein A values, which are also converted to
absorption oscillator strengths (f-values), using the equation68

fη′J ′←ηJ = meε0c
3

2πe2ν2

(2J ′ + 1)

(2J + 1)
Aη′J ′→ηJ (1)

= 1.4991937827
1

ν̃2

(2J ′ + 1)

(2J + 1)
Aη′J ′→ηJ , (2)

where Aη′J ′→ηJ and ν are in s−1, and ν̃ is in cm−1. Western’s
PGOPHER69 is used to calculate Einstein A values with the
equation

Aη′J ′→ηJ = 16π3ν3Sη′J ′ηJ

3ε0hc3(2J ′ + 1)
(3)

= 3.13618932 × 10−7
ν̃3Sη′J ′ηJ

(2J ′ + 1)
, (4)

where the line strength, Sη′J ′ηJ , is in debye squared.
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FIG. 1. Calculated potential energy curves and DMFs for the X3�− ground
state of NH. The black line is the potential used in LEVEL, and the green cir-
cles are the ab initio potential (calculated along with the DMF and reported
by Campbell et al.19). The red dashed line is the DMF used in this study (re-
ported by Campbell et al.19), and the blue diamonds are the DMF calculated
by Meyer and Rosmus.57

Le Roy’s LEVEL70 program calculates rovibrational
wavefunctions by solving the 1D Schrödinger equation, with
the input of a potential energy curve. It then uses these and
a specified DMF to calculate transition dipole moment ma-
trix elements (TDMMEs), which, as LEVEL does not include
spin, are the matrix elements (MEs) of the DMF in a pure
rovibrational basis. These are referred to as Hund’s case (b)
TDMMEs, and they are available in Supplement 1 of the sup-
plementary material.71 They are transformed into the case
(a) TDMMEs required by PGOPHER, from which values for
Sη′J ′ηJ and Aη′J ′→ηJ are obtained, through a series of steps.
For details of the calculation of Sη′J ′ηJ from the case (b)
TDMMEs, please see both sections of the Appendix.

The DMF used here was calculated previously and used
in the calculations of Campbell et al.,19 but not reported.
Its calculation is described in Sec. II B, and it is shown in
Table III and Figure 1.

The potential energy curve for the NH X3�− state
is calculated here with Le Roy’s RKR172 program,
which uses the first-order semiclassical Rydberg-Klein-Rees
procedure73–76(the final potential used in LEVEL is available
in Supplement 2 of the supplementary material71). This re-
quires the input of molecular equilibrium constants, which
were calculated from the molecular constants of Ram and
Bernath,41 and those used are shown in Table II. The cal-
culated potential curve is shown along with the DMF in
Figure 1. A dissociation energy of 27 176 cm−1 was taken
from Espinosa-Garcia et al.77 for extrapolation of the poten-
tial energy curve at long range.

Line positions were also calculated with PGOPHER,
which uses the standard N2 Hamiltonian for a 3�− state,
and the molecular constants were taken directly from Ram
and Bernath.41 The Hamiltonian MEs used are listed in the

TABLE II. Equilibrium molecular constants for the NH X3�− state.

Constanta Value

ωe 3282.220(15)b

ωexe 78.513(15)
ωeye 0.1341(61)
ωeze − 0.0066(11)
ωeηe − 0.003141(70)
Be 16.667704(29)
α

e1
0.649670(91)

α
e2

0.001674(71)

α
e3

− 0.000067(25)

α
e4

− 0.0000633(24)

aThese constants are the usual power series expansions in v + 1/2, with negative signs in
front of ωexe and α

e1
.

bNumbers in parentheses indicate one standard deviation to the last significant digits of
the constants.

online documentation of PGOPHER, and the explicit MEs
used in this study are the same as those previously listed by
Brazier et al.78

B. Calculation of the new dipole moment function

The calculation of the DMF was previously described by
Campbell et al.,19 and will be briefly explained here. It was
calculated as expectation values with the ab initio internally
contracted MRCI method,79, 80 using MOLPRO 2006.1,81 and a
large aug-cc-pV6Z one electron basis set82–84 was employed.
The molecular orbitals were calculated at the complete ac-
tive space self consistent field (CASSCF) level. The C2v point
group symmetry was used, and the active space consisted of
the 1-6a1, 1-3b1, 1-3b2, and 1-2a2 orbitals. All CASSCF con-
figurations were used as reference configurations in the MRCI
step.

In Campbell et al., the DMF used had been calculated for
internuclear distances between 1.0 and 3.0 a0 (0.53 to 1.59
Å). In order to be able to accurately calculate TDMMEs for
vibrational levels up to v = 6 and J = 40, this range was later
extended to 0.6-20 a0 (0.32-10.6 Å). The calculated DMF is
shown in Table III (converted from atomic units using 1 D
= 0.39343031369 ea0 and 1 Å = 1.88972612 a0, and is avail-
able in Supplement 3 of the supplementary material71 along
with the calculated ab initio potential (in atomic units).

At an internuclear distance of R ≈ 10 Å the dipole mo-
ment is about −0.00165 D. At the CASSCF level, the dipole
moment at this distance is about an order of magnitude larger.
We conclude that this residual dipole moment is an artifact of
the truncation of the active space, which is only partly cor-
rected at the internally contracted MRCI step of the calcula-
tion. The residual dipole is small compared to the equilibrium
value and changing the DMF by a constant does not affect the
calculated line strengths. Furthermore, the amplitudes of the
vibrational wave functions for R > 5.25 Å are smaller than
10−5, so we decided not to attempt to correct the long range
behavior of the DMF.

We believe that our ab initio DMF is the most accu-
rate DMF available, based on arguments provided by Camp-
bell et al.19 In the MRCI calculations, the DMF was used to
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TABLE III. Calculated dipole moment function for the NH X3�− state.

r μ r μ

(Å) (D) (Å) (D)

0.31750633 1.33547488 1.64044935 0.78544598
0.34396519 1.39367433 1.69336708 0.70420372
0.37042405 1.44198960 1.74628480 0.62540407
0.39688291 1.48209917 1.79920252 0.55002503
0.42334177 1.51540207 1.85212024 0.47892878
0.44980063 1.54304783 1.90503796 0.41323669
0.47625949 1.56597458 1.95795568 0.35342338
0.50271835 1.58494170 2.01087340 0.29967584
0.52917721 1.60053915 2.06379112 0.25227372
0.58209493 1.62355141 2.11670884 0.21089732
0.63501265 1.63787893 2.24900315 0.13112447
0.68793037 1.64520599 2.38129745 0.07877570
0.74084810 1.64641330 2.51359175 0.04682247
0.79376582 1.64187747 2.64588606 0.02783687
0.84668354 1.63161556 2.77818036 0.01644904
0.89960126 1.61544649 2.91047466 0.00958660
0.95251898 1.59312483 3.04276896 0.00541524
1.00543670 1.56441623 3.17506327 0.00284421
1.05835442 1.52913964 3.43965187 0.00029543
1.11127214 1.48723095 3.70424048 − 0.00073901
1.16418986 1.43871888 3.96882908 − 0.00127003
1.21710759 1.38382496 4.23341769 − 0.00145136
1.27002531 1.32291100 4.76259490 − 0.00164245
1.32294303 1.25646147 5.29177211 − 0.00169789
1.37586075 1.18496853 6.35012653 − 0.00170170
1.42877847 1.10952353 7.40848095 − 0.00168396
1.48169619 1.03082967 8.46683538 − 0.00166784
1.53461391 0.94988204 9.52518980 − 0.00165816
1.58753163 0.86774152 10.58354422 − 0.00165069

compute the radiative lifetime of the v = 1 vibrational state of
NH, and the result was 36.99 ms, in perfect agreement with
the experimental value of 37.0 ± 0.5 ms determined in the
same study. It was also shown that a DMF computed with
another high-level ab initio method, the RCCSD(T) method,
gave very similar results and that the dipole moment of the v
= 0 state computed with the MRCI DMF is in good agree-
ment with the high level ab initio calculation of Paldus and
Li.62

C. The Herman-Wallis effect

The rotation of a diatomic molecule results in a cen-
trifugal force, which displaces the atoms and increases the
bond length.85 This causes the vibrational wavefunctions to
change with different amounts of rotation, which therefore
means that the TDMMEs depend on rotation. This is called
the Herman-Wallis (H-W) effect. Also, as has been shown
before by Chackerian et al.42 (see their Eq. (3)), the sign and
magnitude of the Herman-Wallis effect mainly depends on the
dipole moment and its first derivative with respect to the in-
ternuclear distance.

Calculations of the type reported in this paper often
use one rotationless TDMME for a vibrational band, and
the effect of rotation on the vibrational wavefunction is ig-

FIG. 2. Effect of rotation on the vibrational wavefunctions of the d3�g, v

= 4 state of C2 and the X3�−, v = 4 state of NH (v = 4 levels chosen
arbitrarily as examples).

nored. This can be a very good approximation for molecules
with heavier atoms, but NH contains a light H atom which
is strongly affected by the centrifugal force. An illustration
of the magnitude of the H-W effect in NH is shown in
Figure 2, which shows how the vibrational part of the wave-
function changes with N and J for NH and C2. Although
the effect is quite small with heavier atoms, if transitions
in vibrational bands with a small Franck-Condon factor in
an electronic transition are being calculated, it can still be
noticeable.37, 86, 87

We have included the H-W effect in these calculations by
calculating TDMMEs for the full range of J values that are
intended to be reported, and then entering the individual MEs
into PGOPHER (one for each J′�′ − J′′�′′ transition; see also
Sec. I).

III. RESULTS AND DISCUSSION

A. New NH FTS spectrum

To validate the results it is useful to compare the relative
intensities of a calculated spectrum with an observed spec-
trum, as the measurement of absolute intensities is extremely
difficult. The H-W effect has a major impact on the spectrum,
with a decrease in intensity of the P branches relative to the
R branches. To see if the inclusion of the H-W effect has
been done correctly, the intensities need to be compared over
a large enough wavenumber range to cover both branches.
The spectrum observed by Ram and Bernath41 would prob-
ably suffice for this purpose, but its y-axis had not been cal-
ibrated for the instrument response, and so the intensity may
drift over the wavenumber range observed.

A new spectrum was recorded at Old Dominion Univer-
sity, Norfolk, VA, USA, with the aim of providing relative in-
tensities that are calibrated across the full wavenumber range.
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FIG. 3. Observed and calculated spectra of NH. The lines that continue past
the top of the y-axis are intense atomic lines. The features that can clearly
be seen are the R branches of the 1-0, 2-1, 3-2, 4-3, and 5-4 bands. The
calculated spectrum was convolved with a Gaussian function to best match
the observed broadening. Effective rotational and vibrational temperatures of
1800 K and 5000 K were used, respectively.

NH was created in a microwave discharge of a mixture of
N2 (0.8 Torr), H2 (0.3 Torr), and He (0.9 Torr). The emission
spectrum was recorded with a Bruker IFS 125 HR FTS, us-
ing a CaF2 beam splitter and a liquid nitrogen cooled InSb
detector. Data were recorded between 1800 and 5000 cm−1,
limited by the InSb detector and a Ge filter. As intensities
but not line positions were important, a relatively low reso-
lution of 0.04 cm−1 was used to improve the signal-to-noise
ratio, and 688 scans were coadded to give the uncalibrated
spectrum. Immediately afterwards, the discharge cell was re-
placed by a 1256 K blackbody, and 144 scans were coad-
ded under the same conditions. The instrument function was
corrected for by dividing the NH spectrum by the blackbody
spectrum and the baseline was then subtracted to give the final
spectrum.

The relevant wavenumber range is shown along with the
calculated spectrum in Figure 3, and a good match is seen.
The calculated spectrum was convolved with a Gaussian func-
tion to best match the observed broadening, and rotational and
vibrational temperatures of 1800 K and 5000 K, respectively,
were found to give the closest match. In the microwave dis-
charge, energy transfer between the excited gases and var-
ious vibrational and rotational levels of the NH molecules
will occur, resulting in level populations that are not in ther-
modynamic equilibrium. This means that specifying separate
rotational and vibrational temperatures provides only an ap-
proximate model for the spectrum. This also explains why the
two temperatures are very different, and why, as can be seen in
Figures 3 and 5, the intensity within the R branch decreases
more quickly with increasing wavenumber in the calculated

FIG. 4. Ratio of P and R branch relative intensities, for the new observed
spectrum, the calculated spectrum, the spectrum observed by Boudjaadar
et al.39 and analyzed by Chackerian et al.,42 and the calculated spectrum
without the inclusion of the Herman-Wallis effect. The error bars are large
for the higher N′ values due to the low signal to noise ratio observed in the
P branch. A good match is seen between both sets of observed values and
the calculated values including the H-W effect, except for N′ = 5 from the
spectrum observed in this work. This could be due to a line overlapping the
pP3(6) line as this appears more intense than expected.

spectrum than in the observed spectrum. However, this is not
an issue when comparing the H-W effect, as explained in
Sec. III B.

B. Spectral validation

In checking that the H-W effect has been applied cor-
rectly, it is the difference in intensity between the R and P
branch that is most important. To quantify this, the observed
and calculated intensities in the 1-0 band were compared for
as many N′ levels as were available in both branches. For each
observed N′ level, the peak heights of the F1-F1, F2-F2, and
F3-F3 lines (where available) were summed for the R and P
branches separately, and the R branch total was divided by the
P branch total, giving the R/P ratio. The same was done for the
calculated spectrum, using exactly the same peaks (the inten-
sities vary with temperature, but the R/P ratio does not). The
results are shown in Figure 4. The inclusion of the H-W effect
is clearly an improvement. This improvement is also seen in
Figure 5, where the spectrum calculated (using the conditions
described in Sec. III A) using the H-W effect clearly better
matches the difference between R and P branch intensity in
the observed spectrum.

Observed intensities were also obtained from Chacke-
rian et al.,42 who analyzed the spectra observed by Boud-
jaadar et al.39 They reported reduced intensities, in the form
ln(6.23 × 1023 × S�J

J ′′ I ν̃4), where S�J
J ′′ is the Hönl-London

factor, and I is the required observed intensity. They described
how they calculated their Hönl-London factors, and so values
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FIG. 5. Observed and calculated IR spectra of NH. (a) FTS spectrum ob-
tained at Old Dominion University, Norfolk, VA. The red line and dots indi-
cate the intensity of the 1-0 band P branch (left) and R branch (right). The
lines that continue past the top of the y axis are intense atomic lines. The R
branches of the 2-1, 3-2, and 4-3 bands are the other features that are clearly
visible here. (b) and (c). Calculated spectra of the NH 1-0 band only, with and
without the inclusion of the H-W effect. Its inclusion gives a better relative
intensity difference between the P and R branches. The calculated spectrum
was convolved with a Gaussian function to best match the observed broaden-
ing. A rotational temperature of 1300 K was used.

for I could be calculated. The resulting R/P ratios are also
shown in Figure 4.

C. Lifetimes and band strengths

The experimental lifetime of the NH v = 1 level of Camp-
bell et al.19 of 37.0 ± 0.5stat

+2.0
−0.8systms matches very well with

their calculated lifetime of 36.99 ms. We have calculated vi-
brational lifetimes using our final Einstein A values, by tak-
ing the reciprocal of the sum of the Einstein A values for all
possible transitions from the same N′ = 0, J′ = 1 level. This
results in a lifetime of 36.77 ms, which compares well to re-
cent values of Campbell et al. Similarly, lifetimes of 17.09,
10.93, 8.10, 6.57, and 5.71 ms were calculated for v = 2-6,
respectively.

Einstein Av′v values have been calculated for all reported
vibrational bands, and the observed �v = 1 sequence val-
ues are shown in Table IV, where disagreement with those
of Dodd et al.66 and Rosmus and Werner67 is shown. These
are calculated by summing over the Einstein A values for all
possible transitions with N′ = 1, J′ = 1, for each band. The

TABLE IV. Einstein Av′v and fv′v values for vibrational transitions within
the X3�− state of NH, where �v = 1.

Einstein Av′v (s−1)

Ours Da R&Wb M&Rc fv′v

1-0 27.19 51.7 34.9 31.69 3.941(−6)d

2-1 57.91 92.3 69.18 9.349(−6)
3-2 90.14 144.4 108.12 1.632(−5)
4-3 121.40 144.49 2.481(−5)
5-4 148.70 173.94 3.461(−5)
6-5 168.92 191.70 4.527(−5)

aDodd et al.66

bRosmus and Werner.67

cOur calculations repeated using the 1975 DMF of Meyer and Rosmus.57

dNumbers in parentheses indicate the exponent.

Einstein Av′v values have also been converted into vibrational
band oscillator strengths (fv′v -values) using the equation88

fv′v = 1.49919368
1

ν̃2

(2 − δ0,�′ )

(2 − δ0,�)
Av′v, (5)

where �′ = �′′ = 0. The full set of Einstein Av′v and fv′v
values are available in Supplement 4 of the supplementary
material.71

Our value for μ0 of 1.5246 D compares well to the val-
ues of the theoretical studies shown in Table I (μe is also
shown to enable comparison with all studies). However, it lies
just outside the error bounds of the experimental value ob-
tained by Scarl and Dalby in 1974.52 As discussed above, our
v = 1 lifetime shows excellent agreement with the experi-
mental value measured recently by Campbell et al.19 using
magnetic trapping. Scarl and Dalby determined μ0 from the
Stark shift in the A3�-X3�− transition, assuming that μ0(A)
= 1.3 D. We calculated μ0(A) at the same level of theory as
the ground state, and found a value of 1.412 D. If we adapt
Eq. (10) of Ref. 52 by replacing 2.80 ± 0.13 in the numera-
tor by 2.80 × (1.412/1.3)2 we find μ0(X) = 1.38 . . . 1.52 D,
where the upper limit agrees with our ab initio value.

In 1989, Chackerian et al.42 measured the Herman-Wallis
effect from an observed spectrum and used this along with
the value of μ0 from Scarl and Dalby in their calculations
of the matrix element 〈v = 1|μ|v = 0〉. If, in their Eq. (3), all
of the terms are replaced by our values (μ0 = 1.52456, ωe and
Be from Table II, and C1

0 = 0.07895), the result is −0.0559
D, which shows a much better match to our ab initio value of
−0.05615 D.

D. Calculations with the 1975 Meyer and Rosmus
dipole moment function

As the Meyer and Rosmus DMF from 197557 has previ-
ously been used to calculate NH rovibrational line intensities,
the full set of calculations described in this paper were also
performed with this DMF as a test. The resulting Einstein Av′v
values can be seen in Table IV. This shows that even though
the values of μe of the new DMF and the 1975 DMF only dis-
agree by ∼3.5%, the differences between the full DMFs and
the amount of extrapolation necessary cause the resulting line
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intensities to disagree by a much greater percentage. The two
DMFs are shown in Figure 1.

IV. CONCLUSION

Discrepancies have previously been seen in NH line
strengths (see Secs. I and III C), and with the aim of helping
to resolve them, a new dipole moment function for the X3�−

state of NH has been reported that we believe to be the most
accurate to date. It has been used along with the data of Ram
and Bernath41 to calculate a new line list (see Supplement 5 of
the supplementary material71) of rotational and rovibrational
transitions, including line positions and intensities in the form
of Einstein A values and f-values, taking the Herman-Wallis
effect into account. This line list will be useful for the study
of NH in astronomy, cold and ultracold molecular systems,
and in the nitrogen chemistry of combustion.
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APPENDIX: DETAILS OF LINE INTENSITY
CALCULATIONS

1. Transformation from Hund’s case (b) to case (a)
matrix elements

Please note that the matrix elements in this section are
all for the ground electronic state. LEVEL does not include
electron spin, and therefore its calculated TDMMEs are of
the form

〈v′�′N ′|T k
q |v�N〉, (A1)

where k is the rank of the transition, and equal to 1 for sin-
gle photon electric dipole transitions, and the component q
is 0 for parallel and ±1 for perpendicular transitions. The
dependence on N of this quantity gives rise to the Herman-
Wallis effect. Note that these are vibronic matrix elements,
and exclude the angular dependence of the wavefunction
(but do include the rotational dependence of the vibronic
wavefunctions).

As the matrix elements in Eq. (A1) specify N, they can
be used as is for a calculation in a Hund’s case (b) basis.
Although the NH X3�− state is close to Hund’s case (b),
PGOPHER uses a Hund’s case (a) basis set, and therefore the
case (b) MEs from LEVEL need to be converted to case (a).
This can also be considered as a transformation from spinless
case (b) MEs to case (a) MEs that include spin.

The MEs can be transformed from Hund’s case (b) to (a)
using the equation

〈v′�′J ′�′|T k
q |v�J�〉 = (−1)J

′−�′
(

J ′ k J

−�′ q �

)−1

×
∑
N,N ′

(−1)N−N ′+S+J+k+�(2N + 1)(2N ′ + 1)

(
J ′ S N ′

�′ −� −�′

)(
J S N

� −� −�

)

×
{

N ′ J ′ S

J N k

}(
N ′ k N

−�′ q �

)
〈v′�′N ′|T k

q |v�N〉, (A2)

which in this case is

〈v′0J ′�′|T 1
0 |v0J�〉 = (−1)J

′−�′
(

J ′ 1 J

−�′ 0 �

)−1

×
∑
N,N ′

(−1)N−N ′+J+2(2N + 1)(2N ′ + 1)

(
J ′ 1 N ′

�′ −� 0

)(
J 1 N

� −� 0

)

×
{

N ′ J ′ 1
J N 1

}(
N ′ 1 N

0 0 0

)
〈v′0N ′|T 1

0 |v0N〉. (A3)

This equation was derived mainly for use with the CN37

and CP87 A2�-X2�+ transitions, as the upper A state is case
(a) for CP and a mixture of (a) and (b) for CN, and therefore
transformation from the LEVEL case (b) MEs was important.
However, it still has a small effect when the states involved
are case (b) because of the use of the case (a) basis set by

PGOPHER, and so as the transformation was possible, it was
also used for the B2�+-X2�+ transition and the X2�+ state
rovibrational transitions of CN,37 and it is used in the calcu-
lations in this paper for the same reason. The derivation was
explained in detail in the supplementary material of Brooke
et al.37, 89
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On the right-hand side of the equation, 〈v′0N ′|T 1
0 |v0N〉,

is the Hund’s case (b) ME that is calculated by LEVEL, which
applies to a specific transition involving given values of N′ and
N′′. The case (a) ME on the left-hand side specifies the tran-
sition in terms of J and �, and these are calculated by sum-
ming over all the case (b) MEs (specified in terms of N′ and
N′′) that can contribute to the chosen J′�′ − J′′�′′ transition.
The numerical factors in the equation arise from the transfor-
mation between Hund’s case (a) and (b) wavefunctions. The
final result is that a case (a) ME is calculated from a weighted
average of the contributing case (b) MEs. This is explained in
more detail below.

For an X3�− state, PGOPHER uses the Hund’s case
(a) basis states |v J � = +1〉, |v J � = 0〉, and |v J �

= −1〉. For the P and R branches (in terms of �J),
there are three non-zero MEs between these basis states:
〈v′ J ′ �′ = +1|T 1

0 |v J � = +1〉, 〈v′ J ′ �′ = 0|T 1
0 |v J �

= 0〉, and 〈v′ J ′ �′ = −1|T 1
0 |v J � = −1〉 (except for

where J′′ or J′ are 0). For the Q branch, the non-zero
MEs are 〈v′ J ′ �′ = +1|T 1

0 |v J � = +1〉 and 〈v′ J ′ �′

= −1|T 1
0 |v J � = −1〉. 〈v′ J ′ �′ = +1|T 1

0 |v J � = +1〉 and
〈v′ J ′ �′ = −1|T 1

0 |v J � = −1〉 are equal by symmetry, as
they are invariant to reversal of the signs of all the projections
(� = 0 and � = �). Therefore, values must be calculated
for five MEs for each lower J level: 〈v′ J ′ �′ = +1|T 1

0 |v J �

= +1〉 and 〈v′ J ′ �′ = 0|T 1
0 |v J � = 0〉 for both the P and

R branches, and 〈v′ J ′ �′ = +1|T 1
0 |v J � = +1〉 for the

Q branch. Values for these MEs for all required rotational
transitions were calculated using Eq. (A3). The resulting case
(a) MEs were set up in PGOPHER, which first transforms
these pure omega MEs into symmetrized case (a) MEs, and
then performs the diagonalization of the Hamiltonian in
the symmetrized case (a) basis, resulting in a transformed
transition matrix in terms of the true states. This is described
in more detail in Sec. II.

The summation part of the equation is over all N′-
N′′ transitions that are possible for a particular J and �

transition. For the R branch transitions (except for where
J′′ or J′ are 0), there are four N transitions that con-
tribute to the overall intensity. These are, for example, for
the R(6) transition, N′ − N′′ = 6-5, 6-7, 8-7, and 7-6.
These are included in the summation part for the calcula-
tion of both the 〈v′ J ′ �′ = +1|T 1

0 |v J � = +1〉 and 〈v′ J ′ �′

= 0|T 1
0 |v J � = 0〉 MEs. Similarly, there are four N transi-

tions for the P branch 〈v′ J ′ �′ = +1|T 1
0 |v J � = +1〉 and

〈v′ J ′ �′ = 0|T 1
0 |v J � = 0〉 MEs, and four for the Q branch

ME.

2. Calculation of Sη′J ′ηJ from Hund’s case (a) TDMMEs
using PGOPHER

Please note that the matrix elements in this section are
all for the ground electronic state. The line strength, Sη′J ′ηJ

(in debye squared; where the electronic state, vibration, elec-
tron spin, and orbital angular momentum are included in η), is
equal to the squared transition dipole moment summed over
the degenerate M components of both states and the possible
polarizations of the light,

Sη′J ′ηJ = �p,M ′,M |〈v′J ′M ′N ′|T k
p (μ)|vJMN〉|2, (A4)

TABLE V. Pure omega transition matrix set up by PGOPHER for the (1,0),
R(4) example transition.

〈v′ J ′ �′ = +1| 〈v′ J ′ �′ = 0| 〈v′ J ′ �′ = −1|

|v J � = +1〉 − 0.148373 0 0
|v J � = 0〉 0 − 0.151539 0
|v J � = −1〉 0 0 − 0.148373

which is equal to |〈v′J ′N ′|T k(μ)|vJN〉|2. Therefore there is
one Eq. (A4) for each transition between the individual e and
f parity levels.

To obtain these MEs, the Hund’s case (a) MEs calculated
as described in Sec. I must be converted to MEs in terms of
the true fine structure states. For each J transition, a 3 × 3
pure omega transition matrix is set up by PGOPHER using the
calculated case (a) vibrational MEs, 〈v′0J ′�′|T 1

0 |v0J�〉.
The matrix elements 〈v′0J ′�′|T 1

0 |v0J�〉 above exclude
the required averaging over the angles between space and
body fixed axis systems. The complete matrix element thus
requires an additional factor:

(−1)J
′−�′√

(2J ′ + 1)(2J + 1)

(
J ′ 1 J

−�′ 0 �

)
. (A5)

The pure omega matrix is transformed to a symmetrized
matrix, with the basis functions:

|vJ0〉 = |v J � = 0〉, (A6)

|vJ+〉 = |v J � = +1〉 + |v J � = −1〉√
2

, (A7)

and

|vJ−〉 = |v J � = +1〉 − |v J � = −1〉√
2

. (A8)

For the P and R branches, this results in one 2 × 2 and one
1 × 1 matrix, for the |vJ+〉/|vJ0〉 and |vJ−〉 basis functions,
respectively. For example, for the (1,0), R(4) transition, the
original and symmetrized matrices are shown in Tables V and
VI, and the 1×1 matrix has the element 〈v′J ′ − |T 1

0 (μ)|vJ−〉
= −0.148373.

For the Q branch, it results in two 2 × 1 matrices, one
where the basis functions are 〈v′J ′ + |, 〈v′J ′0| and |vJ−〉,
and one where they are 〈v′J ′ − |, |vJ+〉 and |vJ0〉. These
“original” transition matrices, O, are combined with the
eigenvector matrices from the diagonalization of the Hamilto-
nian, giving the “transformed” transition matrices, T, in terms
of the real F levels. For example, for the e parity (F1 and F3)
transitions, T is obtained from

T = XT
l OXu, (A9)

TABLE VI. Symmetrized e parity transition matrix calculated by PGOPHER

for the (1,0), R(4) example transition.

〈v′J ′ + | 〈v′J ′0|

|vJ+〉 − 0.148373 0
|vJ0〉 0 − 0.151539
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TABLE VII. Transformed e parity transition matrix, T, calculated by
PGOPHER for the (1,0), R(4) example transition, in terms of the true F levels.

〈η′ J ′ F ′ = 1| 〈η′ J ′ F ′ = 2|

|η J F = 1〉 − 0.149798 0.000121
|η J F = 2〉 .003030 − 0.150099

where Xu and Xl are the upper and lower eigenvector matri-
ces, respectively.

The e parity T matrix for (1,0), R(4) is shown in
Table VII. These are the |〈v′J ′N ′|T k(μ)|vJN〉|2 MEs men-
tioned above, and so Sη′J ′ηJ , and then the Einstein A values,
can be calculated directly. For the example transition, Sη′J ′ηJ

is equal to the values in Table VII squared, and the Einstein A
values are 21.8182, 22.9405, .0067193, and 0.00001923 s−1

for the F11, F33, F13, and F31 transitions, respectively.
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